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Abstract 20 

Performance gaps in science are well-documented, and an examination of underlying 21 

mechanisms that lead to underperformance and attrition of women and underrepresented 22 

minorities (URM) may offer highly targeted means to promote such students. Determining 23 

factors that influence academic performance may provide a basis for improved pedagogy and 24 

policy development at the university level. We examined the impact of class size on students in 25 

17 biology courses at four universities. While female students underperformed on high-stakes 26 

exams compared to men as class size increased, women received higher scores than men on non-27 

exam assessments. URM students underperformed across grade measures compared to majority 28 

students regardless of class size, suggesting that other characteristics of the education 29 

environment affect learning. Student enrollment is expected to increase precipitously in the next 30 

decade, underscoring the need to prioritize individual student potential rather than yield to 31 

budget constraints when considering equitable pedagogy and caps on classroom sizes. 32 

  33 



Introduction 34 

Universities face the unique challenge of educating students from increasingly diverse 35 

backgrounds who may excel in different educational contexts. Recent efforts to better serve 36 

diverse classrooms include changes in instruction such as active learning (Ballen et al. 2017a; 37 

Haak et al. 2011) and course-based undergraduate research experiences (Ballen et al. 2017b, 38 

Lopatto 2007). To provide effective instructional practices for all, we must continue to identify 39 

practical steps to promote the success of qualified students from historically underserved 40 

demographics in STEM, such as women and underrepresented minority students (African 41 

American, Hispanic, Native American, or Pacific Islander; hereafter URM). 42 

If our goal is to achieve diversity in STEM, coursework should ideally nurture individual 43 

potential rather than ‘weed out’ less prepared students at the start of an undergraduate degree 44 

(Koester et al. 2016, Mervis 2011, Suresh 2006). Using 16 years of data from a liberal arts 45 

college, Rask and Tiefenthaler (2008) demonstrated that students’ grades influenced their 46 

decision to continue within their major. While lower grades led to lower persistence for all 47 

students, female students with low grades were more likely to abandon the discipline and pursue 48 

a different major than males. A second longitudinal study showed that negative experiences in 49 

introductory science courses were cited as the primary reason for declining interests in obtaining 50 

a science degree among women and URM students (Barr et al. 2008). Women and URM 51 

students also face other well-documented challenges unrelated to academic competency, such as 52 

discrimination (Grunspan et al. 2016, Milkman et al. 2015, Moss-Racusin et al. 2012, Steele 53 

Jennifer et al. 2002), feelings of exclusion (Hall and Sandler 1982, Hurtado and Ruiz 2012), 54 

imposter syndrome (Clance 1985), test anxiety (Ballen et al., 2017) and stereotype threat 55 

(Schmader 2002, Steele 1997, Steele and Aronson 1995). All of these contribute to the well 56 



documented higher attrition rates of women and URM students across STEM disciplines 57 

(Alexander et al. 2009, Ballen and Mason 2017, Beede et al. 2011, Eddy et al. 2014, May and 58 

Chubin 2003) and university campuses (Anderson and Kim 2006, Griffith 2010, Olson and 59 

Riordan 2012, Smith 2000). Education research has also identified examples of learning contexts 60 

that counteract the psychosocial barriers faced disproportionately by women and URM students, 61 

including opportunities to interact with role models in and out of the classroom (Fried and 62 

MacCleave 2009, Stout et al. 2011), interventions in social belonging (Walton et al. 2015), peer 63 

mentoring (Snyder and Wiles 2015), and for females, schools with higher percentages of female 64 

STEM graduate students (Griffith 2010). Thus, it is essential we identify obstacles that 65 

specifically affect underrepresented students as a means of finding interventions that promote all 66 

students’ success in STEM. 67 

Class size, an often overlooked variable, is worthy of careful consideration because 68 

previous research suggests it influences student performance (Glass 1982, Ho and Kelman 2014, 69 

