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Rapid urban expansion and associated land-use land-cover (LULC) change in India have emerged as a
serious environmental threat that accelerates the impacts of urban heat island intensity (UHII). Three
independent investigations have been conducted in this study using a series of Landsat data. The
objectives of this work are: (1) To predict the near-future LULC scenario using an integrated model; (2)
To understand the connection between band mean for particular LULC class with LST; (3) To analyze
the temporal relationship between different types of built-up clusters and LST. The LULC and LST maps
reveal that LST increases from 27.01� to 33.86�C, whereas built-up areas rise from 6.93% to 27.10%
during 1988–2018, respectively. We observed that the near-future LULC scenario of KMA shows a huge
expansion of built-up areas paid by decreased vegetation and open spaces. A clear significant correlation
has been found between band mean and LST in all three Landsat sensors with the R2 = 0.84; p\0.02 for
Landsat 5 TM, R2 = 0.91 and 0.99; p\0.01 and 0.00 for Landsat 7 ETM+, and R2 = 0.88; p\0.01 for
Landsat 8 OLI in connection to our second objective. However, no agreement has been found between
different built-up clusters and LST over 30 years of observation. For the Brst time, this study established
the interconnectivity between bands of Landsat sensors and LST. The temporal relationship between
different built-up clusters and LST have reviled also for the Brst time. Beside this, the rising rate of built-
up areas was observed by the integrated model. Such alarming condition demands immediate attention to
sustainable, and scientiBc land use regulations under new urbanism policy.

Keywords. Land-use land-cover (LULC); land surface temperature (LST); urban heat island (UHI);
Landsat; built-up clusters; India.

1. Introduction

Over the past few decades, global population
growth and urban expansion have been acting as
the primary drivers for transforming land-use land-

cover (LULC) worldwide. This situation is
common especially in underdeveloped and devel-
oping nations with an unstoppable desire for a
prosperous economy (Lv and Zhou 2011). A
developing nation like India has experienced a huge
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population increase in recent decades. According to
the last national census of 2011 report, the popu-
lation was increased from 361 million in 1951 to
1,221 million in 2011 (James 2011; Moulds et al.
2018). Due to such a significant increase in popu-
lation, an extreme change was observed in envi-
ronmental and microclimatic systems in all major
and minor cities of India. Urban migration, popu-
lation pressure, and a dynamic economy all are
reCected in the changing scenario of Indian cities
(Kallvetty and Bandopadhyay 2018). The expan-
sion of Indian cities encourages the transformation
of natural land covers into impervious materials.
Such transformations were made by biophysical
environmental modiBcations, reduction in green
paved spaces, compromised public space and parks
and Bnally changes in the land surface energy
process (Lo and Quattrochi 2003; Fu and Weng
2016; Pal and Ziaul 2017). These transformations
have also inCuenced the absorption budget of solar
radiation, heat storage, and transmission, local
wind turbulence pattern, energy balance, water
balance interactions, and normal environmental
situations in direct or indirect ways (Oke 1987;
Weng et al. 2004; Mallick et al. 2008). According to
Chandler (1965) and Lombardo (1985), there are
three prime adverse eAects of urban heat island
intensity (UHII) on a city: (1) decrease of evapo-
transpiration; (2) disturbance in the normal energy
transformation process; (3) production of anthro-
pogenic energy. These adverse eAects ultimately
enhance the land surface temperature (LST) con-
centration of urban centers. Thus the impact of
urbanization on LST needs to be addressed
through various approaches. The LST derived from
satellite, airborne, unmanned automated vehicle
(UAV) sensed thermal infrared (TIR) imageries
are some of the key mechanisms which help to
understand the impact of urbanization on LST (Fu
and Weng 2016).
In literature, many studies have explored the

nexus between LST, LULC, and UHI through
various approaches. Studies have shown the gen-
eral trend where the increasing rate of urbanization
accelerates the LST concentration of urban centers
(Yap 1975; Chen et al. 2006; Weng et al. 2006;
Rinner and Hussain 2011). Chandra et al. (2018)
have addressed that the LST concentration of
Jaipur city (Rajasthan, India) was changing with
the areal expansion of the city. The study has
applied the buAer analysis of settlement expansion
using temporal datasets of Landsat 5 TM and
Landsat 8 OLI images. Based on the radial

analysis, the outcome reviles that the areal increase
of the urban areas accelerates the average tem-
perature range (30�–35�C). However, the future
expansion of urban areas and its impact on LST
over Jaipur city was overlooked in this study.
Kumar et al. (2018) have shown the temporal
relationship between LST and different land cover
types (vegetation, water bodies, barren land, etc.)
using Landsat 5 TM and Landsat 8 OLI images.
The study was conducted at the hilly terrain of
Spiti valley (Himachal Pradesh, India). Although
this study has shown the negative relation between
vegetation cover (NDVI) and snow cover (NDSI)
with LST through linear regression, the impact of
urbanization on LST was not addressed. Seasonal
and temporal diversity of LST according to the
changing pattern of LULC units were studied by
Pal and Ziaul (2017). The work was conducted over
Malda town (West Bengal, India) using Landsat 5
TM and Landsat 8 OLI images. Supervised image
classiBcation technique with Mahalanobis distance
in parametric rule used for LULC classiBcation,
whereas the fraction of vegetation cover over the
study area was calculated through vegetation
indices such as NDVI. The outcome showed that
LST increases 0.070�C/year and 0.114�C/year
during winter and summer periods where built-up
areas were the highest contributor in LST con-
centration. In a different study, Hiremath et al.
(2013) have investigated the LULC (particularly
built-up and vegetation) and LST connection over
10 years in Bangalore city (Karnataka, India). The
study has used Landsat TM images for LULC
classiBcation, whereas Landsat thermal bands were
used to estimate LST. Post-supervised change
detection analysis, as well as vegetation (NDVI)
and built-up (NDBI) indices, were calculated to
establish LULC and LST connection. Outcome
reviles that LST values were increased on an
average by 1.7�C and 2.2�C where built-up areas
were the highest contributor in LST acceleration.
Similar objective-based studies were conducted for
other cities in India like Chennai (Rose and Devdas
2009), Mumbai (Grover and Singh 2015), Delhi
(Mallick et al. 2008; Grover and Singh 2015),
Kolkata (Sharma et al. 2015) using temporal
satellite data.
Studies also showed the LULC and LST

