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I. INTRODUCTION

Solute transport in soils has received considerable attention

during the past decades. Agriculturalists are interested in the

behavior and effectiveness of applied fertilizers and pesticides.

Leaching of salts (solutes) through the soil profile, which depends on

exchange, exclusion, dissolution and precipitation, volatilization,

chemical and biological transformations, and other processes, affects

both the chemical and physical condition of a soil. Other areas of

interest are miscible displacement, such as the mixing of fresh ground

water with salt sea water and the secondary recovery of oil.

The main reason for the increased interest in the transport of

solutes is the concern about contamination of the soil, in particular

the movement of contaminants to the ground water. A wide variety of

substances is involved, including agricultural chemicals, industrial

compounds, radio-active materials, and domestic waste.

Solute transport through porous media has been studied by workers

from many disciplines: chemical, civil, and petroleum engineering;

hydrology, hydrogeology, and geochemistry; and soil science and

agronomy. Because of this diversity, research areas include

mathematical approaches to solve flow and transport equations,

experimental work concerning homogeneous media under laboratory

conditions, and field experiments with inherent heterogeneity.

Laboratory work has focused on exchange chromatography, the influence



2

Of biological, hydrodynamic, and geochemical processes, and the

transport during unsaturated flow conditions.

This literature review covers, in very general terms, what has

been done to date in the area of solute transport in soils. In

particular, it examines both chemical and physical processes and

explores transport during saturated as well as. unsaturated flow

conditions.



II. FORMULATION OF THE TRANSPORT EQUATION

Non-reactive Solutes

As a starting point we will consider the transport of a chemical

species in an isotropic porous medium, which is homogeneous with

respect to the relevant transport and flow parameters. The porous

medium consists of a rigid solid phase, of which the pores are filled

with liquid. It is assumed that the species does not react or interact

with the medium and that the solute is completely miscible with the

solvent. At the macroscopic level, the equation of conservation of

mass, assuming no source/sink terms, leads to:

a- -V* JD + = -V*J (2-1)
at D V3 -

where 0 is the volumetric water content [L3L-3I, C is the concentration

of the solute expressed in mass of solute per volume solution phase

-3
[ML ], t is time [T], JD is the diffusive-dispersive mass flux

-2-1 3 -2-1
[ML T ], J is the volumetric flux of the carrier [LL T ], J is

V s

the total solute mass flux [ML-2T - 1] and V* denotes the divergence

-1
[L I.

The autonomous flux J is generally expressed as a Fick-type

equation:

J = -OD (2-2)
D 8x

where D is the coefficient of hydrodynamic dispersion [L2T - 1 ] and x is

distance [L]. D represents the random effects due to molecular

3



diffusion and mechanical dispersion, which occur during transport or

flow. Many references exist with regard to this topic (15, 53).

Although the mechanisms behind these two processes are quite different,

they behave similarly and Fick's law for diffusion can be used to

describe both effects. Therefore, the coefficient of mechanical

2 -1dispersion D [L2T-], and the effective coefficient of molecular
dis

2-1diffusion, D [L2T-], are added to give an effective coefficient of
e

dispersion:

D=Ddis + D (2-3)d e

D depends, among other things, on water content and pore-water

velocity. Because of the intimate relation between microscopic

variation of the water velocity and solute spreading, D is also called

coefficient of hydrodynamic dispersion (15). One might argue that this

is somewhat ambiguous because only Ddi depends on the pore-water

velocity. The use of one coefficient is especially convenient when

solving the transport equation analytically. Sometimes a third

mechanism, which contributes to dispersion, is included; the diffusive

transfer of solute between mobile and immobile regions of the liquid

phase (135).

Substituting Eq.(2-2) into Eq.(2-1) and using the relation

between the Darcy flux and the pore-water velocity (Jv=vO), we obtain

for one-dimensional transport:

aOC_ at X Ov Oacn -- vOC] ( 24 )

-1.where v is the average pore-water velocity [LT ]. Assuming v and 0 and
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to be uniform with respect to x and assuming steady-state flow,

Eq.(2-4) leads to:

ac a2c acat - D 2 v (2-5)
8x

which is a special form of the Fokker-Planck equation for one variable,

namely with v and D independent of x and t (157). It is a linear

second-order partial differential equation of parabolic type, which

will be referred to as the advection-dispersion equation (ADE); it is

also known as convection-dispersion or convection-diffusion equation.

It has been widely used in miscible displacement studies (e.g., 121).

For multidimensional, anisotropic flow, Eq.(2-S) needs to be rewritten

(cf. 165) as:

av.CaC _a D aC 1(vc
= D 1(2-6)at ax. ij ax. ax.1 1

where D.. is the dispersion tensor and i,j are indices denoting
ij

directions.

For laboratory conditions the ADE is very useful for modeling

solute movement. The equation can be adjusted to include phenomena such

as cation-exchange (107), adsorption-desorption of pesticides (198),

anion exclusion (29), precipitation-dissolution (159), nutrient uptake

by plants (47), microbial induced transformations (41) and radioactive

decay (154).

For field conditions, Eq.(2-5) is less useful to describe

transport, because most soils are macroscopically heterogeneous due to

factors such as structural development, heterogeneity of the soil

profile, swelling and shrinking, and biological activity.



Reactive Solutes

Solutes and porous media often interact with each other. Many

soils, due to the presence of negatively charged clay minerals,

variably charged organic matter, hydrous oxides and mineral edges,

exhibit adsorption and exclusion phenomena. These generally cause the

solute and the carrier to travel at a different speed.

It is assumed that the chemical species is present only in the

liquid and the sorbed phase, and that there is only one liquid phase.

The process of adsorption/desorption can be included into Eq.(2-1) to

yield:

a .C + = -V* JD (2-7)

where q is the concentration in the sorbed phase expressed in mass of

-3
solute per volume of soil [ML- 3 ]. Sorbed refers to adsorption and

precipitation, although the latter process will be ignored. Actually q

can be regarded as a source/sink term. It should be noted that, under

unsaturated flow conditions, the vapor phase needs to be considered if

volatile solutes are present. For one-dimensional transport, Eq. (2-7)

leads to:

aa c 1 avecCat + q xDe x ax(2

If an exchange isotherm is known, which relates the concentration

of the species in the adsorbed phase to the concentration of all

species in the liquid phase, the dependent variable q can be expressed

in terms of C. However, this is only justified in case of a single



valued relationship between q and C, Implying that the exchange

reaction reaches instantaneous equilibrium and that no hysteresis

exists. The importance of hysteresis in the q(C) relationship was

illustrated by van Genuchten and Cleary (198). In case of a binary

system, Sk ) the adsorbed mass of species k per mass of soil [MM-], can

be expressed as:

Sk = f(CT Ck ) (2-9)

where CT  is the total electrolyte concentration and Ck  is the

-3concentration of species k in solution [ML - 1; both C and Ckare];bt T an k e

expressed per volume of solution phase. To express the adsorbed

concentration on the basis of volume of soil, the following

relationship is used:

q = SkPb (2-10)

-3

where pb is the soil bulk density [ML .

For conditions similar to those stated for the derivation of

Eq. (2-5), Eq. (2-8) can be written as:

8C Pb80S 82C
- -D -v (2-11)

at o at 2ax8x

where C and S refer to the concentrations of solute species k in a

binary system. Applying the chain rule and assuming a constant total

electrolyte level with respect to time, i.e., Sk=f(Ck) yields:k k'
8S _dS8C (-2

where dS/dC is the slope of the exchange isotherm, which is constant in

case of linear adsorption or exchange and which is usually referred to



3 - 1as the distribution coefficient Kd [L3M-!. This quantity indicates how

the species is distributed between the liquid and adsorbed phase:

S = KC (2-13)

d

Using Eq. (2-12), Eq.(2-11) can be rewritten in terms of one dependent

variable:

ac a2C ac2-14)

Ra= D 2 V-x(2

ax

where the dimensionless retardation factor R is defined as follows:

PbdR = 1 + dS (2-15)

0wdC

Depending on the assumed adsorption mechanism, different

transport equations were given by Gupta and Greenkorn (75):

1. Linear adsorption isotherm: q= k C
1

k 2
1ac a C ac1+ o a-=D 2-V j(2-16)at - x2 a -x

2. Freundlich adsorption isotherm: qk 2Cn

,-nk2  2

[1 n-1a ]ac a c ac

I1+0(1+bC) 2J at = ax__ -2 (218

In the above three examples k, n, a and b are empirical constants.

Dividing Eq. (2-14) by the retardation factor leads again

to the ADE, as for the non- reactive case:



t D 2 -(2-19)8t 82 Ox
ax

with D =D/R and v =v/R. In case of non-linear exchange (R=f(C.)),1

Eq. (2-19) is a non-linear partial differential equation for which

analytical solutions are difficult to obtain.

A more general equation should include sink/source terms to

account for phenomena such as radioactive decay, precipitation,

dissolution and chemical reactions. Parker and van Genuchten (130)

presented the following, more general expression:

P sAPb sPb
b as + ac Da2 C C S Ssb(2-20)

e at at O - O w w+  0

where j and W are rate constants for first-order decay in liquid andw s

-1 -3-1 -solid phase [T- 1, respectively, and 7w [ML-T-] and [T are rate

constants for zero-order production in liquid and solid phase,

respectively.

Solutions of the Transport Equation

Before presenting some analytical solutions for Eq.(2-19), it is

worthwhile to mention the different types of concentrations that can be

considered and to pay attention to the appropriate boundary and initial

conditions (131, 200).
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Concentrat ions

The time average of C is defined (60) as:

Ato 2

'(x yZt ) = At C(x,y,z,t) dt (2-21)
At

t --o 2

A spatial or volume average of c, a microscopic variable in this case,

at a position (xoYozo) is defined as

T cdV

C (x yo ,z t) - lim AVet(2-22)
v o o o AV->V fdV

fAVe

where the volume AV and AV represent a "large" chunk of the porous

medium and the liquid phase, respectively, and dV and 6V correspond to

a microscopic differential volume element and the Representative

3Elementary Volume (16), respectively. All volumes are expressed in L

Furthermore, x, y and z are fixed positions (the center of a
0 0 0

physical or material point). It should be noted that the macroscopic

concentration, C, is generally taken as the volume-averaged

concentration, CV.

At a certain position, the flux-averaged concentration, Cf, is

given as the ratio of the transport and flow term:

C (t) = Js/Jv (2-23)
f s V

Cf(t) represents the mass of solute per unit volume of fluid passing

through a given cross section during an arbitrary time interval (102).

As was stated by Parker and van Genuchten (131), solute flux
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distributions are in many cases of more interest than pore fluid

concentrations. The relationship between flux-averaged concentration,

Cf, and volume-averaged concentration, CV ,  the two types of

concentrations pertinent to many displacement experiments, can be

derived from Eq.(2-23):

aC
Cf = C D V (2-24)
f V v8x

Parker and van Genuchten (131) discussed the importance of

distinguishing between both concentration modes in conjunction with the

way an experiment is performed and the results are analyzed (cf. 34,

102). Unless stated otherwise, we will assume, as was done previously,

that all concentrations are volume averaged, i.e., C=CVV.

Boundary and Initial Conditions

In order to solve Eq.(2-S), or for that matter (2-19), specific

boundary and initial conditions are needed. Following van Genuchten and

Alves (197), the initial condition is:

C(x,t) = f(x) x>O , t=0 (2-25)

where f(x) is an arbitrary function.

For the boundary condition at x=O, the first- or concentration-

type boundary condition, the Dirichlet problem, is given by:

C(x,t) = g(t) x4 O , t>O (2-26)

and the third- or flux-type boundary condition is given by:

BC

(-D -- + vC) = vg(t) t>O (2-27)xx8O
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where g(t) is an arbitrary function describing the concentration of the

incoming solution. The exit boundary condition can be defined for a

semi-infinite or for a finite soil column. For a semi-infinite column

the appropriate boundary condition is:

ac (x t) = 0 x-) P, t>O (2-28)ax

In case of a finite system the following continuity condition at the

exit boundary needs to be satisfied:

(-D a- + vC) =vC t>O (2-29)xtL ex

where C is the exit concentration, which is assumed to be equal to
ex

CIxtL Hence:

ac(x, t) = 0 xtL, t>0 (2-30)

ax

Analytical solutions of Eq. (2-5) for conditions (2-28) and (2-30) are

approximately equal.

For the inlet boundary, a third-type condition is generally

preferred, because the mathematical solution for this condition leads

to conservation of mass. Eq. (2-26) implies equal concentrations in the

feed solution and in the porous medium at the boundary. However, in

reality it takes some time to attain the same concentration. First, the

input solution might not be well mixed resulting in a boundary layer

outside the porous medium (24). More important, because at the

microscopic level the concentration varies gradually, a transition zone

should be taken into account. Obviously a volume averaged concentration

of a representative elementary volume (REV) will not immediately be

equal to the concentration of the feed solution. In other words, since
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a (tracer) solution can only be injected at a certain rate, a

prescribed concentration will not be established instantaneously. For

displacement experiments, involving a step change in concentration

(g(t<O)=O and g(t>O)=C ), a third-type condition should therefore be0

used:

aC
(-D -+ vC) =vC (2-31)

8x ox 0

where C is the concentration of the feed solution. The discontinuity
0

in the concentration across the inlet boundary increases with

increasing D/v. Van Genuchten and Parker (200) showed that solutions of

the ADE, subject to a first-type boundary condition, lead to flux

average concentrations, whereas solutions for a third-type boundary

condition lead to volume average concentrations. One is also referred

to the work by Parlange and Starr (133, 134), Parlange et al. (132),

and Pandey and Gupta (128).

Analytical Solutions

In case of an infinite system (-o<x<oo), a solution of Eq.(2-5)

can be obtained by making the following transformation of coordinates:

= x-vt
(2-32)

T t

which transforms Eq. (2-5) to:

C a2C
-= D a__C(2-33)

aT1T 2

The original boundary and initial conditions

1 (2-34)

C = C x<O t<O, x- t>O
0
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need to be transformed as well. Note that C. is the initial1

concentration in the soil. The solution of Eq. (2-33) can be found in

the areas of heat flow (37) and diffusion (45).

Using an alternative transformation:

x-vt=(2-35)

f4 Dt

results in an ordinary differential equation:

2dC+ 2 dC=0 (2-36)

d 2  d=

With the transformed initial and boundary concentrations

described by:

c = c. -o
1 (2-37)

C =C 0 -00

the solution of Eq. (2-36) is:

C = (C-C.)/(C -C ) = erfc(2-38)
1 0 1

where C is the dimensionless concentration and erfc is the

complementary error function. For other boundary conditions, involving

semi-infinite or finite media, a coordinate transformation cannot be

employed or is inconvenient. Carslaw and Jaeger (37, p. 388) showed how

Laplace transforms can be used to solve Eq.(2-5). Van Genuchten and

Alves (197) provided a compendium of available analytical solutions to

Eq. (2-14), many of them obtained with the help of Laplace transforms.

The solutions for four combinations of inlet and exit conditions are

listed in table 1.



15

Table 1. Analytical Solutions of Eq.(2-14) for Various

Boundary Conditions with Constant R, after van

Genuchten and Wierenga (204)

I nlet
boundary
condition

C(0. t) = C

1)0,ac- tC0

ax X

0

= )C0

Analytical solution

crfc 2(L-flt' Ir± KexpAt7I erfc

~ Lu;) t' r%)ep (~ut)'j

1 1 + ± + u't ep( erfc Re t
2 DR11? D J1 2(DRt)'J

ti x FIX Wt 1Dt1
213o, s1n (LCxp12 4R L'-RJ

Fri 02+(2L +v

;; [cs(lLx) + I;s(azx]ex ty x '
C - I~_T~ -U 02 + 21 D m 21

Om cot (03 +) + - 0p, 4!)

References: A-i: (109), A-2: (113), A-3- (42), A-4: (27)

By using the following dimensionless variables

T =vt /L

Z =x/L

P =vL/D

C=(C-C. )/(C 0-C.)

Eq. (2-14) can be rewritten as

2-
R a8- 1aC ac,

= P 2 32

(2-39)

(2-40)

(2-41)

(2-42)

(2-43)

where T is the number of pore volumes, L is the column length [L], Z is

the dimensionless distance and P is usually referred to as the Peclet

number. Analytical expressions for C =C the dimensionless exit
Z=1 ve

concentration, are provided in table 2 for different boundary

Case

Al1

A-2

A-3

A-4

(3ctI3, L0, 2o1),)4

I \
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Table 2. Expressions for the Relative Effluent Concentration, C (T), in
eTerms of the Column Peclet Number (P) and Pore Volume

(T) for the Four Analytical Solutions Listed in table 1, after
van Genuchten and Wierenga (204)

Ca e Relative effluent concentration

A-I ce(T) erfc )2 (R -T) + exp(P)erfc 2((R T

A-2 Ce(T) = erfc [(l (R - T) + ( exp - R T) + P erfe (R T)

P P7T 02 T
S2/msin(3,) exp 2- - 4{ PR P

A-3 c,(T) = 1 - _ P1 4m cot(3m) + -= 0
02 + P+ -

0"22,sin(I) exp2 P2
2 t in/ 12ep -- H PR PO'm cot(fOm) -t3 + -- 0

A-4 c,(T) = 1 - S_2 4R Pm cot(m) 4 - 0
M=/3 2 - - ± I)

4

conditions. The influence of the different boundary conditions on the

concentration profiles is graphically illustrated in figure 1. At small

times, the use of the first-type inlet condition results in a

considerable error.

A difference in the solutions for the semi-infinite and the

finite cases occurs once the solute concentration starts to increase at

the exit. Just as for the inlet, the concentration at the exit is not

likely to be continuous. Unless backmixing occurs from the effluent

solution to the soil, the semi-infinite solution is to be preferred.

These solutions are useful to predict the solute concentration in

homogeneous media and to determine transport parameters in conjunction

with an experimentally determined concentration distribution.

It should be noted that much more work on the analytical solution

of the ADE has been published (e.g., 65, 112, 127).
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FIG. 1. Calculated concentration distribution for R=1 and P-values of 5
and 20, respectively. The curves were obtained with the
analytical solutions listed in table 2, after van Genuchten and
Alves (197).
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Non-equilibrium Conditions

So far, it has been assumed that instantaneous local equilibrium

exists between the solute in the liquid and the adsorbed phase, the

distribution of ions in both phases being determined by the exchange

isotherm. However, instantaneous equilibrium might not always be

achieved. Two different kinds of non-equilibrium exist: physical and

chemical.

Physical Non-equilibrium

Physical non-equilibrium is of particular importance for

aggregated media, where flow occurs predominantly between aggregates,

and for unsaturated media, where the liquid phase in effect might be

discontinuous. During miscible displacement the solute in the feed

solution cannot reach all sorption sites immediately and no

instantaneous exchange equilibrium can be achieved. This situation is

generally classified as physical non-equilibrium. Conceptually,

advective flow occurs only in the so called mobile region of the fluid

phase. The concentration in the immobile region, both in the liquid and

the adsorbed phase, will therefore lag behind the concentration in the

mobile region. A large part of the sorption sites are usually only

accessible via the immobile or stagnant region of the liquid. Transfer

of solute from the mobile to the immobile region, and vice versa,

occurs via a diffusion controlled process. For physical

non-equilIibr i um, the transport equat ion was reformulated by van

Genuchten and Wierenga (202) following Coats and Smith (43):
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ac ac. as as. a2 c acmo im mo im mo moS+ +p. f - (1-f) = D---- v (2-44)mo at im at b at +Pb t mo 2 mo mo ax

where the medium is supposed to be homogeneous with respect to 8 , 8.mo im

and v and the flow is steady. The fraction of sorption sites in
mo

direct contact with the mobile region of the liquid is given by f.

Transfer of the species between mobile (mo) and immobile (im) regions

of the liquid phase was given by:

acm asm
im + ( (C -C.(2-45)

im at b( at mo im
-1

where a is the mass transfer coefficient [T-1

Anion exclusion (29, 103) can be viewed as a situation of

physical non-equilibrium, where the exclusion volume roughly

corresponds to the immobile region. Eq. (2-44) and (2-45) can be readily

adapted (207) to describe the transport of anions which are excluded

from certain regions of the liquid phase. A further discussion on the

concept of mobile and immobile regions of the liquid phase will be

given in the section on mobile and stagnant regions in Chapter V.

