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The perceptual results of Plomp and Levelt [J. Acoust. Soc. Am. 38, 548–560 (1965)] for the sen-

sory dissonance of a pair of pure tones are used to estimate the dissonance of pairs of piano tones.

By using the spectra of tones measured for a real piano, the effect of the inharmonicity of the tones

is included. This leads to a prediction for how the tuning of this piano should deviate from an ideal

equal tempered scale so as to give the smallest sensory dissonance and hence give the most pleasing

tuning. The results agree with the well known “Railsback stretch,” the average tuning curve

produced by skilled piano technicians. The authors’ analysis thus gives a quantitative explanation

of the magnitude of the Railsback stretch in terms of the human perception of dissonance.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1121/1.4931439]

[TRM] Pages: 2359–2366

I. INTRODUCTION

It is well known that the notes of a well tuned piano do

not follow an ideal equal tempered scale. Instead, the octaves

are “stretched”; that is, the frequencies of the fundamental

components of piano tones that would differ by precisely a

factor of 2 in the ideal case are separated by a slightly greater

amount. This stretched tuning was noted many years ago by

Railsback.1,2 He also studied the tuning curves (the deviation

from an equal tempered tuning) of a collection of pianos

tuned by expert technicians and found that all follow approx-

imately the same stretched tuning. It is now widely accepted

that this effect is caused by the inharmonicity of real piano

strings. This inharmonicity is an important factor in piano

design; it has thus been studied in great detail and there is an

accurate theory of the inharmonicity of piano strings that has

been verified through a number of quantitative studies (e.g.,

Refs. 3 and 4).

The fact that all well tuned pianos appear to follow a

sort of universal tuning curve suggests that this tuning is

related to a fundamental aspect of human perception, i.e.,

that the human perception of dissonance (which we will also

refer to as “sensory dissonance” or simply “dissonance”) is a

key factor in determining how a piano is tuned. In some

cases, the dissonance of two tones is easy to understand and

predict. For example, for two pure tones the dissonance is

minimized when the tones have the same frequency, i.e.,

when there is no beating. The notion that less beating results

in lower dissonance also explains the perceived dissonance

of two complex tones in some simple cases, such as complex

tones that each contains only two components (which are

called partials in the case of piano tones). As we will

explain, such cases apply quite well to the treble region of

the piano, so this simple notion about sensory dissonance

explains the piano tuning curve in the treble, a fact that has

been known for some time.3

However, piano tones in the bass region contain many

partials with significant amplitudes. When considering the

dissonance of two complex tones of this kind, it is not possi-

ble to achieve a “zero beat” condition for all pairs of partials.

Instead, there will always be beating involving many

partials, and one would expect minimum dissonance to be

achieved when some (presumably complicated) function of

the beat rates of many partials is minimized. This compli-

cated function is a product of the human sensory system and

we do not currently have a theory for this function based on

fundamental physics or physiology. A complete understand-

ing of the piano tuning curve that applies throughout the

bass and treble thus requires a model or at least a description

of sensory dissonance for complex tones.

Interestingly, such a description of sensory dissonance

does exist5 but until now it has not been applied to the prob-

lem of explaining the Railsback stretch. That is the purpose

of this paper. We will see that our analysis, which combines

what is known about sensory dissonance with what we know

about the inharmonicity of real piano tones, leads quantita-

tively to the Railsback tuning curve. Our result also serves

as a test of how the perceptual dissonance of pure tones can

be used to determine the dissonance of complex tones that

consist of many inharmonic components.6,7

II. BACKGROUND

Piano tones are produced by vibrating strings. The

vibrations of an ideal, flexible string held rigidly at both

ends give a complex tone whose components are perfectly

harmonic. That is, if the frequency of the fundamental com-

ponent is f 0
1 , the frequency of the nth harmonic is precisely

fn ¼ nf 0
1 ; (1)a)Electronic mail: njg0003@auburn.edu
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where n is an integer. The harmonic spectra produced by

ideal strings and a number of other vibrating objects suggest

why the octave plays an important role in musical scales.