relationship through different approaches. Small
(2006) showed that anomalies in urban thermal
patterns were highly dependent on the modiBca-
tion of biophysical land surface components, evi-
dent from 24 global cities including Kolkata. The
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study by Weng et al. (2004) have suggested that
solar radiance, thermal, and moisture properties of
the Earth surface have a direct relation to the LST
of urban centers. Fu and Weng (2016) have proved
that human-induced LULC modiBcations acceler-
ated the surface thermal properties. The eDciency
of Landsat images has been demonstrated by Lv
and Zhou (2011) and Ibrahim and Rasul (2017)
which shows impervious surfaces inCuencing the
LST concentration in a city. Various methods (i.e.,
Bayesian average; linear consensus; logarithmic
consensus; majority vote; fuzzy integral etc.) based
classiBed LULC maps were also showed a signifi-
cant positive co-relation with LST, examined by
Du et al. (2014). So, most of the studies represented
the LULC and LST nexus based on spatial or non-
spatial modelling techniques using satellite data.
However, no such studies have focused on the

future LULC scenario of the study area to under-
stand the degree of urban expansion over time.
This was also for the Brst time in the Beld of LULC
and LST analysis, where bands of different Landsat
imageries and its connection to LST were con-
ducted. Furthermore, temporal analysis between
different built-up clusters and LST were also
studied for the Brst time in this domain. So in this
study, a multi-approach investigation between
LULC and LST, based on three different objec-
tives, have been performed under a single umbrella.
First, a predictive modelling of near-future LULC
scenario was developed through an integrated
model. In 1982, Walburg et al. (1982) introduced
the spectral data (reCectance) as band mean in
correspondence to Landsat Thematic Mapper
(TM) bands (i.e., TM2 (520–600 nm), TM3
(630–690 nm), and TM4 (760–900 nm). Each band
has taken with a sensor, which is sensitive towards
a particular wavelength. We know that each sur-
face or object of the earth interacts with incoming
solar radiation in different ways. Incoming elec-
tromagnetic radiation, i.e., light can be absorbed,
transmitted, emitted or reCected by such surface or
object which is detected and captured by different
wavelengths. Each LULC class (i.e., built-up,
vegetation, waterbody, etc.) is highly sensitive to a
particular wavelength detected by a particular
band (example: NIR band for vegetation, blue
band for water bodies, etc.). However, the con-
nection between bands (spectral reCectance)
responsible for particular LULC classes and its
connection to LST was not analyzed yet. Filling
this gap, in our second objective we have examined
the relationship between LST and different

Landsat bands responsible for different LULC
classes. This analysis will help us to understand the
sensitivity of different Landsat bands towards
LST. Studies like Zha et al. (2003), Xiong et al.
(2012), Chen et al. (2013) and Guo et al. (2015)
have shown the general positive relation between
built-up density and LST. But the temporal anal-
ysis between different built-up clusters and LST,
have not been explored yet. Keeping this concern,
the temporal relationship between different built-
up clusters (i.e., highly dense, planned, slum and
village) and LST have examined in our third
objective. To the best of the authors knowledge,
none of these objectives were examined for the
cities of India particularly Kolkata within a single
article.
The three objectives of this study are:

(1) To predict the near-future LULC scenario of
the study area using an integrated model.

(2) To understand the connection between LST
and Landsat bands responsible for different
LULC classes.

(3) Temporal analysis between different built-up
clusters with LST.

2. Study area

The study was conducted on the Kolkata
Metropolitan Area (KMA) (Bgure 1), West Bengal,
India. KMA experienced massive urban expansion
in the past few decades (Bardhan et al. 2016). It is
considered as the largest urban agglomeration of
eastern India and the third-largest populous
metropolitan following Delhi and Mumbai. Kolkata
Metropolitan Development Authority (KMDA) is
the responsible agency for planning, promoting and
developing the KMA region.
KMA is situated at 22.329�–23.000�N latitude

and 88.066�–88.556�E longitude. The geographical
extension of KMA is spread over the 1886.67 km2

area. This region is located in the lower deltaic
plain of the Ganges–Brahmaputra–Meghna delta
system where the main surface material is alluvial
clay and clay loam (Bardhan et al. 2015).
KMA region comes under the tropical wet-and-

dry climate zone with summer monsoons, Btted in
the Koppen’s climatic division of Aw. The mean
monthly temperature in KMA ranges from 18� to
30�C and maximum temperatures can often exceed
40�C during May–June (Mitra 2018). Winter sea-
son begins from the last of November to early
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February, with the lowest temperatures hovering
in the 12�–14�C during December and January.
During summer, KMA and the other parts of West
Bengal experience some locally developed thun-
derstorms known as Kalbaishakhi (Nor’ wester).
Like other parts of India, rainfall in this region is
dominated by monsoonal precipitation from the
end of June to the end of August (Chakraborty
et al. 2019). The mean annual rainfall in this region
is 1582 mm. Agriculture and industry both are the
pillars of the economy in KMA. Due to unplanned
urban expansion of Kolkata metropolitan, KMA
suffers from poverty, excessive migration, increas-
ing slum population, air pollution, trafBc conges-
tion and several socio-economic problems (Bhatta
2009; Ghosh et al. 2018).

3. Data and methods

3.1 Datasets

Three different sensors of Landsat series (i.e. Land-
sat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI)

have been used in this study. Landsat 5TM for 1988,
Landsat 7 ETM+ for 2000 and 2010, and Landsat 8
OLI for 2018 with an interval of 12, 10 and 8 years
respectively, have been acquired freely from the US
Geological Survey (USGS) Global Visualization
Viewer platform (https://earthexplorer.usgs.gov/).
The details of the acquired Landsat images are given
in table 1(a, b, c). The obtained Landsat (level L1T)
images were geometrically and topographically
corrected. All the images were in Universal Trans-
verse Mercator (UTM) projection system (zone 45
North for KMA) with WGS-84 datum. Necessary
atmospheric corrections such as noise and haze
correction have been performed on every image
before mosaicking using ERDAS IMAGINE 2013
(Hexagon Geospatial., USA) and ENVI 5.3 (Harris
Geospatial Solutions., USA).

3.2 Methods

The methodological framework adopted for indi-
vidual objective was presented below.

Figure 1. Location of Kolkata Metropolitan Area (KMA) in false colour composite (FCC) mode on Landsat 8 OLI image.
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3.2.1 LULC classiBcation

Four LULC maps of 1988, 2000, 2010, and 2018
were generated by the supervised classiBcation

technique with maximum likelihood (ML)
approach using ERDAS IMAGINE 2013 (Hexagon
Geospatial, USA). Several studies have adopted
different classiBcation techniques for LULC

Table 1(a). Bands of Landsat 5 TM and its respective LULC class.

Landsat 5 TM

DOA: 26.12.1988 Datum and Projection = WGS 84 UTM Zone 45
ROW/PATH: 44 and

45/138

Band no. Band name Spectral range (lm) Spatial resolution (m) Sensitive class

1 Blue 0.450–0.515 30 Water

2 Green 0.525–0.605 30 NA

3 Red 0.630–0.690 30 NA

4 NIR 0.760–0.900 30 Vegetation

5 SWIR I 1.550–1.750 30 Urban and Industry

6 Thermal 10.40–12.5 120 LST

7 SWIR II 2.080–2.35 30 Open space

Table 1(b). Bands of Landsat 7 ETM+ and its respective LULC class.

