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SUMMARY

A method is presented for finding which few of a large number of
independent variables are the most potent predictors of some dependent
variable Y in the case of a multiple regression or are the most potent
discriminators in the case of a discriminant function.

The most potent variable is defined as that independent variable
most closely related to the dependent variable; the second most potent
variable as that variable which together with the most potent variable
makes the pair of independent variables most closely related to the
dependent variable; the third most potent variable as that independent
variable which together with the most potent pair of variables makes the
trio of variables most closely related to the dependent variable, etc.

The success of the method is based on the intuitively reasonable
idea that variables chosen according to the above definition cannot
form a much poorer set than the absolutely most potent set; and, on
the basis of some practical experience, no sets have as yet been uncovered
that have been much better than those thus chosen. The practicability
of the method is based primarily on the fact that, under the proposed
scheme, it is necessary to examine only n regressions with one inde-
pendent variable, n - 1 regressions with two independent variables,
n - 2 regressions with three independent variables, and so on up to a
maximum of usually not over n - 5 or n - 6 regressions with five or
six independent variables. On the other hand, to obtain the absolutely
most potent set would require examination of n!/n!(n - 1) ! regressions
with one independent variable, n!/2!(n - 2)! regressions with two
independent variables, n!/3!(n - 3)! regressions with three inde-
pendent variables, and so on to n!/5!(n - 5)! or n!/6!(n - 6)!. A
further advantage is that only those sums of products involving Y
and/or the independent variables actually chosen will have to be com-
puted, whereas the absolutely most potent set will require that all
sums of products existing among the variables be computed. The only
other process that could be proposed as leading to the desired set of
variables would be to work the regression with all n independent vari-
ables, identify and discard the weakest, work the regression with n - 1
independent variables, identify and discard the weakest, work the



regression with n - 2 variables, and so on. This process does not yield
the set of absolutely most potent variables either, yet it requires that
all sums of squares and products be computed. Furthermore, the com-
putation load will be exceedingly heavy when compared with the
proposed method if there are more than about 10 independent variables.
Experience indicates that rarely are there as many as five or six potent
variables finally selected.

A systematic procedure with computational checks and some devices
for reducing duplication of computations is described in detail and
illustrated with worked examples. Computations and tests of reliability
for many of the summarizing statistics of multiple regression are also
described.
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PROCEDURE for DETERMINING POTENT
INDEPENDENT VARIABLES in MULTIPLE

REGRESSION and DISCRIMINANT ANALYSIS*

E. FRED SCHULTZ, JR. Biometrician**

JAMES F. GOGGANS, Associate Forester

Researchers and their statistical advisors are often confronted with
the problem of determining the relative potency of a large number of
variables in accounting for the behavior of some dependent variable or
in discriminating between two discrete groups. Their problem usually
is not to assess the potency of all the variables singly, though this may
be a beginning, but to find some satisfactorily small number of variables
that will explain some satisfactorily large portion of the variability in
the dependent variable, or discriminate satisfactorily between the
groups. One would like for the chosen set to explain more variability or
discriminate more certainly than any other set with this many or fewer
variables. Such a set can be described as the absolutely most potent
set.

To ensure finding the absolutely most potent set of r variables out
of n, would require that all possible multiple regressions or discriminants
with r predicting or independent variables be evaluated, with the set
accounting for the most variability being chosen. The number of such
sets is

r ! (n -r)!

the number of combinations of n things taken r at a time, where n is
the total number of variables to be examined and r is the number of
variables to be allowed as predictors in the multiple regression or
discriminant at any one time. Even the procedure of examining all the
C; sets with r variables does not ensure, however, that some set with
r - 1 or r - 2 variables would not do substantially as well. To ensure

* The investigations leading to this report were supported by Hatch and State
Funds and carried out cooperatively by the Departments of Forestry and Botany
and Plant Pathology. The data were gathered as a part of Alabama Project 509.

** Resigned.
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that this situation does not arise would require evaluating all the pos-
sible regressions or discriminants with r or fewer variables. Another
possibility, that inclusion of one more predictor variable would yield
a considerably better prediction equation, can be examined only by
evaluating all possible regressions or discriminants with r + 1 variables
for all possible values of r. This is really the total of all possible regres-
sions or,

c=1

If the number of variables of possible predicting value is at all large,
say above 10, and especially if the final multiple regression or dis-
criminant is to be allowed to have as many as 4 or more independent
variables (if shown to be necessary or desirable by examination of all
regressions or discriminants with fewer independent variables), it is
apparent that the number of multiple regressions or discriminants to
be evaluated would be so large as to economically prohibit such a
search in many studies.

However, it is possible and with much less labor to find a set of vari-
ables that, though not guaranteed to be the absolutely most potent
set, does have some probability of being the absolutely most potent
set. In any event, the set may be regarded as most potent in the fol-
lowing sense: The absolutely most potent single predicting or dis-
criminating variable is identified and selected. Following this selection,
the most potent pair of variables of which one is the previously chosen
most powerful single variable is identified and selected. In the next
selection, the most potent trio of variables is identified and chosen,
two of which are the previously chosen pair. This procedure continues
in the case of regression until a satisfactorily large portion of the vari-
ability of the dependent variable is accounted for or until additional
variables do not account for a significant amount of the remaining
variability in the dependent variable. In the case of a discriminant,
the procedure is followed until a satisfactory discriminating equation
is obtained or until further variables do not significantly improve the
discriminant function.

When it is realized from the start that such a search is to be made,
it is possible to further reduce the work by systematization and short
cuts. The purpose of this bulletin is: (1) to describe such a systematic
search for potent predicting or discriminating variables, (2) to emphasize
that a single computing procedure serves for both regression and dis-
criminant, and (3) to bring together in one place directions for all the
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computations, operations, and tests necessary for such a search. It is
intended that these directions shall be in sufficient detail to serve as
computing instructions to a group whose members are not highly
trained in statistics, but who in the aggregate account for much of the
practical use made of statistical procedures. Examples of such persons
are researchers with some but limited experience in statistics and
mathematics, graduate students in fields other than statistics and
mathematics, and clerks who must sometimes function with only very
sketchy directions from the researcher whose data they process. The
directions are specifically for use with desk calculators, although they
could perhaps be adapted to other types of calculators. 1

REVIEW OF LITERATURE

The literature concerning multiple regressions is voluminous and
scattered throughout journals and textbooks in many fields of science.
For this reason the authors make no pretense of having made a thorough
search of all the literature to determine whether the procedure outlined
in this bulletin or a similar procedure has been previously proposed.
Since this report is directed primarily toward those users desiring com-
puting instructions rather than development of theory, most references
are to textbooks rather than journal articles.

In most textbooks the discussion of multiple regression and dis-
criminant function analysis is limited to finding the regression equation
or discriminant function, testing significance, and interpreting results,
assuming that there is no uncertainty about the choice of independent
variables to be used. Usually there is very little or no discussion of
the problem of finding the best possible predicting variables. The
reader is left to assume that determining the variables to be put in the
regression is not a statistical matter. Some awareness of the larger
problem of choosing the best predictor variables is acknowledged,
however, as in the discussions on net and standard partial regression
coefficients, Ezekiel (7), Croxton and Cowden (4), Mills (15), and
Snedecor (19); on partitioning the total "determination" or sums of
squares due to regression for several variables, Hendricks (12), Anderson
and Bancroft (1), Goulden (11), Wert, Neidt, and Ahmann (23),
Croxton and Cowden (4), Mills (15), and Snedecor (19); and on deleting
or omitting variables, Villars (22), Anderson and Bancroft (1), Rao (18),
Goulden (11), Wert, Neidt, and Ahmann (23), Friedman and Foote
(9) and, Snedecor (19).

1 As this bulletin was being prepared for publication, a computer program (Multi-
ple Regression by Stepwise Procedure) that would make the procedures of this
report applicable to use with electronic computers was listed by Leone (13a).
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The finding of a regression equation or diseriminant function requires
the solution of simultaneous equations. There are several methods of
solution, with many minor variations extant in the literature and
textbooks. The abbreviated Doolittle solution is of particular interest.
It has been described by Dwyer (5, 6), Peach (16), Anderson and
Bancroft (1), Goulden (11), and Friedman and Foote (9).2

Procedures in discriminant analysis are discussed by Cox and Martin
(3), Mather (14), Fisher (8), Rao (18), Goulden (11), Quenouille (17),
Tippett (21), Wert, Neidt, and Ahmann (23), and Bennett and Franklin
(2).

SIMILARITIES AND DIFFERENCES IN REGRESSIONS
AND DISCRIMINANTS

Regression analysis is widely known and used in research. Many
research people have operating knowledge of some portion of the
technique and associated computational procedures. This does not hold
at least to the same degree for discriminant analysis, even though
practically identical computational procedures may be used for the
two techniques. For this reason it seems desirable to give a brief general
description of a discriminant function and its use. This is done by
comparing two situations, one suitable for a regression and the other
suitable to a discriminant.

An educator might wish to know what items of information about
students entering college would be useful in predicting degree of success
or achievement during the freshman year, the degree of success in
this situation being commonly measured by overall average grade
for the year. A typical regression study might call for information
on such potential independent or predictor variables as average high
school grade, IQ, age, college entrance examination grades, and educa-
tion of parents in order to investigate their effectiveness as predictors
of average grade during the freshman year. Many state universities are
required by law to admit all applicants with a diploma from an accredited
high school within the state. In such cases 10 to 20 per cent of enrolling
freshmen may not finish the year and, thus, would not have an average
grade. In such universities this early attrition is a serious problem;
thus, other educators might wish to know what items of information
about entering college students would be useful in discriminating
between those students who will drop out and those who will remain.
The researcher might investigate the same set of independent variables

2 Since the first draft of this Manuscript, the authors have become aware of an
exposition by Kramer (18) embodying some of the same computational features of
this report.
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as for the regression study, high school grade, IQ, age, college entrance
examination grades, and education of parents in order to determine
their effectiveness in discriminating between the two types of students.

The distinction between the two cases lies wholly in the nature of
the dependent variable, Y. In the former, or regression case, the de-
pendent variable, success, is a continuous variable taking infinitely
many values. In the latter, or discriminant case, the dependent vari-
able is a discrete variable taking two forms only; the student either finishes
or does not finish the year.

It is quite possible that the two investigators might each decide on
the same set of r predictor variables. It might turn out that each in-
vestigator has records on p students and it could even be that some of
the students are common to both studies.

Suppose that the number of independent variables is r, or 4, as here
listed: high school grade = X1, IQ = X2, college entrance exam
grade = X3, and parents' education = X 4. The problem of regression
is to obtain the constants and coefficients of the regression or prediction
equation,

Y = a + bX 1 + b2 X 2 + b3 X 3 +b 4 X 4

such that the sum of squares of deviations of actual average grade, Y,
from the predicted grade, Y, is minimized, i.e., 1 (Y - Y) 2 is less than
with any other prediction equation that might be suggested or used.
The problem of the discriminant function is to find the constants and
coefficients of the discriminant or discriminating equation,

Z = x 1X 1 + x2X2 + x3X3 + x4X4

such that, if a value of Z is computed for every student, the average
difference between the Z values of the two groups, D = ZI - ZI, is maxi-
mized. If this is done,

(Z - Z) 2

S(Z - ZE) + E(Z - I)

is a maximum. Equally as well, the t or F of a test of significance of a
difference between the two groups of Z-values is greater than with any
other equation that might be suggested or used.

Changing the forms of the equations, squaring, summing over all
individuals, partially differentiating, and equating to zero, yields in
each case a set of simultaneous equations which must be solved to
obtain the needed coefficients, see Goulden (11) and Bennett and
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Franklin (2). The simultaneous equations in regression analysis are
given as:

(Z x1)b 1 +(Z x1 x2)b2 + (Z x1x3)b3 + (Zx 1x})b 4  Zx1y

(C x2x1) b1 - (Z 2)b2 - (Z x2x3)b3 +(Zx 2 x4 )b4- x2y

( x . 3x1)b1 + ( x3x2)b2 + (Z x3)b 3 + (Z x3x4) b4  x3y

( x4x 1) b1 + (Ex 4x2) b2 + (Z x4x3)b3 + (Z x4) b4 X4Y.
Simultaneous equations in discriminant analysis are:

(Z x)A1 + (Z x1x2)X2 + (Z x1x3)X3 + x1x4)X4 =d 1

(C x 2x 1)X + (Z x2)X 2 +-( x2x3)X3 + x2x4)X4 =d

( x3x1) 1  x3x2)X2  ( (Zx) 3 +( x3x4)X4 =

(Z x4x 1) 1 + (C x4x2)X2 + ( x4x3)X3 + (Zx)" 4 = d4

One may observe that the two sets' of equations are identical in form.
The, reader can be assured that the left hand sides are identical except
for differences in symbols. The variables, b1, b2, b3, and b4 of the simul-
taneous equations for regression are identical with the variables,
A1, X2, X3, and X4 of the simultaneous equations for discriminants. The
only difference is at the right hand side. However, even this difference
will not affect the solution procedure once the correct quantities are
entered. This means that the same procedures may be used in discriminant
analysis and a search for potent discriminators as in regressin analysis
and a search for potent predictors-'with certain minor modifications.

PROCEDURES FOR SOLVING REGRESSIONS

OBTAINING THE SUMS OF SQUARES AND PRODUCTS

Since the development of a multiple regression or discriminant func-
tion demands the solution of simultaneous equations and since the
practicability of the method to be presented for finding potent variables
depends in part upon the method used for solving the simultaneous
equations, the particular modification of the abbreviated Doolittle
solution used at this station is given in Tables 1 and 2 (pages 58-61)
for a multiple regression with four independent variables, X 1, X 2 , X 3,
and X 4, and one dependent variable, Y, called X 5 here for convenience
and for relating these instructions to those for multiple correlation as
given in many statistical textbooks. The procedure may readily be
extended or reduced for the cases of more or fewer variables.

10
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Table 1 indicates the steps in obtaining and coding the sums of
squares of deviations and sums of products of deviations that are the
coefficients of the b-values in the four simultaneous equations. The
variable X6 (used for checking purposes) is the sum of the values of
the four possible predictor variables plus the dependent variable.

When the sums of squares and products are arranged as in Table 1,
it turns out that the sums of squares lie along the diagonal and that the
sums of products are symmetrically distributed about the diagonal,
that is E x1x3 = E x3x1 , x2x 5 = xx 2 , etc. Thus, it is possible
to effect some sizable savings in work by listing only one side of the
diagonal. This may lead to some confusion in operations that call for
the sum over columns of all the values in a particular row. However,
the confusion may be abated somewhat by adding the values from
right to left, remembering when one reaches the diagonal the reason
the remaining values were omitted from the row is that they have
already appeared in the column above the diagonal value.