Two tones described by Eq. (1) and whose fundamental

frequencies differ by a factor of exactly 2 have many over-

lapping harmonics. The notion that tones whose components

overlap in this way are perceived as “pleasing,” i.e., conso-

nant, has been suggested many times over the past

centuries.8

Real piano strings are not ideal; they have some

stiffness, which causes deviations from the ideal harmonic

spectrum in Eq. (1) (see, for example, Refs. 3 and 9). The

components of real piano tones are therefore called partials,

to distinguish them from ideal harmonics. The stiffness

of real piano strings is small, and in that limit the partial fre-

quencies are given to lowest order by4,10

fn � nf1ð1þ an2Þ; (2)

where a is proportional to the Young’s modulus of the string

and the frequency f1 of the first partial is shifted slightly

from the value f 0
1 found for the ideal string. In practice there

are corrections to Eq. (2) that depend on the boundary condi-

tions of the string, the soundboard impedance, and other fac-

tors. However, these corrections do not change the fact that

the spacing between neighboring partials is not constant but

generally increases with n, as predicted by Eq. (2). Indeed,

our analysis will not rely on or even use the functional form

in Eq. (2), as we will make use of the values of fn measured

for the tones of a real piano. The key point is that the partials

of two piano tones whose fundamental frequencies differ by

precisely a factor of 2 (a perfect octave) will have few, if

any, partials that overlap exactly. Indeed, the second partial

of the lower tone will overlap with the fundamental compo-

nent of the upper tone only if their fundamental frequencies

are spaced by slightly more than a factor of 2, hence giving a

stretched octave.

When a skilled technician tunes a piano he or she

presumably has the goal of making it sound as “good” as

possible. This judgment may be based simply on listening,

or rely on what a commercial tuning device says is the

desired tuning, or some combination, but it is reasonable to

assume that this judgment is ultimately based on human

perception. It is also reasonable to assume that this “best”

tuning is designed to minimize the dissonance of the most

important musical intervals, and it is widely believed that

the process of minimizing the dissonance amounts to adjust-

ing the octave spacing so that the partials of notes an octave

apart overlap as closely as possible. However, it is not clear

what the term “as closely as possible” means when one is

considering tones with many partials as is the case for real

piano tones, especially in the bass region of the scale.

It is useful at this point to consider the spectra of a few

piano tones, which will help in understanding how pairs of

partials can combine to increase or decrease the sensory dis-

sonance, and why the problem is much simpler for notes in

the treble as compared to the bass. Figure 1 shows the spec-

tra for the notes A5 and A6 of a piano; in this notation, A4

has a fundamental frequency of 440 Hz. (The piano and

details of the measurement will be described below.) These

spectra illustrate a key property of notes in the treble; the

intensities of the different partials fall off very rapidly with

partial number. For example, the fourth partial of A5 is about

3 orders of magnitude smaller than the fundamental (i.e., the

first partial), while for A6 the second partial is about 4 orders

of magnitude smaller than its fundamental component. This

strongly suggests that when considering possible beating

between partials of A5 and A6, only the second partial of A5

and the fundamental of A6 need to be considered; the com-

bined intensities of the fourth partial of A5 and the second

partial of A6 are likely far too small for their beating to be

discernible. The second partial of A5 and the fundamental of

A6 will thus determine the sensory dissonance of these two

notes.

The situation is completely different in the bass. Figure 2

shows spectra for notes A1 and A2, which show that the

partials vary in intensity in a complex manner as the partial

number increases. We must then expect the beating of many

FIG. 1. Measured spectra of notes A5 and A6. Note that both scales are log-

arithmic and that the spectra have been displaced vertically for clarity.

FIG. 2. Measured spectra of notes A1 and A2. Note that the vertical scale is

logarithmic and that the spectra have been displaced vertically for clarity.

The vertical arrow indicates the small peak at the fundamental frequency of

A1.
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pairs of partials to be important when considering the sensory

dissonance of these notes and others in the bass.