Landsat 7 ETM+

DOA: 26.01.2000 and 23.12.2010 Datum and Projection = WGS 84 UTM Zone 45
ROW/PATH: 44 and

45/138

Band no. Band name Spectral range (lm) Spatial resolution (m) Sensitive class

1 Blue 0.450–0.515 30 Water

2 Green 0.525–0.605 30 NA

3 Red 0.630–0.690 30 NA

4 NIR 0.760–0.900 30 Vegetation

5 SWIR I 1.550–1.750 30 Urban and Industry

6 Thermal 10.40–12.5 60 * (30) LST

7 SWIR II 2.080–2.35 30 Open Space

8 Panchromatic 0.520-0.900 15 NA

Table 1(c). Bands of Landsat 7 ETM+ and its respective LULC class.

Landsat 8 OLI

DOA: 11.01.2018 Datum and Projection = WGS 84 UTM Zone 4
ROW/PATH: 44

and 45/138

Band no. Band name Spectral range (lm) Spatial resolution (m) Sensitive class

1 Ultra Blue 0.435–0.451 30 NA

2 Blue 0.452–0.512 30 Water

3 Green 0.533–0.590 30 NA

4 Red 0.636–0.673 30 NA

5 NIR 0.851–0.879 30 Vegetation

6 SWIR I 1.566–1.651 30 Urban and Industry

7 SWIR II 2.107–2.294 30 Open Space

8 Panchromatic 0.503–0.676 15 NA

9 Cirrus 1.363–1.384 30 NA

10 TIRS I 10.60–11.19 100 * (30) LST

11 TIRS II 11.50–12.51 100 * (30) LST

*DOA: Date of image acquisition; NIR: Near Infrared; SWIR: Shortwave Infrared; TIRS: Thermal Infrared; NA: Not applicable
in this study. Source: https://Landsat.usgs.gov/what-are-best-spectral-bands-use-my-study; https://Landsat.usgs.gov/what-
are-band-designations-Landsat-satellites.
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mapping. For example, artiBcial neural network
(ANN) by Erbek et al. (2004), support vector
machine (SVM) by Chen et al. (2017a), object-
based image classiBcation by Drăgutand Blaschke
(2006), Mahalanobis distance by Pal and Ziaul
(2017) and so on. All of the mentioned classiBcation
techniques were highly dependent on the spatial
heterogeneity or homogeneity of pixels. But
specifically for urban LULC mapping where spatial
heterogeneity of pixels is so high, the supervised
classiBcation based ML approach was extensively
used and considered as an established technique in
the literature (Sun et al. 2013; Sahana et al. 2018;
Ghosh et al. 2018). The ML method is based on the
relative class membership function (likelihood)
including all train signature samples for each class
in an image. ML approach needs the least compu-
tational time among other supervised classiBcation
algorithms such as minimum distance, Mahalanobis
distance, etc. In comparison to the minimum dis-
tance, Mahalanobis distance, ML approach pro-
vides the best accurate classiBcation outcomes,
because it does not overestimate the class values
during the computational process (Ahmadi and
Hames 2009). The studies like Sun et al. (2013),
Ahmadi and Hames (2009) and Erbek et al. (2004)
have shown the strength of ML approach in com-
parison to other classiBcation methods (i.e. mini-
mum distance, Mahalanobis distance, ANN
algorithms). The three main advantages of the ML
approach are (1) allowing the reclassiBcation pro-
cess to reduce the error and improve the overall
accuracy (Chen et al. 2017b). The post-classiBca-
tion correction technique within the ML classiBer is
allowing the user to reBne the class assignment of a
pixel after its initial classiBcation (Thakkar et al.
2017). In this process, the post-classiBcation cor-
rection technique Brst minimizes the number of
misclassiBed pixels and further reclassify to assign
misclassiBed pixels into its new class according to
the spectral similarity. This process ultimately
improves the overall accuracy of the classiBed
image. (2) Auto-allocation of pixels to the unclas-
siBed regions based on the surrounding values
(Ahmadi and Hames 2009). During the classiBca-
tion process, the unclassiBed pixels are assigned to a
particular class based on the relative likelihood
(probability) and spectral similarity of that pixel
which is occurring within each class (Sun et al.
2013). This process repeats until each pixel assigned
to a class and satisBes the spectral parameters. (3)
Variance and covariance values of the class signa-
tures are considered within the class distribution

(Erbek et al. 2004; ERDAS 2009). It considers that
the distribution of the class is normal and can be
characterized by the mean vector and covariance
matrix. Based on such considerations, the statisti-
cal probability is computed for each class to Bx the
assignment of a cell to the particular class.
The images of 1988, 2000, 2010, 2018 were clas-

siBed into Bve major LULC classes, i.e., (i) built-
up, covering the buildings and concrete areas, (ii)
vegetation, covering the green vegetated areas, (iii)
water bodies, covering the ponds, lakes, wetlands
and major river system of the study area which is
the Ganges, (iv) open space, covering the croplands
and barren lands, (v) industry, covering the fac-
tories, workshops, and small to large size indus-
tries. In each class, 80 random samples (spectral
signatures) have been taken from images for
classiBcation.
In the next stage, four generated LULC maps

have been validated and authenticated using two
techniques: (1) classiBed products were veriBed
through Google Earth Engine, (2) accuracy
assessment has been conducted. Details of the two
mentioned steps were given below.

3.2.2 Validation through Google Earth

Four classiBed LULC maps were veriBed by Google
Earth Engine at the Brst step (Luedeling and
Buerkert 2008; Zhao et al. 2015). Google Earth uses
very high-resolution images (e.g., QuickBird, IKO-
NOS, SPOT5) of recent years at a spatial resolution
of 1 m or so (Hu et al. 2013). Such high-resolution
images help to distinguish different land cover types
observed by the visual veriBcation process. In our
study, validation of four LULC maps using Google
Earth Engine were conducted in ERDAS IMAGINE
2013 (Hexagon Geospatial, USA).

3.2.3 Accuracy assessment

In supervised classiBcation, accuracy assessment was
conducted through confusion or error matrix that
allows differentiating between real and predicted
classiBcations (Yuan 1997). All accuracy statistics,
namely, overall accuracy (OA), user’s accuracy (UA),
producer’s accuracy (PA) and kappa coefBcient (k)
were calculated for the four LULC maps. Equa-
tions for each accuracy statistics were given below.