Kokkelenberg et al. 2008) and, unlike other variables, is subject to legislative action. At least 24 70 

states have mandated or incentivized class size reduction in American K-12 classrooms 71 

(Whitehurst and Chingos 2011). At the undergraduate level, universities are constantly faced 72 

with decisions on how to allocate faculty time to best serve their undergraduate population. 73 

Recent changes in course content delivery – e.g., the rise of online classes (such as massive open 74 

online courses or MOOCs) and hybrid online courses – are the direct result of an increased 75 

demand for access to education (Kena 2016). The imminent growth in enrollment to degree-76 

granting institutions (Kena 2016) underscores the urgent need to quantify the effects of class 77 

sizes on undergraduate students. Here, using data from 17 biology courses at four institutions, we 78 



examine the extent that class size impacts achievement gaps for female and URM 79 

undergraduates.  80 

 81 

We address three questions by focusing on performance gaps between male and female students, 82 

and URM and majority students: 1) Does class size influence performance on exams? 2) Does 83 

class size influence performance on non-exam methods of assessment? 3) Does class size 84 

influence final course grade? 85 

 86 

Data collection 87 

Administrative data were obtained from 17 lower division biology courses taken by 1836 88 

students in fall 2016 (minimum class size N = 40, maximum N = 239; Figure 1). To establish a 89 

collaborative research group, we solicited participation through an existing professional network 90 

from biology instructors who teach majors or nonmajors from a diverse range of institutions, and 91 

received data from California State University, Chico; Cornell University; University of 92 

Minnesota, Twin Cities; and University of Puget Sound. We compared (1) pooled exam grades, 93 

(2) pooled assessments of student knowledge other than exams (hereafter non-exam grades; e.g., 94 

discussion sections, laboratories, online activities, written assignments, low-stakes quizzes, as 95 

well as active learning in-class activities), and (3) final course grades, which reflect cumulative 96 

performance in all aspects of the course. We present analyses with transformed z-scores (a 97 

measure of how many standard deviations a value is from the class section’s mean score) for 98 

ease of interpretation. 99 



 100 

 101 
Figure 1. Four universities participated in the current study, representing diverse geographic locations across the US. Circle sizes are 102 
proportional to the number of classes sampled from each institution.  103 



 104 

Statistical Analyses  105 

Linear mixed-effects model 106 

We used linear mixed-effects models to compare exam performance, performance on non-exam 107 

assessments and total course performance, across the four universities. The data in this study are 108 

hierarchically nested because a student's exam performance is likely to be more similar to a 109 

classmate's performance than a student outside of their class, as students in the same class share 110 

the same assessments (Kreft et al. 1998). Similarly, students in biology classes at one university 111 

may perform or be assessed in the same way as students in biology classes at another university. 112 

For this reason, we use multilevel modeling to account for the non-independence of data in 113 

nested-data structures (Kreft et al. 1998, Paterson and Goldstein 1991).  114 

Akaike's information criterion (AIC) was used to determine model fit in a multimodel 115 

inference technique. AIC estimates the goodness of fit of each model given our sample (Akaike 116 

1974), and allows us to rank models based on this estimation using AIC differences (Δi = 117 

AICmodel i – minAIC, where minAIC is the model with the smallest AIC value). Models with a Δi 118 

> 10 are considered poor predictors compared to the best model, and so we only present results 119 

with small Δi values for brevity (Table S1). We were interested in the interaction of class size 120 

with gender (SGender, a factor with two levels) and with URM status (a factor with two levels). 121 

Therefore, our model initially included those three main effects (SGender, URM status, and class 122 

size) and two interaction effects (SGender*class size, URM status*class size).  123 

In addition, we tested whether the following variables improved the fit of the model for 124 

the given set of data: (1) an interaction between student gender identity and URM status 125 