These insights on contributions to sensory dissonance

have been recognized for some time. For example, Schuck

and Young9 used measurements of the spectra of real piano

tones, similar to those shown in Figs. 1 and 2 to explore how

the overlap of partials produces a stretched tuning. They did

not attempt to calculate dissonance quantitatively, but

instead used only the observed frequencies of a single pair of

partials (one partial from each note) to estimate the optimum

stretch. For example, if one assumes that the lowest partials

are most important one can estimate the octave stretch by

requiring that the second partial of each note be equal to the

fundamental frequency of the note an octave higher. Schuck

and Young found that this assumption gives a good account

of the stretch in the treble (as we have suggested based on

the spectra in Fig. 1) but greatly underestimates the amount

of stretch found in the bass. They also showed that matching

pairs of higher partials of notes separated by either an octave

or by two octaves leads to different predictions for the

degree of stretch, but none of their matching algorithms,

which were based solely on the frequencies of a single pair

of partials and ignored their amplitudes, was able to account

quantitatively for the tuning curves observed in practice. For

example, matching the lowest partials of notes spaced by

two octaves led to an underestimation of the octave stretch

in the bass while overestimating it in the treble. Schuck and

Young were thus not able to quantitatively account for the

magnitude of the Railsback stretch in the bass.

More recently, there have been various analyses of

stretched tuning, in which purely algorithmic approaches

have been used to determine the best tuning.11,12

Specifically, these approaches have used algorithms that

minimize an effective entropy or similar constructs, in which

these functions have no relation to what is known about

human sensory dissonance.

Surprisingly, the author knows of no attempt to explain

the Railsback stretch quantitatively in terms of what is

known about the human perception of dissonance. The pur-

pose of this paper is to take a step forward from the analysis

of Schuck and Young in which established descriptions and

models of human perception are used to evaluate the sensory

dissonance of real piano tones and thereby predict the

Railsback stretch. Our approach allows us to account for the

many partials of real piano tones and their amplitudes, using

the spectra of tones measured for a particular piano when

estimating the sensory dissonance of two tones. This disso-

nance is estimated quantitatively using the results of the per-

ceptual studies of the dissonance of pure tones by Plomp and

Levelt as described in Sec. III.5 The results are compared

with the actual tuning of the piano under study and with the

Railsback tuning curve. Overall good agreement is found.

We also explore the sensitivity of this agreement to plausible

alterations of the dissonance model.

III. MODEL OF TONAL DISSONANCE

This analysis described in this paper makes use of rela-

tions concerning perceptual dissonance that are based on the

perceptual studies of Plomp and Levelt5 (see also Kameoka

and Kuriyagawa13,14). Plomp and Levelt used listening tests

to determine how the dissonance of two pure tones with fre-

quencies f1 and f2 depends on the difference in frequency of

the tones. They showed that the perceived dissonance

depends on both the frequency difference f2� f1 and the

lower of the two frequencies (f1). Figure 3 shows a conven-

ient parameterization of the Plomp and Levelt results due to

Sethares,6 the functional form of which will be given below.

The dissonance is zero when the frequencies are equal,

f2/f1¼ 1. The dissonance exhibits a maximum when f2� f1
equals a value Df0 that depends on the frequency of the lower

tone [Fig. 3(b)]. The frequency difference Df0 is approxi-

mately equal to one-quarter of the critical band as identified

in other studies (e.g., Ref. 15). The dissonance then

decreases smoothly to zero as the frequency separation is

increased beyond Df0.