Chemical Non-equilibrium

Chemical non-equilibrium occurs when the adsorption/exchange

process requires some time to be completed. No instantaneous

equilibrium between the solute concentration in the liquid and the

adsorbed phase will occur. To account for chemical non-equilibrium

exchange, a kinetic approach can be taken by combining the transport

equation with the appropriate rate equation for adsorption of the

species by the medium (7, 8, 109).
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Because of the variety of adsorption sites (clay minerals,

organic matter, oxydes) models with two kinds of adsorption sites have

been introduced (168). Adsorption occurs almost instantaneously for

"type- 1" sites, whereas for "type-2" sites adsorption is

time-dependent. Using somewhat arbitrary first-order kinetics, the

general sorption rates were given by Selim et al. (168) as:

aS1 _
StklC - k2S (2-46)

8t b 21

2at - k3C - kS 2  (247)
t pb3 42

where S and S are the concentrations of solute sorbed to sites 1 and1 2

2, respectively. Furthermore, k1 and k3 are forward and k and k are

backward reaction rate coefficients [T- 1 , respectively. It should be

noted that the same assumptions and restrictions apply as were made for

the derivation of Eqs.(2-5) and (2-11). At equilibrium, the sorbed

concentrations are given by the following linear isotherms:

k
_ 1S = -- k2 C = KIC (2-48)

S - C == KC (2-49)
2 Pb k4  2

The sorbed concentration for all sites, at equilibrium, is given by:

S = S + S = (K + K2)C = KC (2-50)

A fraction F of the total sites belongs to "type-l" (i.e.,

F=S1/S=K /K). Since "type-i" sites are always at equilibrium, it

follows from Eq. (2-48) that:
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as
at = FK a(2-51)

For "type-2" sites, the sorption rate may be given by a linear,

reversible first-order rate equation (cf. 109). The sorbed

concentration for these sites follows from the rate expression given

by:

at - (K2 2C - $2 (2-52)

where a is a first-order rate coefficient [T-], as before, which is in

this case equal to k Eq. (2-51) and (2-52) can be substituted into
4.

Eq. (2-11) resulting in the following pair of equations to be solved:

Upb ac Pb as2  a2C ac(1+ b) -t+ &at = D -2-v (2-53)e at2 8
ax

(2 4(1-F)KC-S2  (2-54)

Various authors (124, 168, 196) were able to describe the breakthrough

curves fairly well with a numerical solution of Eq. (2-53) in

conjunction with Eq. (2-54).

The "one-site" kinetic non-equilibrium model follows from the

previous model. In this case, F=O and Eq.(2-53) and (2-54) transform

to:

ac _PbasD a2 ac (2-55)+ - -= D v (-x
T eat 2

axas = (KC - 5) (2-56)
at

where S still refers to the adsorbed concentration of a particular

species.
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Apparent Non-equilibrium

Cameron and Klute (36), in effect, combined the physical and

chemical non-equilibrium models. The transition from a chemical

reaction at one site (the microscopic viewpoint) to the average

observed for a large number of pores (the macroscopic viewpoint) is

very complicated because macroscopically uniform soils are generally

not microscopically uniform. This involves both the physical and

chemical processes pertaining to sorption. In the section on physical

non-equilibrium the limited supply of the solute, due to immobile

water, was discussed. In fact, a whole range of supply rates exists.

The same holds for the actual sorption process; many rate equations

might be needed to describe sorption depending on the various soil

constituents and the solute. Furthermore, a distinction between

physical and chemical non-equilibrium is generally not possible.

Therefore, Cameron and Klute (36) proposed a "black box" approach to

describe the sorption process. They differentiated between two types of

sites, those which appear to react rapidly with the solute and those

which appear to react more slowly. Sorption at the latter type is

described with a kinetic type of reaction which is used to take into

account both chemical and physical non-equilibrium.

The sorption sites are divided, as in the section on chemical

non-equilibrium, into two fractions. S1 (equilibrium) and S (kinetic).

Exchange between ions in the adsorbed and liquid phase occurs via a

linear Freundlich (SI )  and , a kinetic (S2 )  type of process,

respect ively:
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aS e 8C 0- K -- k - C -kS (2-7at -1Pbat 3% -4 2b Pb

where K1  (=k /k 2 ), k 3 and k are the equilibrium constant and the

adsorption and desorption rate, respectively. S=S +S is the adsorbed
1 2

concentration and C is the liquid concentration, expressed in mass per

volume of solution. The transport equation for combined kinetic and

equilibrium adsorption is:

Pbas2 - ac 2c ac
- (1 +K)- .=D -V-5(2-58)e.at i t 2 axax

as 2
- k -C-k S ( 9at 3 4S2 (2-59)• Pb

Cameron and Klute (36) expressed these equations in dimensionless form

and obtained a solution via Laplace transforms. Application of the

model to transport of atrazine, phosphorus, and silver was successful;

a purely equilibrium or kinetic model did not fit the data accurately.

Nkedi-Kizza et al. (124) fitted two non-equilibrium models, a

diffusion controlled and *a first-order reversible kinetic model,

through experimental breakthrough curves. How fast equilibrium is

attained in the ion exchange process, merely a redistribution of ions

rather than a typical chemical reaction, is determined by two

mechanisms: the supply of solute through the liquid phase to the

liquid/solid interface and the nature of the exchange reaction at that

interface. The actual ion exchange reaction is generally not the rate

limiting factor in most instances (84). Rather, the diffusion of ions

from solution to exchange sites, and vice versa, seems to be the rate

limiting step even if no immobile water is present and we deal with



24

chemical non-equilibrium. Presumably, both chemical and physical

non-equilibrium models might be used to represent non-equilibrium

exchange.

In summary, both models can be considered to have two types of

adsorption sites. The physical non-equilibrium model has "mobile" sites

with instantaneous equilibrium, while for the "immobile" sites exchange

is diffusion controlled. This model is described with Eq. (2-44) and

(2-45). The chemical non-equilibrium model is described with Eq. (2-53)

and (2-54). For "type-2" sites, instantaneous equilibrium is not

achieved because of the kinetic nature of the exchange process. When

expressed in dimensionless variables it can be shown that the transport

models for both models are identical and have equivalent breakthrough

curves. Both models can be used when describing ion exchange during

transport through aggregated sorbing media. Based on breakthrough

curves, obtained via curve fitting, Nkedi-Kizza et al. (124), however,

did not want to draw the conclusion that the two models were

conceptually similar.

Judgment whether local equilibrium exists can be based on

exchange data and the physical properties of the medium (cf. 24).

Valocchi (191) presented criteria for the validity of the local

equilibrium assumption. Presently, much work is being done in the area

of transport through structured soils. As far as physical

non-equilibrium is concerned, sometimes an effective dispersion

coefficient can be used for soils containing aggregates of a particular

size and shape. In this way, the sink/source term describing mass
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transfer from mobile to stagnant regions of the liquid phase can be

omitted (cf. 57, 135, 150). On the other hand, - a distinction can be

made between the inter-aggregate pore space (macropores), containing

the mobile liquid, and the intra-aggregate pore space (micropores),

containing the immobile liquid. In the intra-aggregate porespace the

predominant transport mechanism consists of diffusion. Generally it is

assumed that inside the aggregate instantaneous equilibrium is achieved

between the species in the adsorbed and liquid phase. A number of

analytical solutions have been published (cf. 153, 186, 201). Some of

these solutions will be discussed in Chapter V.



III. DISPERSION AND DIFFUSION

When a feed solution containing a given solute displaces a

resident solution containing another solute or the same solute at a

different concentration, a transition zone will develop in which a

variation of solute concentration will occur. During displacement

experiments, the solute concentration of the effluent is generally

monitored to obtain a breakthrough curve. The curve is indicative of

the amount of mixing between the two solutions. For a non-reactive

solute, the spreading is caused by dispersion and diffusion. In order

to describe solute transport, one generally needs to quantify both

processes. Solutes can also be useful in hydrological studies, where

they are used as tracers to study flow phenomena in porous media. Many

references exist about diffusion and dispersion (15, 23, 24, 60, 61,

165).

Following Fried and Combarnous (61), two mechanisms of dispersion

will be distinguished:

1. Mechanical dispersion. When adopting a microscopic viewpoint,

nonuniform velocity profiles exist in a porous medium because of the

following reasons:

- The velocity of the soil solution is zero at the solid surfaces. Slip

flow does not occur because of the relatively high viscosity of water

and the small mean free path length (165).

26
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- The pore dimensions vary, so different maximum velocities occur along

the axes of the pores.

- Streamlines fluctuate with respect to the mean direction of flow.

2. Physico-chemical dispersion: diffusion. This type of dispersion is

due to concentration gradients, actually gradients in

chemical potential. The following phenomena take place:

- If inside a streamtube a concentration gradient occurs, then

diffusion tries to annihilate the gradient.

- If concentration gradients exist between two adjacent streamtubes,

mass transfer between the streamtubes occurs by diffusion.

For both types of dispersion a longitudinal and transverse

component can be distinguished. Mechanical dispersion (dispersion) and

physico-chemical dispersion (diffusion) are closely related. Diffusion

occurs at the molecular level and dispersion at the pore level. Usually

it is not possible to distinguish between these levels. Because of

their similar nature, diffusion and dispersion are conveniently

described together by the coefficient of hydrodynamic dispersion.

Molecular Diffusion

The process of molecular diffusion is of interest for at least

two reasons. First, at low pore-water velocities transport of solutes

is dominated by the diffusion process, and second, an analogy exists

between molecular diffusion and mechanical dispersion. Because of this

analogy, knowledge of the diffusion process is helpful in understanding

dispersion. Let us first consider molecular diffusion in a (free)

solution, next diffusion in porous media, and conclude with a

discussion of mechanical dispersion.
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The solute molecules in the solution possess random thermal

motion which causes an exchange of molecules between adjacent volume

elements. If isothermal and isobaric conditions exist, a net. transfer

of molecules of some species k occurs when the concentration of k in

the adjacent volume elements differs. More particles of k move from

elements of higher to elements of lower concentrations than vice versa.

Such a net transfer under the influence of a concentration gradient is

termed molecular diffusion. The process of molecular diffusion is

described by Fick's first law. In the case of one-dimensional diffusion

in a free liquid, it can be expressed as:

J =-D ac(3-1)
D o ax

where J is the solute mass flux due to diffusion [ML-2T -] and D isD 0

the coefficient of molecular diffusion [L 2T_]1

Thermodynamically, it is the gradient in the chemical potential

that is the driving force for the diffusion process. The chemical

potential is defined as:

8G(n.)' P njk(3-2)

is -1
where p1 is the chemical potential of species k [J mol Ink is the

number of moles of species k, G is the f ree enthalpy or Gibbs free

-1
energy [J mol I and 9'J and P are temperature and pressure,
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+R9J1in C(3-3)

0
where pk is the chemical potential of species i in a chosen standard

state and the mole fraction Ck=Ck/CM the ratio of the molar
Mk Mk M

concentration of species k to the total molar concentration. Hence, for

an ideal thermodynamic solution, the gradient of the chemical potential

is proportional to the gradient of the natural logarithm of the

concentration:

ap a ln C~k  = M(-k
ax]ideal =ax(3-4)

However, most solutions do not exhibit ideal mixing behavior. In

transport studies, the non-ideality of the solute needs to be addressed

for diffusion dominated transport if, for example, the total solute

concent rat ion is "high" (sea water) or for the thermodynamic

description of ion exchange. For non-ideal systems, Eq. (3-3) is

generally rewritten as:

=0 + RYJ ln ak(3-5)

where ak is the chemical activity of component k, which is related to

the concentration by the activity coefficient:

a = kCMk(3-6)ak  k3-Mk

The value of the activity coefficient, 7 k, depends on the nature of the

microscopic interactions. Activity coefficients for ions can be

estimated with the Debye-Hiickel equation for solutions with ionic

strength less than 0.1 N (e.g., 125). The 'Davies' extension of the

Debye-H~ckel equation can be used to approximate k for systems



30

containing mainly small ions at ionic strengths less than 0.5 M. For

non-ideal solutions, the gradient of the chemical potential is:
31[ ] 8 lnak

k = k(3-7)
a x Jnon-id eal ax

The diffusion flux for ideal solutions is given by Fick's first

law for a constant total molar concentration CM:

N =dC (3-8)
k CMD dx

where Nk is the molar flux density of species k due to diffusion

[ML T - 1. The diffusion flux for non-ideal solutions is obtained

by inserting the ratio of the non-ideal to the ideal chemical

potential gradients in Eq. (3-8):

aIn a dC
N =-CDk Mk (9Nk M-CMDo * dx

8 ln CMk

The contribution of molecular diffusion to the total molar flux

can be shown by substituting Eq.(3-9) into the continuity equation,

Eq.(2-1). The result is:

CMk _aalIn ak dCMk JvC(Mk3-10)
at jx oaIn Ck 1 0x (3-

Assuming an ideal system with a liquid velocity of zero and D
0

independent of position and concentration, the well known diffusion

equation, Fick's second law, is obtained:

ac a2c
-D (3-11)

3t 0 2

where the subscript notation for Ck has been dropped.
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It can be shown by differentiation that (45):

C(x,t) A xexp (3-12)
, -4D tto

is a solution of Eq.(3-11), where A is an arbitrary constant. The total

amount of substance, mO, diffusing in an infinitely long cylinder with

unit cross section, is given by:

m= C dx (3-13)

-00

With an initial condition C(x,O) = mO6(x), 8(x) being the Dirac delta

function (i.e. a spike of solute in an otherwise solute free medium),

the concentration distribution becomes (60):

m 2
C(x,t) = exp 4D (3-14)

4D t Do

Substituting o = 2D t, yields a Gaussian or normal distribution:
0m 2

C(x,t) = 0  exp[ x (3-15)

S2 22

where o- is the standard deviation of the solute concentration

distribution.

The process of molecular diffusion in porous media is similar to

that in a free solution, except that we must now define the mean flow

path for diffusion in terms of the structure of the medium. Let us

assume that diffusion in other phases than the liquid phase can be

ignored. If necessary, the additional contribution to molecular

diffusion from exchangeable ions can be accounted for (126). The

coefficient of molecular diffusion in soils can be expressed as (24):
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D = D /A (3-16)
e o

where A is the tortuosity factor. In simple terms, tortuosity can be

viewed as the ratio of the "true" (i.e., circuitous) and straight line

flow path distances between two points in a porous medium.

Theoretically, its value should only depend on the geometry of the

medium. Tortuosity can also be characterized with the so called

formation factor, which is frequently used in petroleum engineering.

This factor is the ratio of the electrical conductivity of the pure

liquid phase to that of the porous medium (cf. 46). It depends on the

volume fraction of liquid and the tortuosity of the medium:

D /D = /(Mo) (3-17)
e o

where D is considered an effective coefficient of molecular diffusion
e

2 -1
[L T i] and ¢ is the formation factor. It should be noted that the

validity and usefulness of this concept of tortuosity has been

questioned (165).

In media with a very low hydraulic conductivity, diffusion is the

main mechanism of solute transport. Therefore, the determination of

diffusion coefficients for low-permeability media has recently received

a considerable amount of interest (e.g., 173). For a concentration

profile following a Gaussian distribution, i.e., Fickian diffusion, the

coefficient of molecular diffusion of a stagnant liquid in a porous

medium can be determined from:

-_ 2D (3-18)
dt e

where D has been substituted for D . This relationship is frequently
e o
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used to obtain the diffusion coefficient from the standard deviation of

the concentration distribution as a function of position. In porous

media, spreading is caused by various mechanisms. Integration of

Eq. (3-18) shows that the variance increases linearly with time for

constant diffusion coefficient. Thus, Eq.(3-17) can be used to evaluate

whether these mechanisms exhibit Fickian behavior.

An approach which is not restricted to profiles following a

Gaussian distribution is the method of moments. The moments of a

concentration distribution, resulting from a pulse type of solute

input, can be used to determine the mean and variance from the observed

or calculated distribution (9, 10). No assumption about the

distribution of the solute concentration needs to be made in order to

determine these moments. The p-th moment of a concentration

distribution with respect to x, m , is defined as:

m = x C(x,t) dx (3-19)
p I

--00

This operator m can be applied to each term of the

advection-dispersion equation. Aris (10) showed how these moments can

be determined without evaluating the integrals, which is convenient if

the distribution of C(x,t) cannot be described by a mathematical

relationship. Some properties which can be determined with these

2 2moments are the mean, . or i , and the variance, o or , of the
x x

concentration distribution, where

= ml/mo (3-20)

2 2
a = (m /m ) - 4 (3-21)



34

Aris' moment method is also an Important tool In obtaining solutions

for the diffusion/dispersion equation in stratified media (80, 81,

115).

Dispersion

The description of dispersion as a diffusion type process has

been shown plausible in the classical paper by Taylor (189). Taylor's

analysis, concerning flow in a circular tube, is often discussed in the

literature (e.g., 60, 61, 73,- 121). Because dispersion in a free

solution provides a qualitative explanation of dispersion in a porous

medium, a brief treatment of Taylor's paper will be presented.

Taylor- (189) considered laminar flow in a circular tube with

radius a, having the following parabolic velocity profile:

u(r) =u r ](3-22)

a-1
wh Iere u0 is the maximum velocity at the axis [LT ] and r is the radial

distance from the axis [L]. It can be seen that the mean velocity over

a cross section of the tube, u, is equal to u /2.m 0

First, transport of a solute by advection only will be

considered. When a solute is introduced into the tube, the

concentration profile develops similarly to the velocity profile, since

no transport in the radial direction occurs. Taylor (189) discussed

three case for whic the initil1coditins-ad2th1mea
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FIG. 2. Distribution of mean concentration in three cases in absence of
molecular diffusion, after Taylor (189).

In the first case, Al, the solute is originally only present in a

short segment of the tube, with width X and concentration C . The
0

solute will be distorted into a parabola with its shape depending on

u(r). The mean concentration over a cross-section is now given by:

C =CX/(ut) O<x<u t t>O
m 0 0 0(3-24)

C = 0 x>u t t>Omo

In the second case, A2, a solute with concentration C enters the tube.0

This case can be solved by assuming that the constant initial

concentration for x<O consists of a number of thin sections as

discussed before, leading to the following mean concentration:
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C = C x<O
m o

C = C (l-x/(u t)) O<x<u t t>O (3-25)
m 0 010

C = 0 x>u t
m 0

The third case, A3, deals with a solute which is initially confined to

a greater distance X than for the first case (189).

In all three cases, the concentration profiles are determined

merely by advection, i.e., by the shape of the velocity profile.

However, at low velocities the concentration is determined by molecular

diffusion as well. Subsequently, the second step is to include

molecular diffusion in the transport equation.

Taylor assumed that diffusion was significant for radial

transport and negligible for longitudinal transport. Therefore, the

following respective restrictions were imposed:

2a
2

2D At-2a or At D -D(3-26-a)
00

2D At-L or At<L (3-26-b)
o 0t 2D0

where At is the time required for a particle to travel through a tube

with length L.