The following definitions hold throughout this report: X is an observa-
tion; X is a mean value; x = X - X is a deviation; and C is a correction
factor to subtract from a sum of products or squares of observations,

E X,X,, in order to yield the desired sum of products or squares of
deviations, E xixj. From the foregoing definitions Table 1 should be
self explanatory to persons with a little experience in statistical analysis
except for the column of X, code, the row of X; code, and the check
values in the last column. To obtain the values in the check column,
X6, one must create for each and every set of values X1 , X 2, X 3, X 4,
and X 5 a sixth value, X 6 = X 1 + X 2 + X3 + X 4 + Xs. Thereafter
this value is treated as an additional variable. The primary check is
afforded in that each E XX 6 as calculated from the data and entered
in Table 1 is equal to >;j, X> X;, the sum over all the different values
of j(eolumns) of those E X ,X in the ith row of products of observations.
Remember that missing values in the ith row can be found in the jth
column, i = j for rows and columns that meet at the diagonal. Thus:

E XX 6 = EE XX [1]

and as an example, if i = 3,

EX ,x6  E 3X6 = E X3X, 3x5

+ EX 3X 4 + EX + EX 2X 3 + E X1 X 3 . [la]

The next check operation checks all three lines together as follows:

Ci 0 +Z X6 Z Z iZxXX, = X, Z X. [

11

[2]



ALABAMA AGRICULTURAL EXPERIMENT STATION

As an example, if i = 3,

C36 + Z x3x6

SC3 + x 3x,

S03+34+ 33 + C23 +013 + Zw 3 5 + Ex 3x 4  [2a]
+ 33 + Z XX3 3

= Z X 3X6 .

CODING THE SUMS OF SQUARES AND PRODUCTS

The sums of squares and products should be coded by powers of 10,
which is merely a matter of shifting decimal points with the object of
bringing the diagonal terms to values between 0.1 and 10.0 and other
terms to values close to this range. This procedure gives the advantage
of uniform number of decimal places in the use of the calculating
machines without losing significant numbers. Coding by dividing each
E xix; by / x / E x will also accomplish these same objectives,
bringing the diagonal terms to unity and other terms to values lying
between one and minus one (simple correlation coefficients or r values)
and will also facilitate calculation of partial correlation coefficients and
partial regression coefficients. However, coding by powers of 10 is
very much quicker and easier; partial coefficients are needed for only
a very few of all the multiple regressions solved; and when needed can
still be found fairly easily, even after coding by powers of 10. After
subtraction of the C,. term from E XX; to yield E xix1 , the coding
factors mi and m; are applied to yield the coded values of E xx; lying
near the range 0.1 to 10.0. These are designated as a1 ;. They are the
elements of the information matrix that will be used in the abbreviated
Doolittle solution proper.

The code values mi and m; are determined by the size of the E xix,
along the diagonal where E xix = x because i = j. The deter-
mination is made in the following manner: For each Ex2 choose that
even power of 10, which when multiplied by Ex2 will yield a value
between 0.1 and 10.0. Take the square root of this even power of 10
and designate it as mi. The coding factor for m; is the same as for m,
when i = j. Enter this value in the appropriate row (i) and in the
appropriate column (j) at the margins. The coding values are used as
multipliers for the E xi as explained in the stub for each row of a,,
values, Table 1. For example, if Ex = 51273.6, the even power of
10, which when multiplied by 51273.6 yields a value between 0.1 and

12
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10.0 is 10- 4 or 0.0001. The square root of this number = 10-
2 or 0.01;

thus, m3 = 0.01 in the Xi code and m3 = 0.01 in the X, code. This
type of coding is equivalent to coding the original X 3-values by multiplying
by the appropriate m,. In this example, equivalent results could be
obtained by multiplying each X3 by m3 or 0.01.

THE SOLUTION PROPER

Table 2 outlines the procedural steps of an abbreviated Doolittle
solution. The quantities ai; entered in the first 5 rows and columns of
Table 2 are the coded sums of squares and products of deviations as
calculated in Table 1. The symbols in all other cells are directions for
computing the values belonging in those cells. The h values in the
check column are, as indicated, the sums of the ai; values in that row,
remembering that values not in a row may be found in the column
turning up at the diagonal value.

The "forward" solution results in as many pairs of rows of values,
Ai and B.;, as there are variables; thus, in Table 2 there are five pairs
of rows. It is one of the labor-saving features of this solution that values
A and B can be calculated in pairs. This feature exists because any Bi;
is equal to the same A i divided by the leading A or A of that row;
hence the division may be made before the A ~ is cleared from the
machine without having to later re-enter the numbers in the machine.
There is also somewhat less rounding error introduced by this procedure
than in copying the number and later re-entering it in rounded form.
Since many of the A ~ values are negative, it should be pointed out
that this result can be identified by the string of nines appearing in
the add result dial of the calculator. The negative value desired is the
complement of this number (the number which when added to the
result causes all numbers, including the nines, to change to zeros). If
this complement is entered on the keyboard and the keyboard locked
so that the keys do not clear on depressing the add bar (or multiplying
by unity), then a single depression of the add bar (or accumulative
multiplication by one) will show all zeros in the result dial, verifying
the complement. A second depression (or accumulative multiplication)
will show the complement itself in the result dials at which time it
may be copied as the desired A, 1 and given its negative sign. Since it
is in the proper dial of the machine for division, it may now be divided
by the leading A ; of that row and the result recorded as the desired
Be;. As checks on accuracy it may be noted that every value of Ai; on
the diagonal must be positive; consequently every pair of values, Ai;
and B 1, must have the same sign.

13
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The cells of Table 2 show that all the A,. values, except those for
the first row, A11, must be computed by subtracting one or more prod-
ucts, Ai;B,i, from some a11. Both factors of any such product have the
same i subscript, because they belong to the same pair of lines. The j
subscript of B is the number of the column for which the particular
A ,i is being computed and the j subscript of A is the number of the
row for which the Ai; is being computed. The j subscript of A is also
the number of the column at the diagonal value of the row from which
the original a1 . was obtained.
Thus any A i, say Ai, ,, is given by

Ail = A,;,i = ai,;, - AiBi,, [3]

where i < i'. As an example, if A1 . = Ai ;, = A34

A 34 = a34 - A iB4, [3a]

= a3 4 - A 1 3 B14 - A 23B 24

where i = 1, 2. In computing values of A ; on the diagonal, the products,
A, B,, must come from values in the same column since the column
for which A i. is being computed and the column at the diagonal of
this row are the same column.

Except for rounding discrepancies, each of the products A1 ;B; may
be calculated as the product of the B11 corresponding to the A11 actually
used and the Ai corresponding to the B1 actually used. As examples:

A 23B24 = B23 A24 and A 34B3  = B34A3.

The pair nearer each other in size, disregarding sign, will yield the
result with less rounding error. This leads to a rule: Examine both ways
of calculating each product, A iBi;, and subtract the one that is obtained
by the A and B values nearer each other in magnitude disregarding sign.
The operations are carried forward in the machine with nothing being
entered on paper except the final results, Ai. and B1 ;. To find A3,,
for example, if working to 8 decimal places, a30 = g3 is entered with
decimal at 16th place followed by subtracting the products of A13B 10

(or B13A13) and A23B20 (or B23A20 ) each entered with 8 decimal places.
This manipulation can be done by use of the cumulative negative
multiplication procedure. Whether the values will actually be cumula-
tively subtracted or cumulatively added will be decided by considering
the signs of all processes and quantities and following the algebraic rules
for handling signs.

14
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As each pair of lines is completed, there is a check on arithmetic
accuracy-each

A,h = Ai0 + E A 1 and each B, = Bg + E B,,. [4]

The vacant cells of these rows are omitted in summing, not because of
symmetry, but because each A1 ; or B,; cell below the diagonal has the
value zero. For example:

A3,, = A3 A 34 + A +A 33. [4a]

As soon as all the pairs of lines Ai and B 1 (there is a pair for each
variable) have been computed, it is possible to evaluate the success
of the multiple regression in explaining variability (or of the discriminant
in discriminating). The residual sum of squares in Y not explained by
the independent variables Xi is the quantity A,g in the X5 = Y column.
A,, is the remainder from the original coded sum of squares of Y or gg,
after subtracting the sum of squares of deviations in Y accounted for
by the regression. This latter quantity, called the regression or reduction
sum of squares, is represented by the symbol f2 and is given by

S 2 = Z AB,, = A1 B, + A2gB 2 g + A3gB 3g + A 4gB42 , [5]

where A1 0B1 is the sum of squares due to X 1; A 20B 20 is the sum of
squares due to X2 independent of X 1; A3 B3 is the sum of squares
due to X3 independent of X, and X 2; and A 4gB 4g is the sum of squares due
to X4 independent of X1 , X 2, and X 3.

The coefficient of multiple determination R2, the proportion of the
sum of squares of deviations in Y accounted for by the regression, is
given by

2  2 Decoded E 2 [6]R - E=2  [6]

The coefficient of multiple regression R is the square root of this value.
If one's interest is in these measures only, then just this much of the
solution (the so called "forward" solution) is needed.

It is possible now to perform a "back" solution for the bi values
(regression coefficients) and also a "back" solution for the table of c 1

values, which are actually an inverse matrix of the matrix of ai; values.
Ordinarily one would not do both.

After the b values have been found (either directly as in column

15



ALABAMA AGRICULTURAL EXPERIMENT STATION

X, = Y Table 2, or by means of the c , bottom of Table 2), the regres-
sion equation can be written,

Y = Y + bixi,[7]

where Y is the predicted value of Y, i is the average observed value
of Y and xi is the deviation in X;, x2 = X - X. This equation can
be rewritten as

? = f7- Z bx, + b1X, + b2X 2 + b3X 3 + b4X 4 . [8]

It is also possible now to find the sum of squares due to regression in
another way,

S2= big, = bg, + b2 g + b3g3 + b4g4. [9]

Ordinarily the c matrix is calculated if one is interested in tests of
significance other than the R test or F test of total reduction due to
the several independent variables. In such a case b values would be
calculated from c values. If one desires the regression coefficients but
does not care to make any statistical tests other than R or F tests of
reduction due to regression, the simplest method of calculation is that
given in column X5 = Y. A check on these computations is afforded at
corresponding positions in the column X 6 = Check . The check:
bi + 1 = hib, thus b3 + 1 = h3 b. The back solutions start at the bottom

and work up, thus b4 is calculated before b3 and c44 is calculated before
either c33 or c34.

Customary tests of significance may be made without decoding;
treat all values as if they were derived from uncoded sums of squares
and products, in which case t and F will be the same as if decoded
values were used. In calculating 2, an estimated value of Y for a par-
ticular set of X values, and its confidence limits, it is probably best
to code the X values to be used by multiplying by the appropriate
power of 10, m;, then use the coded values of bi and ci;. The final results
can be very easily decoded by dividing them by nm,,, the Y code. It is
possible, of course, to first decode the b. and c,; values and then use
actual X and Y values. To decode a b value:

1 m
decoded b = b = b mi = b , thus [10]

m mY

db* = b3  _3  

[

m,,

16
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The superscript asterisk is used to denote a decoded value. To decode
a c value:

decoded c;i = c* = ciimim;, thus [11]

decoded c34 = c3 = 34m3m4. [lla]

To decode a sum of squares in Y as Z y2

decoded 2 = 2 = F . [12]

If it is also desired to calculate the various two-factor standard
partial correlation and regression coefficients, it is necessary to have
the c or inverse matrix of the matrix of correlation coefficients that
would have resulted from coding the sums of squares and products
of deviations by division of E xix; by V V x;. This matrix
may be easily had from the matrix at hand, since any element, c**,
of the matrix of correlation coefficients is given by

c* = cmVm; xi .. [13]

A specific example is

C1 i = C13mmm3 VZ V X3. [13a]

Some of the quantities that may be calculated and tested, using the c
values are summarized in a later section.

After decoding the b values, there is one more check,

E b1(E xix)= E x y, [14]

which merely says that the original simultaneous equations should be
satisfied if we substitute the solution results. Thus, remembering that
values missing from the ith row are in the column of that same number,
we find the check of X2 in Table 1 to be:

E x 2 y = b
4 

E x
2

x4 + b
3 

Ex 2
x3 + b 2 

E
x 2 

+ b1 E xx 2 . [14a]

DELETION OF A VARIABLE

After a regression has been completed including calculation of the
regression coefficients b and the c or inverse matrix, it is possible to
determine which independent variable is contributing least to the total
regression. This is done by determining for each variable the additional
sum of squares that it adds to the regression sum of squares over and
above the amount already attributable to the other independent vari-
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ables. This quantity can be called the sum of squares due to deleting
or adding a variable depending on viewpoint. It is a measure of the
variability in the dependent variable explained by the variable in
question after all the variability that can be explained by the other
variables is discounted. If expressed as a proportion of that variation
not explained by the other independent variables, it is the coefficient
of partial determination. It may be calculated as

S i.all others - [15]

which may be read as "the estimated reduction in sum of squares of
dependent variable Y due to independent variable X when all other
X's are held constant." This value may be decoded:

decoded ZE .all others a others .a others 2

The variable contributing least to the regression of course, is that
variable with the smallest sum of squares, Z . l others*

If a variable is deleted, the regression coefficients b change, as do
the elements of the c matrix. It is possible to recompute these elements,
but it is also possible to estimate them somewhat more rapidly by the
following formulas:

bi after deleting Xk = b - bk,[17]
Ckk

and

c5 ; after deleting Xk = CikCk18
Ckk

where the subscripts i, j, k refer to the tabled values existing before
deletion (not after). Remember that the table of c values is symmetrical
so that c; = c;.

If it should be desirable to drop, say X 2, then k = 2, and as examples:

b, after deleting X2 = b - c2 b2 [17a]
C 2 2

and

c34 after deleting X 2  c34 - c34 C2 3 2 4 . [8a]
C
2 2

C 2 2
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IDENTIFYING THE MOST POTENT VARIABLES
IN REGRESSION

SOME CONSIDERATIONS IN CHOOSING A METHOD

With the necessary calculating procedures explained, the primary
objective of describing a method for finding a set of potent independent
variables can be undertaken.

If there should be no more than 6 to 8 independent variables to be
examined, it would not be too illogical to work the regression with all
independent variables, find and discard the weakest, then work the
regression with the weakest omitted, identify and discard the second
weakest independent variable, and so on until omission of another
variable would significantly reduce the information obtained. This
system of dropping nonsignificant variables would result eventually in
a set of potent variables. These variables would not necessarily be
either the absolutely most potent set or the set that would be found
by the method described in this bulletin.

As mentioned before, the only sure way of finding the r absolutely
most potent variables out of n is to work all the Cr regressions having r
independent variables and then choose the best. Any systematic method
for finding the variable that is strongest, next strongest, etc., or weakest,
next weakest, etc., makes the assumption that all the r most potent
variables will be present in the list of r + 1 most potent variables.
This does not necessarily happen. Practical experience indicates that
sets decidedly better than those discovered by the procedure outlined
in this bulletin are rare.

The decision of whether to choose the strongest, next strongest, etc.,
or eliminate the weakest, next weakest, etc., depends primarily upon
the amount of work each will require, the usefulness of the intermediate
results, and the psychological attitude engendered by the process.