Overall accuracy OAð Þ

¼ Total number of correct samples

Total number of all samples
� 100%

ð1Þ
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A total of 102 random sample sites has been
selected automatically for OA assessment. The
selection of 102 sample sites was an automated
process by the software, i.e., ERDAS IMAGINE
2013. The sample sites were distributed equally
over the whole study area.
Simultaneously, the classiBcation accuracy

within each class was also computed through UA
and PA assessment using the following equitation:

Comission :Error ¼ FP

FP þ TP
¼ FP

total predicted

So,

UA %ð Þ ¼ 100%� error of commission %ð Þ ð2Þ

Omission:Error ¼ FN

FN þ TP
¼ FN

total reference

So,

PA %ð Þ ¼ 100%� error of omission %ð Þ ð3Þ

FP: false positive, TP: true positive, FN: false
negative, and TN: true negative.
Furthermore, the kappa coefBcient was calcu-

lated for each classiBed image. The purpose of
calculating kappa coefBcients was to measure the
inter-observer agreement for classiBed items
(Foody 1992). The equation for kappa coefBcients
(k) is given below:

k ¼ n
Pq

k¼1 nkk �
Pq

k¼1 nkþnþk

n2 �
Pn

k¼1 nkþnþk

ð4Þ

here, n is the total number of pixels the ground or
reference data, nkk is the total number of i class, nk
is the total number of pixels for the ith class
derived from the classiBed data, n+k is the total
number of pixels for the ith class derived from the
reference data, q is the total number of class
(Ghosh et al. 2018). In simple terms, the above
equation stands like:

The kappa value (k) is always less than or equal
to 1. The k value ranges from 0.70 to 0.85 consid-
ered as very high accuracy, and[0.85 is considered
as outstanding accuracy of the classiBed map
(Monserud and Leemans 1992).

3.3 LST retrieval from satellite images

Advancement of thermal remote sensing has
allowed us to develop several algorithms for LST
retrieval from Landsat images. For example,
radiative transfer algorithm (Sobrino et al. 2004),
mono-window algorithm (Qin et al. 2001), single-
channel algorithm (Jim�enez-Muñoz and Sobrino
2003) and so on. However, it is challenging to
obtain real-time atmospheric proBle data during
satellite overpass, which is an important require-
ment for the mentioned algorithms (Shen et al.
2016). But a good LST retrieval algorithm should
have the ability to derive surface temperature
independently that provides a high level of accu-
racy. Therefore, in this study, the mono-window
algorithm developed by Qin et al. (2001) has been
applied to retrieve LST from the four Landsat
images. The mono-window algorithm needs only
two atmospheric parameters compared to other
retrieval algorithms. First, transmittance and sec-
ond, mean atmospheric temperature (Qin et al.
2001; Lv and Zhou 2011).
The thermal band 6 of Landsat 5 TM, ther-

mal band 6 of Landsat 7 ETM+ and the mean
of thermal bands 10 and 11 of LANDSAT 8
OLI with a spatial resolution of 120, 60, and
100 m, respectively have been used in this
study for LST retrieval using the mono-window
algorithm.
Following steps were adopted for LST retrieval:

3.3.1 Conversion of digital number (DN)
to spectral radiance (Lk)

The conversion of DN number to spectral radiance
(Lk) is based on simple electromagnetic principle.
Every object in earth emits its thermal electro-
magnetic radiation after its temperature is above
absolute zero (K). Based on this principle, the
signal received by the different thermal sensors

(TM, ETM+, TIRS) can be transferred to at-sen-
sor radiation using the following equation:

L kð Þ ¼ gain * QCALþ offset ð6Þ

In the simplest way, it can describe like,

k ¼ Total � Sum of correctð Þ � Sum of all the row total � column totalð Þ
total squared� Sum of the all the row total * column totalð Þ ð5Þ
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L kð Þ ¼ LMAX� LMIN

255
�DNþ LMI ð7Þ

where, L(k) = spectral radiance w�sr�1�m�3; LMIN
= 1.238 (spectral radiance of DN value 1); LMAX
= 15.600 (spectral radiance of DN value 255); and
DN = digital number.

3.3.2 Conversion of spectral radiance (Lk)
to satellite brightness temperature
in Kelvin

In this segment, the spectral radiance values (Lk)
of the Landsat thermal bands were converted to at-
sensor brightness temperatures, with the assump-
tion of uniform emissivity (equation 8) (Chander
et al. 2009).

TB ¼ K2

ln K1

Lk
þ 1

� � ð8Þ

whereTB=At-satellite brightness temperature (K);
L k= spectral radiance inW.m�2.sr�1.lm�1; K1 and
K2 = K1 and K2 are two pre-launch calibration
constants (Landsat-5TM:K1 is 607.76W/(m2srlm)
and K2 is 1260.56 K; Landsat 7 ETM+: K1 is 666.09
W/(m2 sr lm) and K2 is 1282.71 K; and Landsat-8
TIRS:K1 is 774.89W/(m2 sr lm) andK2 is 1321.08.

1

3.3.3 LST estimation

The obtained values of TB or Tsensor were refer-
enced as a black body, which is quite different from
the properties of real objects on the Earth’s surface
(Shen et al. 2016). Therefore, it was necessary to
rectify the spectral emissivity. Finally, the LST
from TB values have been computed based on the
following equation (Artis and Carnahan 1982):

LST ¼ TB= 1þ k� TB=qeð Þf gð Þ ð9Þ

where, LST is in Kelvin; TB is the black body
temperature and also the satellite brightness tem-
perature in Kelvin; k is the wavelength of the
emitted radiance in meters; q = h � c/r (1.438 �
10�2m K); r = Boltzmann constant (1.38 � 10�23

J/K); h = Planck’s constant (6.626 � 10�34 J s);
c = velocity of light (2.998 9 108 m/s) and e =
emissivity (ranges between 0 and 1).
Finally, LST temperature retrieved in Kelvin

have been converted to degree Celsius using the
following formula:

TLST ¼ TB � 273: ð10Þ

3.4 Comparison of derived LULC and LST

Four LULC and LST maps of 1988, 2000, 2010, and
2018 were further analyzed to achieve the three
objectives of this study (see Bgure 2).