For a circular tube, solute transport via diffusion and advection

is given by:

+=D + a-2 - u° 1 - ac(3-27)
at Oar rr ax

where D is assumed to be independent of concentration. To derive an
0

expression for the dispersion coefficient, as a result of the combined

action of diffusion and advection, we follow the treatment by Fischer
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et al. (60). Deviations from the mean velocity and concentration were

described by:

u'= u(r)-u (3-28-a)
m

C'= C(r)-C (3-28-b)
m

where u' and C' are deviations from the cross-sectional means u and
m

C, respectively. Substitution of Eq. (3-28) in (3-27) results in:

at (C+C') = Do[r (C +C') +-(C +C') + (C+C')J+at m o[ ar 2  m r a-r m ax 2 m

a(c +c')
- (u +u') m (3-29)

m ax

This equation can be simplified. First, the contribution of molecular

diffusion to transport in the longitudinal direction can be assumed to
ac

be negligible. Second, note that m 0. Furthermore, it is convenientar
to apply the following transformation of coordinates:

=x- u t
m

T = t (3-30)

Z = r/a

Eq. (3-29) can now be rewritten as:

acm -ac, Dra 2 c, ac, U)ac + ac (3-31)

aT aT a2 az2  I az a- a-

If we apply the operator 1 [ ] dA, i.e., the mean over a cross
W A

section A, to Eq. (3-31) we obtain:

acmT +uac =0 (3-32)

where the cross-sectional mean is denoted with an overbar. Subtraction

of Eq. (3-32) from (3-31) results in:
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C' _o 0 C' 1 ac' u C cc' ,8c'aT 2  c + - u + u (3-33)
2 2 z 8z
a LO8 82 ~

ac' aC'
It is reasonable to assume that u' ~ u' hence Eq.(3-33) can be

rewritten as:

D 2 l
D ra c' + - u'a (3-34)

a 2 2 Z az8 2  a
a L82

Because u'=0, the net addition of solute is zero for the system, which

moves at velocity u . After sufficient time has elapsed, a steady
m

concentration profile will have developed: the advective and the

dispersive flux balance each other.

ac'
We now want to solve the steady concentration profile (i.e.,a aT

= 0. Using Eq.(3-22) and u =u /2, we can rewrite Eq.(3-34) as:
m o

2

a2c) lac au oa2
Sa C 1 2 (3-35)

az2 Zaz D 8a 282 0

After multiplication with Z, integration with respect to 2 yields:
2

au 2 4

SZ o oc + ( (3-36)az D 4 4o

where a1 is an integration constant. Division by Z and a second

integration result in:

2
au rz2 Z4

C, o 8c - + fn Z + a (3-37)C D 8a 8 16 1  2
0

where a2 is a second integration constant. Because no solute transfer

aC'
occurs across the wall of the tube, we have =0 at Z=1 and hence

82

21=0. Note that a2=C'(0).

The dispersive flux, i.e., the mass transport relative to the
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moving coordinate axis, is given by:

j Au'C' dA (3-38)

which can also be expressed according to Fick's law (Eq.(2-2)):

ac
JD =-D M (3-39)

and hence:

8C -1
MAD =-jA 8am 1 [u'C' dA (3-40)

Substitution of Eq. (3-37), using a2=0, in Eq. (3-40) and subsequent

integration results in:

2
a2u

D = o (3-41)192D
0

which is generally referred to as the dispersion coefficient rather

than diffusivity coefficient since it quantifies the spreading of a

solute due to the combined effects of advection and (transverse)

diffusion. Note that the dispersion coefficient D is inversely

proportional to the coefficient of molecular diffusion, D . Using the0

continuity equation along with Eq.(3-32) and (3-33), the equation

governing longitudinal dispersion becomes:

ac a2c
m D m 

(3-42)
aT 2

Solving this equation, for appropriate boundary and initial conditions,

results in concentration distributions which are assumed to be caused

bydispersion only. Aris (9) extended the theory, by using different

velocity profiles and a concentration dependent D . In many situations
0

in the field, it might take a long time to obtain steady state

conditions and initially no Fickian diffusion will occur.
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The Concept of Dispersion in Porous Media

Unfortunately, the dispersion process in a porous medium does not

lend itself very well to a theoretical description like the one given

by Taylor. Since the geometrical boundaries in a porous medium are

generally not known, it is impossible to describe transport at the

microscopic level in an exact mathematical way. In most cases it is

assumed that Fick's law, originally used to describe diffusion in free

liquids, can be applied. This law provides merely an operational

definition of the diffusion/dispersion coefficient in soils (126).

Most of the dispersion in a porous medium is caused by the

presence of solids (meandering, changing pore sizes) with their

concomitant microscopic velocity profiles in the liquid. To study

dispersion phenomena at the microscopic level requires detailed

knowledge of the pore structure. Since such knowledge is only available

for simplified cases, porous media models or statistical mechanics must

be employed. A variety of geometrical models has been suggested.

Klinkenberg (98), using a straight, non-interconnected, capillary pore

model, showed that pore size distributions obtained via displacement

studies, were quite different for different displacement methods. The

model does not seem to be very satisfactory. Random capillary models,

consisting of a network of randomly oriented and distributed pores,

have been presented by de Josselin de Jong (54), Saffman (164) and Bear

and Bachmat (17).

De Josselin de Jong (54) considered a 3-D medium which consisted

of a network of interconnected straight equal channels of length L,
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oriented at random. The overall flow occurred in one direction. The

movement of a solute particle in each channel depends on the deviation

of the channel from the overall direction of flow. At the junction of

various channels, the probability that a particle chooses a particular

channel is proportional to the ratio of the discharge to that channel

to the total discharge at the junction. De Josselin de Jong (54) then

determined the probability of a particle arriving at a given point for

a particular time after a large number of displacements. He came up

with a normal distribution in three dimensions to formulate expressions

for the longitudinal and transverse dispersion coefficient.

Saffman (164) used a very similar model, but he included

molecular diffusion. The movement of the particle by advection was

studied using the Lagrangian approach, i.e., the movement of the

particle is described with respect to its initial position, whereas the

movement by diffusion was described with Euler's method, i.e., the

movement of all particles was observed from a fixed position.

It can be argued that only a completely statistical approach will

predict the phenomenon of dispersion (165). One can attempt to predict

the path of a solute particle by using probability theory. This path is

determined by physical processes, but we are unable to describe these

processes at a microscopic level. The pathline for a solute particle is

considered as a vectorsum of elementary displacements. The elementary

displacement in a time interval At, for a certain position, depends on

the statistical model, for instance a random walk model or a

probability density function as a function of time and position. After
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many intervals At, the total displacement of that particle obeys a

Gaussian distribution according to the Central Limit Theorem. This can

be extended to a large number of particles at that particular position

to predict a spatial distribution of the particles at a certain time

(i.e., a concentration profile).

Scheidegger (165) derived the following probability that a

specific molecule is at a certain position at time t:

(x,.t). = (4irDt)-3/2 exp ](3-43)4Dt (-3

where q is the probability and g=x-x is the position with respect to

the time averaged position, x, of the molecule. Scheidegger developed

longitudinal and transverse dispersivity constants from statistical

concepts, ignoring molecular diffusion. He obtained a linear

relationship between pore-water velocity and longitudinal and

transverse dispersion coefficients. This serves as a justification for

the well known empirical expressions used for the longitudinal and

transverse dispersion coefficients (14), namely:

D =D + a vn (3-44)L e L
nD D +cTv (3-45)T e T

where a and oT are the longitudinal and transverse dispersivity,

respectively, [L], D and D are the coefficient of longitudinal and
L T

2 -transverse di.spersion, respectively, [L T I, v is the pore-water

velocity [LT - I ] and n is an empirical coefficient, frequently taken

equal to 1. De, the part of dispersion which is independent of the

velocity, is equal to the effective coefficient of molecular diffusion,
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viz. D /A [L2T
-1 ].

0

The significance of the space-time scale at which dispersion

occurs has been discussed theoretically by Bhattacharya and Gupta (19),

who distinguished three scales: a kinetic or molecular, a microscopic,

and a macroscopic or Darcy scale. Transitions from one scale to the

next higher scale can be made through application of the Central Limit

Theorem. Transformation to field scales could be attempted as well to

study the so called macrodispersivity.

Plumb and Whitaker (145) used two length scales to study the

effect of the heterogeneity of the porous medium on solute transport.

First, they used local volume averages, with the ADE developed by

combining "point" equations within a homogeneous layer and interfacial

boundary conditions. Second they used large-scale averaging, i.e., a

length scale was used that is large compared to the scale of the

heterogeneity. The resulting ADE for the latter approach contained

additional terms involving the time derivative. The theory was applied

to predict dispersion in stratified and 2-D spatially periodic media

(146). The dispersion coefficient determined with the large-scale model

for such media compared favorably with experimental observations. The

value of the dispersion coefficients was several orders of magnitude

larger than the value predicted for a medium which was assumed to be

homogeneous.

Finally, the concept of multiple length scales should be

mentioned. The resulting transport problem can then be solved with the

use of fractals (213, 215).
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Physical Non-equilibrium and Dispersion

The existence of physical non-equilibrium, which enhances

spreading, is an important factor when describing solute transport.

This is particularly true for structured soils, which will be discussed

in Chapter V. In order to retain the 'simple' form of transport

equations such as Eq.(2-5), attempts have been made to include the

effects of physical non-equilibrium in the effective dispersion

coefficient. This can be done by lumping together the dispersion

processes already discussed, namely mechanical dispersion and molecular

diffusion, and non-equilibrium spreading (cf. 53, 135). Following Bolt

(24), a general approach will be presented here, which describes

molecular diffusion, mechanical dispersion and apparent (physical)

non-equilibrium in terms of their respective diffusion lengths. This

practice is quite common in the theory of chromatography (66).

Summation of these lengths allows the use of one apparent coefficient

of dispersion.

According to Bolt (24), the diffusion length, Ldiff [L], is given

by:

L =ODe/J (3-46)

diff e V

This length can be associated with the distance in a column to which a

solute front has advanced such that the concentration gradient at the

column entrance is zero. At larger times, the effect of spreading due

to diffusion can usually be ignored, in particular for small values of

Ldiff"

Next, a similar expression for the dispersion length needs to be
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found. It is assumed that the flow is laminar, i.e. , streamlines

coincide with pathlines. For a typical porous medium, where the pore

space consists of an inter-capillary and an intra-capillary part, the

coefficient of mechanical dispersion should contain terms accounting

for transverse diffusion into the intra-capillary pore space, the

microscopic velocity distribution (i.e., advective dispersion), and

mixing in the inter-capillary pore space. The latter process was

referred to by Bear (15) as intensive mixing. It takes place at

positions where fluid streams from different channels are

interconnected. This provides an opportunity to mix via diffusion or by

the (partial) combination of fluid streams. Mixing counteracts

advective dispersion, which occurs because of differences in the mean

pore velocity for the various tubes. Differences in solute

concentration due to physical non-equilibrium, which in effect leads to

longitudinal dispersion, are reduced by transverse diffusion. Because

mixing and transverse diffusion limit dispersion, they will be examined

in more detail.

Assuming that liquid flow in a porous medium occurs in

semi-infinite, circular tubes with non-limited advective dispersion,

i.e., the velocity profile causes all dispersion, Bolt presented:

D = (o')2<v>2 At (3-47)
dis

where At is the mean residence time of a solute particle in a tube. The

relative spread of velocities, (a-,)2, is given by <Av>2/<v>2
, which is

a constant for a particular medium with average velocity <v> and

variations about that velocity of Av =Iv,<v>I. This part of the
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dispersion in porous media was first developed by Taylor (189). By

reversing the direction of flow, this type of dispersion can be

annihilated (cf. 167).

Obviously, dispersion in a porous medium is much more complex

because pore channels are interconnected and not straight. This

situation can be modeled by using so called mixing compartments, figure

3, where complete mixing occurs at points x=O, x=L, x=2L, etc. The

effective dispersion coefficient has a value of zero at x=O and reaches

a maximum at x=L. With the mean residence time of a solute particle in

a tube between two mixing points being At=L/<v>, an average dispersion

coefficient can be used:

2
D = (o-')<v>L/2 (3-48)
dis

Figure 3 illustrates the effect of mixing, at regular intervals L, on

the coefficient of mechanical dispersion according to Eq. (3-48). As can

be seen, 'unlimited' spreading occurs only over a finite distance, L,

between mixing points. An effective, average dispersion coefficient for

such a distance is used for computational purposes.

If transport in separate channels is the main mechanism behind

dispersion, this dispersion will be limited by mixing at intervals with

length L. Then the mechanical dispersion coefficient is presumably of

the form:

D =L <v> (3-49)

whreLcan be approximated from Eq. (3-48), i.e. , from (a ')2L/2.
whr dis

Bolt (24) suggested that a value equal to the grain diameter be used.
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FIG. 3. The value for D determined by mixing and the averaged value
dis

for D according to Eq. (3-48) (dashed line).
dis

Usually, however, L has to be quantified by experimental procedures.
dis

Theoretically, if the flow were to be reversed along the same

steamlines as before the reversal, only the contribution of molecular

diffusion to mixing would not vanish. In reality, a larger part of this

mixing is not reversible.

In addition to mixing, advective spreading is limited by

transverse diffusion. This mechanism becomes important if flow occurs

in a single tube or if no mixing occurs because of the absence of

inter-capillary pore space, as inside the aggregate. It is still

assumed that the porous medium consists of simple tubes for which

Taylor's (189) results can be used. An expression for Ddi s was obtained

by combining Eq. (3-47) and an appropriate expression for the diffusion
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time needed to traverse the width R over which the velocity profile is

spread. Bolt proposed:

D (') 2 2v>2gR2/D (3-50)
dis e

where g is a geometry factor. This expression is similar to Taylor's

result for a circular tube (Eq.(3-41)). The dispersion length becomes:

L ( ') 2<v>gR /D (3-51)dis e

In porous media, mixing and transverse diffusion (i.e., in a

single tube) occur simultaneously. The question then arises as to which

of the two prevails. This can be estimated by evaluating Eq. (3-48) and

(3-50). Since both processes counteract spreading, it can be assumed

that the process which results in the smallest value for Ddis

dominates.

Physical non-equilibrium occurs when flow in the intra-capillary

pore space is negligible. The stagnant phase of the liquid in the

intra-capillary pores does not participate in any (turbulent) mixing.

Rather, mixing between mobile and immobile phases of the liquid occurs

via transverse diffusion only. A description of dispersion in the

stagnant phase can be obtained by adapting Eq.(3-50) to account for the

limited accessibility of the liquid in the immobile phase. This was

done using a functional relationship between mobile and stagnant liquid

concentrations. This relationship can be presented, assuming a linear

increase of the surface concentration of the aggregate with time,

C =kt, as (45, 135):mo
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C -<C. > = kg(R )2/D (3-52)mo im a e

where Cmo is the concentration in the mobile phase [ML 3, <Cim > is themo ' im

average concentration in the immobile or stagnant phase [ML-3], k is a
ratecoeficent[ M-3T- 1

rate coefficient [ML T ] and R is the radius of the aggregate [L].
a

The geometry factor of the aggregate, g, varies between 1/8 for

infinitely extended cylinders to 1/15 for a sphere. By using the solute

flux over the entire liquid phase, Passioura (1971) obtained the

following dispersion coefficient, as caused by the stagnant phase

effect:

2 2Ddis = go. R2 <v>2/OD (3-53)dis im a e

with accompanying dispersion length:

L = ge. R2<v>/OD (3-54)
r Im a e

The effects of longitudinal diffusion, advective dispersion

(microscopic variation in the velocity profile in combination with

mixing and/or transverse diffusion) and the presence of a stagnant

phase can presumably be added since they act more or less

independently. It should be noted, however, that this last assumption

deserves more investigation (123). In the case of autonomous effects,

the diffusion/dispersion flux can be written as:

BC

D = -JVLD x (3-)

D diff dis r e V dis av e



50

It appears that, in many instances, mixing is the major

counteracting factor of advective dispersion. Ldis can therefore be

assumed to be constant ( 2R ) L is only important at small fluxes,
a dif

while L (dispersion length due to stagnant phase) becomes significant
r

for larger values of JV and increasing aggregate size R .a An increasing

aggregate size also causes the breakthrough curve to lose its sigmoidal

shape (22). Because of the relative importance of the larger

(inter-capillary) pores for transport, the tracer will appear sooner in

the effluent with larger aggregate sizes.

It should be noted that Ldiff is inversely proportional to JV

(Eq.(3-46)), and assuming that mixing prevails (Eq.(3-48)), Ldis is

approximately equal to the aggregate diameter, i.e., independent of the

flow, and Lr is proportional to JV (Eq. (3-54)). Despite the fact that a

number of simplifications and assumptions were made, the correspondence

between the experimental and theoretical behavior of LD was fairly

good, figure 9.8 (24). In terms of the Pe-number, defined as Pe=vL/D e

(L=2R), diffusion is the dominant term for Pe<1 and the stagnant phasea

effect becomes dominant for Pe>120.

Experimental Determination of Dispersion Coefficients

To describe the dispersion process and to solve the ADE, a

numerical value for the longitudinal, and sometimes for the transverse,

dispersion coefficient needs to be determined. For one-dimensional flow

in a homogeneous medium with two-dimensional transport, the ADE can be

written as:
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ac ac ac ac (357)
at - DL 2 x DT .a52ax 2  - ay2

DL and DT can be obtained by relating experimental results of the

concentration profile with explicit expressions for C. For this

purpose, displacement experiments are carried out, either in the

laboratory or in the field. For the determination of D these

experiments often involve a laboratory column filled with a packed

soil. The solute concentration of the resident solution in the column

is known, and a feed solution, with generally the same concentration of

a different solute, is leached through the column. In most cases the

effluent concentration is determined as a function of time, although

the concentration in the soil solution, at different locations along

the direction of flow, can be determined as well. A variety of methods,

used to obtain dispersion coefficients from these experimental dat.,

will be presented here. A review of some of these methods can also be

found in van Genuchten and Wierenga (203).

Because macroscopic variations in water content and pore water

velocity result in additional spreading, the column should be packed in

such a way that the soil is homogeneous with respect to the advection

term. Although this situation will never be reached totally, a constant

'effective' pore water velocity can be used for many practical

purposes. Deviations from this velocity during the experiment obviously

lead to incorrect results.

Mixing due to viscosity and density differences between resident

and feed solution are not to be included in the coefficient of
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hydrodynamic dispersion. Therefore, many studies involve the so called

tracer case (e.g., 20). The low concentration of a non-reactive solute

(i.e., a tracer) does not affect the density and the viscosity of the

solvent. Displacing and displaced fluids have the same density and

viscosity. Differences in viscosity and density lead to instabilities

(fingering). Biggar and Nielsen (21) showed that unstable flow

-3 -3
dominates for a density difference of 3.4x10 g cm and a difference

in viscosity of 0.003 cP, obscuring the effect of molecular diffusion.

Rose and Passioura (161) demonstrated that, during horizontal

displacement experiments, small differences in density of the displaced

and displacing fluids lead to quite different dispersion coefficients.

The displacing liquids consisted of water, 0.1, 0.2, and 0.4 M NaCl

solutions with densities of 0.99707, 1.00116, 1.00523, and 1.0133 g

-3
cm , respectively. The amount of gravity segregation could be

characterized with a gravity segregation factor 0:

= gkhAp/(rqvL) (3-58)

-2
where g is the acceleration due to gravity [LT ], k is the

permeability [L2], h the height of the porous medium in the transverse
-3

direction of flow, [L], Ap is the difference in liquid density [ML ],

^t is the mean of the viscosities of the resident and feed solution

[ML T-1, v is the mean pore-water velocity [LT - ] and L is the length

of the porous medium in the direction of flow, [L]. Since k decreases

rapidly during desaturation, gravity segregation is not much of a

factor during unsaturated flow. An increase in D by a factor 2 was

-4reported by these authors for their experiments, with Ap=8.2x10 g
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-3
cm compared to Ap=O. Gravity segregation might also be important when

contaminated salt water intrudes horizontally into a fresh water

aquifer. Because of the stratified flow and the subsequent mixing by

diffusion at the interface, contamination will extend further into the

fresh water than expected on the basis of the conventional hydrodynamic

dispersion process. Further discussions on viscosity and density

effects can be found in Krupp and Elrick (105), Bachmat (12), and

Scheidegger (165). Due to the temperature dependence of these

parameters, displacement experiments need to be carried out at constant

temperature.

One should also be aware of apparatus-induced dispersion (87),

which is especially important for short-column experiments and for

unsaturated media. These authors studied a conceptual porous medium

consisting of two different layers: the soil and the apparatus.

Apparatus-induced dispersion was assessed by carrying out displacement

experiments in the absence of the porous medium. The dispersion

coefficient of the porous medium was obtained by solving the

advection-dispersion equation for a two-layer system. The value of this

dispersion coefficient was as much as 40% less than obtained with the

one layer equation, where mixing was assumed to occur in the medium

only. The so called dead-volume, inside the apparatus but outside the

porous medium, should therefore always be kept to a minimum.