The process of choosing the strongest single variable and then the
strongest pair (including the strongest single), etc., has the desirable
characteristic that the variable selected as the strongest single variable
really is the strongest single variable. The work could be stopped
at this stage with this useful piece of information. However, if the study
can afford to introduce a second variable, then the best variable to
use with the first one chosen is the one that the proposed method will
yield. The process is continued for subsequent variables. The attitude
toward a process as straightforward as this should be good. On the
other hand, the process of eliminating the weakest variables must
proceed through the full discarding process before much information of
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value is obtained. Further, the most potent single variable might not
even be in the list of potent variables retained.

The amount of work involved in the solutions depends upon the
number of independent variables to be examined. If there are no more
than six or eight variables, with the likelihood that three, four, or five
may be accepted, there may be little difference in the two methods.
It is the experience of the authors that the number of independent
variables to be considered will not be 6 to 8, but 12 to 20, or even more,
and that the number of independent variables in the final regression
will often be no more than 3 or 4, hardly ever more than 5 or 6. The
reason for the large number of independent variables to be examined is
that from those variables actually measured additional variables are
created to account for possible curvilinearity and interaction. As an
example, consider a study of volume of tree product produced per acre
in which only three independent variables were measured, X1 = height,
X2 = age, and X, = number of trees per unit area. Since all three
variables might show the phenomenon of diminishing returns and since
age ,or X2 might have cubic effects as well as interactions with both
height and number of trees, it is apparent that the independent vari-
ables to be investigated are not three but nine in number X1, XI, X 2,
X2, X2, X3 , X3, X 2X1 , and X 2X 3., Such a study was actually made and
the number of independent variables after all such considerations was
12, Goggans and Schultz (10).

It is apparent, especially in a case in which 20 to 40 independent
variables are to be investigated with considerable likelihood that not
more than 6 will be retained, that the appropriate method is not that of
working the regression with all variables, deleting the weakest, and
reworking and deleting until only the few best variables remain. In this
situation the solution is much shorter to work all simple regressions,
thereby identifying the most potent single variable; then work all
regressions with two independent variables involving the variable
previously identified as most potent. This procedure identifies the most
potent pair of variables-subject to the condition that one of them
is the previously identified most potent single variable. Extending the
procedure involves working all the regressions with three independent
variables in which two of the variables are those two previously found
to be the most potent pair. This sequence results in finding the most
potent triplet of variables-subject, of course, to the condition that
two of these are the pair previously chosen of which one is the most
potent single variable.

The process described can be extended until all the independent
variables have been used and ordered. However, it is usually stopped
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when a satisfactorily large portion of the variability in Y has been
accounted for, or when additional variables do not account for signifi-
cant amounts of variability. For this purpose significance might be
set at a level of chance, say 0.10, rather than the more conventional
levels of 0.05 and 0.01. If there are n independent variables with r
finally selected, there are n simple regressions to be evaluated, n - 1
regressions with two independent variables, n - 2 regressions with
three independent variables and so on to n - (r - 1) regressions with
r independent variables.

In contrast with the method of eliminating weakest variables, which
requires that the inverse or c matrix be computed so that the weakest
variable can be identified, the only information needed about a set of
regressions in order to decide which is the most potent is ?, the
reduction in E y2 due to regression.

When solving for the variables in order of most potent, next most
potent, etc., it is only necessary to carry the abbreviated Doolittle
solutions through that part of the solution designated as the "forward"
solution, or down to the second horizontal ruling of Table 2. At this
stage the reduction due to regression may be calculated by [5] as

S = Aigig.

After the potent set is chosen, it may be desirable to make various
tests of significance and perhaps find confidence limits, but on the
chosen set only.

The factors that make feasible or practicable such a search as here
described are:

(1) The end point can be recognized; either a satisfactorily large
portion of the variability in Y is explained or further variables do not
explain a significant amount of the variability in Y.

(2) The number of regressions with r independent variables to be
solved is n - (r - 1) rather than n!/r! (n - r)!.

(3) The matrices of simultaneous equations may be solved by the
abbreviated Doolittle method and need not be carried farther than
the "forward" part of the solution-followed, of course, by calculating
the sum of squares in Y attributable to the regression, [5].

(4) It seems from some experience that the number of potent vari-
ables will usually not exceed five or six. Thus, the heavy computational
load of evaluating regressions with more than five or six independent
variables does not seem likely to exist.

(5) Only sums of squares, sums of products involving Y, and sums
of products between those independent variables finally selected as
potent will have to be computed.
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(6) Since it is known from the start that all simple regressions will
be examined followed by examination of all two-variable regressions
involving some most potent single variable, etc., it is possible to organize
and systematize the work to save duplication and, further, to use some
mechanical tricks to reduce computations and copying.

GENERAL PROCEDURE

To Find the Most Potent Single Variable

For purposes of illustration assume that there are some definite
number of independent variables, say 10, rather than the more general
case of n variables. Prepare the outline of a table, such as Table 1,
but extended to the case of 10 independent variables, Table 3 (page 62).
In this case X,, = Y and X 1 2 = X 1 + X 2 + ... + X 10 + Y. Calculate
only E Xi, 1X, E x2 in the cells of the diagonal, E xiy in column X 11 =
Y, and the single cell X 11 X 12 in the X 12 or check column-see cells indi-
cated by (1), Table 3. The E X, may be checked by EX1 = 2 , EX;.
The .work of column X11, may be checked by [1], [la], [2], and [2a]
as follows:

SX,,X12 = E X X,

C 1 1 , 12 + E xXlx 1 2 = E C1 1 , x
11
X,

i i

= E XlX12,

remembering to add from right to left and to turn up the column at
the diagonal, which in this case is the first value added. The quantities
in the diagonal cells (sums of squares) will have to be checked by
calculating them a second time, but all future entries made in the table,
as well as those now entered, will be susceptible to being checked by
the check column before being used (or used again in the case of values
now entered). The coding values, mi and m,, may now be determined
from the diagonal entries, but may also be postponed until a later step.

The necessary sums of squares and products are now available to
compute the reduction in E y2 due to each of the simple regressions.
This computation is better if done from uncoded values, since it is
just as easy and saves the coding and decoding process. The reduction
sum of squares for the ith variable may be calculated as

y x ) [19_lE~zxj
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and if i = 3

Z i y ( 2[19a]

The variable with the greatest Z y2 is the most potent variable
and is so designated. The computation time is about one minute for
each E 2 computed.

To Find the Second Most Potent Variable

If, for example, it turns out that the variable X6 is the most potent
variable, the next step is to complete in Table 3 all cells involving
X6 , both in the row for X, and in the column for X6 . See values indicated
by (2). This row (column) of calculations may be checked by use of
[1] and [2].

E
X 6 X

1 2 
= E E X 6 X

and

C 6 , 1 2 + E X6X12 = 6 + 6 xj = E 6 X 1 2

"

i i

Coding values, m1 and m;, should now be established from the
diagonal values. Other aii values are then calculated for cells indicated
as either (1) or (2) by the relationship,

ai = E xixm m. [20]

If the code fairly consistently yields values in a particular row (column)
that are either greater than 10.0 or less than 0.1, the mi and m; of this
row and column may be changed. Any change should be to the square
root of some other even power of 10.

The a1 . values in cells indicated by (1) and (2) are sufficient to solve
every multiple regression of two independent variables when one of
the variables is the singly most potent variable, X6. The regressions
are solved by transferring the a1 ; to information matrices and carrying
out the abbreviated Doolittle solution through the "forward" solution,
as described in Table 2, and then calculating the reduction due to
regression, [5]:

Z 2 = A11B16 + A26B2,.
This is done for each pair of independent variables that includes X6.
The largest reduction signifies the most potent pair, and the variable
other than the most potent is designated as next most potent-subject
to the definition of this report which allows that the chosen pair may
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not be the absolutely most potent pair. These solutions can be com-
pleted in 6 to 8 minutes by clerks who are sufficiently familiar with the
process that they have no uncertainty about the next step.

To Find the Third Most Potent Variable

To continue the example, if it turns out that the variables X" and X3
are the most potent pair, X3 is designated as the second most potent
variable. The next step is to complete in Table 3 all cells involving X3.
See values indicated by (3). Accuracy may be checked by use of the
check column. After coding, the necessary values of ai. are available
to solve every multiple regression of three independent variables when
two of the variables are the most potent pair, X6 and X,

Construction of a Mask to Aid in Computations

It is still necessary to transfer the appropriate a1 to information
matrices and perform abbreviated Doolittle solutions through the
"forward" solution. In being systematic about the work, however, it
seems' logical to let the most potent variable become Xi and the second
chosen variable be XI, where the "prime" indicates that the subscript
of X may not be the original subscript. Thus, it turns out that each
of the eight three-variable regressions, which must be solved, has
certain parts that are identical. Table 4 (page 63) indicates by identify-
ing symbols those portions of the solutions that are the same in every
solution and indicates by leaders (. .. ) those values that vary as the
third variable varies.

The proportion of the solution that is constant is not large with just
two out of three independent variables constant, but increases as the
process is extended to solving several regressions of four, five, or six
independent variables with all but one constant.

Since the only information that will ever be wanted from most of
these regressions is E y2 (the reduction in sum of squares of deviations
in Y that may be attributed to the regression), any device to save
reworking or even recopying the constant part of these solutions would
be worthwhile. The device used at this laboratory is a mask consisting
of the constant values with the columns and cells in which new values
are to be entered or computed cut out as shown by dotted lines in
Table 4. To work a regression, the mask is laid over a fresh sheet of
paper, values of ai. entered according to the variable being evaluated
as the third predictor, the necessary remaining calculations made, and
the reduction in sum of squares calculated, [5]:

Z 2 A19B1 + A2gB2g + A3gB3g.
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The most potent trio of variables, of course, is the one that has the
largest sum of squares attributable to regression, or the largest A3QB30.
Since two of these three variables are already designated as most
potent and second most potent, the third is designated as third most
potent. It must be remembered that this list might not include all (or
indeed even any) of the three absolutely most potent variables, though
experience indicates this is unlikely, or if it did happen, the difference
in E 2 by which the absolutely most potent variables would displace
these variables would not be large.

The values appearing on the mask for aiding in the search for the
most powerful trio of variables are copied directly from the regression
of the most potent pair of variables. (The sturdiness of the mask is
increased if the single cell cut out of the Y column, the cell for a34 = g
of Table 4, is covered front and back with Scotch tape to provide a
"window.") Each regression of three variables requires 8 to 10 minutes
to compute, assuming that all necessary values in Table 3 have been
computed and are ready for use.

To Find the Fourth and Other Most Potent Variables

If the most potent trio of variables should be X 6, X3 , and X7 , then
to proceed further, it will be necessary to complete in Table 3 all cells
involving X7 , labeled (4) in Table 3, and solve all regressions of Y on
four independent variables in which X 6, X 3, and X, are present. The
mask may be prepared from the most potent trio of variables. Solution
of each regression will require from 12 to 15 minutes computational
time. The process can be extended indefinitely. Regressions with five
independent variables require from 20 to 25 minutes computational
time after the mask has been prepared and the necessary values entered
in Table 3.

TESTING SIGNIFICANCE OF THE VARIABLES

The question of when to stop is related to how well the independent
variables account for the variation in the dependent variable. In many
fields of work, it is quite probable that if the investigator could find
one or two variables that would account for 95 per cent of the variability
in Y he would be quite willing to stop. This would be a satisfactorily
large amount of variation explained by satisfactorily few variables.
Usually the investigator is not this fortunate but must continue until
all the potent variables are identified, that is, until further variables
added to the potent list do not account for significant portions of the
variability. The significance of the variability accounted for by ad-
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ditional variables can be tested by a series of F tests, as in Table 5
(page 64). Significant variables may be regarded as potent variables. 3

USING REGRESSION PROCEDURES IN
DISCRIMINANT ANALYSIS

If the problem is one of finding a discriminant function rather than a
multiple regression, there will be certain changes, but the procedures are
essentially the same. First the data will be divided into the two groups
on the basis of the discrete variable Y. Again assuming a case in which
four independent variables were measured, one will have to calculate
the triangular array of E x,x as in Table 1 for each of the groups,
I and II, which are to be discriminated. If a check column is to be used,
there is a check column for each group based on adding together the 4
X's (but no Y). After computing the E xi; for both groups, corre-
sponding E xiz; are added together and summarized in a table similar
to Table 1. Instead of a column of zxiy in this table, there is a column
listing the mean differences, d, between groups I and II for the several
X-variables:

di=X ,1  - X .rI.[21]

Call this column d in discriminant analysis. The first difference is listed
in line 1, d1 = X 1, - X 1 ,i, the second in line 2, d2 = X2,I - 2 ,II,
and so on, remembering to always take the differences in the same
direction. There is no value of d in discriminant analysis corresponding
to E y2 or go, of regression analysis. After the E xix; have been added
together and summarized with the d-values, they may be coded by
powers of 10 to ai; values, after which the operations of Table 2, the
abbreviated Doolittle solution, are in order. The coded values of di
serve exactly as the coded values of E xy in Table 2 and are given
the same symbol, gi, as in regression. The computations are exactly
the same as in regression. The discussion about "forward" and "back"
solutions, and decoding still holds. Since there is no value corresponding
to E y2 or g, of regression analysis, there is no A, to be calculated in
discriminant analysis.

The coefficients of Xi in the discriminant function are calculated
in identically the same manner as the b's of multiple regression, though
they are usually designated X or L rather than b, and the quantity

3 While the authors know of no formal investigations on the matter, there is
some intuitive feeling that the significance level here should not be too stringent, say
0.10.
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maximized is the average difference between the Z-values of the two
groups, I and II, rather than a sum of squares due to regression, 22

The difference can be computed as

D = Z, - Z1I [22]

but is more usually calculated in the same manner as a sum of squares
due to regression, after either [5] or [9]. If after [5],

D = ABi [23]

or if after [9],

D = X Sg. [24]

After the X-values have been found (by either of the methods described
for b-values), the discriminant function may be written as

Z = 1X 1, + X2X 2 + X3X3 + X4X4 . [25]

where either the XA must be decoded or the Xi must be coded.

In the same manner as for a regression, the significance of the dis-
criminant may be tested by means of an F-test. The sum of squares
attributable to the independent variables is given by

SS due to variables = nn D 2 ,  [26]
nI + nil

where n1 and niI are the numbers of sets of observations in groups
I and II, respectively. D is itself the sum of squares for residual and
has degrees of freedom, n1 + n11i - (1 + the number of independent
variables), as indicated in the analysis of variance tabulated following.

Source of Degrees of freedom Sum of Mean squares
variation squares

Variables No. of variables nIn D2ninID2
nr + nii (ni + n 1 1 )(no. of var.)

Residual ni + nii - 1 -no. D D
of variables

ni + nii - 1 - no. of var.