(SGender*URM status); (2) instructor gender identity (IGender, a factor with three levels 126 



including female, male, or multiple instructor genders: in other words, more than one instructor 127 

for the course in question who did not identify as the same gender); (3) an interaction between 128 

student gender identity and instructor gender identity (SGender*IGender); (4) an interaction 129 

between student gender identity, URM status, and class size (SGender*URM status*class size); 130 

(5) age. Only students with a complete set of these variables were included in these analyses. All 131 

models included random effects for university, class ID (nested within university), and instructor 132 

ID (nested within classes and university). Random effects were tested for significance by 133 

removing one random factor at a time and taking the difference between the -2 log likelihoods. 134 

This was tested against a chi-square distribution with one degree of freedom (per removed 135 

random factor). Instructor ID was removed from the analysis as a random effect. 136 

We explored all possible models and chose the most parsimonious model that best fit the 137 

data in accordance to AIC model-selection statistics (Table 1). The AIC estimates indicated that 138 

the elimination of the URM*class size interaction resulted in better fit models, and so the 139 

interaction was backwards eliminated from the final models (P > 0.25; see results). We used 140 

Bonferroni corrected post-hoc pairwise comparisons to clarify performance outcomes of students 141 

based on gender and URM status. We performed all statistical analyses using SPSS software 142 

version 24 (SPSS Inc., Chicago, IL, USA). 143 

 144 

Rank Model: Combined exam grades AIC Δi Relative likelihoods wi 
1 URM status + class size + SGender + class 

size*Sgender 
4885.468 0.000 1.000 0.935 

2 URM status + class size + Sgender + class 
size*Sgender + age 

4891.961 6.493 0.039 0.036 

3 URM status + class size + Sgender + class 
size*Sgender + Sgender*URM status + age 

4892.347 6.879 0.032 0.030 

 145 
Rank Model: Non-exam grades AIC Δi Relative wi 



likelihoods 

1 URM status + class size + SGender + class 
size*Sgender 4835.231 0.000 1.000 0.885 

2 URM status + class size + SGender + class 
size*Sgender age 4839.840 4.609 0.100 0.088 

3 
URM status + class size + SGender + class 
size*Sgender + class size* URM status + 
age 

4842.562 7.331 0.026 0.023 

 146 
Rank Model: Final course grade AIC Δi Relative 

likelihoods 
wi 

1 URM status + SGender  4826.220 0.000 1.000 0.926 
2 URM status + class size + SGender  4831.668 5.448 0.066 0.061 
3 URM status + class size + Sgender + age 4836.220 10.000 0.007 0.006 
4 Sgender 4837.260 11.040 0.004 0.004 

5 URM status + class size + SGender + class 
size*Sgender + class size* URM status  4837.736 11.516 0.003 0.003 

Table 1. Best models for predicting performance metrics across four universities using AIC 147 
model selection. Compared to the first model, models with an Δi > 10 are considered poor 148 
predictors and so we do not report them here. The Akaike weights, wi, represent probabilities 149 
that a given model is the best model under repeated sampling. 150 
 151 



 152 

Figure 2. The effects of class size on exam grade z-scores, non-exam grade z-scores, and final 153 
course grade z-scores for women (solid line) and men (dashed line). Colors represent different 154 
universities: University of Puget Sound (yellow), California State University, Chico (red), 155 
University of Minnesota, Twin Cities (purple), and Cornell University (blue). 156 
 157 
 158 



Results  159 

We used mixed model analyses to compare students’ combined exam grade, non-exam 160 

grade, and total course grade in the fall 2016 semester (Figure 2, Table S1-S3). First, we 161 

observed a nonsignificant interaction effect of URM status and class size on metrics of 162 

performance.  163 

When we removed the interaction from the models, URM status became a significant 164 

predictor of performance (Combined exam grade B = 0.417, t(1377) = 6.01, P < 0.001, SE = 165 

0.069; Non-exam grade B = 0.262, t(1533) = 3.83, P < 0.001, SE = 0.069; Final course score B 166 