Rather than relying on effluent concentrations, in situ

determinations of the solute concentration can also be made. Harleman

and Rumer (82) measured electrical resistance with a conductivity probe
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to determine NaCl-concentrations. Gupta et al. (76) used an Ag-AgCl

electrode to measure Cl concentrations in an unsaturated glass bead

medium. Electrical potential, in contrast with electrical resistance,

is not greatly affected by the water content of the medium. Kirda et

al. (95) used labeled Cl in the feed solution, of which the

concentration was measured in situ with a Geiger-Muller tube. Grismer

et al. (70) used a dual-source gamma-attenuation system to determine

salt and water content. In an error analysis, thse authors showed that

the accuracy of solute concentrations determined at low water contents

was limited. Grismer (69) used the same technique to determine SrCl 2

and Nal concentrations in a displacement study during horizontal

transient unsaturated flow. Initially, no salt was present and the feed

solutions had a molality of 0.205 and 0.1 m, respectively. No mention

was made of density or viscosity effects.

Following Fried and Combarnous (61), some methods to determine DL

and D will be discussed. The solute (tracer) concentration can be

determined as a function of position at a certain time or for various

times at a certain position, as with breakthrough experiments. For both

cases, analytical solutions exist. For a uniform medium and steady flow

(v and 8 are constant), the 1-D ADE was given as:

c D 2C -vc (3-59)
at L x2 8x

subject to the following initial and boundary conditions

C(x,t) = C x=0 t>O
0

C(x,t) = 0 x- t>0 (3-60)

C(x,t) = 0 x>0 t=0
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Utilizing the definition of the complementary error function, the

solution of Eq. (3-59) may be written as (i.e., an approximation of the

solution by Lapidus and Amundson (109)):

1 x- vtl
C/C =2erfc [ (3-61)

/4D 
t

L

For a given time, the solution follows a normal distribution

1-N[(x-p)/r] with mean displacement =vt and standard deviation - =

-2D t. N[ J is the probability density function for a normal
L

distribution with values N[-1]=O.16 and N[1]=0.84. The width of the

transition zone, 2o-, can be determined by plotting C/Co versus x, with:

2o = x0 -x0 = 8Dt (3-62)
0.16 084 L

where x and x denote positions for which C/C is equal to 0.16
0.16 0.84 0

and 0.84, respectively. The value of the longitudinal dispersion

coefficient follows from:

D=(x -x 2/8t (3-63)
L 0.84 0.16

If the concentration is observed at a certain position as a function of

time, the following expression for D can be used:
L

x-vt x-vtDL 0 i[/ .16 _ t0.84] (-4

t t
0.16 0.84

After the discussion of the determination of the longitudinal

dispersion coefficient, D, Fried and Combarnous (61) continue with the

determination of the transverse dispersion coefficient, DT . It should

be noted that relatively little in-depth work has been done in the area
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of transverse dispersion, because of the increased experimental

difficulties and the much smaller effect of transverse dispersion in

comparison with longitudinal dispersion (e.g., 82).

For the determination of D in a semi-infinite 2-D system
T

consisting of a uniform soil, it is assumed that 1-D steady state flow

conditions exist and that steady solute transport is established

(C=C(x,y)), in which case the longitudinal dispersive flux is usually

negligible. Under these circumstances the transport equation becomes:

2
v D C (3-65)

8ax T 28y

where y is the distance in the direction transverse of the flow [L].

For the following boundary conditions:

a= 01x>O , y4±0

C(O,y) = C x=O , O<y<m (3-66)0

C(O,y) = 0 x=O , -W<y<O

the analytical solution is:

C/C = 1+ erf[ y ]] (3-67)
0 2[ (( 4 xDT)/v)1 / 2

The transverse dispersion coefficient determined from this solution is:

D v 2 (3-68)T 2x (

where the standard deviation at an arbitrary point x=x is given by:
0

= y(xC/C,=0.84) - y(x C/C =0.16)] (3-69)2 O ' 0

Because relatively little work has been .devoted to transverse

dispersion, it is assumed in this review that we deal with longitudinal

dispersion, i.e., D=D L unless stated otherwise.
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Rose and Passioura (160), making use of-the solution of Brenner

(27), determined D by plotting C =(C-C )/(C -C.) versus In T on
e i o 1

probability paper. Ce is the dimensionless exit concentration and T is

the number of pore volumes (T=vt/L). Almost straight lines for

particular values of the Brenner number were obtained. The Brenner

number is defined as:

B = vL/D (3-70)

where L is the column length [L]. Because of this linear relationship,

the following expression seems plausible:

inverfc (2C -1) = -a e T - ( (3-71)
e

where inverfc denotes the inverse of the complementary error function,

and a and ( are slope and intercept, respectively. For 16<B<640, the

following empirical relationship was proposed by Rose and Passioura

(160):

& B = 0. 1139 (og a)3 - 0.3504 (t a)2+

2.3623 to ga + 0.4732 (3-72)

By plotting -tn T versus inverfc (2C -1) the slope a and the intercept
e

( can be obtained. The Brenner number follows then from Eq.(3-72) and D

can be calculated from Eq.(3-70). Van Genuchten and Wierenga (204)

presented various improvements of this method, viz. an inversion

formula for inverfc, a simplified expression of Eq.(3-72), and

approximations for various boundary conditions.

A popular technique to obtain dispersion coefficients is via

curve fitting. Parker and van Genuchten (130) provided a curve fitting
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program, using a non-linear, least-squares inversion method, to

determine various transport parameters including dispersion

coefficients. The curve fitting program can be used for experiments

involving concentrations at a fixed location at different times or for

a certain time at different locations; other parameters to be

determined are retardation factors and degradation constants. The

program can also deal with physical and chemical non-equilibrium

transport models as discussed in the section on non-equilibrium

conditions, and a stochastic model of transport under log-normally

distributed flow conditions. An independent validation of the physical

model cannot be achieved by curve fitting (36, 149).

Amoozegar-Fard et al. (6) used the solution given by Eq. (3-61).

By taking the inverse complementary error function and applying an

error minimization technique, D and R were determined. Some other

methods, such as the point calculation, finding the variance, and the

slope method, are discussed in Levenspiel and Smith (114).

Smiles et al. (179) used Matano's method to study the

hydrodynamic dispersion during absorption of water by soil. This method

uses the Boltzmann transformation to transform a partial differential

equation into an ordinary differential equation (cf. 35, 45). Because

of the relatively low velocity, the small value of the Peclet number

and the rapidly changing water content during infiltration, the

dispersion coefficient is assumed to be only dependent on water

content. By using the relations D (O)=SD(0), the product of water
5

content and the coefficient of hydrodynamic dispersion, and JvV, the



59

volumetric water flux, the one-dimensional transport equation

(Eq. (2-4)), can be rewritten as:

aeC a ac aJvC
- D() (3-73)ax s - a x

with the following boundary and initial conditions:

C = C x>O t=Oi

C = C x=O t a-0 (3-74)
0

C = C. x-W t>01

where D (8) is an alternative expression for the dispersion
s

coefficient. It is assumed that the medium is semi-infinite; the

initial and exit boundary conditions transform to the same condition.

For a homogeneous soil with horizontal, non-hysteretic flow we

have:

Jv = -D ( ) e (3-75)

w ax

therefore Eq. (2-132) was rewritten as:

0 ac _ a [D () ac + D () ae ac (3-76)
t a Ds) a J w axax

where D is the soil water diffusivity [L2T-1. Using the Boltzmannw

transformation (w =x/V/t), Eq. (3-76) becomes

d dC] dc
D (0) + -- 0 (3-77)

d- s d- + 2 dw

while the boundary and initial conditions, Eq. (3-73), become

C=C. -o1 ( 3-78 )

The function g is defined as:

dO 8g = Ow + 2D (o) -e = Iw O(-9
w d-w f dcC-9
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The dispersion coefficient can then be obtained from

C

D (e) = d g(3-80)s 2 - dC (-0

C.
1

in a way as described by Bruce and Klute (35) for D . D Ce) may bew s

determined by carrying out experiments using segmented soil columns.

For each segment, average values for e, C, and g can be determined as a

function of w. Laryea et al. (110) determined dispersion coefficients

for both cations and anions during horizontal infiltration. Elrick et

al. (59) extended the above analysis to vertical flow. A power series

solution similar to that of Philip (139) was used to express the

solutions of flow and transport equations.

The dispersion process depends on viscosity, density, velocity,

water content, molecular diffusion, and permeability. In order to

assess the influence of velocity and particle size, experimental

results are commonly analyzed by plotting DL/Do versus the Peclet

number (Pe=vd/D) on a log-log scale graph. In this case, d is a
0

characteristic pore or particle size dimension. Bear (16) distinguished

the following dispersion regimes (61) based on values of the Peclet

number:

- Molecular diffusion is dominant for Pe<0.4.

- Molecular diffusion and mechanical dispersion are of the same order

for O.4<Pe<5. Both effects can be added up.

- Major mechanical dispersion with some molecular diffusion occurs in

the range 5<Pe<iO00. These effects interfere and cannot be added up.
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- Dominant mechanical dispersion for 1000<Pe<1.5x1O5 with negligible

molecular diffusion.

- Mechanical dispersion for the flow regime being out of the domain of

5
Darcy's law for Pe>1.5x10 .

Several authors have provided graphical relationships between velocity

or the Peclet number and the dispersion coefficient (e.g., 22, 24, 61,

138, 160).

Finally, the so-called numerical dispersion should be mentioned.

When the transport equation is solved by numerical methods, using

experimental values of the dispersion coefficient, the solute front

exhibits additional spreading. Especially at high values of the Peclet

number, 'smearing' of the numerical solution occurs around the front.

This is an artifact due to the numerical procedure (26). A number of

approaches can be taken to reduce this phenomenon (cf. 1, 29, 39, 195).



IV. ION EXCHANGE

Equilibrium transport of linearly exchanging solutes can be

described in a straightforward way with Eq.(2-19). However, for

transport of non-linearly exchanging solutes, the situation is somewhat

more complicated.

First, the influence of exchange on the solute front without

dispersion/diffusion is reviewed. Second, the effect of dispersion is

included. Several approximate analytical techniques can be used to

study transport under these conditions, which illustrate the effect of

non-linear exchange. In a majority of the studies, however, the

transport problem is solved numerically by using experimentally

determined exchange isotherms. Some of these studies will be discussed.

Equilibrium Chromatography

Following Reiniger and Bolt (156) and Bolt (24), the qualitative

influence of the exchange isotherm on the concentration front will be

studied for a relatively simple case. It is assumed that only two

different cation species are present during miscible displacement under

steady flow conditions. This provides a fairly representative picture

for many soil-water systems. The adsorbed concentration q of a solute

species depends on the liquid concentration of that species, C, and the

total concentration of all solute species, C It is convenient to

-3express q in mol m , i.e., moles of charge per volume of porousc

62
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medium, and C in mol m , i.e., moles of charge per volume of

solution. The total concentration is constant during ion exchange. When

diffusion and dispersion are neglected, a step change in concentration

occurs at the "concentration front" located around Jvt/0, the
V

penetration depth. If C is assumed to be constant across this
T

concentration front, q depends only on C. For a particular species

Eq. (2-7) then becomes:

.(q' + ) acJ ac
at - v -a1

where q' (=dq/dC) is the differential capacity of the exchanger for the

exchanging species, JV is the Darcy flux which is assumed to be

positive, and x is the (positive) distance from the inlet. In order to

solve Eq.(4-1), and to justify neglecting the dispersive flux, aC/ax

needs to be finite. With the chain rule for partial derivatives,

ac ax at(-) (c) (-x)c= -1, Eq.(4-1) can be rewritten as

(ax _ JV(4-2)
at-C -q' +-0

If the condition that ax be finite is violated, i.e. if theOx

concentration profile exhibits jumps, the conservation of mass

(Eq. (4-1)) needs to be expressed in an alternative way:

(Aq + 8AC) dx = AC dV (4-3)

where V is the input volume per unit area of the column. The rate of

propagation, given by Eq. (4-2), then needs to be rewritten as:

dx JV(4)
( d -) a = a q ( 4 -4

AC



64

acThe position of a particular solute concentration (for finite)

follows from integration of Eq. (4-2). For a soil with q and 0

homogeneous with respect to position and dV=Jvdt, the position for a

particular concentration is given by:

tj V-V (C)Xc= J qi+ dt = o___xC q+ t q')+0 ( 4-5 )

0

where the feed solution, with concentration C, enters a column having

an initial concentration C ; V (C) is an inverse feed function, which0

is the volume of solution applied to the column at the moment that the

concentration at x=O reaches C (for step type displacement V =0). The
0

average depth of the concentration fronts in the adsorbed and liquid

phase is given by:

C C
.0 0

={XC (q'+ 0) dC / (q'+ 0) dC (4-6)

C. C.1 1

The rate of propagation of the solute in the liquid phase follows

from Eq.(4-2). Equilibrium chromatography enables us to determine the

propagation in the adsorbed phase as well by using the exchange

isotherm.

To study the shape of the solute front, Eq. (4-5) is

differentiated (V =0):
0

ax _ Vq'' (4.7)

OC V (q'+ 0)

At this point, a distinction needs to be made among favorable,

unfavorable, and linear exchange. If the incoming cation has a convex
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2 2
isotherm, q' '=d q/dC2<0, we deal with so-called favorable exchange,

while the exchange is said to be unfavorable if q''>O and linear if

q' '=0.

In case of favorable exchange there is a dilemma. According to

Eq.(4-1), the slope of the solute front is negative (aC/ax<O), but

using Eq. (4-7) we find that aC/ax>O. The latter implies that the solute

travels faster at higher concentrations than at lower concentrations.

This is physically not possible for a step front and, as already

mentioned, the rate of propagation should then be determined based on

Eq.(4-4). For cases other than a step change in the concentration of

the eluent, a "self sharpening" effect will occur until a step front

has been established.

For linear exchange (q''=0), we can see from Eq. (4-7) that

ax/aC=O for any applied volume. The initial profile will therefore not

be altered during passage through the porous medium. If the initial

profile contains jumps, Eq. (4-3) needs to be used, otherwise Eq. (4-1)

suffices.

For unfavorable exchange we can conclude from Eq. (4-7) that for a

particular value of C, the front flattens with increasing V.

Unfavorable exchange induces solute spreading (i.e., decreases the

concentration gradient).

The Combined Effect of Ion Exchange and Dispersion

Bolit (24) examined the combined effect of exchange and

diffusion/dispersion using analytical techniques. Having expressed all

(physical) dispersion effects in one dispersion length, L , he
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attempted to include exchange as well. The ADE in terms of the

dispersion length is obtained with Eq. (2-7) and (3-55):

raC aC a__(L 1C

(q'+e) -c +J a-c-( x -) 1=0 (4-8)
V[8x -X D axJ

Although the 'effective' value of LD varies through the soil column,

Frissel et al. (62) showed that a column averaged value might be used.

For a constant LD Eq.(4-8) might be written as Eq.(2-14). If, in

addition, dq/dC=constant (linear exchange), the same analytical

solutions as for Eq. (2-19) can be used.

In case of favorable exchange, the solute front in the adsorbed

phase is generally located ahead of the solute front in the liquid

phase. In terms of the effective retarded velocity, v , the "high"

concentrations will travel at a velocity greater than v and the "low"

concentrations will travel at a velocity less than v . In contrast,

diffusion/dispersion causes just the opposite effect. Eventually, a

steady front will develop with respect to the moving coordinate x-v t

and all concentrations will travel at a velocity equal to v . For a

constant L Eq. (4-8) can be rewritten to obtain a general expression

for the propragation of the solute front:

( - qO _1-LD a(ac/ax) (4-9)

Once steady state has been established, we obtain:

* x J v
v = (8 - Aq (4-10)

AC

Based on these two expressions, Bolt (24) presented a method to

analytically determine adsorbed and liquid concentrations.
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In case of unfavorable exchange, no steady front will develop

with respect to the moving coordinate, because dispersion/diffusion and

exchange both cause the "low" concentrations to travel faster than the

"high" concentrations. The ADE must now be solved numerically to get an

accurate picture of the solute front in the adsorbed and liquid phase

(Cf. 106, 107). For estimation purposes, one can add the two effects by

first solving the front position as determined by Eq.(4-5) (exchange

only) and then adding the effect of diffusion/dispersion. The latter

effect causes the solute front to spread around x =v t. With Eq.(2-38),
p

we can estimate this spreading according to:

x-x = 2 D t inverfc(2C) (4-11)
p

where C is the dimensionless concentration defined in Eq.(2-38). This

term can be treated as a perturbation term to be added to the front

position according to Eq.(4-3). In this way, a conservative estimate

was obtained for the maximum amount of spreading.

Finally, the occurrence of non-equilibrium during ion exchange

should be mentioned. In aggregated soils, the deviation from local

equilibrium is most likely to be caused by physical non-equilibrium,

i.e. the limited accessibility of exchange or adsorption sites. Bolt

(24) assumed that all adsorption takes place in the stagnant region of

the liquid. Examples of adsorption in both mobile and stagnant region

were treated by van Genuchten and Wierenga (202), Tang et al. (186) and

Selim et al. (170). Transport from the mobile to the stagnant region

occurs via a diffusion process (Eq. (2-44)), which was described by Bolt

(24) with:
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a(q.m +m .mC =im imCim k 0 (C -C.) (4-12)
at a mo mo im

where qim is the concentration in the adsorbed phase (immobile sites

only), k is a rate constant for diffusion inside the aggregate, anda

instantaneous chemical equilibrium is assumed inside the aggregate. A

distribution ratio between mobile and immobile phase, defined as:

Kmi (Aq + 0. 0o(4-13)
D A AC im mo

can be used to rewrite Eq. (4-12) as

ac. kim - a (C -C.) (4-14)
at mi mo im

Without longitudinal diffusion/dispersion the transport equation

becomes (Eq. (4-1)):

aC. aC aCSmi im mo mo
0 K + m-.0 =+ o 0 (4-15)

moKD at mo at vax

Equations. (4-14) and (4-15) can be solved by introducing a position

dependent time and by using a transformation in order to obtain scaled

variables. The solution is expressed in the so called Goldstein

J-function (cf. 56, 196).

Instead of using the above approach, the stagnant phase effect

can be described by an equivalent length parameter L . For spherical
r

aggregates with radius Ra the expression of Crank (45) is adapted for

a situation where exchange occurs:

(q.m + 0. C.
im i m- iO. D (C -C. ) (4-16)
at R2 im mo I
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Combination of Eqs.(4-12) and (2-16) results in the following

expression for k•a

0.
15D im (4-17)k- 2 0to

R mo
a

With the use of Eq. (3-46), L can now be expressed in terms of k a Two' r a"

different expressions were given by Bolt (24), depending on whether

adsorption/exchange takes place. The advantage of this approach is, as

was mentioned in the section on physical non-equilibrium and

dispersion, that all effects are accounted for by one effective value

of the dispersion length. Consequently, analytical solutions can be

used to solve the advection-dispersion equation.

Numerical Solutions of Transport Involving Equilibrium Exchange

The two preceding sections, discussed some of the fundamentals of

transport of exchanging solutes with and without dispersion. This was

done in a way so that explicit expressions for the position of the

solute front were obtained, and that (approximate) analytical solutions

were available. However, because of the non-linearity of the (measured)

exchange isotherms, numerical techniques are usually needed to solve

the transport equation. For that reason, this section focuses on the

(numerical) simulation of exchanging solutes.

One of the earlier works on transport of reactive solutes was

reported by Kay and Elrick (94). These authors determined adsorption

isotherms of lindane for various soils and soil fractions. Linear

adsorption was observed; the l indane was particularly strong adsorbed

by organic matter. A chromatographic model developed by Hashimoto et
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al. (83) was used to predict the movement of lindane through the soil.

A reasonably good agreement between predicted and experimental

breakthrough curves was obtained. At higher pore water velocities, the

prediction was somewhat poorer, perhaps because of physical

non-equilibrium. Displacement of the lindane (elution curve) was

described poorly, possibly because of inadequate knowledge of the

desorpt ion curve.