The dissonance curves in Fig. 3 are noteworthy for their

lack of structure. One might have expected to find dips in the

dissonance (and hence maxima in the consonance) for musi-

cally pleasing intervals such as the octave (f2/f1¼ 2), perfect

fifth (f2/f1¼ 3/2), and so on, but that is not the case. The

FIG. 3. (a) Perceived dissonance of two pure tones with frequencies f1 and

f2 for different values of the frequency f1 of the lower tone (given by the

label on each curve). (b) Frequency Df0 at which the dissonance in a maxi-

mum as a function of the frequency of the lower tone f1. These curves

are computed using parameterizations of the results of Plomp and Levelt

(Ref. 5) as given by Sethares (Ref. 6).
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reduction of the dissonance of such intervals appears when

one considers complex tones with harmonic spectra. Plomp

and Levelt (and many others) have applied their result for

pure tones to compute the dissonance of complex tones

whose components form a harmonic series [Eq. (1)]. For

such tones the total dissonance is assumed to be the sum of

the pairwise dissonances of each of the components of both

complex tones. One now has the possibility for the disso-

nance to be minimized by having some of the harmonics of

the two tones overlap. For complex tones with harmonic

components, such overlap does indeed produce minima in

the dissonance for tones that form various musical intervals,5

thus providing an “explanation” for the mathematical struc-

ture of the 12 tone musical scale. In this picture, the intervals

which minimize the dissonance (i.e., maximize the conso-

nance) depend on the spectra of the associated complex

tones. Harmonic tones lead to the standard consonant inter-

vals of an octave and perfect fifth, etc., but other types of

complex tones can give very different results (see, e.g., Refs.

16 and 17).

In this paper we describe a similar analysis using the

complex tones measured for a real piano. Our main goal is to

determine if the inharmonicity of complex tones found in a

real piano can be combined with a model of dissonance

based on perceptual studies to quantitatively predict the

stretched tuning actually found for that piano. Our analysis

uses results for the partial frequencies and amplitudes meas-

ured for a real piano, and is not limited to the lowest one or

two partials but explicitly includes the contributions to the

dissonance from all significant partials.

IV. DISSONANCE OF COMPLEX TONES

Figure 3(a) shows the results of Plomp and Levelt5 for

the dissonance of two pure tones with frequencies f1 and f2.

These curves are a parameterization derived by Sethares,6

according to which the dissonance is proportional to

d2ðf1; f2Þ ¼ ðe�b1sjf2�f1j � e�b2sjf2�f1jÞ : (3)

Here

s ¼ s?=½s1minðf1; f2Þ þ s2�; (4)

minðx; yÞ is a function equal to the lesser of its two arguments,

and b1¼ 3.5, b2¼ 5.75, s*¼ 0.24, s1¼ 0.021, and s2¼ 19.

These relations were derived from studies involving pure

tones, and to apply them to real musical tones we must con-

sider how the dissonances of two or more pairs of pure tones

combine to give a total dissonance. This question is extremely

important, since we have seen in Fig. 2 that piano tones can

contain a large number of partials and for the bass notes the

strongest partials may not be the ones with small n. Various

authors have used the function d2() in Eq. (3) (or its equiva-

lent) to compute the dissonance of complex tones. Plomp and

Levelt applied it to complex tones consisting of six harmonics

[with frequencies given by Eq. (1) with n¼ 1, 2,…,6] but did

not specify the relative amplitudes of the harmonics and

appeared to simply add the dissonance functions for each of

the components of the two complex tones. Kameoka and

Kuriyagawa14 gave a rather extensive discussion of the issues

involved in combining the dissonances of different dyads. In

the end, they seem to have added the dissonance functions

d2() for each pair of components weighted approximately by

the product of the amplitudes of the two components in each

dyad. Sethares6 initially took a similar approach and assumed

that the dissonance of two complex tones is given by

Dtotal ¼
1

2

Xn1

i¼1

Xn2

j¼1

Bi;jd2 f1;i; f2;jð Þ ; (5)

with

Bi;j ¼ a1;ia2;j : (6)

Here the ith partial of tone 1 has frequency f1,i and amplitude

a1,i, and we assume that only n1 partials have significant

amplitudes, etc., for tone 2. (Note that here we omit the

“self-dissonance” of a tone, which is included by some

authors but is not important for our work since we will wish

to find the condition in which the dissonance of two tones is

a minimum. The self-dissonance may certainly be important

when judging the quality of a single complex tone.18) We

will term Dtotal with Bi,j given by Eq. (6) the “amplitude

product” model. Sethares6 applied this model to complex

tones consisting of seven harmonics with amplitudes that fall

at a rate of 0.88 from one harmonic to the next, and showed,

in agreement with the results of Plomp and Levelt, that this

yields to consonances at the well-known and expected inter-

vals, including octaves and perfect fifths.

