A COMPUTER PROGRAM FOR DETERMINING THE EXPECTED RATE OF RETURN ON THE INVESTMENT IN A COLLEGE EDUCATION

A COMPUTER PROGRAM FOR DETERMINING THE EXPECTED RATE OF RETURN ON THE INVESTMENT IN A COLLEGE EDUCATION William E. Hardy, Jr. and John L. Adrian, Jr.*

In recent years, economists, educators, and others concerned with the education process have expressed interest in the private and social returns generated by investment in a college education. Economists have devoted study to these returns and to the related concept of human capital, the productive asset resulting from educating and training the individual [4, p. 571]. Economic analyses have also been directed toward study of the costs of the educational process and determination of how these expenses should be shared by the individual and society $[1,5]$.

This bulletin presents several basic concepts that should be considered in an education investment analysis. A discussion of the basic returns and costs associated with higher education and a procedure for determining the rate of return on the investment are included. Also, detailed instructions for utilization of a computer program designed to aid in determining the expected rate of return for an individual student's investment in college are presented.
*Assistant Professors in the Department of Agricultural Economics and Rural Sociology, Agricultural Experiment Station, Auburn University.

814	2
A3$\begin{aligned} & \text { NS } \\ & \text { no. } \end{aligned}$	Rate of Return Analysis
	A basic component of all studies related to an investment,
$7-1-88$	whether in human capital or "hard" capital such as machines; build-
(ings, or equipment, is that of the rate of return. When a business
	manager considers an investment, costs and returns for that partic-
	ular activity are generally assembled and compared to determine the
	relative profitability of the investment. A potential student should
	initiate a similar analysis when considering an investment in higher
	education.
	Educational Returns
$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	In determining the rate of return on educational investment,
	an individual must estimate all returns expected to be realized as
	a result of the decision to secure higher education. Returns are
	grouped into two distinct categories, investment returns and
	consumption returns. Investment returns refer to monetary rewards or
	increased earnings that a person might expect through increased skills
	and/or abilities to produce those goods and services that are
	valued highly by sociecy. Nonpecuniary or consumption returns,
	which are perhaps the most important but most difficult to measure,
	stem from the immediate utility or satisfaction that a person re-
	ceives during the time of his schocling and the long-run increased
	satisfaction thac accrues during his lifetime because of the educa-
	tional experience [3 , pp. 325-328].
	Erucational Costs
	Costs of a college education may also be divided into several
	categories. The major expenses that the student andor his family

must bear for a college education are tuition, books and supplies, and foregone earnings by the student. The first two components are often referred to as explicit costs since they are obviously costs: of attaining higher education. The costs of room and board are not included since a person has to live whether he is in school or not. However, a portion of this expense may be included as a valid cost of education if it is felt that the cost of living in a college community is higher than would be experienced otherwise. This adjustment might be negative $\mathrm{iff}^{\mathrm{f}}$ it is felt that the cost of living in the university enviromment is less expensive.

The foregone earnings component of private educational costs is often overlooked because this amount is not actually paid by check or cash; it is an implicit cost. It is, however, a very important part of the total cost of education, possibly as much as 80% of the annual per student cost in public universities, and should be included in a rate of return analysis since students generally give up full-time employment earnings while in college [2, p. 96]. To determine the rate of return on an individual's investment in higher education, the expected investment returnsmust be compared to the expected costs. The applicable rate of return is that rate which will make the present value of the expected costs equal to the present value of the projected returns. An alternative fomulation would be to determine the discount xate which would make the present value of the net difference between the costs and returns equal to zero. This latter approach may be presented as follows:
$\sum \frac{\left(\mathrm{R}_{\mathrm{j}}-\mathrm{C}_{j}\right)}{(1+i) \mathrm{j}}=0$
$j=1$
where
R_{j} is the return associated with each period, j;
C_{j} is the cost associated with each period, j;
m is the total number of periods; and
i is the discount rate.
The rate of return estimated by this method would be a conservative underestimate of the true rate since not all returns are included. All costs are contained, but the nonpecuniary or consumption returns that a person recelves are not incorporated into the analysis.

The rate of the return on the investment in education is an important subject and should be carefully considered by all college or potential college students. It is, however, recognized by very few. This lack of concern comes as a result of several factors, with the most important being a general lack of knowledge concerning basic economic principles and an overriding desire to attend college for other than monetary reasons.

Because there is a general absence of "personal" rate of return to education analysis. on the part of students considering college, a computer progxam was developed to permit students to ascertain the expected rate of return on their educational investment. This rate is based upon their own expected and projected costs and earnings. The following sections of this report will explain the basic computational procedure, the input required, and the output generated.