Lai and Jurinak (106, 107) solved the transport equation for

non-linear adsorption with an explicit finite difference method. These

authors considered homovalent exchange in a binary system for

one-dimensional steady flow. The dimensionless variables Xk=Ck/CT and

Y =S /S were introduced for the solute concentration in the liquid and

adsorbed phase, respectively. The following equation was obtained,

using a similar relation as Eq. (2-12):

2aXk a2Xk aXk

at k D(X2k kV(Xk ax (4-18)
ax

where the dispersion coefficient and velocity were adapted according

to:

D(Xk) = D (4-19)
S1+ (PbST/CT) J (Xk)

v(Xk ) = v (4-20)
S1+ (PbST/OCT) f' (Xk)

with f' (Xk)=dYk/dXk . The denominator of the latter two terms can be

recognized as the retardation factor; its value depends on Xk because

of non-linear exchange. Following Helfferich (84), various adsorption

functions Yk=f(Xk) were used. For a number of isotherms (linear,
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concave and convex), numerical solutions were obtained for Eq. (4-18)

subject to specified boundary and initial conditions. Column studies

were carried out involving Ca and Mg, which exhibit a slightly

non-linear exchange isotherm. The comparison between experimental and

numerical results was good.

Rubin and James (163) presented a comprehensive analysis of

multi-component equilibrium exchange during one-dimensional steady flow

in layered and homogeneous profiles with a variabl e C T The equations

to describe exchange and transport were solved numerically with the

Galerkin method. These authors showed some interesting features, such

as multiple fronts and plateau zones during multi-species transport

with a varying C T. It was also demonstrated how ion exchange and

hydrodynamic dispersion influence solute transport..

Along the same lines, Valocchi et al. (192) presented an

analytical framework for transport of various species of ion exchanging

solutes, based upon the theory of chromatography. In contrast with some

previous work in this' area, the effect of hydrodynamic dispersion was

included and the total electrolyte level was not assumed to be

constant. The development of the transport equations is quite similar

to that presented by Rubin and James (163). In case of n exchanging

ions, the governing set of equations is:

ac k as k a 2 a
0 atk OD k kJk=1) 2). . n(4-21)

nt bR 2 Va
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CT is the variable total solute concentration in.the liquid phase and

S is the constant, total solute concentration in the adsorbed phase or
T

the cation exchange capacity. In case an adsorbed species k, with

valence uk is exchanged for species j, with valence uj, the exchange

coefficient can be defined as:

Kjk = (Y/X.)k (Xk/Yk)k j  (4-24)

where Y and X again denote dimensionless concentrations. It should be

noted that a more accurate solution might be obtained by using chemical

activities. Furthermore, the assumption that Kjk is constant is

strictly not correct.

To solve the transport equations, we need to reduce the number of

dependent variables, by expressing Sk in terms of Ck . This can be done

by using the n-1 independent equilibrium expressions, and by using

Eq. (4-23). The multi-component exchange isotherm for a species k is

given as:

Sk = Fk(C 1 C2  ,. C ) k=1,2,....,n (4-25)

Eq. (4-25) can be substituted into Eq. (4-21), which leads to a set of n

transport equations of the following form:

8Ck n ac. a2Ck 8Ck(4-
it bEjkD 2tJDx(x4-26)k=1 a 8 x 2

aFk askwhere fJk = aC. -C." This system has been solved for binary and

3 3
ternary exchange using the Galerkin finite element method (e.g., 163).
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As was mentioned earlier, the value of Kjk is important as it

affects the shape of the front. For a concave isotherm, Kjk< 1 the

Xk-profile travels at a speed proportional to t instead of t ,
1 / 2 as for

Fickian dispersion. For a convex isotherm, Kjk>1, the Xk-profile

becomes steeper when the front travels through the medium. Although the

situation with a varying CT is somewhat more complex, one can assume

that each particular concentration travels in a constant CT

environment.

A qualitatively good comparison of theoretically predicted

concentrations, using multi-component exchange, with experimental

results, involving the monitoring of Ca and Mg in a ground water

aquifer, was reported by Valocchi et al. (192). Finally, these authors

reported that dispersion induced exchange, a phenomenon reported by

Lake and Helfferich (108), which occurs as a result of dispersive

mixing across the solute front in case CT varies and which leads to

changes in the adsorbed phase, was of minor importance.

Selim et al. (169) examined the concentration of 2,4-D during

infiltration and redistribution. This was one of the first studies

concerning reactive solute movement during transient, unsaturated flow.

Numerical solutions were obtained with an explicit-implicit finite

difference technique. The dispersion coefficient was obtained as a

function of pore-water velocity and the retardation factor was

described similarly as by Lai and Jurinak (106, 107). The concentration

profiles obtained from a field experiment, involving the application of

2 cm of an aqueous solution containing 50 ig/ml of 2,4-D, were in good

agreement with the simulated profiles.
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Although the retardation factor, R, is not constant for

non-linear exchange, one may want to use an effective, constant value

for R which can be used over the whole concentration range. Valocchi

(190) introduced an effective distribution coefficient, Kd, as the

ratio of the step change in aqueous phase concentration and the step

change in sorbed phase concentration. The effective velocity of the

solute front can be given by (Eq. (4-2)):

v =v/R = dx /dt (4-27)
p

which provides a way to determine a (constant) value for R. The use of

a constant value for R is plausible for a number of cases. For "trace"

quantities of the species (i.e., C.<C), as for certain pollution
1 T'

problems, we can safely assume linear exchange. Valocchi (190) claimed

that for many situations involving non-linear exchange and

multi-species systems, a constant R can be used for predictive purposes

provided that dispersion is negligible. Valocchi (190) applied a mass

balance across the step change in concentrations to come up with:

-1 PbAS -1v /v =R = (i +- -) (4-28)
0 AC

where C=C -C. and S=S -S., i.e. , the difference between final and
0 1 0 1

initial concentrations, can be used to define an effective K It

seems, however, that the dependence of Kd on the initial and final

concentration values limits its applicability to specific cases.

Bobbins et al. (159) used a model by Childs and Hanks (40) to

simulate water movement and solute transport. Transport was simulated

for a variety of cases: non-reactive solute transport, precipitation
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and dissolution of lime and gypsum during transport, and multi-cation

exchange. The numerical model to simulate transport involving exchange

accounted for ion pair formation and it used activities rather than

concentrations. During concomitant lysimeter studies, soil solution

samples were obtained at various depths using porous cups attached to

sampling tubes. Solute concentration and electrical conductivity could

only be predicted satisfactorily by including precipitation/dissolution

and cation exchange. The adsorbed concentrations of Ca, Mg, Na, and K

followed from the CEC, the cation exchange capacity, and the

selectivity coefficients characterizing equilibrium exchange for

various pairs of cations. These relationships were (158):

CEC= SCa + SMg + SNa + SK  (4-29)

1/2
C S C S C S
CCa Mg CK Ca CNaMg

1 1/2 3 1/2 5 1/2
C S C S CSMg Ca Ca K Mg Na (4-30)

CNa Ca CK Mg CNa K
2 1/2 4 1/2 6

Ca Na Mg S K K Na

-3
where C is the concentration in the liquid phase [mol m- ] and S is the

-1adsorbed concentration [cmol kg ]. By combining the above expressions
c

one can determine, for example, the amount of adsorbed Ca as:

C K C C
S CEC / Mg 1 Na + K + 1 (4-31)

Ca C 1/2 + C 1/2K C 1 /2K
Ca Ca 2 Ca 3

In contrast with Eq.(4-25), a straightforward explicit expression is

now obtained.
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The approach by Robbins et al. (159) to calculate complexation,

precipitation/dissolution, and cation exchange in separate subroutines

seems to be quite popular. The calculations are facilitated by the

availability of computer packages which can be used to simulate the

equilibrium chemistry involving many components and reactions. A

drawback is that convergence problems are reported to be common when

the transport equation and the model describing the equilibrium

chemistry (exchange, complexation, protonation etc.) are combined.

Jennings et al. (88) suggested, therefore, that the technique of direct

insertion into the main transport equation be used rather than solving

a number of equations simultaneously. This is basically the approach

discussed so far, i.e., the inclusion of a retardation factor in the

transport equation. The dependency of the solid phase concentration on

various quantities was expressed by Jennings et al. (88) as follows:

S = f(CST, t,x,aC/8t) (4-32)

A solution of the problem was accomplished by a Galerkin finite element

method (cf. 144). Kirkner et al. (97) elaborated on this technique.

It should be noted that the type of chemical reaction needs to be

considered when chosing the technique of numerical solution. Rubin

(162) distinguished six broad classes of chemical reactions during

transport, each with its own mathematical formulation. One is also

referred to the review article by Abriola (1), which discusses recent

work on the modeling of contaminant transport, including geochemical

and sorption models.
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The exchange of K by Na, governed by the Gapon equation (63) was

studied by van Eykeren and Loch (194) for soil systems with a mobile

and an immobile liquid phase. Experimental results obtained with a

cation exchanger column compared reasonably well with numerical

solutions. Selim et al. (170) obtained breakthrough curves for

aggregated soils by also considering a mobile and immobile region of

the liquid phase. Experimentally determined exchange isotherms were

used to quantify the exchange reaction.



V. TRANSPORT IN STRUCTURED AND LAYERED SOILS

The structure of a soil, i.e., the spatial arrangement or

clustering of primary soil particles into secondary units called

aggregates, can have a great impact on the transport of solutes through

that soil. The REV, i.e., the smallest volume for which macroscopic

uniformity exists, is much larger for an aggregated soil than for a

non-aggregated soil. The dispersion in aggregated media is caused by

molecular diffusion, mechanical dispersion, and the previously

discussed "stagnant phase" effect. Spreading in a medium which consists

of homogeneous layers exhibits some additional characteristics in

comparison with non-layered soils where dispersion can be described

with a Fickian process. For aggregated and layered media, the medium

can conceptually be divided into homogeneous zones (mobile and immobile

regions, individual layers). In this way the transport problem lends

itself to an exact description.

First, the concept of mobile and immobile regions of the liquid

phase will be reviewed in more detail than previously, along with a

discussion of the velocity dependency of the dispersion coeffcient.

Next, some cases of transport through media with a particular structure

will be cited followed by some remarks about transport in layered

media. The discussion is quite general and merely concerns transport in

well defined systems. Much work is still needed to explain and predict

transport on a field scale, which will be discussed in the next

Chapter.

78
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Mobile and Stagnant Regions

In order to describe the appearance of asymmetrical breakthrough

curves (tailing), van Genuchten and Wierenga (202) used the concept of

mobile and immobile regions of the liquid with diffusional transfer

between the two (see section on physical non-equilibrium). This concept

had been previously applied by Coats and Smith (43) and Villermaux and

van Swaay (206). A sensitivity analysis was carried out by van

Genuchten and Wierenga (206) with an analytical model, which indicated

that the tailing observed during unsaturated flow in an aggregated

medium was succesfully predicted. In two subsequent papers, the

experimental determination of breakthrough curves for aggregated,

unsaturated media was described (203, 205). Columns were packed with a

clay loam, aggregate size 2.0 or 6.3 mm, to study breakthrough curves.

The outlets of the columns were connected to a vacuum chamber

containing an automatic fraction collector. The solution was applied

with a syringe pump to maintain a constant flux. The solutes used in

these studies were H20 (203) and 2,4,5-T (205). It appeared that the
2

amount of immobile water increased with decreasing velocity and with

increasing aggregate size. A fairly good prediction of experimentally

determined breakthrough curves was obtained.

Since then, the concept of mobile and immobile regions of the

liquid phase has-widely been used to describe physical non-equilibrium

dispersion. This concept, however, applies not only to structured soils

according to de Smedt and Wierenga (55, 57). These authors showed that,

for unsaturated conditions in a non-structured medium (glass beads),
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the effluent concentration could only be described by taking into

account an immobile water fraction as well. If no distinction was made

between those fractions, a very large value for the dispersion

coefficient was needed to fit the data with the advection-dispersion

equation.

On the other hand, it has been reported that no basis exists for

a subdivision into mobile and immobile regions of the liquid phase.

Philip (140, 141) performed a theoretical study of diffusion in a

semi-infinite porous medium containing dead-end pores filled with

immobile water. The cumulative diffusive fluxes in the mobile and

immobile region of the medium, J and J were defined as:
mo im'

Jmo = f {C o (x t)-C m (xO))} dx, (5-1l-a)

000
Jim = { {Ci (xt)-C (xO)} dx(5-1-b)

0

where the concentrations are based on unit volume of porous medium.

These concentrations were solved analytically.

Philip (140) found that transient diffusion is only different for

mobile and immobile regions during the initial stage of the diffusion

process, when the relationship between time of infiltration and the

dimensionless cumulative diffusive flux obeys a (time)1 / 2 law, whereas

it obeys a (time)3 / 2 law in the stagnant region. Shortly after the

initiation of the diffusion process, however, the dimensionless

cumulative diffusive flux in both kind of pores obeys a (time) I / law.

Phii ip ( 141 ) argued that the effect of dead-end-poros ity is
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insignificant and the distinction of two regions of the liquid phase

seems unwarranted.

Philip's arguments were supported by Smiles and Philip (178) and

Smiles et al. (179) who observed a pistonlike displacement during

infiltration of a KCl solution in relatively dry soil. Their medium

contained 30% kaolinite in a matrix of fine sand. Work by Warrick et

al. (209) and Kirda et al. (95, 96) also seemed to support the

observation that, at least in non-aggregated media, no basis exists for

a subdivision into mobile and immobile regions. Awad (11), who did

similar displacement experiments as de Smedt and Wierenga (57) in a

sand, also concluded that no distinction between mobile and immobile

regions could be made.

Somewhat related to this issue is the dependence of the

dispersion coefficient, D, on the pore water velocity, v. Smiles et al.

(179) found no dependence of D on v during infiltration of a

KCl-solution into the dry kaolinite/sand medium. As was pointed out by

these authors, different results can be expected for coarse textured

soils. Smiles et al. (179) observed, that for the low Pe-numbers

encountered during infiltration into a dry soil, the water and solute

profiles preserved similarity in terms of W (=x/V/7) (see section on

experimental determination of dispersiuon coefficients). This implies

that D is velocity-independent. Saffman (164) and Pfannkuch (138) also

reported that D is independent of v, but Saffman (164) used Pe<1 as a

condition for D to be independent of v (Pe=vd/De, where d is the

average grain diameter). Values for v can be found by using Philip's
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theory of infiltration, while d can be estimated with the Kozeny-Carman

relation. It appeared that for t>1.1 s, D was independent of velocity

under the conditions stated by Smiles and Philip (178). Groenevelt et

al. (72) studied dispersion in a dispersed clay paste, using a slit

model to represent the flow between clay platelets. The dispersion

coefficient was found to be virtually velocity independent and could be

equated to the coefficient of molecular diffusion. It should be noted

that in their case the Peclet number (Pe=wv/D where w is half the

width of the slit), was also very small (<1) because of the absence of

large pores.

Findings by Watson and Jones (212), who conducted similar

experiments as Smiles et al. (179), seem to indicate that hydrodynamic

dispersion is velocity dependent. In the literature, a linear

dependence of D on v has often been reported for (steady) flow at

higher values of the Pe-number. Yule and Gardner (219), for example,

reported a longitudinal dispersion coefficient for a Plainfield sand

which was linearly related to v. At large Pe-numbers (e.g. Pe>35) it is

plausible to assume a linear relationship between v and D (cf. 15, 82,

206).

Aggregated Media

The study of transport in aggregated media has received

considerable in recent years. Agronomists seek to optimally use

irrigation water and applied chemicals, which might be easily lost in

aggregated soils because of "bypass" flow. Chemical properties, such as

pe, p11, and pO2, might be quite different for inter- than for
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intra-aggregate pores, leading to more complex sink/source terms. The

performance of ion exchange columns is the topic of many studies in the

chemical engineering literature (e.g., 155). Transport in these columns

is usually described in terms of a transport equation containing a

sink/source term which describes the exchange inside the solid

particles of the column. This section will examine how the transport

equation is formulated for aggregated media.

Passioura (135) distinguished between micropores, inside the soil

aggregates where solute movement occurs only via diffusion, and in

macropores, located between the aggregates where transport occurs via

viscous (advective) flow. The latter type of transport can be

completely dominant, and considerable work has been devoted towards a

better understanding of flow in macropores (e.g., 18). The liquid

present in the micropores is supposed to be immobile or stagnant,

whereas the liquid in the macropores is said to be mobile. Passioura

(135) used the following equation to describe transport in an

aggregated medium (cf. Eq. (2-44)):

o. aC.. a2C ac
im Im + mo =D mo mo (5-2)

o at at mo 2 mo ax
mo ax

where D is the dispersion coefficient of the mobile liquid phase andmo

where the immobile phase, inside the aggregate, is treated as a

distributed sink. In general, C and C. are not known and one has tomo 1im

resort to a simpler model (Eq. (2-5)) and use an effective value for D.

An expression for D should combine the advect ive dispersion in the

mobile region with the stagnant phase effect in the immobile region.
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Therefore, Passioura (135) adapted the expression of Aris (9) for a

dispersion coefficient in a tube, to obtain the following expression

for "overall" dispersion in an aggregated porous medium:

D =D 0 /e + gv 2 a2D (
mo mo T ma/D .(5-3)

where a is the radius of the aggregate [L], g is a coefficient

characterizing shape, 0T  is the total (liquid) volume fraction

available for the solute, 0 is the volume fraction of the mobile
mo

liquid phase, and Dei is the coefficient of molecular diffusion in
elm

the immobile liquid phase [L2T -I].

Following Taylor (189), one can introduce a moving coordinate

=x-vt. For large t, steady-state transport will occur so that C -C. =
mo im

constant. As advective dispersion can be neglected for a plane moving

at velocity v (g=constant), the solute flux across such a plane is:

0. 22 aC
im v a mo

dif 0T  15D 8(5-4ax

where Passioura (135) erroneously omitted the negative sign, and the

expression of Crank (45) was used for the concentration inside the

spherical aggregates. Because the steady-state assumption implies that

aC /ax=aC/ax, the following expression for the effective dispersion
mo

coefficient inside the aggregate was suggested by Passioura (135):

0. 2 2
D. - m va (5-5)
im T  15D eim

The effective dispersion coefficient for the liquid in the macropores,

which characterizes advective dispersion, was described with (cf.

Eq. (3-44)):
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D =D + v a (5-6)mo emo mo

where D is the coefficient of molecular diffusion in the mobileemo
2 -1phase [LT ] and v the velocity in the mobile phase (=vOT / m). This

mo T mo

leads to the following overall dispersion coefficient:

D = Dmo mo/T + Dim (-7)

Passioura and Rose (136) performed experiments to evaluate D

according to Eq.(S-7). Water retention data were used to estimate 8 im,

which is approximately the volumetric water content at a suction of 75

cm of water. Pores which drained at suctions less than 75 cm were

considered to be macropores. D was obtained via the technique described

-6 -6
by Rose and Passioura (160). Values for Dei . between 4x10 and 6x10

elm
2 -1cm s were used, depending on the porous material. It is of interest

to examine the Brenner number (B) as a function of va. For low values

of va, the main contribution to B will be from advective dispersion,

whereas at higher values of va the stagnant phase effect becomes more

important. Therefore, we will have somewhere an absolute maximum for B.

1/2This maximum will occur when va=(1D D 0 /8. ) . Displacement is
elm emo mo im

likely to be most efficient, i.e., closest to piston flow, for this

value of va.

The study of transport during flow of other fluids than water

might provide independent ways to characterize soil structure.

Millington and Shearer (118) discussed the effect of aggregation in

porous media on gas diffusion. These authors distinguished between a

solid phase and an intra- and inter-aggregate porespace filled with
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waiter or gas. Various expressions for D eIDo were derived, where De and

D0 are diffusivities of the fluid in presence and absence of the porous

medium, respectively. Millington and Shearer (118) illustrated the

contrasting behavior of diffusion in the gas phase and ion diffusion in

the liquid phase. The ratio De /Do was found to be higher for

non-aggregated than for aggregated media as far as diffusion in the

liquid phase is concerned, while the opposite seemed to hold for gas

diffusion, except during very dry conditions.