In later work, Sethares7 suggested that instead of Eq. (6)

the dissonance should be proportional to the loudness of the

weaker component so that

Bi;j ¼ minð‘1;i; ‘2;jÞ ; (7)

where ‘n,i is the loudness of the ith partial of tone n. In our

applications of Eq. (7) in this paper we will assume that

loudness is defined in the usual way [‘ � 2SPL/10 where the

sound pressure level (SPL) is related to the power by SPL

� log(P)].7,10 We thus ignore the dependence of perceived

loudness on frequency (the so-called Fletcher-Munson

curves); we will consider this below in Sec. VI D. We will

refer to Dtotal with Bi,j given by Eq. (7) as the “minimum

loudness” model. One argument in favor of a model based

on loudness rather than partial amplitudes is that human

hearing judges the loudness of a sound on a logarithmic

scale, as accounted for in the definition of ‘n,i. We will con-

sider both the amplitude product and the minimum loudness

model in our analysis. So far as we know, there have been

no experiments that have studied which, if either, of these

models is the appropriate way to measure the relative disso-

nance of pairs of pure tones.

V. METHOD

This analysis described in this paper makes use of a

Steinway model M piano that belongs to the author and had

recently been tuned by a professional technician. No special
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instructions were given to the technician. Recordings were

made of every note A, C, E, and G, ranging from A0 to C8.

These notes were chosen so as to provide multiple notes

spread over each octave and give the option of studying the

dissonance of common intervals and chords (a problem left

for the future). Each note was recorded at an mf level, and

all of the strings for each note were allowed to vibrate. Notes

A0–E1 employed a single wound string, G1–C3 had two

wound strings each, and E3–C7 employed three non-wound

strings each. Each note was recorded using a PCB

Piezotronics (Depew, NY) model 130P10 microphone with a

sampling rate of 44.1 kHz. Spectra were calculated with a

standard fast Fourier transform (FFT) algorithm using data for

approximately 0.75 s taken just after the attack portion of the

tone. The frequencies of each partial were obtained by fitting

the spectral peaks to either Gaussian or sinc2 lineshapes,19

which were found to give essentially identical results for the

partial frequencies. The frequencies derived in this way and

for sound data of this duration were sufficiently precise for

our purposes since the dissonance according to Eq. (3) varies

slowly compared to the frequency resolution of these FFTs.

More sophisticated signal processing methods were thus not

required. For the same reason, the small difference in the fre-

quencies of unison strings20 was not important.21

This analysis yielded the frequencies and amplitudes of

all partials with significant strength for each note, which

were used in computing the dissonance functions of various

pairs of notes. For most notes the spectra also yielded

directly the fundamental frequency of each note and hence

the Railsback stretch function for this piano as tuned by the

technician. For the notes below G1 the fundamental compo-

nent was difficult to discern from the noise; in those cases

the fundamental frequency was estimated using the frequen-

cies of the lowest partials and extrapolating fn/n as n! 1.

VI. RESULTS

We first consider the actual tuning curve of the piano

under study; that is, the tuning as set by the professional

tuner and presumably judged by him (according to his tuning

device or simply by ear) to be the best and presumably most

consonant tuning possible for our piano. We will find that it

agrees well with the Railsback result. We then consider the

measured spectra of individual tones and use the models of

dissonance described in Sec. IV to calculate the most conso-

nant tuning curve predicted by the models.

A. Tuning curve from the fundamental frequencies

The tuning curve for our piano as derived from the

measured fundamental frequencies is shown by the solid

symbols in Fig. 4. Here we plot the deviation Df of the

fundamental frequency f1 of each note from an ideal equal

tempered scale with A4 (f1¼ 440 Hz) as the reference value.