= 0.407, t(1522) = 5.87, P < 0.001, SE = 0.069). These results suggest that URM students’ 167 

exam scores on average was 0.42 standard deviation lower than non-URM students, and 168 

their non-exam scores were on average 0.26 standard deviation lower than non-URM 169 

students. Bonferroni corrected post-hoc pairwise comparisons, presented from the final models, 170 

show URM students underperforming on all performance metrics compared to non-URM 171 

students (Table 2; hereafter ‘underperform’ is used to describe raw gaps, and not those for which 172 

some measure of student academic ability/preparation is controlled). Second, we observed a 173 

significant interaction between gender and class size, such that as class size increased, women 174 

underperformed on exams (SGender*class size B = - 0.145, t(1599) = - 2.89, P = 0.004, SE = 175 

0.050; Figure 2 inset) and in the course overall (B = - 0.108, t(1649) = - 2.16, P = 0.031, SE = 176 

0.050) compared to men. We also found that women obtained higher non-exam grades (B = 177 

0.217, t(1731) = 4.60, P < 0.001, SE = 0.047) compared to men, regardless of class size.  178 

Next, we explored whether women are underperforming on exams because they are 179 

higher stakes in larger classes; i.e., they account for a larger proportion of the grade. To 180 

investigate this, we examined the correlation between class size and the percentage of students’ 181 



final course grades that are from their performance on exams. We did not find a strong 182 

correlation (Pearson correlation = -0.386; P = 0.126). This result runs counter to what one would 183 

expect due to the courses included in this sample, and is probably not representative of most 184 

lower division lecture courses, in which exams generally account for a larger proportion of final 185 

course grade (Koester et al. 2016). Finally, to test whether our results are the same within one 186 

institution, we isolated twelve lower division classes from the University of Minnesota that 187 

varied in class size. In these classes, all exams had identical multiple choice format. We found 188 

the same main results across assessment types within one institution as we observed across all 189 

institutions (Tables S4-S6). Thus, as was the case across universities, increasing class size was 190 

negatively correlated with female performance, and URM status significantly predicted 191 

performance outcomes within our most sampled university.  192 

 193 

 
URM non-URM 

 Class size 50 150 250 50 150 250 

Combined exam grade -0.285 
(0.08) 

-0.295 
(0.07) 

-0.305 
(0.08) 

0.140 
(0.06) 

0.130 
(0.05) 

0.120 
(0.06) 

Non-exam grade -0.165 
(0.08) 

-0.165 
(0.08) 

-0.166 
(0.09) 

0.086 
(0.07) 

0.086 
(0.06) 

0.085 
(0.07) 

Total course grade -0.262 
(0.09) 

-0.264 
(0.08) 

-0.266 
(0.09) 

0.132 
(0.07) 

0.130 
(0.06) 

0.128 
(0.07) 

N 261 1575 
 194 
Table 2. Least-squares means comparison of relative performance of students who differ based 195 
on their racial minority status (URM or non-URM) in different class sizes (50 students, 150 196 
students, or 250 students). Measures are standardized, and reflect performance relative to the 197 
mean of the class; positive scores are students who overperformed in standard deviations from 198 
the mean, and negative scores represent those who underperformed relative to the mean. Our 199 
data indicate that URM students underperform across all metrics, compared to non-URM 200 
students, but unlike female students, their performance is not affected by class size, suggesting 201 
factors other than class size negatively influence URM student performance. Standard errors are 202 
shown in parentheses. 203 
 204 



One possibility is that the positive effects we observe from students in small classes is 205 

due to increased active learning and student interactions with the instructor in smaller classes, 206 

which may influence student performance (e.g., Ballen et al. 2017, Haak et al. 2014). Using data 207 

collected for nine of the seventeen courses (Table S7), we used a linear regression to examine the 208 

relationship between class size and total number of student-instructor interactions per class 209 

period. Results from the linear regression were not conclusive. First, when we included all of the 210 

schools in our analysis we found a significant relationship between the two variables (Figure S1; 211 