Scotter (166), studying the preferential solute movement through

larger soil voids (cf. 174), considered two pore geometries:

cylindrical channels and planar voids. Theoretical breakthrough curves

for a non-reactive solute showed that a substantial amount of the

solute appeared in the effluent before one pore volume had leached

through, especially for large channel diameters. Van Genuchten et al.

(201) used the development by Scotter (166) to solve transport through

cylindrical macropores analytically. The cylindrical pore 'is supposed

to contain the mobile region of the liquid phase, while the surrounding

porous medium contains small pores in which the immobile region

resides. The adsorption sites were divided into a fraction in close

contact with the mobile liquid phase, and a fraction in contact with

the immobile region. A separate retardation factor was used for' both

fractions. A set of equations similar to Eq. (2-44) and (2-45) was
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furthermore, dispersion in the macropore can usually be Ignored without

loss of accuracy.

The approach taken by van Genuchten et al. (201) seems to be

generally accepted to describe solute transport in aggregated porous

media. The overall transport equation contains both the concentration

in the mobile and immobile phase. The geometry of the aggregates

influences the diffusive transport between the two regions as well as

the average solute concentration inside the aggregates.

Valocchi (191) studied the validity of the assumption of local

physical and chemical equilibrium by comparing solutions of the

non-equilibrium and equilibrium type transport equations for aggregated

media. Two cases of physical non-equilibrium were considered, namely

diffusion in spherical aggregates and first order transport between

mobile and immobile regions of the liquid phase. The general equation

for reactive solute transport, assuming linear adsorption in both

mobile and immobile region, can be written as:

ac ac. a2c aceR mo iR m mo mo
0 R mot+0 mR =0im =0 D -0 v (5-8)momoat imim at mo 2 mo 8x8x

For spherical aggregates the physical non-equilibrium diffusion model

is:

a

Ci -- (x,r,t) r 2 dr (5-9)J0

Ca(x,r,t) r= C (x,t) (5-10)

AC AC
Rm a =D 1 (2 a) (5-11)im~t eim 2r Ar

r
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where a is the aggregate radius and C is the local concentration
a

inside the aggregate. In case the transfer of solute between mobile and

immobile zones can be described as a first order process we get:

ac.
0. R(C - CRm)_(5-12)
im im at mo im

The transport problem is thus posed by Eq. (5-8) in combination with

Eq. (5-9) to (5-19) or in combination with Eq. (5-12). One case of

chemical non-equilibrium, involving first order kinetics, was studied

by Valocchi (191). The ADE was described as

0ac as a2c ac (-30 - + P b at -OD 2 ev a (5-13)ax2

where. S is governed by the first-order linear kinetic expression

as - k1C - k2S (5-14)

with k and k as the forward and reverse rate coefficient,
1 2

respectively. This is referred to as the linear chemical

non-equilibrium model.

These models are well documented (150, 151). They were written in

dimensionless form and solved in the Laplace domain by Valocchi (191).

In order to quantify deviations from local equilibrium, a time moment

analysis was carried out. Aris (10) showed how absolute time moments,

m which are defined analagous to moments for position dependent

concentrations (Eq. (3-18)), can be determined with the solution in the

Lapl ace domain:

m= (-1)nl d- c(x s)] (5-15)
p s L ds p
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where X is the dimensionless position and C(X,s) is the Laplace

transform of C(X,t) with s as the transformation variable. The

advantage of this approach is that the solution in the Laplace domain

is fairly easy to obtain. Based on these moments, Valocchi

(191) obtained expressions for the first normalized moment and the

second and third central moment for the equilibrium and the three

non-equilibrium models for a Dirac-type input. In this way, mean

breakthrough time, spreading, and tailing could be characterized.

It was found that sorption rate limitations (non-equilibrium)

caused enhanced spreading and tailing. Non-equilibrium, however, does

not influence the mean breakthrough time. At large values for the

dimensionless rate parameter, F=k2L/v, where L is the column length,
2

the non-equilibrium and equilibrium results are similar. By comparing

the equilibrium solution with the more realistic non-equilibrium

solution, the error, which is made by using the local equilibrium

solution, can be established. This error increases linearly with

incresing Pe/F and decreases with increasing retardation factor.

Following Passioura (135), Rao et al. (151), and de Smedt and Wierenga

(57), Valocchi (191) obtained effective dispersion coefficients for the

non-equilibrium situations.

Before discussing transport in fractured media, which is very

similar to transport in aggregated media, a few other studies should be

mentioned. Rasmuson and Neret ni eks (153) obtained an anal yt ical

solution for the ADE in a porous medium consisting of spherical

particles. Rasmuson (152) extended this analytical solution to a case
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where two-dimensional dispersion occurred. Other solutions involving

spherical particles were given by Skopp and Warrick (175) and Tang et

al. (186), while Sudicky and Frind (184) provided solutions for porous

media with rectangular voids. One of the first attempts to combine

analytical and experimental work was reported by Rao et al. (150), who

studied transport in a medium consisting of spherical aggregates.

Fractured Media

Because of interest in the disposal of hazardous wastes in

fractured bedrock, geologists and engineers have lately been studying

transport in fractured media. Fractures are important for the advective

transport of contaminants because of their relatively high water

conductance (bypass). Formulation of the transport problem is very

similar to that for aggregated media, i.e. , the two components are

advective transport in the fissure (the mobile region) and diffusion

into the rock (the immobile region). For a number of cases, analytical

solutions are available. In other instances, numerical methods need to

be used. The finite element method is particularly convenient to obtain,

numerical solutions for transport in fractured media (86).

Tang et al. (186) presented an analytical -solution for

contaminant transport in a single fracture. They considered a

radio-active contaminant with a finite migration distance because of

decay. Diffusion of the contaminant into the porous rock matrix slows
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the fracture, (3) molecular diffusion within the fracture, in the

direction of the fracture axis, (4) molecular diffusion from the

fracture into the porous matrix, (5) adsorption onto the face of the

matrix, (6) adsorption within the matrix, and (7) radio-active decay.

For solute transport in the fracture, the following equation was used:

:C 82C OD . C. Cmo D mo + eim Im v mo-t R - C + - (5-16)
at R 2 w mo bR 8x R 8zmo az mo x=w mo

-1
where 2w is the fracture width [L], pw is a decay constant [T 1, R =1

w mo

+ - K is a face retardation factor, and K is the distribution
0 dmo dmo

coefficient in the fracture. For transport inside the matrix the

equation was:

ac. D . d2C.im _ elm im C (6-17)
at R. 2 w im

Im ax

where D. is the effective diffusion coefficient in the matrix, R. = 1
elm im

+ K is the matrix retardation factor, and K is the
0 dim dim

distribution coefficient in the porous matrix. In both cases the

adsorption was assumed to follow a linear adsorption isotherm.

Equations (5-16) and (5-17) were solved analytically by Tang et

al. (186) for specified initial and boundary conditions with the help

of Laplace transforms. Some numerical examples were given as well. It

was found that the effect of dispersion cannot be ignored. If D=0

2 -1m s , the solution lags substantially behind the general solution,

which used an expression for D as Eq. (3-36). This is in agreement with

the findings of Rasmuson and Neretnieks (154) who also investigated

the migration of decaying radionuclides in fissured rocks. They found
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that advective dispersion in the fissures results in larger travel

distances for the radionuclides, therefore decreasing diffusion into

the matrix and subsequent decay inside the rock matrix. Agreement

between the analytical solution by Tang et al. (186) and a finite

element method solution by Grisak and Pickens (68) was generally good,

except for the transient case. The results demonstrated that matrix

diffusion can prevent severe contamination of underlying aquifers with

the (decaying) radioactive substances.

Neretnieks (119) treated dispersion in fissured rock, idealizing

the medium by assuming flow through parallel channels of different

size. The fissure width, w, is given by a distribution function f(w). A

pulse with concentration C0 , introduced at the inlet, travels a

distance x in time t. in fissures with width w.. Therefore, w can be11

expressed in terms of t. If the residence time for a fissure is less

than a certain time t, it delivers tracer. At the outlet, mixing among

solutions exiting from all fissures occurs, resulting in the following

dimensionless exit concentration:

T f(w)Jv(W) dw

C(t)/Co = wt - J(t)/J v  (5-18)
0 00 V VT f(w)Jv(W) dw

V
0

The flow of water containing tracer, Jv(t), from fissures with widths
V

w(t)<w<o is diluted by the total flow of water, JV from all fissures.

An analytical expression for the mean residence time for a response

2
curve C(t) was Obtained. The spreading was quantified .with o- obtained



93

with the second moment of the time dependent concentration. The

dispersion coefficient depended strongly on the fissure width

distribution.

Neretnieks (119) referred to his approach as stratified flow,

i.e., the flow in each fissure depends on the size fissure just like

the flow in a stratified medium depends on the permeability of each

layer. In case of stratified flow, the width of the dispersion zone, 0-,
1/2

is proportional to the traveled distance x (117) instead of x as for

Fickian dispersion. Therefore, an increase in the observation distance

will yield a larger value for D if the ADE is used to describe the

transport process in stratified media (cf. 49). As stated by Neretnieks

(119), the implications of using the wrong mechanism (for instance

Fickian) when using a model for extrapolation to large distances may

have grave consequences in some applications.

Besides the mixing due to the advection term, mixing occurs due

to matrix diffusion. Diffusion of the tracer from the fissure into the

matrix of the rock is accompanied by sorption. Neretnieks (119) could

not obtain a mean and variance of the residence time with the moment

method because they appear to be unbounded (i.e., the curve exhibits

considerable tailing) even if the penetration depth in the rock is

small compared to the distance between fissures. The dispersion process

could be evaluated by comparing experimental data with theoretically

calculated response curves. By solving the analytical model, Neretnieks

(119) demonstrated that, for larger distances (larger residence times),

the effects of stratification and matrix diffusion become major" factors

in comparison with the effect of hydrodynamic disper-sion.
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Layered Media

Solute transport in layered media has drawn a considerable amount

of attention (81, 116, 117, 142, 182, 185, 188). Almost all studies

concern stratified aquifers with flow parallel to the stratification.

Besides different soil-physical properties for each layer, differences

in transport parameters occur. Consequently, a different transport and

flow behavior might be expected, both perpendicular to and parallel to

the stratification, compared to a uniform medium.

Tanji (188) studied the leaching of boron in a .soil column

consisting of homogeneous layers, the stratification was perpendicular

to the direction of flow. Each layer had particular adsorption and

moisture characteristics. A scaled down field profile was used to

determine the amount of leaching experimentally. Calculated results for

the stratified columns were in good agreement with the measurements.

As mentioned earlier, layered media tend to enhance the

dispersion effect. Due to transverse diffusion from layers with a

significant advective transport to layers with minimal advective

transport, spreading of the solute front will occur in case of flow

parallel to the stratification (67). When using the conventional ADE, a

large value for the dispersion coefficient will be found. It was argued

by Gillham et al. (67) that under such heterogeneous conditions, no

Fickian dispersion will occur. The dispersion coefficient is time

dependent due to the transverse diffusion (64, 116). Gupta and

Bhattacharya (74) and Grven and Molz (80), on the other hand, pointed

out that Fickian dispersion will occur at large times for nonuniform

velocity fields.
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Sudicky et al. (185) and Starr et al. (182) discussed the

migration of a reactive and a non-reactive solute in a layered porous

medium. A system consisting of a thin sand layer between two silt

layers was used to study the movement of a Cl solution applied to the

sand layer for horizontal flow parallel to the stratification. The

important processes were advection in the sand layer, transverse

diffusion from sand to silt layers, and molecular diffusion (transverse

to the flow direction) in the silt layers. The medium was water

saturated. For the sand, where complete mixing was supposed to occur,

the following transport equation applied:

C2C aCa mo D ay - v ax (5-19)
at T ay2 ax

where the diffusive flux between sand and silt layers is represented as

transverse dispersion, C is the concentration in the sand layer, andmo

v is the pore water velocity, in the sand layer, in the x direction

parallel to the stratification. Transport in the silt layers, which is

supposed to be purely diffusive, is described with:

ac. aDC.im_ D im (5-20)at e ay2

where C. is the concentration in the silt layers and D is theim e

effective diffusion coefficient.

Solutions of these equations for appropriate boundary and initial

conditions, under the assumptions that the thickness of the sand layer

can be ignored, were given by Tang et al. (186). As the sand layer

becomes thicker, a transver-se concentration profile develops in the
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sand layer. The analytical solution for the "thick" sand layer is more

complicated (185).

The exit concentration was determined as an average over the sand

layer with a fraction collector. The solute arrival time for the

system, with transverse diffusion from the sand into the silt layers,

was later than for pure plug flow. Strong dispersion seemed to occur

due to interlayer solute transfer. The experimental breakthrough curve

was poorly fitted when transverse transport was ignored.

Starr et al. (182) studied the same problem for a reactive

85solute, Sr. Since the Sr-concentration was low, the exchange-isotherm

was assumed to be linear and non-hysteretic, hence a constant Kd could

be used. Application of the conventional ADE gave poor results for the

reactive case, especially at higher velocities. Neglecting longitudinal

dispersion, transport in the sand layer was described by:

8C 0. D ac. acmo _ im e im v mo C (5-21)
at 0 R w 8y R 8x mo

mo mo moy=w

where R is the retardation factor in the sand layer, which has a
mo

-1
width 2w, and W is the radio-active decay constant [T ]. Transport in

the silt layers was described by:
aC. D O2C

im _ e im(5-22
at R. 2 -72 C im (522)

im ay

A diffusion coefficient for Sr in dilute solutions of 1.33xIO
2 -1m s was used. Since a correct value for the retardation factor iS

essential for the prediction of the breakthrough curve, this factor was

determined in two independent ways for the silt material. The first
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method determined Kd by the batch procedure, which resulted in values

of 1.65 mL/g for the sand and 12.5 mL/g for the silt. R could be

determined with Eq.(2-15), resulting in R =10 and R. =60. The second
mo im

method was via diffusion. Two diffusion half cells, one of them

containing a solution with 8sSr and the other free of 85Sr, were

brought in contact with each other. After 35 days the columns were

sliced in increments of 0.5 cm. The concentration in each segment was

determined and, via curve fitting of the analytical solution, an

effective diffusion coefficient was obtained. The ratio of the

effective diffusion coefficient and the diffusion coefficient in water

provides 1/R. A value of 70 was found for R. . The agreement between

the values obtained with the two methods was considered to be good. The

experimental breakthrough curve could, however, not be as well

predicted as for the non-reactive case. Better results were obtained if

the values of R were varied with v. However, no physical basis exists

for such an adjustment.

In the study of transport parallel to the stratification,

frequent use is made of the moment method of Aris (10), already

discussed previously. By using depth averaged moments, one can account

for the heterogeneity due to the stratification (115). Therefore, this

method, following Fischer et al. (60), will be discussed briefly. These

authors considered transport in a medium with depth h, bounded by

horizontal impermeable layers at y=0 and y=h. The magnitude of the

flow, in the x-direction, depends on y. For a moving coordinate system

the transport equation is:
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-ac DrC + a -v' (5-23)
at 2 ay2 a

where v'=v-v and (=x-vt. Having the overbar notation indicate a depth

averaged value:

- 1h
v = d v dy (5-24)

Spatial moments can be defined according to (cf. Eq.(3-19)):

M P

m = C((,y,t) d( (5-25)
p

The operator defined by Eq. (5-25) can be applied to the individual
S 8C

terms of Eq.(5-23). Assuming that C=O anda = 0 for ( +m, we can find:

am a2m.
a -t D p(p-1) mp 2 + 2 +Vpm (5-26)at [-2 y2 pp 1

This equation can be averaged over depth, according to Eq.(5-24), and

the resulting equation is:

am
p = Dp(p-l)m 2 + pv'mp (5-27)at p-2 p1

We can now solve m sequentially for p=0,1,2,... Using the theory of
P

statistical moments we can characterize the concentration distribution

by determining the mean, variance, skewness, kurtosis, etc. (81).

Fried and Combarnous (61) described the work by Marle et al.

(115) which showed how the moment method can be applied to a

multi-layered medium with flow in the horizontal x-direction and for

which the transport properties depend on y. The mathematical

formulation of the problem is:
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CC C CC
e(y)a = (y)DL(Y) 2 +e DT(Y))v (5-28)

t 2  y Tay

ac 0 Y = l and y = 2 (5-29)

where it is assumed that v is independent of x. The boundaries of the

stratified medium are at y=y 1 and y=y2. The problem can be solved in a

similar manner as described before, using depth averaged moments. Fried

and Combarnous (61) also described how an equivalent dispersion

coefficient can be used to represent dispersion in a layered medium.

Gtiven et al. (81) applied Aris' moment method to describe

dispersion of a tracer in a horizontally stratified aquifer of finite

thickness and infinite length and with vertical variations in the

hydraulic conductivity. Several idealized hydraulic conductivity

profiles were used. The experimentally and theoretically determined

macro-dispersivities were of the same order of magnitude. These authors

stressed the importance of detailed measurements of the hydraulic

conductivity profile at various positions along the aquifer. In a later

paper, Guiven and Molz (80) extended this work to an unbounded aquifer

with flow components parallel and perpendicular to the stratification.

The variation of the hydraulic conductivity, indicative of the

heterogeneity of the medium, strongly influences DL via variations in v

(79, 183). Unfortunately, porous media generally do not consist of

homogeneous layers with distinct transport and flow parameters; v(y) is

not known in sufficient detail to predict the concentration profile

with the moment method. An even more complicated case arises if v

varies in both the longitudinal and the transverse direction.
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A simplified approach for vertical transport might be to consider

only one-dimensional flow. Heterogeneity in the direction of flow is

most easily modeled by assuming that the soil consists of homogeneous

layers, i.e., horizontal layers (cf. 171). Bresler and Dagan (30) used

the approach of representing a field as an ensemble of individual

columns, i.e., vertical layers, restricting the transport and flow

problem to one dimension.

Simmons (172) described dispersion during one-dimensional solute

transport in an arbitrary medium in terms of stochastic-advective

transport. He contributed the spreading in laboratory soils largely to

local variations in the hydraulic conductivity, which was incorrectly

interpreted as hydrodynamic dispersion. In the field, the heterogeneity

of the soil will be even larger, and the use of laboratory-measured

hydrodynamic dispersion coefficients is inappropriate. The stochastic

flow velocity depends on time and position, i.e., v(x,t). In contrast

with Bresler and Dagan (30), who used an ensemble of columns, the

description of the transport is truly one-dimensional. Simmons (172)

also questioned the validity of deterministic descriptions of transport

during transient (unsaturated) flow conditions because of the time

dependence of the dispersivity.

It has been suggested that for large distances or times, Fickian

behavior could be assumed (asymptotical approach of diffusive type of

transport). However, Matheron and de Marsily (116) showed that this

assumption does not always hold, even for a Gaussian covariance

function of the velocity. This was attributed to the lack of transverse
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mixing. These authors studied horizontal transport in a medium with

horizontal layers. In case of a small constant vertical velocity, i.e.,

the flow vector is somewhat inclined with respect to the horizontal

stratification, transverse mixing is enhanced and diffusive behavior is

approached much faster.

Among other studies, dealing with stochastic modeling of

transport in heterogeneous media, the work by Gelhar (64) can be

mentioned. However, a further discussion of the. topic is beyond the

scope of this review.



VI. PREDICTION OF SOLUTE TRANSPORT UNDER FIELD CONDITIONS

Prediction of solute movement under field conditions is the

primary objective of many workers in the area of solute transport. The

application of the conventional advection-dispersion equation, ADE, has

proven to be quite successful for laboratory experiments (see section

on experimental determination of dispersion coefficients), where in

general macroscopically homogeneous conditions exist. Once the relevant

transport and flow parameters are known, the ADE is solved, generally

numerically, and a unique concentration distribution can be determined.

This is referred to as the deterministic approach. If necessary, the

structuredness of the soil can be taken into account by using various

non-equilibrium models (Chapter V).

Some of the earlier work involving the prediction of solute

transport under field conditions made use of the ADE, while the

corresponding transport parameters were measured in the laboratory.