This figure also shows the Railsback curve (solid line) and

the result of Schuck and Young for their particular piano

(dotted line). The Railsback curve is smooth, since it is the

average for many pianos. The Schuck and Young result is

not smooth, as it is the result for a single piano; similar var-

iations from note to note have been reported by other

workers (see especially the results for a number of pianos by

Koenig22). The Schuck-Young result in Fig. 4 shows typical

note-to-note fluctuations from the Railsback curve, to be

expected for any particular piano. It is seen that the tuning

curve for our piano has note-to-note variations from the

Railsback curve that are similar to those found by Schuck

and Young. We thus conclude that the results obtained by

our professional tuner are quite similar to those obtained

by many other tuners in a similar context. This is indeed a

normal well-tuned piano.

B. Understanding the general shape of the Railsback
curve

One can gain a qualitative understanding of the shape of

the Railsback curve from a few details of the spectra of piano

tones. In the middle of the piano range the inharmonicity is rel-

atively small, as can be seen from either the spectra of notes in

this region or the theoretical value of a in Eq. (2). As one

moves toward higher notes in the treble the inharmonicity

increases, increasing the amount of stretch per octave and

causing the upward curvature of the Railsback curve in that

region. In the bass the inharmonicity parameter a is smaller

than found in the upper treble but the number of significant

partials increases as one moves toward lower notes. Indeed,

for the lowest notes 20 or more partials may be significant (see

Fig. 2 and below) while in the extreme treble only two might

have been important (Fig. 1). Since the inharmonicity

increases with partial number n, the amount of stretch per

octave is largest in the bass causing the large downward curva-

ture of the Railsback curve in that region. These qualitative

observations will be confirmed in the quantitative analysis pre-

sented in Secs. VI C and VI D.

C. Finding the least dissonant tuning curve

To apply a model of dissonance to calculate the opti-

mum tuning curve we select a pair of notes that for perfect

FIG. 4. Solid symbols: Deviation Df of the fundamental frequencies of notes

of the piano under study from an equal tempered scale as a function of the

fundamental frequency f1 for all notes A, C, E, and G. Solid curve:

Railsback tuning curve. Dotted curve: Tuning curve for the piano studied by

Schuck and Young (Ref. 9).
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tuning are separated by precisely an octave, for example, A0

and A1. If the fundamental frequencies of the notes are

f1(A0) and f1(A1), then in the ideal case f1(A1)/f1(A0)¼ 2.

We then consider shifting the pitch of the upper note by

shifting its fundamental frequency by a small amount df1. At

the same time, we shift the frequencies of each partial of this

note by n� df1 where n is the partial number.23–26 Since the

amplitudes of the partials are known from measurements of

the spectrum of each note, the dissonance function can be

evaluated as a function of df1. The value of df1 that mini-

mizes the dissonance function then gives a prediction for the

amount Df the octave should be stretched for optimum tun-

ing. As a final point, in all of our calculations we assume

that the two notes have equal total power. This is accom-

plished by normalizing for each note the sum of the power

contained in each of the partials for that note.

Before applying the models of dissonance discussed in

Sec. IV, we first consider one of the approaches taken by

Schuck and Young, in which they computed the stretch by

considering notes separated by an octave and requiring that

the frequency of the second partial of the lower member of

the octave coincide with the fundamental frequency of the

higher member. This is a very simple dissonance function

that ignores the amplitudes of different partials; we will refer

to this as the “2/1 model.” This approach yields the predicted

stretch of each octave, from which one can deduce the tuning

curve by adding the stretch predicted for each octave as one

moves away from the notes in the octave near A4. The

results for the 2/1 model for our piano are shown in Fig. 5

where it is compared to the measured tuning curve. Note that

in applying the 2/1 model we have assumed that the notes

C4, E4, G4, and A4 all have Df¼ 0 and hence all lie on

the horizontal axis (which is consistent with the results in

Fig. 4). The stretch values for other octaves are then obtained

by adding the stretch values octave by octave. The results of

the 2/1 model applied to our piano are consistent with those

found by Schuck and Young. Namely, for notes in the mid-

dle range to the extreme treble the 2/1 model is consistent

with both the Railsback curve (Fig. 4) and with the observed

tuning. However, there are substantial deviations in the bass,

as the model predicts a much smaller stretch than gives the

best tuning.