General Information

The computer program, written in FORTRAN and currently being run on a IBM $370 / 158$, is designed to permit an analysis of rate of return data for several students. ${ }^{1}$ Thus, the program is ideal for use within the classroom to supplement a discussion of the costs and returns associated with the investment in education. The output is designed to give each student an individual computation of his rate of return and to produce summary tables giving minimum, maximum, and average rates of return and average expected lifetime earnings with and without college for the total group by sex, academic class, school, and curriculum. These summary tables can be used to allow each student to determine his position relative to his peers and reevaluate his own expectations.

Initial General Input

The first input required is a card describing the data being run, the number of curricula bejng considered, and the number of schools or colleges being analyzed. This information is given in (12A4,2I2) format and is referred to as "CARD TYPE 1".

The next data needed are tho names of each curriculum in (3X,6A4) format with the program currently dimensioned to handle up to ninety (90) curricula, CARD TYPE 2. One card is required for each curriculum identification. Although it: is not necessary for these cards to be numbered, consecutive numbering would certainly aid in keeping cards in order and coding of student information.
${ }^{1}$ Copies of the source deck are available upon request from the authors.

Cards giving the identification of the schools or colleges being considered are the next portion of data required, CARD TYPE 3. Space is allocated to handle up to twelve (12) colleges with each identification put on a separate card in (3X,6A4) format. Again, card numbering might aid in keeping cards in order and coding other input. Individual Student Data

Information for determining the rate of return for each student is obtained from the students. Each student is given a form as illustrated by Schedule 1 and is asked to fill in the appropriate information. The first three lines are self-explanatory with each student giving his nane, sex, academic class, school, and curriculum.

Each student provides the expected explicit costs of education in the first column. Up to 13 years of schooling, starting at age 18 , are permitted. Entries in this column should be annual estimates of the costs of tuition, books, supplies, and any university community cost of living differential. Scholarships and other forms of educational aid should not be considered in this section.

The data given in the second and third columns reflect the student's income expectations. The second column gives the annual income as expected by the student without education past the high school level, while the third column permits the student to give the earnings, scholarships, and other monetary assistance received while attending school and projected earnings after graduation.

It is necessary for the "years of work" to be the same for both the second and third columns. Also, since the program is designed to

DATA FOR DETERMINATION OF RETURNS TO COLLEGE EDUCATION

Schedule 1. Example of form used to obtain student information for rate of return analysis.
begin the discount process with the data entries at age 18 , better results are obtained if students are asked to assume that they are eighteen years old, just graduated from high school, and are considering the possibility of additional education. With this assumption, students start filling in the information on the first line of the table. If they have already been in school for several years, they should know the information for the first few years of school and have to estimate it for the years past their present position. Data for each student axe submitted with four sets of cards. "CARD TYPE 4", the first of this series, gives the basic information about each student in $(40 \mathrm{Al}, 815)$ format. These data are:

Column	Code Name	Information
1-40	Name	Student's name
41-45	NYEARS	Number of years in school (1-13 permitted)
46-50	NRETIR	Retirement age ($35+$ permitted)
51-55	NCLASS	Code for acadernic class (1-6 permitted)
56-60	NCURR	Code for curriculum (1-90 permitted)
61-65	NSEX	Code for sex (1)male, $2=$ female)
66-70	NQT	Code for quarter or semester ($1-4$ permitted)
71-75	NXR	Year
76-80	NSCH	Code for school or college ($1-12$ permitted)

The next set of cards, "CARD TYPE 5," gives the student's estimates of his college costs in (8 Fl 10.0) format. Up to thirteen values are permitted, with two cards required if more than eight values are given.
"CARD TYPE 6" gives the student's income expectations without college and "CARD TYPE 7" presents the expectations with college. These sets of data are punched in (8F10.0) format with several cards required for each.

Figure 1 depicts the normal deck and order of cards for a rate of return analysis. Card types 4, 5, 6, and 7 are repeated for each student. There is no limit on the number of students that can be considered.