The residual is used for testing variables, and a significant F-value
for variables indicates a significant discriminant.
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The discussion of considerations in choosing a method for determining
potent variables holds as certainly for discriminants as for regression.

If the problem with 10 independent variables should be one of dis-
criminant analysis rather than multiple regression, there must be a
table like Table 3 (omitting the a2;) for each of the two groups to be
discriminated. The corresponding E xix; from groups I and II are
added together and listed in a third table. The di = X9 - X are

also listed in this third table in the column for X 11 = d, same column
as X, = Y in regression. As with E y in simple regression, the quanti-
ties Di for the case of single variable discriminants are best calculated
without coding. Thus, similarly to [19] and [19a]

Di d

SXi

and if i = 3

D = D3 3

The variable yielding the largest D is the most potent single variable
to use as a discriminator. If the most potent variable in the discriminant
analysis of the problem with 10 independent variables should turn out
to be X6, it will be necessary as in regression to complete through

E xix; all the cells involving X6. This must be done for both groups,
I and II, adding corresponding E xix; together in the third table
and then coding to ai;. The necessary values of a2; (coded E xx;)
are now available to solve every discriminant function of two inde-
pendent variables when one of the variables is the singly most potent
variable, X6 . The pertinent a; are removed to matrices as in Table 2
and the discriminants are solved through the "forward" solution and
the evaluation of D by means of [23]

D = AIgBI + A2gB 2 .

The largest D signifies the most potent pair of variables to be used in
a discriminant function. The resulting function [25] is

Z = x1x1 + X2X2 .

If, as in the regression discussion, it should turn out that the variables
X6 and X 3 are the most potent pair, then X 3 is designated as the second
most potent variable. To look for the third most potent variable, all
cells in Table 3 involving X3 (see values in Table 3 indicated by "3")
must be completed for both groups. After combining and coding, the
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ai; can be removed to individual matrices for solution just as in regres-
sion. A mask is just as valuable here as in regression analysis.

The search for potent variables may continue to be extended in
discriminants just as in regressions, except for the necessary modifi-
cations in first finding the E xix; of two separate groups and using
the average group differences, di, of the Xi rather than sums of products,

xiy.
The problem of when to stop a search for potent variables in dis-

crimination is subject to the same considerations as in regression. The
significance of additional variables can be tested by a series of F-tests
as illustrated in Table 5 for regression, although the complexity of the
testing process is increased because the sums of squares do not exist
as such but must be computed from the values of D. The D calculated
with any number of variables may be regarded as the residual sum of
squares remaining after the sum of squares due to those variables has
been subtracted from the total sum of squares. The sum of squares
due to the variables is not known, but may be computed from [26] as

SS due to variables = -nIn D2 ,

ni + nIi

where n1 and nil are the numbers of sets of observations in the two
groups, I and II, and D = Ei A ~,Bi. The total sum of squares is
given by

Total SS = nnI D2 + D. [27]
nI + ni

There is still a difficulty in that the basic variable, D = ZI - Zi,
changes as variables are added to or deleted from the discriminant so
that the total sum of squares with a two-variable discriminant is, for
example, different from the total sum of squares with a three-variable
discriminant. However, since the F-ratio of the mean square for vari-
ables to the mean square for residual is valid for each discriminant, the
mean squares may all be made comparable to one another by applying
the necessary factors to bring every total sum of squares (and its com-
ponent parts) to some constant total sum of squares. Since the proposed
analysis tests a single variable first, then a second variable, a third,
and so on, it is proposed that the total sum of squares for the single
most potent variable be accepted as the constant total sum of squares
to which the total sums of squares of other discriminants are to be made
equal. In most cases the only sum of squares of interest from the dis-
criminant with r variables is the sum of squares due to the r variables.
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This may be adjusted to equal the sum of squares of the single most
potent variable as follows:

Adj. SS, r variables - nn 2 Total SS, 1 variable 28
n D + n " Total SS, r variablesL2

nn" D2 ni + ni

n+ niI

where D1 and Dr are the largest D's for 1 and r variables, respectively.
Significance of additional variables in discriminant analysis is tested
in the same manner as for regression analysis in Table 5. The entries
in the first three lines of the sum of squares column of the table resembl-
ing Table 5 are: line (2) = the sum of squares due to the most potent
variable = D1 nInI/(n1 + nz), line (3) = the sum of squares among
Z-values of the same group = D1, and line (1) = the Total sum of
squares = (2) + (3). Lines (4) and (7) are the sums of squares due
to two and three most potent variables, respectively, calculated and
adjusted to the total sum of squares of the most potent single variable
as in [28]. Sums of squares for all other lines are calculated as indicated
in Table 5.

NUMERICAL EXAMPLES

Because members of the group to whom this account is directed often
feel a little uncertain as to whether their applications of symbolic
representations are correctly made, worked numerical examples of
both regression and discriminant analysis are added against which they
may check themselves.

NUMERICAL EXAMPLE OF REGRESSION

The data for the regression example, set forth in Table 6 (page 65),
consist of 40 sets of observations on one-tenth acre plots of planted
longleaf pines. The dependent variable, Y, is the average height in feet
of dominant and codominant trees. The independent variables or
predictors, X;, are defined as follows:

X1 = silt plus clay content of topsoil in per cent,
X2 = imbibitional water value of the most impervious soil horizon,
X3 = silt plus clay content of B horizon in per cent, and
X4 = age of planting in years.
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The variables created to allow for curvilinearity and interaction of
effects are respectively,

X, = X' = (age) 2

and

X 6 = X 1X 4 = (silt + clay of topsoil) (age).

As a matter of record, the original analysis studied 19 predictor vari-
ables, but for purposes of illustration only 6 are included here. The
results of the study have been reported by Goggans and Schultz (10).

Finding the Most Potent Single Variable

Table 7 (page 66) is prepared in the manner of Table 3, filling in
first the sums and means of the X's including X, for the check
column, the quantities in the diagonal cells, the values in the column

X, = Y, and the values in the single cell X7 X 8 of the check column.
Note the checks on computation,

18,231.8 = 1,139.2 + 9,190.6 +- .. + 820.8.

Also by [1] and [la]

550,444.53 = 34,171.52 + 279,200.63 + ... + 24,070.97

and by [2] and [2a]

519,241.66 + 31,202.87

= 32,444.42 + 261,748.29 + .... +- 23,376.38

+ 1,727.10 + 17,452.34 + . - 694.59

= 550,444.53.

Values in diagonal cells must be checked by recomputing.

The sums of squares due to regression when regarding each variable
as a simple predictor are calculated by [19] and [19a]

which for X3 is

2 x3y) 2 
_(489.75)2

Ex3 5,522.85
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The reductions for the six variables are listed in order of decreasing
magnitude:

Z A due to age, X4, = 1,200.53,

Z ~ due to (age)2 , Xs, =1,147.85,

S~) due to (age) (silt + clay of topsoil), X 6, =641.79,

S2 due to silt + clay of topsoil, X1, = 204.24,

Z ~ due to silt + clay of B horizon, X3 , = 43.43,

and.

Z A due to imbibitional water value of the most impervious soil
horizon, X2, = 0.39.

Note that no quantities have been coded in these computations. The
greatest reduction is 1,200.53 due to X, thus, X4 or age is the most
potent single predictor of height. The significance of this reduction
is tested in the first three lines of Table 8 (page 67), which is prepared
in the' manner of Table 5. F = 86.62 with 1 and 38 degrees of freedom
occurs in not more than 0.001 of cases due to chance; hence, the effect
of age on height is to be regarded as very highly significant.

Since it has turned out that X4, or age, is the most potent single
variable, it is necessary to complete Table 7 with regard to column X4
and row X4. As computational checks, [1] and [la]

211,216.30 = 12,949.1 + 107,160.4 -+- 

+ 4,985 + 15,579.0 + ± ""+ 9,190.6

and, [2] and [2a]

199,182.42 + 12,033.88 = 12,445.8 + 100,407.3 + ... + 8,967.2

± 503.3 + 6,753.1 + .-. + 223.4

= 211,216.30

Coding

Before evaluating the several regressions with two independent
variables, the E xx; should be coded to az1 . As an example of coding

(Z x)(10 4) = (5,552.85)(0.000,1) = 0.552,285,

a value between 0.1 and 10.0, so the coding factor for X3 is

\/0.000,1 = 0.01 = 10-2.
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Enter this value as m3 for both X; code and Xi code factors for X 3.
As another example

( x )x(10-6) = (474,585.41)(0.000,001) = 0.474,585,41,

a value between 0.1 and 10.0, so code for X6 is

0.000,001 = 0.001 = 10- 3.

Enter this value as m6 for both the Xi and X; code of X6. Other code
values are computed similarly with the exception now noted. If the X7
code is chosen by the above directions, the X 7 code equals the Y code
which equals 0.01 and

a, 7 = g, = 0.069,459,

a27 = 92 = -0.014,96,

and

a37 = 93 = 0.048,975,

which are all values lying on the low side of the recommended range
of 0.1 to 10.0, ignoring signs. It will probably increase agreement
between check column and the terms, which should check with the
check column, to use 0.1 rather than 0.01 for the X 7 = Y code. This
change in coding is introduced and will be used. The diagonal value
and one other value exceed 10.0. This result is preferable to values
beginning 0.0.

Each ai. is computed from its corresponding xix1 by [20].

ai = (E xx;)(i code)(j code).

As examples:

a,4 = (Z xlx 4)(X, code)(X 4 code) = (223.4)(0.01)(0.1) = 0.223,4,

a44 = (E )(X4 code)(X4 code) = (211)(0.1)2 = 2.11.

Other values of aij are computed similarly and entered in Table 7.

Finding other Potent Variables after the Most Potent

The quantities, as. or coded E x;, necessary for evaluating the
five regressions of height on two independent factors when one of the
independent factors is age are now available. As an example, consider
X 4, age, and X,, silt plus clay content of topsoil; transfer the ai. in-
volving Xi, X4, and Y to a table of the same form as Table 2; and
perform the "forward" part of the solution. This manipulation is shown
in Table 9 (page 68).
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The values in the first three rows of the first three coluns of Table 9
are a4 values entered from Table 7. The "primes" are reminders that
the row and column subscripts of X's in Table 9 may not be the original
subscripts of Tables 6 and 7. The first three values in the check column
are the sums of the quantities in the row involved, and are so obtained.
Thus, the value at row X2 of check column is given by

1.154,230,00 = 0.694,590,00 + 0.236,240,00 + 0.223,400,00.

All values in A1 are a1; values copied from row XI. All values in B 1

are corresponding A,1j values divided by the leading A=A,,; thus,

B13 A1, 5.033,000,00
Al -2.110,000,00 25

and

B14 = A 14 - 7.366,400,00 = 3.49118483.
A21 -42.110,000,00

The computational check in A1 is

7.366,400,00 = 5.033,000,00 + 0.223,400,00 + 2.110,000,00

and in B1 is

3.491,184,83 = 2.385,308,06 + 0.105,876,78 + 1.0.

These results should agree within rounding errors.
Following the guide provided in [3], [3a], and Table 2,

A22 = 0.236,240,00 - (0.223,400,00)(0.105,876,78) = 0.212,587,13.

This value divided by the leading A, itself, is equal to 1.0. Now,

A 23 = 0.694,590,00 - (0.223,400100)(2-385y308106) 0.161,712,18

is entered in the table and is divided by the leading A or A21, 0.212, 587,13,
before removing from the machine; that is,

B 3 =0.161,712,18 -0.760)686,59.
2 -0.1 58 13Remember that the product, (0.223,400,00) (2.385,308,06), which is

subtracted from 0.694,590,00 could also have been obtained from the
product (0.105,876,78) (5.033,000,00) , but the rounding error is smaller
on the average when the pair more nearly equal in absolute value is
chosen. Further,

A24 = 1.154,230,00 - (0.223)400,00) (3.491,184,83)= 0.374,299,31,

34



DETERMINING POTENT INDEPENDENT VARIABLES

and

B
2 4 - A

2 4 , before clearingmachine = 1.760,686,59.
0.212,587,13

Checks:

0.374,299,31 = 0.161,712,18 + 0.212,587,13

and

1.760,686,59 = 0.760,686,59 + 1.0.

These results should agree within rounding errors.
The sum of squares due to regression is given by [5]:

Z 2= Z A,,B .

This calculation is indicated under Table 9 and the result is decoded
there by dividing by the square of the Y code. Note that decoded
A,1 B 0, = 12.005,255,47(1/0.1)2 = 1200.525,547, the sum of squares
due to X1 as calculated by [19].

Similar solutions must be made for the four other two-factor regres-
sions involving X4 or age. The results of all five solutions are given
in Table 10 (page 69) where it may be observed that the greatest
E 2 , reduction due to regression, is that due to X' and X', which are
equal to X 4 and X 2, respectively, or age and imbibitional water value
of the most impervious soil horizon. Thus, it is concluded that the second
most potent predictor-subject to the condition that one of the pre-
dictors is X 4 or age-is X 2 or imbibitional water value of the most
impervious soil horizon. The significance of this result may be tested
by adding three more lines to Table 8. The sum of squares due to
imbibitional water value independent of the most potent variable, age,
is the difference in sums of squares for age plus imbibitional water
value and age alone; that is,

1241.49 - 1,200.53 = 40.96

with 1 degree of freedom. The probability of F = 3.12 with 1 and 37
degrees of freedom due to chance alone is less than 0.1. At the 10 per
cent significance level, it may be concluded that the height that young
longleaf pine trees attain is related to the imbibitional water value
of the most impervious soil horizon.

At this stage one could compute on the worksheet for X1 = X4
and X2 = X 2 the partial regression coefficients, b2 = bY2,1. and b1 = by .2,
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for imbibitional water and age, respectively, to verify that their signs
and size are reasonable. This computation is not necessary and is not
done in this example.

Since X 2 is the second most potent variable, it is necessary to complete
Table 7 with respect to column X 2 and row X 2 and then to solve the
four regressions of Y on three independent variables when two of them
are X4, or age, and X2, or imbibitional water. The usual checks [1],
[la], [2], and [2a] are made on the accuracy of entries in Table 7. The
new entries are coded to a2; by the existing coding factors.

The mask to reduce the duplication and copy work of solving several
multiple regressions of three independent variables when two of the
independent variables are always the same may be copied from the
solution of the multiple regression on the two independent variables
chosen to be constant. The two constant variables are the two most
potent ones or, in this study, X1 = X 4, age, and X = X 2, imbibitional
water value of most impervious horizon. The solution when Xi = X4
and X2 = X2 has not been shown, but is of the same form as Table 9.
The columns for Xf = X 4 and XI = X2 are copied from their solution

table into columns X/' = X 4 and X' = X 2 of Table 11 (page 69),
where the double "primes" indicate possible further changes in sub-
scripts. The next column is left open for X3' = ?; and X3 = Y of Table 9
is copied into X4' = Y of Table 11. The check column, X5' or the check
sum which includes the values entered in X3', is different for each
variable and is also left open. Table 11 represents the mask to be used
for these variables. The dotted lines show how the mask would be cut
out to allow several different X, to be evaluated as Xi'.