3.4.1 Predictive modelling using integrated
CA–Markov chain model

Predicated LULC scenario for 2026 of KMA has
developed through integrated cellular automata
(CA)– Markov chain model.
The eDciency and accountability of the Markov

chain in land-use change modelling is promising
and well-established. Markov chain has its capa-
bility to quantify not only the states of alteration
between land-use types but also able to quantify
the rate of conversion within the land-use types
(Sang et al. 2011; Kallvetty and Bandopadhyay
2018). The best part of this model is that the
Markovian model estimates the quantity of change
and the CA model geographically evaluates this
spatial change (Hamad et al. 2018). CA–Markov is
a hybrid modelling approach that includes the
deterministic modelling framework, spatially
explicit approach with a stochastically based tem-
poral framework (Keshtkar and Voigt 2016).
Studies found that combination of CA and Markov
model were working quite good as an operational
model in comparison to other LULC prediction
models such as multi-layer Perceptron–Markov
Chain (MLP-MC), GEOMOD, etc. (Regmi et al.
2014). CA–Markov allows the user to add many
factors into the model to improve the accuracy and
it serves land-use planners and policy makers in
order to frame correct decisions on future land use
policy (Hamad et al. 2018). As this study outcome
incorporates the LULC and LST together which
will help planners and policy makers to develop
sustainable land use policy in the coming future, we
found the CA–Markov model would be suitable for
this study.
Earlier Markov model has been extensively used

in ecological modelling. But further, this model was
accepted by other predictive modelling studies (for
example LULC change modelling) (Brown et al.
2000). The Markovian simulation is quite signifi-
cant in the space–time consortium. In this model,
the state of a system at the time t2 can be pre-
dicted, at the time of t1 within a spatial domain

1 Source: http://Landsat.usgs.gov/Landsat8˙Using˙Product.
php.
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(Thomas and Laurence 2006). The Markovian
simulation is based on the transition area matrix,
which is obtained from the transition probability
matrix. The transition probability matrix expres-
ses the likelihood that a pixel of a given class will
alter to any other class (or stay the same class) in
the future time period (Behera et al. 2012).
Markov chain integrates with CA and used for

the predictive modelling of LULC change (Sang
et al. 2011). The reason behind this integration was
not only spatial contiguity but also to identify the
probable spatial transactions occurring over time
in a particular spatial context. In this process, the
generated change map and associated transition
area matrix are required which is used as a base for
future LULC prediction. A number of CA itera-
tions have been conducted between input param-
eters. A single iteration or the cycle of iterations
are the gaps between two input images.
In our study, we have predicted the LULC scenario

of KMA for the year 2026 based on the LULC maps
of 2010 and 2018 with one iteration of 8 year.
CA-Markovmodel forpredicting land-use change can
be represented mathematically as an equation (12).

L tþ1ð Þ ¼ Pij � L tð Þ ð12Þ

and

P11 P12 . . .Pn

P21 P22 . . .Pn

Pn1 Pn2 . . .Pnn

2

4

3

5

where L tþ1ð Þ and L tð Þ are the land-use status at time
t+1 and respectively.

0�Pij\1 and
Pm

j¼1 Pij ¼ 1 i; j ¼ 1; 2. . .;mð Þ
n o

is the transition probability matrix in a state.

3.4.2 Band mean extraction and connection
to LST

Every object on the Earth’s surface is sensitive or
responsive towards a particular wavelength. The
sensitivity of an object is captured by a particular
band of the image. For example, vegetation on the
surface is highly responsive to the NIR band, water
bodies are highly responsive to the blue band,
urban and concrete areas are responsive to the
SWIR I band and so on. The detailed list of
responsive bands and their respective LULC clas-
ses (objects) for three Landsat sensors (e.g.,
Landsat 5 TM, Landsat 7 ETM+, and Landsat 8
OLI) are given in table 1(a, b and c).
To understand the relationship between the

sensitive band of particular LULC class and LST,
Brst, we have calculated the mean of each and
every band for three different Landsat sensors. We
have conducted this analysis for all three Landsat
sensors to avoid any biased outcome for a partic-
ular Landsat senor.
Simultaneously, we have retrieved the mean

LST value for each LULC class for four consecutive
years. Furthermore, year-wise linear regression has
been performed between the mean LST values of
each LULC class and the mean band values of each
LULC class.

3.4.3 Cluster analysis and connection to LST

In this segment, the relationship between the built-
up density of different types of built-up clusters
and LST have been performed for four consecutive
years. The density of four types of built-up clusters
(i.e., highly dense, planned, slum pockets, and

Figure 2. The methodological framework adopted in this study with objectives.
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village) has been calculated from Normalized
Difference Built-up Index (NDBI).

3.4.3.1 Development of NDBI: To aim towards
automated mapping of built-up areas and imper-
vious surfaces from satellite imagery, Zha et al.
(2003) proposed the concept of NDBI. Presently,
NDBI is the most commonly used and widely
accepted technique for the identiBcation of built-up
areas and its density (Zha et al. 2003). Built-up
areas are sensitive under 1.55–1.75 lm wavelength
range recorded in middle infrared (MIR) band or in
the SWIR band, whereas low sensitivity of built-up
areas is observed under 0.76–0.90 lm wavelength
range, recorded in near-infrared (NIR) band
(Bhatti and Tripathi 2014).
The NDBI equation is:

NDBI ¼ SWIR�NIR

SWIRþNIR
ð11Þ

The NDBI values generally range from –1 to +1.
The values close to –1 represents non-built-up areas
such as water body, vegetation, and the values close
to +1 represents highly dense built-up clusters. For
Landsat TM, ETM+, and OLI, SWIR band stands
in band 5, whereas for Landsat TMandETM+,NIR
band stands in band 4. For OLI, NIR band stands in
band 5 (Ghosh et al. 2018). So, following the
equation (11), we have derived the NDBI maps of
the KMA region for four consecutive years.

3.4.3.2 Selection of different built-up clusters and
correlation to LST: Four different cate-

gories of built-up clusters have been selected for
this analysis based on prior knowledge of the study
area. Selected built-up clusters were (i) highly
dense, (ii) planned, (iii) slum pockets and (iv) vil-
lage. The boundaries of four built-up clusters have
been demarcated from the Google earth engine
(Xia et al. 2019). The analysis considered, 2
boundaries of a highly dense cluster, 2 boundaries
of the planned cluster, 12 boundaries of slum
pockets, and 5 village boundaries. Furthermore,
the boundaries were converted to a region of
interest (ROI) Ble to extract the NDBI values of
built-up clusters. The mean NDBI value of four
built-up clusters has been considered for the Bnal
analysis. Figure 3 shows the close view of four
types of built-up clusters at the KMA region.
Simultaneously, the mean LST values have been

retrieved using the same ROI Bles of built-up

clusters. Finally, linear regression has been
conducted to understand the relationship between
different built-up categories and LST for four
consecutive years (1988, 2000, 2010, and 2018).

4. Results

4.1 Temporal LULC analysis

The LULC maps of the KMA region for the years
1988, 2000, 2010, and 2018 have been shown in
Bgure 4.
Along with the visual validation of four LULC

maps through Google earth, the kappa values, PA,
UA, and OA assessment results are given in table 2.
The satisfactory OA and kappa values have shown
the authenticity of LULC maps in all 4 years.
It was observed that built-up areas of KMA had

increased over time whereas vegetation and open
space areas had significantly declined (see
Bgure 5). The built-up areas had increased from
6.93% in 1988, 10.37% in 2000, and 16.05% in 2010
to 27.10% in 2018. The highest built-up growth was
taking place between 2010 and 2018 at the rate of
11.05%. Vegetation covers were drastically
decreased over time at the rate of 15.62%, 8.56%,
5.48%, and 2.03% for the years 1988, 2000, 2010,
and 2018, respectively. Similarly, open spaces were
also reduced from 74.54% in 1988 to 68.28% in
2018. However, a negative trend has been observed
after 2000 in the industrial class. Fluctuations have
been observed for water bodies during 1988–2018.