The reasons for the agreement and disagreement with

the 2/1 model of dissonance are important for critically

understanding the predictions of other dissonance models.

As we saw in Fig. 1, notes in the extreme treble have only a

few significant partials, and their amplitudes decrease very

quickly with partial number n. The dissonance is therefore

dominated by the lowest partial(s) of the lower member of

each octave and the 2/1 model, which accounts for only the

very lowest partials, gives an acceptable result. In this range

we would expect virtually any plausible model of dissonance

to give a result identical to that of the 2/1 model and thus

account for the observed tuning curve. However, as one

moves down through the midrange and into the bass, the

notes have many partials with significant amplitudes. For

example, for the note A1 of our piano one must go to partials

above n¼ 27 to reach the point at which all higher partials

have amplitudes less than 3% of that of the strongest partial.

Moreover, the strongest partials for this note are of order

n¼ 7 and n¼ 14, so an accurate description of dissonance

must include at least these strong partials. For these reasons,

the 2/1 model is expected to fail in the bass, as is indeed

found.

We have discussed the 2/1 model here to illustrate two

crucial points. First, any reasonable model of dissonance

will almost certainly work in the treble. Second, the bass

notes provide the real test of models of dissonance.

We next consider the amplitude product and minimum

loudness dissonance models. We have computed the tuning

curves with these models following the procedure of consid-

ering notes separated by an octave and calculating the disso-

nance as the frequencies of the partials of one of the notes is

shifted, as was done in applying the 2/1 model. The results

are shown in Fig. 6. For comparison this figure also shows

the measured tuning curve. Above a fundamental frequency

of about f1 � 110 Hz, corresponding to note A2, the two

models agree well with each other and with the measured

stretch. The fact that the two models agree in the treble is

expected since, as already discussed, the notes in the treble

have only a few significant partials and the amplitude falls

rapidly with partial number. For the lowest notes the ampli-

tude product model seems to be in slightly better agreement

with the actual tuning curve. This is perhaps suggestive

evidence in favor of the amplitude product model, but in our

opinion both models provide an acceptable quantitative

account of the tuning curve.

Application of the amplitude product and minimum

loudness models confirms our earlier claims about the need

to include a large number of partials to account for the disso-

nance of two tones in the bass. For example, when comput-

ing the dissonance of the note pairs A0–A1, and A1–A2, it is

necessary to include at least 16 partials of the lower note and

8 of the higher member of the pair to reach the asymptotic

result, i.e., the stretch found by including all significant parti-

als. Including fewer partials gives a significantly smaller pre-

dicted stretch. By comparison, for the note pair A2–A3 the
FIG. 5. Open symbols and dotted curve: Predictions of the 2/1 model for our

piano. Solid symbols and solid line: Actual (measured) tuning of the piano.
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asymptotic value for the stretch is reached with only six par-

tials from the lower note and three from the upper one.

It is also interesting to consider why the two models

give similar results. One might have thought that the very

different factors Bi,j in Eqs. (6) and (7) would give rather dif-

ferent results, especially since the loudness of a pure tone

depends logarithmically on its amplitude. The answer to this

question seems to contain two parts. First, when comparing

two piano tones an octave apart with equal total powers, the

pairs of partials that are close in frequency tend to have simi-

lar amplitudes. Hence if one member of such a pair of parti-

als is small then both are usually small, so the amplitude

product model and minimum loudness model tend to give

most weight to the same sets of partials. Second, one might

wonder why the logarithmic dependence in Eq. (7) gives a

result similar to Eq. (6). The reason is not entirely clear to

the author, but may be due to that fact that the loudness of a

pure tone is approximately proportional to p0.3 where p is the

power in that tone. This is not far (arithmetically) from the

relation between amplitude and power.

D. Consideration of other models

We have seen that the amplitude product model and the

minimum loudness model both give a good quantitative

account of the Railsback tuning curve. In this section we

consider how sensitive this result is to certain aspects of the

models.