To solve the regression of height on Xi' = X 4, X2' = X 2, and XI' =
X1, place the mask on a fresh sheet of paper, copy in the needed values
of az;, and solve. The final results will appear as in Table 12 (page 70).
The dotted line divides the portion on the mask from that copied
directly to the new sheet from Table 7 and from that which must be
worked out for a particular solution.

The first four values in the check column of Table 12 are obtained
by adding quantities in the row in which the value is to be entered;
that is, 5.438,860,00 = -0.149,600,00 + 0.535,760,00 + 5.745,700,00 -

0.693,000,00, etc. Line A1; is line X' copied. Line B1? is line A1; divided
by the leading A of that line, A11 ; thus,

0.223,400,000.105,876,78 = 2.110,000,00

A 21, of check column is given by [3] and [3a]

5.438,860,00 - (-0.693,000,00)(3.162,748,82) = 7.630,644,93
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which is divided by 5.518,093,84 before clearing machine to yield
B2 h whose value is 1.382,840,73. Remember that (-0.693,000,00)
(3.162,748,82) was chosen rather than (-0.328,436,02)(6.673,400,00)
because the absolute magnitudes of factors in the first product are
nearer each other in size. Further,

A3 3 = 0.236,240,00 - (0.223,400,00)(0.105,876,78)

- (0.609,132,61)(0.110,388,23) = 0.145,346,06

Computational checks are available in that each value in the check
column should be the same (within rounding) as the sum of the other
quantities in the same line, [4] and [4a]. In the lines for A . and B ;,
missing entries are, zero so that there is no need to turn up the column
at the diagonal; that is,

6.673,400,00 = 5.033,000,00 + 0.223,400,00

- 0.692,000,00 + 2.110,000,00

and

1.382,840,73 = 0.272,452,50 + 0.110,388,23 + 1.0.

When working to eight decimal places, as in this example, rounding
errors preventing checking in the seventh place may occur if a diagonal
value of A . becomes less in absolute value than 0.010,000,00.

The results of the four regressions with three independent variables
are summarized in Table 13 (page 71). Even the trio of independent
variables with the largest regression sum of squares does not add a
significant amount to the reduction in sum of squares of Y attributable
to regression. (See Table 8.) It is probably safe to conclude at this
stage that only age and imbibitional water value of the most impervious
soil horizon are potent variables.

Attention is called to the fact that in Table 8 the sum of squares,
"reduction due to age" which equals 1,200.53, is the same as

AlBg(±) = (5.033,000,00)(2.385,308,06)01 = 1,200.526

of Table 12; and the sum of squares, "reduction due to imbibitional
water value independent of age" which equals 40.96 of Table 8, is
the same as

A2gB2 ,j = (1.503,418,48)(0.272,452,50)01 = 40.961

of Table 12, both of which are found on the mask. The sum of squares,
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"reduction due to (age) 2 independent of the others," is equal to 6.53
and the "residual" sum of squares after all the variables are accounted
for is 479.08. These are calculated by A3oB3,(1/m 2)2 and by A 40(1/my) 2,
respectively, of a table like Table 12 but including (age) 2 as the third
independent variable rather than "silt plus clay content of topsoil."

The results of this analysis fall into a pattern that seems to be quite
common; that is, there are only one, two, or at most a few variables
that are sufficiently strongly related to the dependent variable to
be useful as predictors. Although not necessary, it is usual that as new
variables are added to the list in order of potency, as assessed by the
method described above, later-added variables contribute smaller sums
of squares to regression and are of less significance. This is because of
occasional interrelationships among the variables such that two or
three variables jointly contribute sizably to the sums of squares of
regression with very small increments from any one or two of the
variables used without completing the set. For this reason it may be
desirable to ascertain that two successive most potent variables are
both nonsignificant before abandoning the search.

If one should wish to know whether the fourth most potent variable
in this study is significant, it will be necessary to identify and test
this variable by extending the process already described. Fill in the
missing values in row and column X 4, solve the three regressions of Y
on four independent variables when three of them are X4, X 2, and Xs,
and test the one with the greatest y2 by means of three more lines in
Table 8. For those who are curious, silt plus clay content of B horizon
is the next most potent variable. However, the total sum of squares due
to regression of these four variables is 1251.29, which is only 3.27 more
than the reduction due to three variables, and actually less than the
mean square of residual. It is concluded that, of this list of six in-
dependent variables, only two have genuine worth as predictors of
height of dominant trees in young longleaf pine plantations. These
variables are age and imbibitional water value of the most impervious
soil horizon.

The solution for these particular two independent variables has not
been shown as such. However, it has been reproduced on the mask
portions of Tables 11 and 12. From these values, using Table 2 as a
guide, it can be determined that

b = b2 = 0.272,452,50
and

b' = b4= 2.385,308,06 - (0.272,452,50)(-0.328,436,02)

= 2.474,791,27,
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hence, using [10],

b2* = (0.272,452,50) ( - 0.272,5

and

b = (2.474,791,27) (01 = 2.475.

From the foregoing results, the means of Tables 6 or 7 and equations
[7] and [8], the regression equation,

Y = Y + E bix = Y - E bX + blX, + b2X 2

is found to be

V = 28.48 - (2.475)(10.92) - (0.272,5)(5.88) ± 2.475X 4 + 0.272,5X 2.

Hence,

= -0.15 + (2.475)(age) + (0.272,5)(imbibitional water value).

Note as checks on computation that every B, in Table 12 agreed
with its Aii in sign and that all values on the diagonal of the solution
were positive. These conditions must always be true.

NUMERICAL EXAMPLE OF A DISCRIMINANT

The data for illustrating the discriminant function, presented in
Table 14 (page 71), are taken from Goulden (11), page 352, who
abstracted them from the study by Cox and Martin (3) to determine
a discriminant function for differentiating soils with and without
Azotobacter. The sums of squares and products of deviations for each
group are set forth in the upper part of Table 15 (page 72) and then
added together in the lower part of the table. This is just one of several
ways these sums can be obtained since any procedure yielding the
sums of squares and products "Within Groups" would give the same
results.

The differences, di, between the average values of the two groups
for the several variables, Xi, are calculated by [21]

and listed in a column, X4 = d, of the lower part of Table 15. This
column takes the place of the column X = Y of Table 1, in which the
E xiy values of regression are recorded. The values in the lower part
of Table 15 are coded by powers of 10 to the quantities a 1 , which are
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then removed to Table 16 where the abbreviated Doolittle solution
is performed, including the back solution for the cj values and calcula-
tion of the discriminant coefficients, A1.

The upper part of Table 15 should not require much explanation.
The sums of squares and products of the possible discriminating variables
are obtained by the usual processes. The column of the check sum is
used in the same way as illustrated for regression in Table 1. Thus
for example: in Group II, using [1], [la],[2], and [2a] to check X2:

64,677.8 = 20.928 + 37,979 + 5,770.8

and also

61,189.7333 + 3,488.0667

_ -186.6667 + 3,632.0000 + 42.7333

- 5,728.0667 + 34,347.0000 + 21,114.6667

64,677.8000

In the lower part of Table 15, by [21]

and, for example,

d2 = X 2 1, - 221 = 87.8400 - 35.6667=52.1733.

The powers of 10 for coding factors are chosen as the square roots of
the even powers of 10 that reduce the diagonal values of E xix; to
values between 0.1 and 10.0 and are written in as Xi code and X;
code. For example,

(0.0001) (E x2 x2 ) - (0.0001) (88,897.3600) =8.889,736,00,

a value between 0.1 and 10.0; so,

Xi code for X 2 =-VO.0001 = 0.01.

and since the Xi code is equal to the X ; code when i

X, code forX 2 = 0.01.

The ai values in the lower part of Table 15 are obtained by [20]
from the E xix; values by multiplying each E xix 1 by the appropriate
code factors. For example,

a13 = Ex~x3(X 1 code) (X3 code)

- (148.2403)(0-1)(0-01) - 0.148,240,30.
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After transferring the a.. to Table 16 (page 73), the "forward"
portion of the Doolittle solution is performed as already illustrated
several times. (See Table 2 for directions.) There is no value in the
column,

X4 = d,

corresponding to E y2 or go so that there is no A,, value to be computed.
Using the directions of Table 2, the X,: may now be calculated in the
column, X 4 = d, exactly as the b are calculated in regression; that is,

X3 = B34 = B 3g = 0.054,935,95,

and

X2 = B2g - X3B 23 = 0.028,634,99 - (0.054,935,95)(0.076,497,57)

= 0.024,432,52,

etc. Checks are carried in column X5, which is the Check E. The c
are calculated exactly as indicated in the appropriate cells of Table 2,
as examples,

C1
2 

= -B 1 3 c2 3 - B12C22

= - (0.707,354,58)(-0.167,357,12) -(2.013,252,37)(0.137,175,72)

= -0.157,788,52

and

1
c11 = - B1 3c1 3 - B12c12

1
0.20957000 - (0.707,354,58)(-1.210,578,80)

- (2.013,252,37)(-0.157,788,52)

= 5.945,651,91.

Remember in determining the c,; to start at the bottom with

C3 1 1 = 2.187,744,25.
33 A33  0.457,091,82

A check may be established on the calculation of the c values: the sum
of all the ai; values in some particular row, i, each multiplied by the
ci at the same position of the c,; table is unity; that is,

Eaic, = 1.0.
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For example,

Z a c 2j

a23c23 + a22C22 I- a12c12

(0.913,509,33)(-0.167,357,12) + (8.889,736,00)(O.137,175,72)

± (0.421,917,30)(-0-157J88,52)
= 0.999,999,94,

which is sufficiently close. These checks are outlined in Table 2.
The Xi may also be computed from the c1; in exactly the same manuer

as the bi were, letting the column, X = d, serve in the place of X = Y.
As an example,

b2 = c23g3 + C2 2g2 + C12 g

and likewise
X2 = C2393 + C2 2g2 + C1291

so

X2 = (-0.167,357,12)(0.145,141,00)-+ (0.137,175,72)(0.521,733,00)

+F(-0.157788,52)(0.144,790,00) = 0.024,432,52.

The XA are decoded in the same way as the bi; thus, similarly to [10]

decoded X = = A[29]
mnd

As an example,

decoded X, = *= 3 m3 = 0.054,935,95 0. - 0.000,549,36.3 13m% ' 1.0' '

With the X, computed, it is possible to write the discriminant func-
tion [25] :

Z = x1x1 + x2x2 + x3x3,
and using the decoded A;,

Z= 0.060,284X 1 ± 0.0002244X2 + 0.000,549X 3 .

Butt the units of N are arbitrarily chosen, so divide each N by the smallest
N, N2, which gives

Z = 246.7X 1 + X 2 + 2.248X3,

(This is identically the answer Goulden would have obtained, except
for what seems to have been an error in rounding off the divisor.) It
might better bring out the interrelationships and relative contributions
of the variables to make the coefficient, N, of the most potent variable
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unity. To do this divide each coefficient by the X of the most potent
variable. This gives

Z = X1 + 0.004,053X 2 + 0.009,113X 3.

The Xi are really coefficients such that the difference, D, between
the average Z-values of the two groups as given by [22], [23], or [24],

D = Z - Zii = > Aigig= Xigi
f1 3

is maximized relative to the variability within the groups.

D A1gB15 -+- A2gB 2 4+ A3gB 3g
(0.144,790,00) (0.690,890,87) + (0.230,234,19)(0.028,634,99)

+ (0.0252110277)(0.054;935;95)

= 0.100,034,09 + 0.006,592,75 + 0.001,379,48

0.108,006,32,

or, using the coded (not yet decoded) results:

D X191 + X2g8 ± X38 3

= (0.602,842,84) (0.144,790,00) + (0.024432,52)(0-5212733,00)

± (0.054,935,95)(0.145,141,00) = 0.108,006,33.

From the calculation of D = A10B 1, + A25B2 0 + A 0B30, it can be
seen that D is made up of three parts: 0.100,034,09 + 0.006,592,75 +
0.001,379,48. These are due to X 1, to X2 independent of X 1, and to
X 3 independent of X 1 and X 2, respectively. IUsing the same method as
in multiple regression [15], it is possible to estimate the contribution
of each variable to D independent of the other two despite the fact
that X3 is the only one occurring in the last position; that is,

Di.all others (x) 2  [30]
ci

For the three variables these values are:
-=(A 1)2 

_ (0.602,842,84)2 _.611351'3 c11  5.945,651,91 _ _(-044 2,2 2 =0.061,23 570
2.3 c22  0.137,175,72 D .2_(00 49 5,5 2 =0 .004,351,70 .

c33 2.187,744,25 -0.0,39,8
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Note particularly that D3. 12 = 0.001,379,48 is the same as was
estimated for X3 independent of X, and X 2 by the term A3 B3o. It
is apparent that X3 contributes least to the discriminant so that if a
two-variable discriminant should be desired, the appropriate two
variables (if practical matters of measurement do not intervene) would
be X, and X 2, or pH and available phosphate, respectively.

The potency of individual, single-variable discriminants may be
quickly estimated from quantities available in Table 16. The procedure
is analogous to [19] and [19a] for estimating the several simple regressions
in regression analysis, but instead of computing

A2 ( xy)22 i 2

calculate

(d)2 [31]

For the three variables these values are:

- (d) 2 
_ (0.144,790,00)2 - 0.100,034,09

Zx1 0.209,570,00

(d2)
2  (0.521,733,00)2 =0.030,620,18

Sx2 - 8.889,736,00

(d3)
2  (0.145,141,00)2 0.034,590,92
x- 0.609,001,19

The largest D is due to X1 ; hence the most potent single variable to
use as a discriminator would be X1 , or pH.

When there are only three independent variables (in either regression
or discriminant), a combination of operations consisting of finding the
most potent single variable and then finding the weakest of the three
variables in the three-variable relationship results in complete knowledge
of order of potency, since the most potent pair comes from dropping
the weakest. In this study the most potent variable is X1, the next
most potent is X2, and the least potent is X3. This is the same order
in which the variables were tabulated but order had nothing to do
with this result, a fact one may verify by arranging the variables in
some other order and solving again.

Having ordered the potency of these three variables as discriminators,
it is possible to make F tests of the significance of the amounts by which
D is increased by the addition of each successive variable. For this
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purpose, use the arrangement of Table 5 and equations [26], [27], and
[28]. The results are tabulated in Table 17 (page 74).

The value of D1 is 0.100,034,09 and, being the largest such D, indi-
cates that X1 is the most potent single discriminator. The sum of
squares due to this variable as a discriminator may be calculated by [26}

SS due to 1 variable nn D2  (25)(27) 10003409)2
ni + n1 =25 + 27

= 0.129,896,23.

This is entered in Table 17 at line (2). The residual or error sum of
squares = D is entered at line (3). The total sum of squares may be
calculated by (2) + (3) in Table 17 or by [27J:

Total SS = nInIn D2 + D = 0.129,896,23 + 0.100,034,09
nI + nil

= 0.229,930,32.