4.2 Temporal LST analysis

LST maps of 1988, 2000. 2010, and 2018 have shown
the spatial variation in surface temperature. During
1988, the LST values were ranging from 16.85� to
27.01�C. During 2000 and 2010, the LST values were
ranging from17.10� to 30.20�Cand17.50� to 29.70�C,
respectively. The highest temperature gap was
recorded during 2018, where the LST values were
ranging from 19.90� to 33.86�C. Except for 2010, all
other years have clearly shown an increase in mean
LST values, ranging from 5� to 7.25�C (Bgure 6).

4.3 Outcome of predictive modelling

The near-future LULC scenario of the KMA region
for the year 2026 has been shown in Bgure 7. From
Bgure 7, it is clear that the whole KMA region will
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be Blled with built-up areas whereas open spaces
and vegetation covers will be reduced in a signifi-
cant way.
The modelled outcome of near-future LULC

scenario showed that in 2026 built-up areas will
increase to 34.08% from 26.12% in 2018. Such an
increase has shown a positive gain in built-up areas

at the rate of +7.96% in 8 years (see Bgure 8).
However, open spaces will be decreased to 60.41%
from 68.28% with a negative rate of –7.87. No such
significant change has been noticed in vegetation
cover during 2026. It was predicted that the vege-
tation will cover 1.87% area of total KMA in 2026.
Predictive modelling of 2026 showed that water
bodies and industry will increase to 3.52% and
0.12% respectively from 2018 may be due to water
conservation and industrial policy reforms.

4.4 Band Mean and LST relationship

The band means for sensitive LULC class have
shown a significant and strong agreement with its
respective LST for all three Landsat sensors
(Bgure 9).
The band means and LST of respective LULC

classes have shown a significant (p\0.02) and a
strong correlation with the R2 of 0.84 for the
Landsat 5 TM sensor in 1988. The band mean
value of SWIR I (sensitive to urban and industry
class) has associated with the highest LST values.
The SWIR II band mean value (sensitive to open
spaces) is associated with moderate LST values,
whereas blue and NIR band (sensitive to water and
vegetation respectively) are associated with low
LST values. Similarly, for Landsat 7 ETM+ sensor,
the band means and LST of respective classes have
shown significant (p\0.01 and p\0.00) and strong
correlations with R2 of 0.91 and 0.99 for 2000 and
2010, respectively. The band mean of SWIR I

Figure 4. LULC maps of KMA for the year (a) 1988, (b)
2000, (c) 2010, and (d) 2018.

Figure 3. Location of highly dense, planned, slum pocket and village clusters (one each) on Google earth image (Image courtesy
Google earth).
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(sensitive to urban and industry class) has
associated with the highest LST values in both years.
For the years 2000 and 2010, SWIR II (sensitive to
open spaces) has linked with moderate LST values.
Water and vegetation classes which are sensitive to
blue and NIR band respectively, have associated
with low LST values in both of years. No such
difference in the relation between band means and
LST has been found for Landsat 8 OLI sensor in
2018. A significant (p\0.01) and strong agreement
(R2 = 0.88) has been found between band mean
values and LST for Landsat 8 OLI sensor. Urban
and industry classes that were sensitive to SWIR I
band have associated with the highest LST values
whereas SWIR II band which was sensitive to open
spaces has linked with moderate LST values. In a
similar connection to TM and ETM+ sensors, blue
and NIR band means (sensitive to water and

vegetation respectively) have associated with low
LST values.

4.5 Different built-up clusters and LST
relationship

Temporal analysis of built-up density (represented
by NDBI) for four types of clusters (i.e., highly-
dense, planned, slum pockets, village) and its
connection to LST have been delivered in this
section. Figure 10 has shown the variations in
NDBI concentration from 1988 to 2018 for different
built-up clusters. NDBI, which was represented as
an indicator of built-up density, has shown an
increasing trend of 0.78 to 0.92 for the highly dense
built-up cluster from 1988 to 2018. Similarly, the
built-up density for the planned zone has also
increased from 0.59 to 0.83 over the last 30 years.

Figure 5. showing year wise percentage of areal change in individual land use class computed from LULC images.

Table 2. Calculated kappa values, PA, UA and OA results of all four LULC maps.

Year

UA PA

OA KAPPAI V OS B W I V OS B W

1988 95.25 83.33 90.00 80.04 92.31 82.11 90.91 91.77 72.76 88.61 86.87 0.82

2000 91.56 93.75 80.06 94.74 90.26 87.95 88.24 94.35 81.82 83.33 87.78 0.84

2010 98.37 90.01 91.30 95.36 95.88 83.70 94.74 87.50 94.12 93.42 89.06 0.87

2018 92.20 98.30 70.01 75.00 90.00 86.30 90.23 70.00 85.71 94.74 85.94 0.81

*UA: User accuracy; PA: Producers accuracy; OA: Overall accuracy; I: Industry; V: Vegetation; OS: Open space; B: Built-up;
W: Water.
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No such trend but Cuctuations have been found for
slum pockets from 1988 to 2018. During 1988 NDBI
for slum pockets was 0.88 and then it was declined
to 0.75 in 2010. But NDBI for slum pockets was
increased again to 0.88 during 2018. However, the
built-up density for the village cluster has shown

Figure 6. LST maps of KMA of the years (a) 1988, (b) 2000, (c) 2010, and (d) 2018.

Figure 7. Predicted LULC map of KMA for 2026.

Figure 8. Quantitative representation of class-wise land use
change in 2026 computed from the predicted LULC map.
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an increasing trend from 0.49 from 1988 to 0.72
during 2018.
Although there was a clear increasing trend of

NDBI in all four built-up clusters from 1988 to
2018, no such significant relationship have been
found between NDBI and LST (Bgure 11). A pos-
itive trend with an insignificant correlation
(p\0.37; R2=0.38) has been found between NDBI
and LST for the highly-dense built-up cluster from
1988 to 2018. During the same period of time,
built-up clusters like planned zone and slum pocket
were also shown a positive insignificant correlation
between NDBI and LST with p\0.35; R2=0.41 and
p\0.24; R2=0.57, respectively. Poor agreement
between NDBI and LST has been found for the
village cluster with R2 of 0.24 and p\0.50 during
the observation period.