One obvious extension of the dissonance models pointed

out by Sethares7 would be to include the dependence of per-

ceived loudness on frequency and amplitude as captured by

the so-called Fletcher-Munson curves.10,25 We have per-

formed a full calculation with the minimum loudness model

in which the Fletcher-Munson results are included when

computing the effective loudness. This had no significant

effect on the results. The reason for this can be traced to the

fact that the lowest partials of the bass notes all have small

values of ‘ so suppressing their contributions to the

dissonance further (by applying the Fletcher-Munson correc-

tion) has a negligible effect on the predicted dissonance.

We have also considered the effect of changes to

the Plomp-Levelt dissonance relation, which is the basis for

Eq. (6). There are several parameters that determine the pre-

cise shape of this function; one of the most important is the

frequency difference at which the dissonance is a maximum,

Df0, which is proportional to s in Eq. (4). We have therefore

considered the tuning curves predicted for different values of

s given by

s ¼ b� s?=½s1minðf1; f2Þ þ s2� : (8)

The value of the factor b in Eq. (8) determines how much the

dissonance maximum Df0 is shifted from its value in Fig. 3.

We have calculated the tuning curves that minimize the

dissonance for values of b in the range 0.1 to 10, correspond-

ing to either decreasing or increasing Df0 by a factor of 10.

(Recall that Df0 is proportional to a physiological parameter,

the critical band.) We found that increasing Df0 by as much as

a factor of 10 produced very little change in the predicted tun-

ing. However, decreasing Df0 made a significant difference,

as shown in Fig. 7 which gives results for b¼ 0.5 and 0.1.

With b¼ 0.5 the tuning curve in the extreme bass is dis-

placed slightly below both the result calculated with b¼ 1.0

and the measured tuning curve. With b¼ 0.1 the predicted

tuning curve is displaced much farther and for the lowest

notes there is even no dissonance minimum for any reasona-

ble value of the stretch. This result thus gives an upper limit

on acceptable values of Df0; decreasing this parameter by

more than about a factor of 2 leads to predicted tuning

curves which disagree with the Railsback result. This pro-

vides a test of one aspect of the dissonance function.

VII. SUMMARY AND CONCLUSIONS

The results of perceptual studies of the dissonance of

pure tone by Plomp and Levelt together with the measured

FIG. 6. Solid symbols and dotted curve: Tuning curve predicted by the mini-

mum loudness model. Open symbols and dotted-dashed curve: Tuning curve

predicted by the amplitude product model. Solid curve: Actual (measured)

tuning of the piano.

FIG. 7. Solid curve: Actual tuning of our piano. The symbols give the tuning

curves predicted by the amplitude product model with the parameter s given

by Eq. (8) with b¼ 1.0 (filled circles), b¼ 0.5 (filled squares), and b¼ 0.1

(open circles).
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inharmonic spectra of real piano tones have been used to pre-

dict the optimum tuning of a piano. This prediction agrees

well with the way pianos are found to be tuned in practice,

the Railsback stretch. This result is further confirmation that

the inharmonicity of piano tones is indeed responsible for

the stretched tuning of a piano. This is not a surprising result;

this inharmonicity has long been assumed to be responsible

for the Railsback stretch. However, to our knowledge this is

the first quantitative calculation that uses what is known

about the human perception of sensory dissonance to cor-

rectly predict the magnitude of the stretch. Since our analysis

relies on a model of dissonance, the agreement between the

predicted and observed stretch serves as a check on that

model.

The model of dissonance we have used is based on the

perceptual studies by Plomp and Levelt using pure tones.

The extension of their results to complex tones requires an

assumption as to how the dissonance of two pure tones

depends on their amplitudes. Our analysis has considered

two proposals of Sethares, one based on the product of the

amplitudes and another based on loudness of the weakest

tone, and both are consistent with the Railsback result.

Further work with tones of greatly differing amplitudes will

be required to distinguish which of these models gives the

best description of sensory dissonance.
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