This is entered in Table 17 at line (1).
To find the sum of squares for the two most potent discriminators,

it is first necessary to find D for the two most potent variables. This
value can be found by solving the discriminant for these two variables,
but it may also be had in this special case in which there are only three
independent variables as D for three variables minus D for the weakest
variable independent of the other two variables, in this example D3.12;
thus

Domitting X 3 = D2variables = D3variables -D3.12

= 0.108,006,33 - 0.001,379,48 = 0.106,626,85.

From this value, the sum of squares due to two variables may be
calculated from [26] as follows:

SS due to 2 variables = nIni D2 = (25)(27)(0.106,626,85)2

n1 + n1I 25 + 27

= 0.147,581,75.

The total sum of squares may be calculated by [27]

Total SS = nn D2 + D = 0.147,581,75 + 0.106,626,85
nI + I l

= 0.254,208,60.
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To be comparable with sums of squares already calculated for the single
most potent variable X1, this sum of squares due to the two variables,
X 1 and X 2, must be adjusted for the fact that its total sum of squares
is not the same total sum of squares as for X 1 only. From [28] this
adjustment is

Total SS, 1 variable
Adj. SS, 2 variables = (SS due to 2 variables) Total SS, 2 Variable

= 0.147,581,750.229,930,32 = 0.133,486,90.0.254,208,60

This value is entered in Table 17 at line (4).
The sum of squares due to 3 variables is

SS due to 3 variables = _nn D 2 = (25)(27)0.108,006,33
nI + nii 25 + 27 (

= 0.151,425,48.

The total sum of squares is

Total SS = 0.151,425,48 + 0.108,006,33 = 0.259,431,81.

Adjusted SS due to three variables is

Adj. SS, 3 variables = (SS due to 3 variables) Total SS, 1 variable
Total SS, 3 variables

0.229,930,32
= (0.151,425,48) 0.25943181= 0.134,206,01.

This value is entered in Table 17 at line (7). After entering the foregoing
values in Table 17, the remaining quantities may be calculated as
indicated therein.

From Table 17 it is evident that the discriminant based on the three
variables, X 1 = pH, X 2 = phosphate, and X3 = nitrogen content is
no better than the one based on two, pH and phosphate. The logical
interpretation is to ignore nitrogen and compute the discriminant
function based on the two most potent variables only. The Xi could
be recomputed leaving out X3 , but they can be much more quickly
computed from data in Table 16 using [17], the formula for computing
some bi after deleting some variable, Xk.

Xi after deleting X, - c_ Lckk

46



DETERMINING POTENT INDEPENDENT VARIABLES 4

In this case X, - X3 so that

XA after deleting X3 = -- C1
C33

0.602,842,84 - -1.210,578,80
2.187,744,25 0.054,935,95

-0.633,241,41

and
C23x 2 after deleting X3 = A2-C
C33

- 0.024,432,52-0.167,357,12
2.187,744,250 9

- 0.028,634,99.

Since these are the values of X that would be obtained considering
just X1 and X2 as predictor variables, they may be used to obtain the
discriminant function based on these two variables alone. Therefore,
by [251 and [29] the decoded discriminant function is:

Z = 1X~1 + xA2 = xl1 X 1 ±X 2 nX
ndan

-
.1

0.633,241,41 0.1 ?1 + 0.028,634,99 0.01
1.01.0

= 0.063,324,14X1 + 0.000,286,35X 2.

However, since these units are arbitrary, divide through by the smallest
A, or 0.000,286,35, to obtain

Z= 221.1X 1 + X?2

or divide through by the A of the most potent variable to obtain

Z = X1 ± 0.004,522X 2

which is the discriminant function for the two most potent variables,
pH and soil phosphate content. Division by A of the most potent vari-
able gives other A values as proportions of the most potent.

Working the discriminant with three variables, as just concluded,
has served to give numerical examples of many of the computational
procedures used in regression and discriminant analysis. It has served
also to show that these procedures are for the most part identical. The
demonstrated procedures were used to find the order of potency of
three independent variables.
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The ordering of three independent variables according to potency,
however, is a special case that does not call for use of procedures pro-
posed earlier in this bulletin for finding potent variables. However,
the proposed procedures may be used. To demonstrate their operation
in discriminant analysis, this same problem will be re-examined using
the proposed procedure.

As before, the first step would be the preparation of Table 15, but
with this difference, only 7 Xi, 1, 1 xa (those quantities on the
diagonal), and the di would be computed. From these, one would
determine the potency of all individual, single-variable discriminants
by [31]

(di) 2

Di 2

These have already been computed and will not be duplicated here.
The result is noted that X1 is the most potent variable with D1 =
0.100,034,09. The significance of this discriminant may be tested by
means of the first three lines of Table 17 using [26] and [27]. Since D
is the same as in the previous analysis the results in Table 17 will be
the same.

To determine the next most potent variable, it would be necessary
to complete in Table 15 all rows and columns associated with the most
potent variable, X1. This includes the value in the Check E column
to be used with [1], [la], [2], and [2a] in checking work. The results
would be sufficient to evaluate every two variable discriminant in
which one of the variables is the most potent variable X1. The entries
of Table 15 would now be coded by powers of 10 and removed to indi-
vidual matrices for the abbreviated Doolittle solution. The matrix
for the discriminant using X 1 and X 2 is given in Table 18 (page 75).
The result, D = 0.106,626,84 compares with D = 0.103,654,62 for
the discriminant with X, and X3. Thus, the two-variable discriminant
with the most potency is that one with X1 and X 2; hence X 2 is designated
as the second most potent variable. Using [26], [27], and [28] three
more lines may be added to Table 17, testing the significance of X2

as the second most potent variable. Since the value, 0.106,626,84,
obtained for the discriminant with X1 and X 2 is the same as that ob-
tained by deleting the weakest variable in three, the results of testing
significance are the same as before.

To evaluate further independent variables, it is necessary to complete
all rows and columns involving Xa in Table 15, thus making possible
the evaluation of all discriminants with three independent variables
in which two of the variables are X1 and X2. In this particular example,
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there is only one such discriminant (which has already been evaluated),
but the procedure as laid out is general; therefore, it applies no matter
how many variables are in the study. Also, if there were more variables,
the procedure could be extended until either sufficient discriminatory
power is obtained or until additional variables added to the discriminant
do not significantly increase the discriminatory power. The mask for
reducing computational work in solving matrices of three or more
independent variables when there are large numbers of variables is
just as useful in discriminant analysis as in regression analysis.

In the present numerical example, the regression with three in-
dependent variables would turn out as previously worked so that Table
17 would be completed without change. This indicates that the proposed
procedure for determining potent variables and the special case pro-
cedure used for three independent variables give the same results.

OTHER TESTS OF SIGNIFICANCE

Having identified the most potent predicting (or discriminating)
variables in a regression (or discriminant), one would probably wish
to complete the regression (or discriminant). This would probably
involve calculating the regression coefficients, bi (or discriminant coeffi-
cients, Xi), the inverse matrix of c. values, and the regression formula,
Y (or discriminant function, Z). A summary of calculation procedures
for finding such quantities and testing significance of various propo-
sitions follows.

The sum of squares of deviations in Y, called E y2, is calculated in
the usual manner for a sum of squares in cell X5 = Y of column X5 = Y
in Table 1. The coded value of E y2 is a55ss or ge.

The reduction in sum of squares of deviations in Y attributable to
regression may be calculated as either

S = >Aigig [5]

or

E y2 = E big [9]

and, similarly, the value of the discriminant may be calculated by
either

D = ~A AigBQ
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or

D ~[24]

where i specifies a particular independent variable, Xi, and the other
symbols are used in the same way as in Tables 1 and 2.

The regression sum of squares may be decoded as

Z 2* Z 2() [12]

where 7n, is the power of 10 used for Y code iu Table 1, aud the super-
script asterisk deuotes a decoded value. Since the units of D are perfectly
arbitrary, there is no need to decode D.

The total sum of squares due to regression on any number of variables
may be divided into (1) that due to X1 alone or

Y1~ = 1g 19)

(2) that due to X2 independent of X 1 or

Z2~. =

(3) that due to X3 independent of X 1, and X 2 or

Z 13.12 = A3 gB 3 g)

(4) etc. Each of these values may be decoded by multiplying by (1/mn) 2 .
The sum of squares due to adding or deleting any variable to or from

a set may be calculated as

yi ~.al o thers =[15]

CiThis 
may be decoded by multiplying by (1/tm).

The proportion of E y2 due to regression is

Z y2 _decoded EZill
R - E [6]

none of these need to be decoded.

The multiple correlation coefficient,

_ y 2  \/decodedZ D2

does not need to be decoded.
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In general, the sum of squares of deviations from regression (residual
sum of squares, error sum of squares, or sum of squares of deviations
in Y independent of X1, X 2, X 3, " "" , X 7 ) is

Zd 2ii23... r - y - y= 9.
This may be decoded as

Y.123. -.r Y.123. .

where d is a deviation, Y - Y, and r is the number of independent
variables.

The mean square deviation from regression, or sample variance, or
error in Y independent of X 1, X 2, X3, , X, is

2 _ Zd 2 3 r _Z dYi 2 3 .r A9
8
Y.123.r.r degrees of freedom n -(r+1) n (r+1)

n-(r+1) n-(r+1)

This may be decoded as

SY.123... r SY.123...

The regression coefficients, b , more properly called the partial re-

gression coefficients, b Y "ot h er x ' s, and also the discriminant coefficients,
Xi, of discriminant analysis are calculated in two different ways in
Table 2 (column X 5 = Y, and bottom section). The values of b i aud Xi
may be decoded as

=ib - [10]

and

A: =A i mi[29]

where the rn-values a re. the powers of 10 used for coding. Values of Xi
may be further coded by dividing each Xi by the smallest Xi, or more
meaningfully, perhaps, by the X of the most potent variable.
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The standard partial regression coefficient is

where j = i. This does not need to be decoded.
The regression function or estimated value of Y for any particular

set of X., ,values is

=Y+- Z bixi, [7]

where xi is the deviation of some specified X, say i, from its mean, X
This equation may be rewritten as

Y = Y -Y biXi + b1X1 + b2X2 + b3 X 3 + + brXi, [81

where Y is the estimated value, Y is the mean of Y, Xi is the mean of
the ith X, and Xi, X2, X3, " , Xr are the particular set of X's of
interest. This result may be decoded as

my

The discriminant function is

Z = X1X1 + X2X 2 + X3X3 ± o.®o=:[25]

where either the Xi must be decoded or the Xi must be coded.
The Ganss mnltipliers, c-values, or elements of the inverse matrix

of sums of squares and products, called ci;, are calculated in the lower
portion of Table 2. These may be decoded as

= ~mm o[11]

The estimated variance of Y is given by

2
2 SY.123...5
Y.123. .. r

This may be decoded as

SY.13.. .r=SY123 (1)2

The estimated variance of any b , is given by

2 2
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where i = j. This may be decoded as

eSb* 
b

The estimated variance of a quantity, such as

Y-Y-tbixi~

if the xi is a population characteristic, is the sum of the variances of
the two terms Y and bixi. These values are

2
2 2 SY.123. .r + 2 2

SI.123...r + bix n I8Y.13...-iixn

±
5Y. 123 ... r +C x

This may be decoded as

sY SY.123.n(I + Ciixi) )

The inverse of a matrix with just one independent variable is c11 -

1/E x2 so that the estimated variance of Y + bx is given by

2 + x2

which is the formula often given for the variance of an estimated Y
in simple regrcssion.

The estimated variance of some predicted value, such as Y = Y +
b where xi is not a population characteristic but is the result of a
single observation, will have all the variability of the estimating pro-
cedure as just outlined for the case of a population xi plus the vari-
ability of an individual Y value, ........ rO Thus the variance of the
prediction for a single individual is given by

SY. 123... .r 1i + +iix

which may be decoded as

-= 2Y123...r(1 +- + ciiximi)(W) .

The estimated variance of a quantity, such as Y = Y + j b ix
if the xi are population characteristics, is the sum of the variances of
the two terms, Y and Ei ixi The term J~, bixi is itself a linear com-
bination of b's with their coefficients. The variance of any linear com-
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bination of b's with their coefficients as b1 x1 + b2x2 + b3 x3 + + brXr

is given as

SY. 123{ x1c 1 + 2x1x2 c12 ± 2x1x3c13 + + 2x 1 xc1,

+ xzc22 + 2x2x3 C23 ±+ + 2x2xrC9
2P

XC 33 ± ."°+ 2X3XrC3 r

+ 2~r}

One must be careful to observe all signs in the above. Decoding
would be a matter of decoding each term.

From the foregoing discussion, the variance of a multiple regression
estimate,

SY + b ix i

is

2 .r) ± the variance of the linear combination of b's.

The variance of a prediction based on a single individual is

(sy. 123r) ( + ) + the variance of the linear combination of b's.

All of the foregoing variances may be used in the customary mane
of using variances to establish bonfldence limits within which it is
believed that the true or population value lies. Thus, population param-
eter = sample estimate ± (t«) ( Vvariance of the estimate), where to
is Student's t at the a probability level of chance occurrence with the
degrees of freedom of the error or residual mean square from which
the variance was estimated.