5. Discussion

5.1 Temporal LULC and LST change

The present study has reported a synergetic anal-
ysis between LULC change and its connection to

surface thermal properties using a temporal series
of Landsat imageries during 1988–2018. In com-
parison with previous studies on Kolkata (Kolkata
Municipal Corporation) and KMA region (Ghosh
et al. 2014; Bhattacharjee and Ghosh 2015; Sharma
et al. 2015; Li et al. 2016; Mondal et al. 2017;
Sharma 2017) the present study has shown three
novel approaches that established the inter-con-
nection between LULC change and LST, which
were never done before.
Results derived from four validated LULC maps

of KMA have shown huge urban expansion paid by
decreasing vegetation cover and open spaces from
1988–2018. The study reports an overall accuracy
in the range of 85%–90% for LULC classiBcation
and mapping (see table 2). This spatial expansion
of built-up areas in KMA was the consequence of
increasing urban population pressure (Sharma
et al. 2015). There were two main reasons behind
this increasing urban population pressure: Brstly,
Kolkata is the prime metro city in eastern India, so
that enormous local and national migration took
place in KMA for employment and business
opportunities, to change the mode of living, social

Figure 9. Relationship between band means for sensitive LULC class and its respective LST.
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beneBts, services, and administrative purposes, etc.
Secondly, rural–urban transformation (McGee
2008) where the surrounding village and rural areas
around KMA were transformed into urban centers
and increasing the population pressure. Studies
conducted by Mitra (2002), Roy et al. (2004),
Mukherjee (2015), Sharma (2017) reported this
progress as unplanned and haphazard

development. Such unhealthy transformation was
inCuencing the LST concentration of the KMA
region over time, which was also visible in our
study. The decreasing vegetation cover over time
will seriously aAect KMA’s ecological integrity and
alter its micro-climate scenario (Ghosh et al. 2014).
Such condition demands serious mitigation mea-
sures in a form of social forestry, aAorestation,

Figure 10. Temporal representation of NDBI values of four built-up clusters.

Figure 11. Relationship between NDBI and LST during 1988 to 2018 for different built-up clusters.
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improving health and water status, and so on. A
few mitigation measures have been taken over
time, but our result shows that the city is far
behind in achieving the goals. The loss of vegeta-
tion cover and open spaces with huge urban
expansion was extremely worrying as it was sig-
nificantly increasing LST over the KMA region,
which was also evident from our results. The
average gap between maximum and minimum LST
in this region have increased from 10� to 14�C
within the last 30 years, as a serious matter of
concern. The major causes behind such an increase
in LST concentration over 30 years were, Brst the
modiBcation of the land surfaces that includes
built-up expansion, reduction of vegetation and
water bodies, and rapid decline of open spaces.
Second, the shape and positioning of buildings
restricted the regular air movement near the
ground surface. It creates complex shades of sun-
light penetration and such complex pattern of
shades limiting the natural energy exchanges.
Third, the uncontrolled emission of waste heat
from workshops, small and big industries, trans-
portations, dumping sites also accelerate the LST
concentration of the KMA area. Finally, the con-
tinuous emission of greenhouse gases (GHGs) such
as carbon dioxide (CO2), methane (CH4), nitrous
oxide (N2O), and several others have also played a
vital role to support these increasing warming
scenarios.
The LST maps have shown the spatial vari-

ability of surface temperature over the KMA
region. The maximum LST have found along the
bank of river Hooghly particularly at the north-
ern and south-western part of KMA. Those parts
of KMA were characterized by high built-up
concentrations. Not only that, the northern por-
tion of KMA was the oldest part of this region,
where residential, commercial buildings were
developed in an unplanned way with a less green
cover and few water bodies. The LST was in its
peak in the northern and south-western parts of
KMA due to the high absorption of solar radia-
tion by the buildings. The building rooftop
materials in these parts were mostly in concrete
and have closely spaced buildings. Such kind of
rooftop materials has a high potentiality to retain
solar radiation with less reCection. Therefore, the
materials were released more thermal energy in
the local environment which was sufBcient to
develop the localized UHII (Sadhu 2015). The
southern part of KMA was relatively new and
planned in KMA. SufBcient vegetation cover and

water bodies reduced the LST concentration in
this part. The village areas were located on the
outskirts of the KMA boundary and they were
less inCuenced by LST due to less concretization,
high green cover and a sufBcient number of water
bodies.
Thus the overall scenario of LST during

1988–2018 has shown an enhancement of thermal
intensity in the KMA region due to built-up
expansion and decreasing vegetation cover.

5.2 Analysis of predictive modelling

The application of the integrated model that
combines the Markov chain and CA together has
proved its potentiality to predict the near-future
LULC scenario of the study area. VeriBed inputs
(i.e., 2010 and 2018 LULC maps) and the
CA–Markov chain model have successfully simu-
lated the LULC scenario of KMA for 2026. This
study applies, the original data resolution of
Landsat (30 m), established administrative
boundary of KMA (1988–2018), smallest possible
scale for mapping, and assumed that in near-future
the administrate boundary of KMA will not modify
(at least till 2026). So, we consider the eAects of
modiBable areal unit problem (MAUP) to be ruled
out and therefore MAUP has no role in our
CA–Markov based predictive modelling (Cam-
pagna et al. 2012; Bojesen et al. 2015). Similarly,
the temporal counterpart of MAUP which is
modiBable temporal unit problem (MTUP) was
also omitted from this model as we have used
temporally adjusted intervals (2010 and 2018) as
input for this model and also no segmentation and
zoning of KMA boundary was performed to get the
near-future LULC scenario in 2026 (Cheng and
Adepeju 2014).
To our knowledge, this was the Brst time when

the integrated CA–Markov chain model was
applied over the whole KMA region to predict the
near-future LULC scenario. Predicted LULC map
has proposed a continuous rise in built-up with a
serious decrease in vegetation cover and open
spaces. We can assume that this scenario will
continue for the next consecutive years. The rapid
shrink of open spaces which also includes croplands
is really a matter of concern in such a situation
with an increasing population and high demand for
food and water. Similarly, decreasing vegetation is
more of a concern from an environmental and
ecological perspective. Therefore, it is urgent to
strengthen the protection of croplands, water

   74 Page 16 of 21 J. Earth Syst. Sci.          (2020) 129:74 



bodies, and vegetation covers, to prevent acts
against the indiscriminate use of lands (Sarkar
et al. 2016).