Pearson correlation = -0.72; P = 0.028), such that students interacted more with their instructors 212 

in smaller classes. However, when we isolated classes within the University of Minnesota, the 213 

correlation was no longer significant (Pearson correlation = 0.24; P = 0.645). Class size likely 214 

influences the frequency in which students interact with their instructor, and this may be why 215 

small class sizes appear to disproportionately benefit women in our sample. Future work will 216 

profit from a thorough examination of the relationship between class size, active learning, and 217 

performance gaps. 218 

 219 

Discussion 220 

We compared female and male exam performance, non-exam performance, and total 221 

course performance across four universities and found that as class sizes increased, women 222 

underperformed on exams and final course grades compared to men in their classes. However, 223 

female students outperformed males regardless of class size on non-exam scores that contributed 224 

to total course grade. We did not find a similar effect of class size on students based on minority 225 

status. Across class size and assessment type, URM students underperformed relative to non-226 

URM students (Table 2).  227 



Reasons for the pervasive disparity between URM and non-URM students are likely 228 

complex and multifaceted, but may include differences in incoming academic preparation 229 

(Ballen and Mason 2017), economic hardship (Cabrera et al. 1992), university campus social 230 

climate (Gloria et al. 1999), and low representation in the classroom or discipline (Braxton et al. 231 

2011). The underrepresentation of URM individuals in the STEM workforce (Landivar 2013) 232 

underscores the urgent need for effective approaches that promote students who are racial or 233 

ethnic minorities (Brewer and Smith 2011). 234 

While our findings do not suggest tractable solutions to racial disparities in STEM, they 235 

do suggest strategies for mitigating gender biases. Specifically, to increase female retention in 236 

STEM, we recommend offering smaller classes and emphasizing non-exam points—especially in 237 

lower division classes that serve as gateway courses to students’ major field of study. In these 238 

gateway courses students are often ‘weeded out’ because students’ perceived or actual academic 239 

performance suffers in those environments (Baker et al. 2016).  240 

A review by Cuseo (2007) identified five reasons that large classes have adverse effects 241 

on some students: (1) fewer opportunities for students to interact with course material, (2) fewer 242 

opportunities for students to interact with the instructor, (3) reduced opportunities for instructors 243 

to challenge students, (4) lower overall student satisfaction with the learning experience, and (5) 244 

lower satisfaction with the instructor according to student evaluations (Cuseo 2007). Future 245 

research will benefit from a close examination of the consequences of these factors, and whether 246 

they respond to experimental class-size manipulations. We do recognize the reality of budgetary 247 

constraints, and the fact that larger classes are often the simplest solution to fiscal crises. 248 

However, when large classes are a “necessary evil,” instructors can minimize the negative 249 

consequences of large classes via evidence-based interventions. For example, in large-lecture 250 



settings students can have more opportunities to interact with lecture material and the instructor 251 

via numerous instant-feedback strategies (e.g. the Immediate Feedback Assessment Technique 252 

[Cotner et al 2008a], classroom response systems [Cotner et al 2008b, Lewin et al 2016, Knight 253 

et al 2016], plicker cards [Howell et al 2017], etc.) and low-stakes—or no-stakes—formative 254 

assessments (e.g., one-minute papers, worksheets, and concept maps; Angelo and Cross 1993).  255 

Because in our dataset female students excelled at non-exam assessments of the course 256 

material regardless of class size, an alternative strategy to promote women in STEM may be to 257 

make non-exam scores a larger component of the final course grade (Koester et al. 2016). Recent 258 

work shows traditional exams do not accurately capture student mastery of the cognitive skills 259 

required to do science and exacerbate existing gaps in performance (Moneta-Koehler et al. 2017, 260 