If it is desired to test a hypothesis rather than establish a confidencc
interval, then calculate the test statistic

estimate - hypothetical value.
= variance of the estimate

Compare this calculated t-value with the distribution of Student'st
in standard t tables, using the degrees of freedom of the mean square
from which the variance estimate was obtained. The interpretation of
such -values is made in the same manner as for a t calculated for any
other statistic.
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Some texts give directions for calculating matrices of partial re-
gression coefficients and partial correlation coefficients. Most of these
texts start by coding the sums of squares and products by dividing
each E xix, by VE x /E x2, thus yielding a matrix of simple
correlation coefficients, then solving for the matrix of ci; values inverse
to this coefficient matrix. The matrix of ci in this bulletin may be
converted to exactly this matrix, since any c, of the matrix of correla-
tion coefficients is given by

c* = cimimIVEx
2 v x . [13]

The mean square for error from such a matrix of correlation coeffi-
cients can be computed from the results of this analysis as = s,23...r /
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TABLE 1. CALCULATING, CHECKING AND CODING THE SUMS OF SQUARES AND PRODUCTS OF DEVIATIONS FOE

MULTIPLE REGRESSION WITH FOUR INDEPENDENT VARIABLES AND ONE DEPENDENT VARIABLE

Item
Xi

C'ode

fix;
x;

X; Code

z ix x

Z xlx j-= X 1X j- C,1 j im

all = (z xix 1)(mim1 )

Sx2x 1
C21 = (L X 2)(Z X 1 )/nz 2x1 j= Z X 2Xj- C2 jin2
a21 = (1Z x2x 1)(m~m 1)

Tr

X1 x2 x3 K4 xY

:x, LX2 ZX3 LX4 ZX5 =LY
XI X2 X 4 X

MI m2 m 4 5=

Zx1
all

zx1x2
C12

X1X2

a12

C22
Zx

z1X
C13

C23

ZX2X3
a23

XX
C14

a14

C24z~x
a2 4

zlx x=x3 Y
C15 = C,3

Zxlx5 =E y
a15 = g

Lx2x5 =ZX
C25 = C25zX2X

5 = L 2
a 25 = g

X6= Chek

ZX6

a

0

C
-r

C

a-o

z

0

zx1x6
C16zl

Lx2x 6
C26z~x

XI. i



=~ -(CI X3)(7,X9)2z. ~ =5z X~x -c 3
a =(E x3xf)(m~mj)

E X 4Xj
04; = (57 X 4)( X 9)/n

Ex 4xj -- 71X 4 X j - C4j
a = (E x4x;)(m 4 m3)

Ex5xi = Z X 5X j -

a 51 = (E xsx;)(msm;)

3

C33

a33

C34

a34

044

a44

zx3x5 =E x3y
C35 = C3y

= x Ex 3y

a35  =g

zx4x5 = X4
C45 = C4y

ZX4X5 = X4y
a45 = g4

055 = 053,
Sx2 5 y2

a55 = 9

X4

X5 =Y

x3 6
03x6

C46
S~x

Sx5x6
C56

S_ X5X6

z
Z
0
-o
0
mI

z
--I

z
-v
m
z
C7
z
-C

I I

m5=my



TABLE 2. ABBREVIATED DOOLITTLE SOLUTION OF THE SIMULTANEOUS EQUATIONS FOR A MULTIPLE REGRESSION

WITH FOUR INDEPENDENT VARIABLES AND ONE DEPENDENT VARIABLE

Column
Row

X1X 3X 5=Y X = CheckZ

A13-a 1 3
B13 =A13/A21

A23 =a23 -A 12B12
B23 =A23/A 22

B 3 =A33/A3 = 1.0

a15 = g

a2 = g2

a35 = 9
a45 = 4

a1 2 =g

A1g2 g-
B1 g2AgA

A22 ~2 -A 12B12
B2g = gA2

A~g =g3 -A 1 3B22
-A 23B2g

B22 =A2g/A33

+a 1 2 +a 1 1

h2 = a25-+a2 4 ±+a23

+a22+al2

h3 =a32 +a3 4+a33

+a23 +a
1

3

h 4 =a45 ±a 4 4 ±a3 4

+a24 +al4

h5= 9,+94+93

+92+91

A~h-h1

Blh =Alh/Aij

A2h =h2 --A 12B 1h
B 2,, =Alh/A22

A~h = h3 -A 13B1,
-A23B21,

B3,, =A22 /A 33

an 1 a12

a22

an3

a23

a33

X1

X2

X3

X 4

X5==Y

A1 ,

B2;

A 3?

B39

a144

a24

a34

a 4 4

A11=all A12 a1
B11=A22 A11= 1.0 B12 =A12/A 11

A22 = a22 -.A 12B12

B22 =A22/A22 = 1.0

A14 -a 1 4

B14 =A14/All

A 24 =a A21
B24 = 2/2

A34 = a 3 4 A 13 4

B34 =A34/A23



A44 = a44 -A 1 4B 14
-A 24B24 -A3 4B34

B 44 =A44 /A 44 = 1.0

A45 =g4-A 14B 14
-A24B21 -"A34B31

B4 g A 4g/A 44

A4h =h 4 -Al4Blh

-A24B~h -A 34B3h
B4h =A 4 h/A 4 4

A42

A51

B51

C1 j

C22 -1/A22

B24c24 -B23c2
C3= -"B2 4c34 - B23c33  C24 = - B24c44 -B 3c34

3= 1/A 33 -B 3 4c34 C34 = -B 34c44

b2 -B 21 -b 4B2 4-b3B 2 3 hlb =BIS-h 4 bB24

b3 =B3 g -b 4B 3 4

C44 = 1/A 44

h3b =B 35 -h 4 bB3 4

h4b =B4h

b1 f/4c4±+g3cl
+g 2 C12 ±g

1 21

b2 -g4C2 4 +g3023

+2C22 +91012b3 - 94034 +g3C3l

+g 2C23+91013
b4 = g4c44 +g3c 34

+q2c24 I+-glcl4

c14a14 -tCilalS C24a24 A-d3a23 C34a34 -1c33a3 C 44a 44 -jc 34a34
+4C2ass +clsahl = 1.0 +c22a22I-cua 12 = 1 .0 +-c 23a2 +Cllals = 1.0 +J-C24a24+c 14a14 = 1.0

Sum of squares due to regression
y = -Z big5 orZJ~ ASQBL1

Any predicted Y =f = Y

-'57ibiXi+biX 1 ±b2X 2 ±b3X 3+b 4X 4

A 5 2 =A 2 g=-A 1 B1 g Ash =h5-A 0 Blh
-A 2 gB2 g-A 2 B 3 g -A 2 gB2 h-'A 5 B2 5

B5gBgg2 Agg/Agg=1.0 Bsh=A~h/Agg=1.0

c1 =1/A 11 -B 14c14  c12 = -B 14c24 -Bssc23 c13= -B4c34 -Bssc33 C1 4= -B 4c4 4 -Bu3c 4 b1 =B5 2 -b 4 B1 4  hlb =Blh-h 4 bBl 4
-B13c13 -B 12c12 -B 12c22 -B12c23 B12c24 - b3B13-b 2B12 h3bB5 3 -h 2 bBu2

C4;

b;

Check



TABLE 3. FORM FOR CALCULATING SUMS OF SQUARES AND PRODUCTS REQUIRED IN SEARCH FOE POTENT VARIABLES IF

THERE ARE 10 INDEPENDENT VARIABLES

Xi Item Xi
Code

zX;
X;i

X; Code

X1  57,x 1x
C12 = (~ X 1)(Z X ;)/n
z xxj= Lz x1xj -

a1 j = ( xix j)(rim; )
X2  Z X2Xj

C2; = (LI X 2)(Z X;)/n
EX2Xj = Z X2Xj - j

a2j = (S x2x;)(m 2m;)
X3 Same 4 items as for

X 1 and X2
~4 c

-X5  c

X11 -y c

i

mn3

P14

M59
in6

M27

MSo

in 9

i1
il

xi

X 1 X2 X3 X4 X5 X6 X7 X8 X9 X 10 X 11 = Y X 12 = Check

(1)
(1)

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

(1)

Ml m2 m 3 m 4 m 5 m 6 m 7 MS8 m 9 n210im1 1 = MY9

(1) (3)

(1) (3)

(2) (4)

(2) (4)

(1) (3) (3) (2) (3) (3) (3) (3)

(1)

(1)

(1)

(1) (2) (4) (1)

(1) (2) (2) (2) (2) (1)

() (1) (() (1)
(1) (1)

(1) (1)

(1)

a

a

(3)
C

m
k

(2)m
(4)

z
--f

-4

(1) -'
0
z

i

i



DETERMINING POTENT INDEPENDENT VARIABLES 6

TABLE 4. ABBREVIATED DOOLITTLE SOLUTION SHOWING MASK AND PARTS THAT

ARE IDENTICAL IN EACH OF THE EIGHT REGRESSIONS OF Y ON THREE

INDEPENDENT VARIABLES (OTHER PARTS VARY AS X~ VARIES)a

Column
Row

X= X6 X2 =

al= a66  a'12 = a63

a1

a22= a3

A1.0 B
1 2

A22

1.0

XI=CheckL

a 4 /

S 
a1

4 = ( 
=a 

4- 

g3
A1

B10

A20

* B20

a "Primes" indicate that the subscripts of this table are not the original sub-
scripts of Table 3.

11 2 =13
Xf ?1

Ail

B11

B32

A21

B32

A41

B41

63



ALABAMA AGRICULTURAL EXPERIMENT STATION

TABLE 5. F TESTS OF SIGNIFICANCE OF ADDITIONAL VARIABLES IN

MULTIPLE REGRESSIONa

Source of variation Degrees of Sum of Mean
freedom squaresb square

F Chance
probability

Total
Reduction due to most

potent variable
Residual = (1) - (2)

Reduction due to most
potent pair of variables

Second variable independent
of first = (4) - (2)

Residual = (1) - (4)

Reduction due to most
potent trio of variables

Third variable independent
of first two = (7) - (4)

Residual = (1) - (7)

n-le Iy2

1
n - 1 -i1

E f2

2 f 2

1

n - 1 - 2

3 E 2

1n-1-3

a The testing process can be extended to as many variables as desired.
b All sums of squares are sums of squares of deviations in Y and must all be either

coded or decoded, but not mixed. It would seem that decoded values would be
better, since this would allow for changes in code as the problem proceeds, if
desirable.

c n = the number of sets of observations of Xi and Y.

(1)
(2)

(3)
(4)

(5)

(6)
(7)

(8)

(9)
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DETERMINING POTENT INDEPENDENT VARIABLES

TABLE 6. AVERAGE HEIGHTS, Y, OF DOMINANT TREES TOGETHER WITH

MEASUREMENTS OF SIX POSSIBLE PREDICTORS, Xi, OF

HEIGHT FOR 40 PLANTINGS OF LONGLEAF PINE

Plant- X 1a X 2b X30 X 4d Xs=X4 X 6 =X1 X 4 X 7= Y Xg=
ing no. Check

1 16.8 10.6 31.5 11 121 184.8 32.2 407.9
2 30.4 17.5 63.3 7 49 212.8 26.0 406.0
3 14.6 5.0 29.0 11 121 160.6 29.5 370.7
4 42.8 19.9 69.2 11 121 470.8 30.6 765.3
5 19.7 3.7 30.9 12 144 236.4 32.6 479.3
6 15.1 5.7 35.4 11 121 166.1 27.9 382.2
7 18.3 5.8 28.4 10 100 183.0 29.0 374.5
8 11.7 5.6 28.2 7 49 81.9 15.9 199.3
9 13.5 2.6 21.3 11 121 148.5 24.4 342.3

10 8.5 9.1 33.5 10 100 85.0 31.3 277.4
11 7.8 4.1 16.9 10 100 78.0 31.6 248.4
12 9.5 2.3 21.0 11 121 104.5 26.6 295.9
13 14.6 3.6 27.8 11 121 160.6 26.3 364.9
14 14.6 6.5 37.6 7 49 102.2 14.9 231.8
15 13.6 3.7 25.1 11 121 149.6 24.0 348.0
16 15.8 4.5 31.4 6 36 94.8 16.0 204.5
17 19.0 4.8 28.1 12 144 228.0 28.0 463.9
18 23.8 6.1 29.5 12 144 285.6 33.5 534.5

19 36.2 6.6 51.6 12 144 434.4 34.9 719.7
20 28.0 6.1 43.2 12 144 336.0 33.8 603.1
21 19.3 5.3 48.4 14 196 270.2 40.3 593.5
22 26.2 5.8 34.8 14 196 366.8 42.6 686.2
23 15.9 2.8 23.8 13 169 206.7 31.5 462.7
24 13.5 3.0 25.3 10 100 135.0 31.1 317.9
25 13.2 2.4 26.3 8 64 105.6 20.2 239.7
26 18.4 2.9 37.6 8 64 147.2 20.5 298.6
27 20.6 4.4 34.5 15 225 309.0 41.5 650.0
28 32.0 5.8 44.6 12 144 384.0 31.0 653.4
29 21.2 7.0 38.0 11 121 233.2 24.7 456.1

30 23.8 3.5 26.9 15 225 357.0 29.7 680.9

31 29.3 5.5 33.7 15 225 439.5 33.2 781.2

32 26.4 4.2 33.4 12 144 316.8 28.0 564.8

33 22.8 3.4 29.7 11 121 250.8 27.0 465.7

34 34.0 5.9 45.7 12 144 408.0 30.9 680.5
35 19.5 5.3 33.6 12 144 234.0 26.5 474.9

36 18.2 5.2 52.5 12 144 218.4 31.8 482.1
37 27.3 4.1 36.6 12 144 327.6 34.9 586.5

38 24.7 5.7 57.8 12 144 296.4 30.5 571.1

39 19.8 15.7 54.0 8 64 158.4 18.0 337.9

40 20.4 3.4 24.0 6 36 122.4 16.3 228.5

E 820.8 235.1 1424.1 437.0 4985.0 9190.6 1139.2 18231.8
X 20.52 5.88 35.60 10.92 124.62 229.76 28.48 .....

a X1 = silt plus clay content of topsoil in per cent, b X2 = imbibitional water

value of the most impervious soil horizon, c X3 = silt plus clay content of B horizon
in per cent, d X4 = age of planting in years.

65



TABLE 7. CALCULATION OF CODED SUMS OF SQUARES AND PRODUCTS FOR MULTIPLE REGRESSION OF
HEIGHT OF LONGLEAF PINE ON SIX OTHER VARIABLES

xi 
I

x jXXi
X1  X2  X3 X 4  X5  X 6  X 7 =Y X8 =

Check 57
820.8 235.1 1,424.1 437.0 4,985.0 9,190.6 1,139.2 18,231.8
20.5 5.9 35.6 10.9 124.6 229.8 28.5..

0.01 0.1 0.01 0.1 0.01 0.001 0.1 .

xi
Item Code

Lxi
X2 jCode

x1x1
Cl;
E xlx 1  0.01

L7 X 2X1C2 1
LxIX; 0.1

a2;

C31
Zx~x1 0.01

a3;

SX4XC41
xr~y; 0.1

a4i
E X 5X
c5,
57,x~x; 0.01

a5j

Z7 X 6 X1
C6i

Lxix 0.0011

7 X711

C71
Lx7 x; 0.1

5,360.0.1
4,824.25

535.76
0.535,76

1,956.37
1,381.80

574.57
5.745,7

9,677.79
8,370.15
1,307.64

1.307,64

56, 224.37
50,701.52
5,522.85

0.552,285

9,190.6
8,967.2

223.4
0.223,4

2,499.2
2,568.5
-69.3
-0.693

15,579.0
15, 558.3

20.7
0.020,7

4,985.
4,774.

211.
2.11

27, 806.4
29,299.4

-1,493.0
- 1.493,0

58,853.
54,461.

4,392.
4.392

714.593.
621, 256.
93,337.