5.3 Sensitivity of band means to LST

We have found statistically significant and strong
positive agreement between band means of sensi-
tive LULC classes and its respective LSTs for
three different Landsat sensors. This analysis
opened a new window to establish the intercon-
nection between LULC and LST. We have
observed that blue band mean which was sensitive
to water class was associated with low LST
whereas SWIR I band mean which was sensitive
to urban and industry classes were associated with
high LST. A similar condition was found for other
bands also where we found NIR and SWIR II
band means were associated with low and mod-
erate LST respectively. The overall scenario was
exactly similar for all three Landsat sensors. Thus
we can assume that the responsible band of a
particular LULC class was sensitive to the
respective LST.
In the LST derivation model (mono-window

algorithm) adopted for this study, emissivity (e)
obtained from different LULC classes plays a
crucial role here (see equation 9). Snyder et al.
(1998) have mentioned that the spectral property
of a particular object on the Earth’s surface was
highly sensitive to emissivity. The object at a
temperature above absolute zero emits thermal
radiation which was detectable and sensitive to a
particular wavelength (recorded as a band). The
emissivity of the object made by a particular
matter was not only depending on the material
but also on the nature of the surface (Honnerov�a
et al. 2017). Apart from the surface and material
of the object, the emissivity of the target was also
depending on many other factors such as chemical
composition, structure, roughness, and water
content. For vegetation, low areal density and
growth state were impacting towards low emis-
sivity whereas impervious surfaces like urban and
industrial class, have high built-up concentration
and concrete material that were inCuencing
towards high emissivity. Thus it was possible to
predict the LST scenario of any LULC class from
the band mean of that particular class. This
relationship between band means and LST was
further supported by spectral (reCectance DN
values), structural (material, construction

pattern), and emissivity information of the object.
In this study, the urban areas of KMA charac-
terized by concrete material, rough surface tex-
ture, less gap between buildings and old
structures were represented by high emissivity
and high LST. In industry class, concrete surface,
localized heat eAects, pollution, and gases were
inCuencing high emissivity and high LST. Due to
sparseness, low density of vegetation cover,
smooth surface of water bodies and wideness of
open spaces were inCuencing low emissivity and
low LST.

5.4 Sensitivity of built-up clusters to LST

It has been observed that the NDBI of all four
built-up clusters were increased during 1988–2018
(see Bgure 10). Most prominently, NDBI of high-
density built-up clusters was increased signifi-
cantly over time. It was indicated that high-density
built-up zones became denser from time to time. In
KMA, the high-density built-up zones were located
in the areas of Barabazar, Manik Tala, Shyam
Bazar, BBD Bagh, etc. These areas were the CBD
zones of Kolkata city and highly dense in nature.
Development of business centers, administrative
oDces, good accessibility, and communication,
were made such locations more suitable for settle-
ment and business purposes. These areas were also
the oldest part of the city.
Similarly, the NDBI of planned zones were also

significantly higher. In our study, planned zones
included two major planned areas of KMA: (1) Salt
Lake City in North 24 Pargana district, (2)
Kalyani Township in Nadia district. Salt Lake City
was developed during 1958–1965 to accommodate
the burgeoning population of Kolkata, whereas the
Kalyani Township was developed in the early
1950s. But over time, these areas were accommo-
dated by a huge population to get social beneBts,
good accessibility, and a better quality of life. Such
an increase in population have made these areas
denser over time. Interestingly built-up density of
slum pockets was shown dynamic nature. The
location of the slum pockets was mainly at Chit-
pur, Sahid colony, near Paikpara, near Bidhan
Nagar Railway station, near the Dumdum market
where mostly poor and economically backward
population of the city have living. During 1988,
NDBI was high in slum pockets of KMA due to the
huge population, poor infrastructural development,
weak economic reforms that forced people to live in
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slums. After 1990, steady economic development
took place in KMA and people were transferred to
permanent settlements. During 2018, the increas-
ing built-up density of slum pockets was due to the
migration of poor working population from sur-
rounding states of Bihar, Jharkhand, and Orissa.
The surrounding villages of KMA were going
through the process of concretization (transfor-
mation from kutcha house to pakka house) of
houses in the last 30 years. Several government
schemes like Indira Awas Yojana (IAY), Pradhan
Mantri Awas Yojana (PMAY), housing for all
along with socio-economic reform of villages were
made the villages denser in built-up concentration
(Ananth 2017; Dasgupta 2017).
Though the density of different built-up clusters

has increased over time, no significant relationship
has been found between built-up density and LST
in the last 30 years. Our results were evident that
increasing built-up density does not always accel-
erate the LST concentration for the respective
built-up cluster. The relation between different
built-up clusters density and LST were dynamic
and insignificant (see Bgure 10). So, we can assume
that, not only increasing built-up density but also
the degradation of the local environment, increas-
ing air pollution, reduction in water bodies, chan-
ges in urban energy balance patterns were equally
responsible for increasing LST and for the devel-
opment of UHII. From the results, we have
observed that the LST of 2010 was low in com-
parison to 1988, 2000 and 2018. Due to El Niño La
Niña events, the LST of 2010 was lower than the
rest of the examined years. The overall climate of
the Indian subcontinent has greatly inCuenced by
such special climatic phenomena during 2009–2011
(Kim et al. 2011).

6. Summary and conclusion

A synergetic investigation between temporal
LULC and LST based on three different objectives
were done, for the Brst time. Integrated
CA–Markov chain modelling, band means relation
to LST and temporal analysis between built-up
density and LST have been examined over KMA
using non-commercial satellite data. From the
present study following summary and recommen-
dations can be addressed:

• In comparison to other similar global cities,
KMA also experienced a massive built-up expan-
sion that endorses the increasing trend of LST in

this region. Such built-up expansion not only
happened during 1988–2018 but also will con-
tinue for the upcoming future as suggested by
our predicted LULC map.

• Considering the soaring alarm of huge urbaniza-
tion in 2026, growth management policies (i.e.,
green belt) need to be adopted that would
contain the growth in a sustainable way and
also consequently reduce the UHII impact over
KMA.

• Reforms will require not only for new urbaniza-
tion policies but also in new building regulations.
New urbanization policies such as green build-
ing, rainwater harvesting, rooftops with horti-
culture based plants, more green parks are
required to reduce the impact of UHII on KMA.

• Along with the reforms of urbanization policies,
environmental protection and enrichment will
need on immediate attention in this region.
Social plantation, construction of parks within
the core urban areas, less encroachment of
eastern wetlands (Ramsar Convention), and no
construction on agricultural lands have to be
addressed in an urgent manner for a sustainable
healthy future of KMA.

• Continuous monitoring of the city’s land use,
with rational, scientiBc, and sustainable poli-
cies must be adopted in order to regulate the
trend of unplanned urban sprawl and increas-
ing LST.

• Unless a radical decentralization policy would be
adopted, it is impossible to control the
unplanned urbanization process in KMA.
Planned satellite towns have to be built to
regulate irregular urban expansion.

• In our study, we have found the impact of
emissivity on the LULC LST relationship using
Landsat data and mono-window algorithm.
Other space-borne sensors such as Sentinel-2,
MODIS and other LST derivation algorithms
(i.e., split-window (SW), single-channel (SC)
and multi-angle (MA)) need to be examined to
understand the band means and LST relation-
ship on different platforms.

• The study has shown that increasing built-up
density did not accelerated the LST of the city. It
means that other local and regional environmental
factors, anthropogenic factors were also similarly
responsible for increasing LST of the KMA region.

• The approach of this study can be performed in
future research in other cities of India, where
climatic and geographical situations are different
from KMA.
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