This approach, also referred to as deterministic, leads to a uniquely

defined outcome for a given set of events. However, the description of

solute movement in the field, using this deterministic approach, was

often not very succesful. Three reasons were pointed out by van

Genuchten and Jury (199): (1) inaccurate or incomplete description of

the chemistry affecting transport of reactive solutes, (2) preferential

movement of water and solutes through macropores, and (3) spatial and

102
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temporal variability of field scale flow and transport properties. In

order to deal with some of these problems, a variety of approaches has

been taken to model solute flow in the field. The variability on a

field scale has recently been investigated (48, 181).

Deterministic Models

An example of the use of experimentally determined data to

numerically predict solute profiles under different conditions is the

work by Bresler (28). Bresler used data from Warrick et al. (209), who

applied a pulse of 0.2 N CaCl during infiltration on a 6.1 by 6.1 m
2

plot. The chloride concentrations in a 1 by 1 m square in the center of

the plot were monitored at depths of 30, 60, 90, 120, and 150 cm, using

duplicate ceramic cups. The dispersion coefficient was obtained by

fitting the experimentally and analytically determined profiles.

Bresler used these data to validate a numerical model to predict solute

profiles. The model used an implicit method, which minimized the effect

of numerical dispersion. After validation, the model was used to

predict solute concentrations during infiltration, redistribution, and

evaporation. In a later paper, Bresler (29) discussed anion movement

under transient conditions. He included ionic diffusion, anion

exclusion, mechanical dispersion, and osmosis.

Selim et al. (169) determined the redistribution of 2,4-D and

water both numerically and experimentally in a field study. The solute

2concentration was monitored, at various depths, for an area of 1 m

using ceramic solution samplers connected to a vacuum pump. The water

retention curve, h(o), and the functional relationship between
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volumetric water content and unsaturated hydraulic conductivity, K(O),

were determined in the laboratory on undisturbed soil cores. The

adsorption isotherm and the D(v) relationship were determined as well

in the laboratory. The water distribution was predicted fairly well,

whereas agreement between measured and predicted distributions of the

2,4-D was only fair. These authors were able to show that the

cumulative amount of irrigation water, and not the intensity of

application, determined the penetration depth of the herbicide.

The above examples concern rather small studies for which

homogeneous conditions might be expected. In larger field studies, this

is not likely to be true. The macroscopic heterogeneity ofthe advection

and dispersion terms, was illustrated in a large field study by Biggar

and Nielsen (22). They used an analytical solution of the

advection-dispersion equation to fit the experimental data. In their

field study, 20 plots were ponded with water containing C1 and NO3 .

Solution samples were taken via extraction through porous ceramic cups.

They observed a large variation in v and D for the various plots with

both variables following a log-normal distribution.

Researchers who applied the conventional ADE under field

conditions found significantly.higher values for the dispersivity than

for column experiments in the laboratory. Gillham et al. (67) gave

-4 -2
values for 0L in the range of 10 to 10 m for laboratory

experiments, while for heterogeneous sand or gravel aquifers, a value

for the macrodispersivity of 1 to 100 m was found when the ADE was used

to fit the field data. Biggar and Nielsen (22) obtained a value of 2.93
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cm f ro via regression of D versus v for 359 measurements at

different depths and plots in case of vertical transport.

.The concept of dispersion, as outlined in the introduction to

Chapter III, does not account for macroscopic non-uniformities in the

advect ion term, which is a major cause of mixing in the f ield. If one

wants to proceed with the deterministic approach, a detailed knowledge

of basic soil physical properties as K(O) and h(8) is needed. However,

in view of the field heterogeneity of these soil properties, a

considerable experimental effort is needed.

Stochastic Models

To circumvent the problem of a detailed quantification of the

flow term, several researchers have chosen for a different approach by

using stochastic models. These assume that the outcome of a series of

events is uncertain. Due to the uncertainty of the mechanisms and the

values of the parameters involved, a concentration distribution is

described in terms of probability. These stochastic models can be of a

mechanistic nature (49, 137) or a non-mechanistic nature (90). In the

first case, an attempt is made to describe the fundamental processes

contributing to transport, whereas in the latter case no assumption is

made for the mechanism behind the flow and transport processes.

Mechanistic models
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result of a step input of a solute. The statistically homogeneous

field, i.e., stationarity exists as discussed by Journel and Huijbregts

(89), represents an ensemble of columns, each with uniform soil

properties. A generic notation of soil parameters, a., was used to

describe the soil properties in the field, e.g.,

6=O)z't' a , 2" ' '
.a )" In order to describe the distribution of

particular soil properties, a multivariate probability density

function, f=f( 1 ,a 2 ,. .,an), was used. The joint probability that a<A1P

a 2<A 2.. a <A at position x is given by:

AI A A

P(A 1 A2  ,Anx)= { J J (c a 2 .cn)daida2 " da (6-1)

Because the medium is assumed to be statistically homogeneous, f

does not depend on x. Since dispersion is supposed to be an

insignificant factor for spreading compared to the heterogeneity of the

advective term, transport in the vertical direction is governed by

v(z,t,a.) and 0(z,t,a.). The independent variables z and t are of a1 1

deterministic nature and a. represents random hydraulic parameters that1

characterize h(e) and K(O). It should be noted that the condition of no

interaction between different columns might be too stringent. In order

to describe the hydraulic conductivity in terms of a., the scaling

approach of Warrick et al. (210) was followed.

Because of the random nature of v and 0, the solute concentration

is also a random variable. The dependency in the horizontal x,y-plane

is also given in terms of f(a.). The probability that C<zA, in a plane
1

with depth z and at time t, is:
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A

P(z,t,A)= { f(z,t,C) dA (6-2)

The concentration over the whole field can be described in terms of the

frequency function, f(al,X2 ,..,an), as well. The probability that

A<C(x,y,z,t)<A+dA is determined by the frequency function f(z,t,C)

where C varies between 0 and 1. This function is generally not known,

but can be characterized by its moments:

<C(z,t)> = C f(z,t,C) dC (6-3)
JO

2C (z,t)= (C-<C>) f(z,t,C) dC (6-4)C J
0

where <C> is the average concentration over the entire field in a given

x,y-plane. The randomness of the flow term at the input boundary

(rainfall, irrigation) was taken into account by introducing a random

leaching rate, which is linked to the random behavior of the hydraulic

conductivity to give a probability distribution, P(v), for the pore

water velocity.

Because dispersion/diffusion effects are neglected, the

concentration profile obeys a step function (C(z,t)=O or 1 for z>vt and

z<vt, respectively). The concentration over the field is the average of

all individual column values:

<C(zt)>= 1 - P(z/t) = 1 - P(v) (6-5)

where P(v) is expressed in terms of variables x.. The field scale

dispersion, caused by random changes in 0 and v across the field,

exceeds the mechanical dispersion at the pore scale. If desirable, the
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pore scale dispersion could be taken into account by introducing an

'effective' dispersion coefficient to make up for vertical

heterogeneity. Dagan and Bresler (49) argued that the large transition

zone, (0< <C> <1), which is commonly encountered under field

conditions, can now be described correctly. When using the

advection-dispersion equation an unrealistically high value for the

dispersion coefficient would be needed.

Bresler and Dagan (30) compared the solute spreading effect,. due

to heterogeneity of soil properties, with Taylor's (189) theory of

dispersion during flow in a capillary tube. The analogy is that

(transverse) diffusion initially cannot annihilate the longitudinal

concentration gradient caused by the advective term. However, for

larger times, diffusion becomes the dominant process. For conditions

normally encountered during infiltration, they concluded that only the

advection term is needed to describe the transport process, but that

for very large travel distances, e.g. 100 m, dispersion should be

included. The model derived by Dagan and Bresler (49) was used by

Bresler and Dagan (30) to predict solute concentrations for various

rates of infiltration using data of Warrick et al. (210). For a travel

distance of 1 m, an effective dispersivity between 16.1 and 334.2 cm

was found. If one had used the ADE, assuming Fickian dispersion, the

transition zone (the width of the solute front)would grow proportional

with t / . However, Bresler and Dagan (30) found this zone to grow

linearly with t. It should be noted that the work by these authors did

not include an independent field study to validate the model by

comparing measured and calculated solute distributions.
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Bresler and Dagan (31) added pore scale dispersion, as measured

in- the laboratory, or the much larger average field value for

dispersion, which reflects mainly heterogeneity of the profile, to the

previously mentioned mechanisms of spreading (horizontal heterogeneity

of' soil properties and a variable infiltration rate). They concluded

that the use of the conventional ADE, with constant coefficients,

poorly predicted <C(z,t)> in a heterogeneous field. To model transport,

one should focus on the variability of the hydraulic conductivity, the

average rate of recharge, and the value for the (average) field

dispersion. The influence of laboratory-measured pore scale dispersion

is negligible, and the variability of recharge on the soil surface,

provided that it is of modest value, had little influence on the

predicted solute profiles.

In a subsequent series of papers, a more general approach was

given for the stochastic modeling of unsteady flow and transport. Dagan

and Bresler (50) derived a model for infiltration and redistribution in

a heterogeneous field, which was applied to two spatially variable

soils (32). Bresler and Dagan (33) derived a model to predict solute

transport using the results of their work on water flow modeling.

Expected solute concentrations were calculated by using either an

accurate numerical scheme or a simplified model, or by representing the

variable field by an equivalent uniform field. The simplified model
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hydrodynamic dispersion process, do not seem to have an appreciable

improvement upon prediction of statistical moments in spatially

variable fields. Using an equivalent uniform medium resulted in a much

larger error. In the simplified model, the solute concentration was

predicted with statistical moments rather than deterministic values.

The advantage of this procedure is that, although it might not

accurately predict concentrations at specific positions, the averaging

procedure resulted in reasonably accurate concentrations for an entire

field. This is often of more interest than specific values at given

locations.

Non-mechanist ic Models

A recent approach to model solute transport in the field ignores

the actual mechanism of flow and transport and merely focuses on the

solute concentration as a result of these unknown processes. In this

"black box" approach, the transport and flow processes are represented

by a transfer function, which characterizes systems whose internal

mechanisms are unknown or unknowable (90). This approach has been used

for some time by hydrologists and engineers (51).

Raats (147) applied the concept of transfer functions to describe

advective solute transport during steady flow in soils. He described

the movement of a certain water parcel in the course of time by

focusing on the travel time, usually of primary interest in

contamination studies. The position, x, that a parcel, , occupies at

time t can be given by:

x = x (,t) (6-6)
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with the velocity for X:

v = 
(6-7)

Denoting s as the arc-length along the streamline [L], Raats (147)

characterized v by its magnitude, v, and unit tangent vector, T:

V =a (6-8-a)

4 = vi/v 
(6-8-b)

The travel time between two points on the streamline was given by:

t-t = i ds (6-9)

s
0

where s and s are an arbitrary and a reference position, respectively.
0

For steady flow without sinks and sources, Raats (147) obtained the

following alternative expression for the travel time, making use of

Eq. (6-8-b):

s s
t-t -1 expT ds ds (6-10)0 (Ov) [ j

wher (O) 0is the flux at s 0 Raats (147) noted that the divergence of

the unit tangent vector' field, V-T,. is a characteristic of the flow

pattern and a measure of the divergence or convergence of infinitesimal

stream tubes. For such a stream tube, Raats (147) obtained:

A(s) = Aexp {V- ds (6-11)

00

derived:
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1 s
t-t (ev)A0 Ads (6-12)

0

The integral on the right-hand side corresponds to the total amount of

water in the stream tube between s and s, whereas (Sv) A is the
0 00

steady input flux. Eq. (6-12) gives the ratio of these quantities, being

the travel time between s and s . Having established a link between the
0

exact analytical expression for the travel time in terms of r, and an

expression for approximate graphical analyes, viz. Eq. (6-12), Raats

(147) proceeded by considering more specific flow problems.

After evaluating the travel time for one parcel, the movement of

collections of particles forming a surface was studied. This is useful

to examine the effect of solute application as a pulse or step front.

In order to predict whether the solute passes a certain point, e.g.,

the outlet of a soil column, the time needed to pass the column

(transit time) and the time the solute resides in the column (residence

time) need to be known. Therefore, Raats (147) used expressions for the

transit time, T, for each streamline and the residence time for a

parcel in the system. In order to study the effect of a solute

application, one can follow a collection of particles which enter the

system simultaneously, forming an isochrone.

Obviously, the frequency distribution of transit times in the

medium, consisting of various tubes, is of importance. It is also

important to determine the contribution of each tube to the total

transport. This can be done by monitoring the output concentration as a

function of time. The cumulative transit time distribution function, q,
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is defined as the fraction of the streamtubes with transit times

smaller than T. At any time, a fraction q of the output will be

"younger" than z and a fraction (l-q) will be "older" than T. The

transit time density distribution function is equal to dT/dq, i.e., the

frequency distribution of the volume of the streamtubes. It takes into

account the rate of solute movement in a particular tube and the

contribution of that tube to the total solute transport. Finally, the

transfer function is the product of the input and transit time density

distribution function. Raats (148) applied the theory to a number of

flow patterns.

Jury (90) determined the solute concentration at various depths

in the soil by means of an output function, which was the result of a

solute flux applied at the soil surface, i.e., an input function. These

two functions were related by using a transfer function, which could be

determined by using measurements of the solute concentration at a

particular depth. The concentration at other depths could be predicted

with the transfer function. A brief derivation of the transfer function

follows.

Instead of using time as the independent variable, Jury (90) used

the cumulative amount of surface-applied water, I, as the independent

random variable for solute transport at a particular location (214).

The probability that a tracer injected at the surface will reach a

depth L after an amount of water I has been applied, is

L fL()') dI' (6-13)

0
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I' is a dummy integration variable and fL(I) is the probability density

function, denoting that the injected tracer will arrive at depth L upon

application of an amount of water between I and I+dI, i.e., a

distribution of travel times. The inlet concentration is given by

C. =C =8(I), a narrow pulse injected at I=O at the soil surface. Thein o

average concentration, at z=L, for arbitrary variations in C. andin

spatially uniform water input is given by:

CO

C(I) = C (I - I ) f(I') d' (6-14)

where f (I') is the probability of the solute reaching z=L between
L

'time' I' and I'+dI', i.e., the cumulative infiltration, and C. (I-I')in

is the concentration discharging at depth L if for a 'breakthrough

time' I'. Note that this concentration remains equal to the inlet

concentration, because front spreading is ignored.

The rate of water input is not uniformly distributed over the

field, therefore a second probability density function, g(i), is needed

to describe the variabilty of input rate for various locations. The

relation between time and cumulative infiltration follows from i=dI/dt.

The probability that a unit area of soil will receive a water input

flux between i and i+di is ig(i). The probability that the solute

reaches a depth z=L between t and t+dt depends on the soil properties

(via fL (I)) and on the input rate (via g(i)). This probability is given

by the travel time density function, hLCt), which is the joint

probability function:
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hL t) = Jig(i)fL(it) di (6-15)

%0

The average concentration at a given depth L, for a spatially uniform

input concentration C. t), follows from:
in

Cout Ct) = {Cin(t-t' )hLt') dt' (6-16)

where t' is a dummy integration variable. Jury (90) assumed that the

distribution of physical processes contributing to the density

function, fL(I), between z=0 and z=L is equal for all depths. In that

case, the probability that a tracer will reach a given depth z, after a

cumulative infiltration 1=I, is equal to the probability of reaching a

reference depth z=L after a cumulative infiltration of I=I1L/z:

IL/z

Pz M = PL(IL/z) = { fLI') dl' (6-17)
0

and by combining Eq.(6-15) and (6-16), the concentration for a

spatially variable water application is given by:
00 00

C(znt) { C.(t-t) {L ig(i)fL(it') di dt' (6-18)
0 n 0

for a water application I=it. To obtain f a calibration at one depth

is necessary. For this purpose, Jury et al. (93) obtained soil solution

samples by vacuum extraction at a depth of 30 cm at 14 locations.

Usually a lognormal distribution seemed to fit fL(I) , but other

functional re lat ionships could be used as well. Once fL( I) was

obtained, the performance of the model was tested by comparing

predicted values of C (z I) with measured values at other depths than
out

for which the model was calibrated. Good agreement was found between
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results obtained by using the transfer function and experimental

values. It is not clear how well the model works for stratified soils.

The model also used for unsaturated conditions (92).

Concluding Remarks

A review of some modeling approaches was presented by Addiscott

and Wagenet (4), who concluded that among the many models available,

few have been exhaustively tested under field conditions. Tests by

others than the original authors, under different circumstances, have

been rare.

Most analytical and numerical models are deterministic and

mechanistic by nature. Because of the spatial variability of soil

properties in the field, stochastic models seem to be more attractive.

One such stochastic model, involving transport of a reactive solute,

was presented by van der Zee and van Riemsdijk (193). For fundamental

laboratory studies, the mechanistic deterministic model is the most

appropriate. Combination of the deterministic ADE with a stochastic

flow model could be a useful approach in future field studies.

Of course, many more efforts have been made to model water flow

for field conditions. Some involved scaling (180), others incorporated

geostatistics or the theory of stochastic processes (99, 100, 114, 208,

216, 217, 218). Charbeneau (38) applied the kinematic theory, i.e., a

functional relationship between flux and water content. A similar

theory was developed for solute transport. The kinematic waves can be

distinguished in self sharpening, during infilitrat ion, and self

spreading, during drainage.
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Although much of the material already discussed includes

transport during unsaturated flow, some specific work appearin in the

soil science literature is discussed in this section. In particular,

some of the laboratory experiments are reviewed. A distinction is made

between steady state and transient flow conditions. A few approaches to

control the flow and/or water content for steady state conditions will

be mentioned as well.

Steady Flow

One of the first results on miscible displacement during

unsaturated flow was reported by Nielsen and Biggar (120). They

observed that the magnitude of water not readily. displaced, the hold

back, increased with desaturation. The inclusion of dispersion

phenomena in the transport equation seems more appropriate for

unsaturated than for saturated flow conditions. Biggar and Nielsen (20)

emphasized the role of, diffusion, pointing out that, although

mechanical dispersion will decrease at lower velocities, the process of

molecular diffusion tends to enhance spreading.

Krupp and Elrick (104) explained tailing during unsaturated

steady flow with the 'stagnant liquid concept'. According to these

authors, the dispersion coefficient is not related to 0 in a simple

manner. Variation in the sequences of fully filled and part ially filled

pores and transport in the surface films contribute to spreading.
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the dispersion coefficient accurately in this case. Also, at very low

water contents, the variance in pore-water velocity is likely to vanish

since there is no pore sequence- for liquid flow. Thus, the amount of

spreading is reduced (104).

Yule and Gardner (219) studied both longitudinal and transverse

dispersion under unsaturated conditions. Transverse dispersion, i.e.,

diffusion, gains importance during unsaturated flow due to the lower

pore water velocity. The value for the transverse dispersion

coefficient was found to be nearly independent of pore water velocity.

Van Genuchten and Wierenga (202) noted that more tailing is to be

expected in unsaturated sorbing media. Not only will the relative

amount of stagnant water increase, the fraction of sorption sites

located in the stagnant region will increase as well. Among others,

they used the concept of a mobile and 'immobile region of the liquid

phase to formulate the transport equations for unsaturated soils. De

Smedt and Wierenga (57) observed early breakthrough and prolonged

tailing during unsaturated condit ions. Dispersion coefficients obtained

from saturated displacement experiments, with the same pore-water

velocity, could be used to fit the results from unsaturated experiments

if the transport equation accounted for mobile and immobile water. When

this distinction was not made, dispersion coefficients many times

larger than for saturated conditions were needed to fit the
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qualitatively explained the asymmetry of the experimental concentration

profile. By varying the velocity and water content independently, using

different gravitational heads, Gupta et al. (78) found that D increased

with v and g enerally decreased with increasing 8. However, no

functional relationship was derived.

Awad (11) examined dispersion phenomena i n a medium fine sand. He

found that the hydrodynamic dispersion coefficient appeared to increase

with decreasing water content, but found no basis for the presence of a

mobile and stagnant region of the liqui d phase. A theoretical

investigation of the relationship between the hydrodynamic dispersion

coefficient and water content was pursued,. but not established.

Transient Flow

This section briefly reviews transport during infiltration, the

development of leaching strategies and the exploration of the

dependence of D on v. Wierenga (214) showed that transient flow could

be represented by an effective steady state flow to describe solute

transport. This simplifies considerably the task of obtaining a correct

flow term to predict solute movement considerably (38).