9.333,7

X1

X6

19,205.06
16, 842.82
2,362.24

0.236,24

24,070.97
23,6.38

694.59
0.694,59

6,680.69
6,695.65
-14.96

-0.149,6

41, 048.12
40,558.37

489.75
0.489,75

12,949.1
12,445.8

503.3
5.033

152,323.5
141,972.8
10,350.7

10.350,7

279,200.63
261,748.29

17, 452.34
1.745, 234

34,171.52
32,444.42

1,727.10
17.271,0

57,903.39
54,017.75
3,885.64

0.388, 564

107,160.4
100, 407.3

6,753.1
0.675,31

2, 586, 263.62
2,111,678.21

474,585.41
0.474,585,41

111, 883.85
107,157.40

4,726.45

211,216.30
199,182.42

12,033.88

550,444.53
519,241.66

31,202.87



DETERMINING POTENT INDEPENDENT VARIABLES 6

TABLE 8.TESTS OF SIGNIFICANCE OF ADDITIONAL VARIABLES IN PREDICTING

HEIGHT OF LONGLEAF PINE

Source of variation

(1) Total
(2) Reduction due to age
(3) Residual = (1) - (2)
(4) Reduction due to age and

imbibitional water value
(5) Reduction due to imbibi-

tional water value inde-
pendent of age = (4) - (2)

(6) Residual = (1) - (4)
(7) Reduction due to age,

imbibitional water value
and (age) 2

(8) Reduction due to (age)2

independent of others

=(7) - (4)
(9) Residual = (1) - (7)

Degrees Sum of Mean
of squares square

freedom

39
1

38

1, 727.10
1,200.53

526.57

2 1,241.49

1 40.96
37 485.61

1,200.53
13.86

40.96
13.12

3 1,248.02

1 6.53 6.53
36 479.08 13.31

a Decoded sums of squares.

F' Chance
proba-
bility

86.62 <0.001

3.12 .<0.1

0.49 >0.3
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68 ALABAMA AGRICULTURAL, EXPERIMENT STATION

TABLE 9. "FORWARD" PORTION OF THE ABBREVIATED DOOLITTLE SOLUTION

FOR MULTIPLE REGRESSION OF HEIGHT ON X = X4, AGE, AND

X2= X1, SILT AND CLAY OF TOPSOIL.a

X'3 Y X'4 - CheckZ

5.033,000,00
0.694,590,00
17.271,000,00

5.033,000.00
2.385,308,06

0. 161, 712, 18
0.760,686,59

5.142,732,25
1.0

7.366,400,00
1.154,230,00

22.998,590,00

7.366,400.00
3.491,184,83

0.374)299)31-
1.760,686,59

5.142,732,28
1.0

LY',- A jBj - (5.033,000,00)(2.385,308,06) + (0.161,712,18)(0.760,686,59)

= 12.005,255,47 + 0.123,012,29 = 12.128,267,76

2* ( 2)( e2 = (12.128,267,76)( 2 - 1,212.83

fl "Primes" indicate that the subscripts of this table are not the original sub-
scripts of Tables 6 and 7.

Row il= X4 X~2 =-X

X = X4
X~2 = X

3= Y

2.110,000,00

2.110.000,00
1.0

0.223,400,00
0.236,240,00

0.223,400,00
0.105,876,78

0.212,587,13
1.0

A21
B21

A31
B31

.--
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DETERMINING POTENT INDEPENDENT VARIABLES 6

TABLE 10. REDUCTIONS IN SUM OF SQUARES OF

SPECIFIED Two VARIABLES

Y DUE TO THE

XZ 2 2 Decoded y2

X4 X2 12.414,865,59 1,241.49
12.356,524,65 1,235.65

X471 12.128,267,75 1,212.83
X475 12.087,520,95 1,208.75

X74 X6 12.075,158,38 1,207.52

TABLE 11. MASK TO AID IN SOLUTIONS OF REGRESSIONS OF HEIGHT ON

XS=X4 = AGE, X2' =X = IMBIBITIONAL WATER VALUE AND X'= ?

Row

2/= 2

- y

Ali

B1 j

A 1

B2,

Column

M'-11 x 4 4 2' 2

2.110,000,00 -0.693,000,00

5.745,700,00

2.110,000,00 -0.693,000,00
1.0 -0.328,436,02

5.518,093,84

1.0

---- --- --- --- --- --- ---

XI/=2

5.033, 000, 00

0.149,600100

17.271,000,00

5.033,000,00

2.385,308,06

1.503,418,48

0.272,452)50

-- - - - - - -

Computational note : Since L'2 = Z A Z 6Ba from the X"' = Y column, each and
every E y will have (5.033,000,00)(2.385,308,06) + (1.503,418,48)(0.272,452,50) as
part of the result; this quantity may be calculated once and entered on the mask
to be used as needed.

a Double "primes" indicate possible changes in subscripts beyond those denoted
by "primes.
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TABLE 12. "FORWARD" PORTION OF THE ABBREVIATED DOOLITTLE SOLUTION FOR MULTIPLE REGRESSION OF' HEIGHT ON X, = X 4 , AGE;

X''= X2, IMBIBITIONAL WATER VALUE; X3" = X1, SILT & CLAY CONTENT OF TOPSOIL, SHOWING MASK IN POSITION"

Column X ' -? X = CheckZ

x2'= 2  x 3'= 1  x 4 '-

0.693,000,00 0.223,400,00 5.033,000,00
5.745,700,00 0.535,760,00 -0.149,600,00

Row

X"= x

A 11

B1 1

A 2 1
B21

A 31

B31

0.145,346,06
1.0

0.694,590,00

17.271,000,00

5.033,000,00
2.385,308,06

1.503,418,48
0.272,452,50

-0.004,247,52
o0.029.223152

4.856,010,28
1.0

X'=X 4

2.110,000,00-

Zy~2 = i igj = (5.033,000,00)(2.385,308,06) + (1.503,418,48)(0.272,452,50) + (-0.004,247,52)( -0.029,223,52)

- 12.005,255,47 A- 0.409,610,12 -+-0.000,124,13 =12.414,989,72

ZyQI y2)L2 = Code) 12.414 ,989,72)()I1 2-=1241.50

6.673,400,00
5.438,860,00

1 .689,990,00

22.847,990,00

6.673,400,00
3.162,748,82

7.630,644,93
1.382,840,73

0.141,098,53
0.970,776,44

4.856,010,28
1.0

2.110,000,00
1.0

0.236,240,00

0.223,400,00
0.105,876,78

0.609,132,61
0.110,388,23

0.693,000,00
0.328,436,02

5.518,093,84
1.0



DETERMINING POTENT INDEPENDENT VARIABLES 7

TABLE 13. REDUCTION IN SUM OF SQUARES OF Y DUE TO THE

SPECIFIED THREE VARIABLES

2'3' Decoded

X4 X2 X5 12.480,246,12 1,248.02
12.443,175,56 1,244.32

X4 X 6 12.420,189,26 1,242.02
X4 X 1 12.414,989,72 1,241.50

TABLE 14. MEASUREMENTS OF 3 POSSIBLE DISCRIMINATORS OF THE PRESENCE

OF Azotobacter IN SOILS (FROM GOULDEN FROM Cox AND MARTIN)

Group I (n = 25)
containing Azotobactera

Group II (nu = 27)
without Azotobacter'

x1 x2 x3 x x2 X3

6.0
7.0
8.4
5.8
6.9
7.8
7.8
6.9
7.0
6.7
6.2
6.9
8.0
8.0
8.0
6.1
7.4
7.4
8.4
8.1
8.3
7.0
8.5
8.4
7.9

46
35

115
35
55
52
52

208
70
35
27
52
60

156
90
44

207
120

65
237

57
94
86
52

].46

24
17
28
17
25
29
29
58
13
16
44
27
58
68
37
27
31
32
43
45
60
43
40
48
52

76.0
59.0

151.4
57.8
86.9
88.8
88.8

272.9
90.0
57.7
77.2
85.9

126.0
232.0
135.0

77.1
245.4
159.4
116.4
290.1
125.3
144.0
134.5
108.4
205.9

6.2
5.6
5.8
5.7
6.2
6.4
5.8
6.4
5.4
5.4
5.7
5.6
5.8
7.3
6.1
6.2
6.7
5.9
5.6
5.8
6.1
6.1
5.7
5.8
5.8
5.7
5.8

49
31
42
42
40
49
31
31
62
42
35
33
24
70
21
36
35
33
25
31
30
21
35
37
28
34
16

30
23
22
14
23
18
17
19
26
16
22
24
15
14
21
26
26
21
32
30
24
25
22
24
19
20
19

85.2
59.6
69.8
61.7
69.2
73.4
53.8
56.4
93.4
63.4
62.7
62.6
44.8
91.3
48.1
68.2
67.7
59.9
62.6
66.8
60. 1
52. 1
62.7
66.8
52.8
59.7
40.8

184.9 2196 911 3,291.9 160.6 963 592 1,715.6

X 7.3960 87.8400 36.4400 5.9481 35.6667 21.9259

a X 1 = pH, X2 = available phosphate content, X 3 = total nitrogen content.
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72 ALABAMA AGRICULTURAL EXPERIMENT STATION

TABLE 15. CALCULATION OF CODED SUMS OF SQUARES AND PRODUCTS FOE

DISCRIMINATION OF PRESENCE OF Azotobacter IN SOIL

xi -_ _ _ _

Code X1 X2

0.1

0.01

0.01

Xi

X Check L

Group I, containing Azotobacter
184.9 2196. 911.

7.3960 87.8400 36.4400

1,384.05
1,367.5204

16.5296

16,620.8
16,241.6160

379.1840
278,162.
192,896.6400
85,265.3600

6,892.8
6,737.7560

155.0440
89,344.
80,022.2400

9,321.7600
38,701.
33,196.8400

5)504.1600

Group II, without Azotobacter
160.6 963. 592.

5.9481 35.6667 21.9259

Lxi
x i

xl LX1Xj
Cli
L7,xixj

x2 LX 2Xj
c2j

EX2X j

X3 L X3Xj
CUj
L x3xi

Xi

XL xix

X2 L x2x

L X2X j
X3 LX3X

C3j

xij

5,770.8
5,728.0667

42.7333
37,979.
34,347.0000
3,632.0000

3,514.5
3, 521.3037

-6.8037
20,928.
21,114.6667

- 186.6667
13,566.
12,980.1481

585.8519

3,291.9

24,897.65
24,346.8924

550.7576
384,126.8
289,160.4960
94,966.3040

134,937.8
119,956.8360
14,980.9640

1,715.6

10,245.00
10,204.6430

40.3570
64,677.8
61, 189.7333
3,488.0667

38,008.5
37,616.1185

392.3815

Both groups

0.1

20.9570
0.209,570,00

x2

0.01

X3 X 4 =

0.01 1.0

421.9173 148.2403
0.421,917,30 0.148,240,30 0.144,
88,897.3600 9,135.0933 5
8.889,736,00 0.913,509,33 0.521,'

6,090.0119 1
0.609,001,19 0.145,

1.4479
790,00
12.1733
733,00
4.5141
141,00

Item

959.70
955.2726

4.4274

al,

a2,

a31

i

n I r)A c)Ars nr\r
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TABLE 16. ABBREVIATED DOOLITTLE SOLUTION FOR DISCRIMINANT FUNCTION FOR PRESENCE OF Azotobacter BASED ON X1 , pH;
X 2, AVAILABLE PHOSPHATE CONTENT; AND X3, TOTAL NITROGEN CONTENT

Column
Row

X1X 3X 4 =d X 5 =CheckZ

X,0.209,570,00 0.421,917,30 0.148,240,30 0.144,790,00 0.924,517,60
X28.889,736,00 0,913,509,33 0.521,733,00 10.746,895,63

X30.609,001,19 0.145,141,00 1.815,891,82

Ali 0.209,570,00 0.421,917,30 0.148,240,30 0.144,790,00 0.924,517,60
B11  1.0 2.013,252,37 0.707,354,58 0.690,890,87 4.411,497,83

A 2 1  8.040,310,00 0.615,064,20 0.230,234,19 8.885,608,38
B2; 1.0 0.076,497,57 0.028,634,99 1.105,132,57

A 31  0.457,091,82 0.025,110,77 0.482,202,58
B31  1.0 0.054,935,95 1.054,935,92

Cli 1 = 5.945, 651, 91 c1 2 = -0.157,788,52 c13 = -1.210,578,80 Al = 0.602,842,85 h 1 = 1.602,842,84

C C22 = 0.137,175,72 C2 3 =-0.167,357,12 X2 = 0.024,432,52 h 2 = 1.024,432,54

c3 C3= 2.187,744,25 X3 = 0.054,935,95 h3 = 1.054,935,92

Xi l = 0.602,842,84 A2 = 0.024,432,52 A3 = 0.054,935,95 D = 0.100,034.09 + 0.006.592,75
+ 0.001,379,48

= 0.108,006,32

Check 1.000,000,00 0.999,999,94 1.000,000,00 Za = 0.060,28X 1 + 0.000,244,3X 2
+ 0.000, 549 ,4X 3

Zb = 246.7X 1 + X2 + 2.248X3

a The Al must be decoded; or the X 2 must be coded.
b Divide each Ai by the smallest A-value.
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TABLE 17. TESTS OF SIGNIFICANCE OF ADDITIONAL VARIABLES IN THE

DISCRIMINANT FUNCTION FOR PRESENCE OF Azotobacter IN SOILS

Source of variation

(1) Total = (2) + (3)
(2) SS due to most potent

variable, X 1 = pH
(3) Residual = D
(4) SS due to 2 most potent

variables X1 & X2 = pH

and phosphate, (adjusted
to SS for Xi)

(5) Phosphate independent
of pH = (4) - (2)

(6) Residual = (1) - (4)
(7) SS due to all 3 variables

(adjusted to SS for Xi)
(8) Nitrogen independent of

other variables = (7)- (4)
(9) Residual = (1)- (7)

Degrees
of

freedom

Sum of
squares

Mean
square

F' Chance
proba-
bility

51 0.229,930

1 0.129,896 0.129,896 64.92
50 0.100,034 0.002,001

2 0.133,487

1 0.003, 59 1 0.003, 59 1
49 0.096,443 0.001,968

1.82 >0.10

3 0.134,206

"1
48

0.000, 719 0.000, 719
0.095,724 0.001,994

0.36 >0.5

a All sums of squares were adj usted so that every discriminant would have the

same total sum of squares as the most potent single discriminator, pH.

<0.001
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TABLE 18. "FORWARD" PORTION OF THE ABBREVIATED DOOLITTLE SOLUTION FOR

THE DISCRIMINANT BASED ON X -l pH AND X 2 = SOIL PHOSPEATE CONTENT'

I = 1
0.209,570,00

0.209,570,00
1.0

0.421,917,30
8.889,736,00

0.421,917,30
2.013,252,37

8.040,310,00
1.0

A' =d -X' =CheckL

0.144,790,00
0.521,733,00
0.145,141,00

0.144,790,00
0.690,890,87

0.230,234,19
0.028,634,99

0.776,277.30
9.833,386,30
0.811,664,00

0.776,277,30
3.704,143,25

8.270,544,19
1.028,634,99

D = Li AjaA0Bi 1  (0.144,790,0O)(0.690,890,87) 1-(0.230,24,19)(0.028,634,99)

0.100,034,09 + 0.006,592,75 = 0.106,626,84

1 "Primes" indicate that the subscripts of this table may not be the original
subscripts of Tables 14, 15, and 16.

Row

X2= x12

X3= d

Al
B,1

A27
B2;