Example Analysis

This section presents a hypochetical example which illustrates actual data input and the output generated by a complete analysis. For the example, it is assumed that there are twenty possible curricula and six possible schools ox colleges. The curricula being considered are:

```
    1. Agricultural Economics
    2. Agronomy
    3. Animal Science
    4. Horticulture
    5. Building Construction
    6. Tntexior Design
    7. Chemistry
    8. Geology
    9. English
10. Mathematics
11. Accounting
12. Business Administration
13. Economics
14. Nanagement
15. Elementary Education
16. Special Education
17. Aerospace Engineering
18. Civil Engtneering
19. Electrical Engineering
20. Mechanical Engineering
```


Pigure 1. Card order for rate of return analysis

The schools or colleges being considered are:

1. Agriculture
2. Architecture
3. Arts and Sciences
4. Business
5. Education
6. Engineering

Data for three hypothetical students are presented on completed Schedules 2, 3, and 4. Schedule 2, giving data for B. Ross, indicates that she plans to attend school for four years, enrolled in English. She plans to work for three years after graduation and then take time to have children and raise them to school age.
T. Jefferson, with data given on Schedule 3, plans to attend school for four years, work for two years and then return to school for two years for a graduate degree. The third column of the table illustrates fairly low income levels during school years and higher levels during non-school years. The low income during the first four years could represent part-time earnings and/or scholarships. The slightly higher figures during graduate school indicate the possibility of an assistantship.

The data for G. Washington in Schedule 4 indicates four years of school in Agronomy with expected retirement from work at age 65.

A listing of the data deck required for the analysis of these three students, the complete output, and a listing of the source program are given in the Appendix. The output section indicates that, based upon the data given by the students, B. Ross could expect an 8% rate of return; T . Jefferson, a 7% rate of return; and G . Washington, a 9% return. The average for these three students is 8% with 7% and 9% being the extreme values.

DATA FOR DETERMINATION OF RETURNS TO COLLEGE EDUCATION

Name B. Ross

Sex \qquad Academic Class Fr.
-School Arts \& Sciences Curriculum English

Schedule 2. Example data for hypothetical student.

DATA FOR DETERMINATION OF RETURNS TO COLLEGE EDUCATION

Sex M	Academic Class Sr.
. School Arch.	Curriculum Building Const.

Age	Cost of Tuition and \qquad	Expected Income Without College \qquad Education	Expected Income With College Education
18	800	6000	500
19	800	6000	500
20	825	6200	1500
21	850	6300	1500
22	0	6500	8000
23.	0	.7000	8400
24	1000	7200	5000
25	1000	7400	5000
26		7500	10500
27		8000	10800
28.		8100	11000
29		8200	11300
30		8300	11800
31-35		9000	12000
36-40		9500	12400
41-45		10000	12600
46-50		10500	13000
51-55		10800	13500
56-60		11000	14000
61-65			
66-70			
71-75			
76-80			

Schedule 3. Example data for hypothetical student.

DATA FOR DETERMINATION OF RETURNS TO COLLEGE EDUCATION

Name Q. Washington			
Sex M		Academic Class Jr.	
: School	Agriculture	Curriculum Agronomy	
	Cost of Tuition and Books	Expected Income Without College Education	Expected Income With College Education
18	800	5000	1000
19	825	5000	1000
20	825	5200	2000
21	900	5200	1500
22		6000	8000
23		6000	8100
24		6500	8300
25		6500	8700
26		6800	9000
27		6800	9000
28		7000	9300
29		7400	9500
- 30		7600	10000
31-35		8000	10000
36-40		9000	10500
41-45		9500	10800
46-50		9800	10900
51-55		10200	11300
56-60		10500	11800
61-65		11000	12200
66-70			
71-75			
76-80			

dule 4. Example data for hypothetical student.

Abstract

Summary The computer program and associated instructions presented in this report have proved to be very useful in presenting the concept of ; educational investment to students in principles of economics courses. The required input data and result and analysis permit students to comprehend the basic concepts of a rate of return analysis for higher education.

[1] Carnegie Commission on Higher Education, 1973. Higher Education: Who Pays? Who Benefits? Who Should Pay? McGraw-Hill Book Co., New Jersey.
[2] Leftwich, R. H. and A. M. Sharp. 1974. Economics of Social Issues. Dallas: Business Publications, Inc.
[3] Peterson, W. L. 1974. Principles of Economics: Micro. Homewood, Illinois: Richard D. Irwin, Inc.
[4] Shultz, T. W. 1960. "Capital Formation by Education." J. of Pol. Econ., vol. 68.
[5] 1967. "The Rate of Return in Allocating Investment Resources to Education." J. Hum. Res.
[6] U. S. Department of Commerce, Bureau of the Census. 1974. Current Population Reports--Consumer Income. U. S. Government Printing Office, Washington, D. C.

APPENDIX

Listing of Input and Output from

Example Problem and Source Deck

EXPECTED INCOMES WITH WND WITHOUT COLLEGE EDUCATION ANL FATE OF RETURN FOE STUDENTS IN EXAMPLE PROBLEM DURING SESSIGN 1 OF 1970.