Stanger-Hall 2012). Further, women are adversely affected by test anxiety, which in itself is 261 

higher in women than in their male counterparts (Ballen et al 2017). Thus, if our aim is to reward 262 

ongoing preparation and cooperative group work rather than performance on a few, high-stakes 263 

exams, these assignments will nurture those qualities and work habits in developing scientists. 264 

For instructors who teach large classes, the challenge will be to develop scalable assignments 265 

that can effectively evaluate students’ learning. Despite these challenges, our data show that an 266 

effective way for instructors to reduce gender gaps in their classrooms is to experiment with 267 

strategies to tailor the learning environment to their student population. 268 

Research demonstrating the negative impacts of large classes on students reinforce 269 

conceptual arguments against these classes  (Achilles 2012, Baker et al. 2016, Glass 1982, Glass 270 

and Smith 1979, Ho and Kelman 2014, Schanzenbach 2014), and can inform policy related to 271 

education. The state of Minnesota, in which the majority of classes were sampled, has 272 

historically taken innovative approaches to improving its schools (Mazzoni 1993). In fact, the 273 



state’s former Governor, Jesse Ventura, campaigned on an education platform that declared “the 274 

best way to solve most of our educational problems is to reduce class size” (Ventura 2000). 275 

Nationally, schools aim to keep class sizes low, but according to the National Center for 276 

Education Statistics, total enrollment at public and private degree-granting post-secondary 277 

institutions is expected to increase 15 percent between 2014 and 2025 (Kena 2016). While it may 278 

be tempting to increase the number of students per class section in order to decrease costs, the 279 

consequences on student learning and performance must be carefully considered. Note that our 280 

classes range in size from 40 to over 200 students. Thus, a class of 50-100 students is associated, 281 

in our model, with more equitable performance than is one with 200 or more students; in other 282 

words, a “smaller” class is likely still cost-effective. Future work will conduct similar 283 

investigations into the effects of class size on students of low-socioeconomic status and first-284 

generation college students.  285 

This work has limitations that warrant consideration. First, we were unable to control for 286 

incoming student preparation (e.g., pre-course measures such as SAT or cumulative GPA) for all 287 

students across universities. Previous work finds that incoming preparation predicts performance 288 

and retention across institutions (Ballen and Mason 2017, Ballen et al. 2017, Bonous-Hammarth 289 

2000, Easton et al. 2017). However, by normalizing performance across cohorts—we show the 290 

achievement gaps in course grades as they are corrected in magnitude. Second, to test the 291 

generality of these results it will be important to test a wider range of universities nationally and 292 

internationally. While our dataset is subject to some biases, these collaborative efforts among 293 

universities allow for much larger datasets--across a broad sample of university types--that 294 

would not be possible within one institution. Thus, multi-institution efforts allow for meaningful 295 

comparisons, and have considerable potential to illuminate the nature of persistent demographic 296 



gaps within classrooms, as well as gaps in institutional representation in the STEM workforce. 297 

Finally, many other variables may contribute to student performance that we did not include in 298 

our analysis, including teaching strategy (e.g., active or traditional lecturing; Haak et al. 2011), 299 

classroom social climate (Crawford and MacLeod 1990, Grunspan et al. 2016), campus social 300 

climate (Hall and Sandler 1984), and opportunity for academic support outside of the classroom 301 

(e.g., tutorials or peer mentoring; Snyder et al. 2016). Future work will also benefit from a focus 302 

on the underlying mechanisms that explain the observed gender gaps in large classes at the 303 

undergraduate level. 304 

Despite these limitations, we detect an interaction effect between gender and class size, 305 

such that women are negatively affected by large class sizes in ways that men are not. These 306 

findings add an equity dimension to previous work citing the benefits of smaller classes. This 307 

aspect of smaller-class impacts may be especially compelling to administrators, curriculum 308 

committees, or legislators who are motivated to eliminate gender gaps in performance that 309 

plague higher education. 310 
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