Kirda et al. (95, 96) determined the displacement of chloride

during infiltration with chloride-free water in soil columns, both

experimentally and theoretically. For a. given amount of cumulative

infiltration, the Cl salt was leached more efficiently (i.e., with less
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the salt than larger, less frequent water applications. Warrick et al.

(209) observed that the water content at the soil surface determines

the propagation of the solute present in the irrigation water, while

the influence of the initial water content in the remainder of the soil

profile was shown to be small. For equal quantities of water

infiltrated, the depth of the maximum solute concentration increases

with decreasing surface water content.

Smiles et al. (179) investigated the absorption of a KCl solution

by initially rather dry soils. They observed that for a low

Peclet-number, the dispersion coefficient, D, was virtuallys

velocity-independent and that piston displacement of the solute

occurred. Smiles and Philip (178), using low initial salt and water

contents, noticed that the C1 concentration profile was somewhat

asymmetrical due to changes in the advection-term across the front.

However, the prediction of the solute front was relatively insensitive

to changes in D . Quantitatively, diffusion and dispersion are
s

identical. Smiles et al. (177) transformed the transport equation to

describe (transient) absorption by using a constant surface flux v .
0

2
The solution, expressed in terms of position, v0x, and time, v t, was

unique, suggesting that D is velOcity-independent. Smiles and Gardiner5

(176) also observed close to piston displacement of the solute in a

clay soil. Thin films of water on the clay surface were not accessible

to the invading solute. The Cl front was located ahead of the piston

front, which was attributed to anion exclusion. Bond (25) analytically

solved transport of a solute, applied as a pulse, during unsteady flow.
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He used a velocity dependent D. Experimentally and analytically

determined curves matched fairly well for 3H 0 but not for Cl. No
2

explanation could be offered for the poor prediction of the Cl profile.

The initial volumetric water content was 0.176.

Finally, Grismer (69) studied the absorption of water containing

Nal or SrCl2 by a silt loam. The dispersion coefficients, determined

according to Smiles et al. (179), depended on 0 in a way similar to the

diffusion coefficient. C omplete displacement of the initial water was

observed, although for the initial water content of 0.124, a higher

flux was required than for an initial water content of 0.035 to achieve

complete displacement.

Apparently, solute transport during steady flow differs from

transport during transient flow, at least for infiltration processes.

In the latter case, the dispersion coefficient is reported to be

virtually independent of the velocity and a complete displacement of

the resident solution occurs (piston displacement). Since the solute

acts as a tracer of relative water. movement, it is assumed that the

same holds for the flow process in general.

Experimental Considerations

A. major task when obtaining- breakthrough curves for steady,

unsaturated flow conditions is the independent control of water content

and pore water velocity. Because both factors influence dispersion, it
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The driving force for water flow is a hydraulic head gradient,

VH, with H given by:

H = h + z (7-1)

where h is the pressure head [L] and z the gravitational head [L]. The

osmotic head is ignored in this expression. The flow of water is given

by Darcy's law:

JV = -K(O) VH (7-2)

where K(e) is the hydraulic conductivity [LT I. It follows from

Eq.(7-1) and (7-2) that the water flow can be manipulated directly by

adjusting h or z, or indirectly via the water content which influences

K and h.

Nielsen and Biggar (120) used hanging water columns and a

negative air pressure at the outlet to obtain a constant average water

content and flowrate. The glass bead medium required a change in head

of only 3 cm of water to obtain identical flowrates at full and

approximately half of the saturated water content. Fritted glass

plates, which have a negligible exchange capacity, a large capillary

conductivity, and a narrow pore size distribution, were used to

maintain unsaturated conditions.

Elrick et al. (58) and Krupp and Elrick (104) regulated the water

content by placing a perforated sample holder in a pressure chamber,

while the desired flowrate was obtained with a constant volume pump and

a head tube. Both ends of the sample were in close contact with a

cellulose acetate membrane filter, supported by a porous screen and a
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stainless steel end cap containing three plastic nipples. The sample

and pressure chamber were placed on a balance to allow continuous

monitoring of the sample weight and hence water content. A driving

head, equal to the sample length, was established by increasing the air

pressure in the chamber(unit gradient). The gradient in pressure head

was equal to zero; a constant water content was obtained throughout the

sample. This meant that only one flowrate was possible for each water

content.

Yule and Gardner (219) stated that variations in the hydraulic

gradient can only be achieved by variations in water content. This is

not quite true, as will be discussed shortly, but it accurately points

out the problem. Their experimental setup consisted of a rectangular

plexiglasss soil container with an inflow and outflow control section.

Each section consisted of 11 one-bar porous ceramic tubes. At the

inlet, the inflow in each tube was controlled by a Mariotte bottle and

at the outlet, the outflow from each tube was collected in a plastic

vial maintained under suction controlled with a bubbling tower. A unit

gradient (gravitational head) was established to obtain a uniform

moisture content throughout the column.

Gupta et al. (77) used tilted soil columns to study dispersion

phenomena in an unsaturated glass bead medium. Solutions with different

KCl concentrations were applied with a pump. The water flow could be
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Awad (11) used a two phase steady-state flow system to obtain

independent control of the volumetric water content and pore water

velocity. A horizontal system was used. Awad (11) proposed to use

changes in the pneumatic head to vary the flowrate. The pressure head

is given by:

h =h + h (7-3)
m a

where h is the matric pressure head, which governs the volumetricm

water content, and h is the pneumatic head which does not influence
a

the water content (101). Hence, by manipulating ha) the flow can be

regulated (with a pump) without affecting the water content. A flow

cell was constructed with fritted glass plates. The pneumatic head was

regulated by maintaining a gradient in air pressure in the medium

between the plates. A constant flowrate of water was established with

a pump. Water content and bulk density were measured with a gamma

attenuation system. The hydraulic head was obtained by using

tensiometers connected to pressure transducers. The method could not be

used at very low water contents, due to the occurence of a high

resistance boundary layer between plates and medium.



VIII. MULTI-PHASE TRANSPORT

A logical extension of the previously discussed unsaturated

transport is the study of transport of immiscible fluids. Multiphase

transport involves vapor and liquid phase or various liquid phases.

There is a need to study these processes in order to predict movement

of (volatile) substances such as pesticides, oil products, and other

(organic) compounds. First, pesticide movement in liquid and vapor

phase will be discussed based on the work by Jury et al. (91), followed

by a brief mention of research in the area of immiscible liquid

transport.

Transport in Vapor and Liquid Phase

Jury et al. (91) determined the loss of pesticide via

volatilization and diffusion in the vapor phase and via advection and

diffusion in the liquid phase. Their investigation involved the

movement of triallate in soil samples placed in a volatilization

chamber at relative humidities of 50 and 100%. The vaporized triallate

was collected on polyurethane plugs.

The total concentration of the solute in the soil was given by:

Ct = PbS +%0 Ce +O09C (8-1)g g

where C is the total concentration expresses as mass of solute per
t

-3volume of soil [ML ], S is the adsorbed concentration, expressed as

126
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mass of solute per mass of soil [MM_], C and C9 are liquid and gas

concentration, respectively, expressed as mass of solute per volume of

fluid [ML -], and 0 and 0 are the liquid' and gas content,

3 -3
respectively, expressed as volume of fluid per volume of soil [L L

The solute flux was expressed as

ac 9 ac,
JS -Dg ax -etax JVct(82

where Js is the solute flux, D9 is the gas diffusion coefficient

[L 2T ],p D is the liquid diffusion coefficient [L 2T_ l1and J is the,
t V
3 -2 -1volumetric water flux [L L T I. It should be noted that advective

transport in the vapor phase was considered to be negligible. Under

some circumstances, -such as non-isothermal flow, this might not be

justified. The continuity equation for one-dimensional transport in the

absence of a sink/source term is:

at+ a S=0 
(8-3)

at ax

Eq. (8-1) and (8-2) can be substituted in Eq. (8-3) to describe mass

transport. In order to solve the resulting equation, it should contain

only one dependent variable,, viz, a concentration in a particular

phase. The following relationships are useful for this purpose:

1) Gas and liquid concentration are related by Henry's law
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2) The adsorption isotherm is linear, which seems reasonable for the-

trace amounts of solute encountered:

q = aCt + b (8-5)

Some additional assumptions were made by Jury et al. (91) to

rewrite Eq. (8-3) in terms of C :
g

ac a 2 cacS g D _ g+ V g (8-6)

at e 2 e ax
ax

where c = pbaKH+0K +0, De=Dg+KHD and ve=JvK For appropriate
b H t H g e g H e V H

boundary and initial conditions, Eq. (8-6) can be solved analytically

for C . Of course, due to hysteresis and non-equilibrium, Eq. (8-4) and
g

(8-5) might not be representative. This would subsequently influence

the accuracy of the solutions of Eq. (8-6).

Jury et al. (91) considered two cases, viz. transport by

diffusion only (Jv=O) and transport by advection-diffusion (Jv O),

which obviously led to different solutions for C . An expression for
g

the solute flux at the surface, J (O,t), was found by using Eq. (8-2),5

in conjunction with the solution for C and Eq.(2-4). The cumulative
g

loss was then obtained via integration of the flux over time. The

experimentally measured cumulative loss was used to determine the

effective diffusion coefficient, D . Knowledge of this D enables onee e

to make theoretical predictions of the mass flow. It was shown that

advection (evaporation) caused the vapor loss to increase slightly.

Loss of' the pesticide was mainly due to depletion from the upper soil

layer. Because of the increase in the concentration gradient, diffusion

becomes more important close to the soil surface.
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Transport in Immiscible Liquid Phases

Recently, an increasing amount of research has been initiated in

the area of non-aqueous phase liquids, NAPL (2, 129). The situation is

slightly different for this type of flow than for flow in systems

containing a single liquid phase. Advective transport plays a role in

all phases, and knowledge of the flow properties for each phase is

needed. Multiple phase flow is, among others, discussed by Scheidegger

(165). Once the flow problem has been solved, an attempt can be made to

describe transport. The distribution coefficients of the solute between

the various phases, as well as in some cases the exchange and

adsorption parameters, need to be known. In some instances, the

immiscible fluids may consist of multiple components with distinct

coefficients describing the distribution between the various fluids

(44). Baehr and Corapcioglu (13) studied transport of the various

components of gasoline for which they predicted quite different travel

times. Numerical solutions for multiphase flow and transport can be

found in Huyakorn and Pinder (86).

Abriola and Pinder (2, 3) treated the simultaneous transport of

organic compounds in three phases: the non-aqueous, aqueous, and vapor

phases. These authors derived a system of three non-linear partial

differential equations with five independent variables (i.e., two

capillary pressures and three mass fractions). The capillary pressures

occur as a result of interfacial tension. The mass balance equation for

a particular species within a certain phase contains a storage term, an

advective and autonomous flux, a sink or source term, and exchange
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resulting from a phase change or interphase diffusion. The mass balance

needs to be derived for all species in each phase. Often a number of

terms can be neglected, like the advective transport in the gasphase as

mentioned before. These authors did not consider the (ad)sorption of

the solute to the solid phase. An implicit numerical model was used to

solve the resulting system of non-linear equations with Newton-Raphson

iteration. The study was restricted to one-dimensional tranport. The

primary mechanism by which the volatile component was transported

through the medium was via gas diffusion. Since it was assumed that

local equilibrium existed between gas and liquid phases at all times,

the concentration in the liquid phases changed accordingly.



IX. EPILOGUE

It is hoped that this review demonstrated that the problem of

solute transport is a very broad one with many interesting aspects.

Combined with the urgency of ground water pollution, it is therefore

not surprising that a great deal of work has been done in this area.

Obviously, it was impossible to cover all aspects of transport modeling

and to discuss fundamental processes in great detail in a review like

this. Instead, it was restricted to a discussion of some basic

processes which affect transport. These processes are of a chemical,

physical, and biological nature, which explains why often an

interdisciplinary approach is needed (Chapter I). It should be noted

that, because of thisinterdisciplinary nature, the terminology and the

focus of the research vary widely. Some useful references were provided

in the discussions on the basic transport equation (Chapter II and

III). The reader is encouraged to consult the more advanced and

comprehensive discussions in the literature.

The principles of transport, i.e. using the principle of

conservation of mass, can be applied to transport under "complicating"

conditions: with non-linear exchange (Chapter IV), in structured and

layered media (Chapter V), during unsaturated flow (Chapter VII), and

for multi-phase systems (Chapter VIII). Although the fundamental

processes are essentially the same, these (and other) conditions offer

challenges for additional research. As our understanding of transport
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progresses, new questions will undoubtedly arise. Because this report's

objective was to formulate transport problems, or at least refer to it,

relatively little attention was paid to the mathematical, in particular

the numerical, solution of transport problems Many good references

exist on the mathematical tools which are available to solve transport

problems.

The ultimate goal of much of the reasearch is geared towards a

better understanding of solute transport in natural porous media. Some

of the basic research might be helpful to solve "real problems," some

might not. Chapter VI pointed out that many of the traditional

deterministic models are of limited value. It is clear that modeling

should be accompanied by measurements, which makes such studies very

challenging for researchers because of the amount of effort involved

(time, money, expertise). Furthermore, some of the research findings

are not applicable under different conditions.

To put research efforts in the area of solute transport in

perspective, it is noted that many social and economical aspects are

involved as well. Some pollutants can safely be dispersed in large

water bodies, whereas others need to be contained. For some materials

(e.g., radioactive waste), one might argue that nonproduction and

nonuse is the only sensible approach. The short term economic benefits

of, for instance, agricultural chemicals, do not warrant their use in

view of possible adverse effects in the long term. Transport modelers

can provide part of the information needed to make a rational decision.

Finally, in light of all the difficulties associated with transport
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modeling, it seems only logical to improve management practices in

dealing with da ngerous chemicals and to educate potential developers,

producers, and users. This requires input from researchers in the area

of solute transport as well.



NOTATION

This section contains the description and units of most of the symbols
used in this review. Because the notation in the literature is
not uniform, occasionally some unusual symbols were used or symbols
were used twice.

Symbol Description Units

a (aggregate) radius L

ak chemical activity of species k

B Brenner number (column Peclet number)

C concentration of solute in liquid phase ML 3

C dimensionless concentration

C(x,s) concentration in Laplace domain ML-3

Ca local concentration inside aggregate ML-3

C dimensionless exit concentratione
C exit concentration ML- 3ex
Cf flux-averaged concentration ML- 3

f-3
C concentration of solute in gas phase ML

-3
C. initial concentration ML-3
C. inlet concentration MLin

-3
C concentration of solute in liquid phase (=C) ML

C mean concentration MLm
CimCmo C for immobile and mobile region ML-3

mo3
C molar concentration of species ML

C mole fraction of species k (C k/CMM Mk M-3
C concentration of feed solution (eluent) ML-

C outlet concentration ML 3

out
Ct total mass of solute per bulk volume ML
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Symbol Description Units

-3
Ct  time average of C ML

CT  total concentration in liquid phase ML
-3

CV  volume averaged concentration ML

d depth or characteristic particle size L

D,D coefficient of (hydrodynamic) dispersion L2T -1

D effective (retarded) value for D (=D/R) LT 1

D coefficient of mechanical dispersion LT -

dis
D (effective) coefficient of molecular diffusion LT -

D D for immobile region LT
eim e

D D for mobile region LT
emo e 2 -1
D gas diffusion coefficient LT
g 2-1

De liquid diffusion coefficient LT
2 -1

DL  coefficient of longitudinal dispersion L2T

D. ,D D for immobile and mobile region L2T
imt mo 2-1
D coefficient of molecular diffusion in the L2T

free liquid

D (O) dispersion coefficient (=OD(e)) LT -

DT  coefficient of transverse dispersion LT -

D (0) soil water diffusivity LT -

f probability density function

f (I) probability density function for
movement in a soil as

f fraction of sorption sites in direct contact

with the mobile region

f' slope of exchange isotherm (dS/dC or dY/dX)

F fraction of adsorption sites belonging to
"type-i" (=S1/S)

F dimensionless rate parameter (k2L/v)

g acceleration due to gravity LT

g geometry factor

g(i) probability density function for infiltration

G Gibbs free energy J mol-
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Symbol Description Units

h(O) soil water retention function

h pressure head or height L

h pneumatic head L

hL(t) travel time density function

h matric head L
m
H hydraulic head L

0~- 1
i infiltration rate LT

I cumulative infiltration L

JD diffusive/dispersive mass flux ML T
D-2

J. ,J cumulative diffusive flux in immobile and ML
mobile region

J total solute mass flux ML-2T - 1
S-1

JV volumetric water flux (Darcy flux) LT
-1

k rate coefficient T

k permeability L2
-1

k rate constant in the aggregate T
a

K(8) hydraulic conductivity LT

K equilibrium constant

Kd  distribution coefficient LM

Kdi m  Kd for immobile region LM

K K for mobile region LM
.dmo d

K distribution ratio of ions between mobile and
D immobile region

KH partition coefficient in Henry's law

K exchange coefficient
jk
L column or mixing length L

LD  effective diffusion/dispersion length L

Ldi f  diffusion length L

L d dispersion length L

L dispersion length due to stagnant phase effect L
r-2

m0  total mass of solute per area of column ML

m p-th moment of temporal or spatial
distribution
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Symbolj Description Units

m
p
n

N[ ]

N.
1

P

P

P or Pe

q

q'

qim

r

R

R

R. ,Rim, mo
Ra

s

S

S. ,Sim mo
ST

t

17

T

u

u
o

v

v

V
V
v

mo
v

m
w

ML-2T-1

_1 _)

ML T6

depth-averaged moment

number of moles

normal distribution function

diffusive molar flux

probability

pressure

Peclet number (vd/D, vL/D)

concentration of solute in adsorbed phase

differential capacity of exchanger (=dq/dC)

q for immobile sites

radial distance

gas constant

retardation factor

R for immobile and mobile region

aggregate radius

position along a streamline

concentration of solute in adsorbed phase on
a mass basis

S for immobile and mobile region

total solute concentration in adsorbed phase

time

temperature

number of pore volumes (vt/L)

velocity in a free liquid

maximum value for u

pore-water velocity

effective (retarded) velocity (v/R)

volume

volume per unit cross sectional area

pore-water velocity in mobile region (veT /e )

mean

width

L-3
ML 3

-3

L

J mol K

L

L

MM-
3

MM-
3

MM3

mm-3

T

K

LT-1

LT
1

-1
LT-1

LT

-1

LT

L

n aL3L-2

excha-1

regiLT

I , I
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Symbol I Description Units

x Cartesian coordinate in direction of flow L

X width L

xC position at which a particular concentration L
resides

Xk  dimensionless concentration in liquid phase
for species k (=Ck/CT

x equivalent depth of penetration of a solute L
front

y space coordinate L

Yk dimensionless concentration in adsorbed phase
for species k (=Sk/S

z space coordinate L

z gravitational head L

Z dimensionless distance (r/a, x/L)

a mass transfer coefficient T

a. random hydraulic parameter
1

aL longitudinal dispersivity L

aT  transversal dispersivity L

3 gravity segregation factor

activity coefficient

w -s rate constant for production in liquid and MLT- 1
W adsorbed phase T

6 Dirac delta function

Sviscosity ML-1 T-1

0 volumetric water content or volume fraction LL - 3

3 -30 im 0moe for immobile and mobile region LL - 3

e ,9 volume fraction in liquid and gas phase L3L- 3
g gS-3

0 total volume fraction LL

A tortuosity factor
-1

pk chemical potential of species k J mol
o -1

pk k in a chosen standard state J mol

mean of spatial (i ) or temporal (It) L or T
distribution
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Symbol Description Units

Awl s rate constant for first order decay in liquid T-1

and adsorbed phase

Vk valence of species k

Cartesian coordinate in a moving system L

P density ML-3

Pb dry bulk density 
ML-3

T standard deviation of spatial ((Y ) or temporal L or T
(0-t) distribution x

0' relative spread in velocities

T (transit) time T

-T unit vector field (v/v)

formation factor

probability function

Boltzmann variable (x/ff) LT

I
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