THIS REHORT IS FOR \& ROSS
WHO EXPECTS TO GO TO SCHOOL FOR 4 YEAFS ANO WORK UNTIL THE AGE OF 55\% WORKING 34 YEARS AFTER COLLEGE. THIS STUOENT IS ENROLLES IN ENGLISH
WITH THE EXFECTED INCOMES AND COSTS GIVEN BELOW, B ROSS
WILL HAVE AN APPROXIMAYE RATE OF RETURN
ON THE INVESTUENT IN EDUCATION OF E.O PERCENT.

AGE	EXPECTED	EXPECTED	$\begin{aligned} & \text { EXPECTED } \\ & \text { ADDITIONAL } \end{aligned}$
	INCOME PER YEAP	INCOME PER YEAR	INCOEE PER YEAR
	WITH COLLEGE	WITHOUT COLLEGE	WITH COLLEGE.
	educatiod	EdUCATION	EOUCATION
18	500.00	4000.00	-4250.00
19	800.00	4000.00	-3975.00
20	500.00	4000.00	-4300.00
21	600.00	4100.00	-4.300.00
22	0000.00	4300.00	3700.00
23	8300.00	4500.00	3800.00
24	9000.00	4800.00	4200.00
25	0.0	0.0	0.0
26	0.0	0.0	0.0
27	0.0	- 0.0	0.0
28	0.0	0.0	0.0
29	0.0	0.0	0.0
30	0.0	0.0	0.0
31-35	9000.00	7300.00	1700.00
36-40	9500.00	7800.00	1700.00
41-45	10000.00	8200.00	1800.0 J
46-50	10500.00	8500.00	2000.00
51-55	11000.00	8600.00	2400.00
TOTALS	277700.00	231700.00	42875.00

```
EXpected incomes with and without college education and rate OF RETURN FOR STUDENTS IN example proalem DURING SESSIONII OF 1970.
```

THIS FEPORT IS FOR T JEFFERSON WHO EXPECTS TO GO TO SCHOOL FO? is YEAPS AND WORK UNTIL THE AGE OF 6O. WORKING 35 Years after COLLEGE. this student is enkolleo in ruilding construction

WITH THE EXPECTED INCOMES AINO COSTS GIVEN BELOW, T JEFFERSON WILL HavE an approximate fate of retukin ON THE INVESTAENT IN EDUCATION OF 7.0 PERCENT.

EXPECTED
INCONE PER YEAR WITHGUT COLLEGE EOUCATION 6000.00 6000.00 6200.00 6300.00 6500.00 7000.00 7200.00 7400.00 7500.00 8000.00 8100.00 $\varepsilon 200.00$ 8300.00 9000.00 9500.00 10000.00 10500.00 10800.00 11000.00
396700.00

EXPECTED AOUITIONAL INCOAE PER YEAR WITH COLLEUE EOUCATIU:
-6300.00
-6300.00
-5525.00
-5050.00 1500.06 1400.00
-3200.00
-3400.06 3000.00 2600.00 2900.00 3100.00 3500.00 3000.00 2900.00 2600.06 2500.0ij 2700.00 3000.00
71325.00

EXPECTEO INCCMES WITH ANO WITHOUT COLLEGE EDUCATION ANO RATE OF RETURN FOR STUDENTS IN EXAMPLE PROBLEM DURING SESSION 1 OF 1976.

THIS REPORT IS FOR G WASHINGTON WHO EXPECTS TO GO TO SCHOOL FOR 4 YEARS AND WORK UNTIL THE AGE OF 65. WORNING 44 YEARS AFTER COLLEGE. THIS STUOENT IS ENROLLED IN AGRONGMY

WITH THE EXPECTED INCONES AND COSTS GIVEN BELOW, WILL HAVE AN APPROXIMATE KATE OF RETURN ON THE INVEST:ENT IN EDUCATION OF 9.0 PERCENT.

AGE	EXPECTED	EXPECTED	EXPECTED ADOITIONAL
	INCOME PER YEAP.	INCOME PER YEAK	- INCOHE PER YEAR
	WITH COLLEGE	WITHOUT COLLEGE	WITH COLLEGE
	EOUCATION	E DUCATION	EDUCATIOM
18	1000.00	5000.00	-4800.00
19	1000.00	5000.00	-4825.00
20	2000.00	5200.00	-4025.00
21	1500.00	5200.00	-!600.0n
22	- 8000.00	n000.00	く000.00
23	8100.00	5000.00	2100.00
24	8300.00	6500.00	1800.00
25	8700.00	6500.00	2200.00
26	9000.00	6800.00	2200.00
27	9000.00	6800.00	2200.00
28	$9300: 00$	7000.00	2500.00
29	9500.00	7400.00	2100.00
30	10000.00	7600.00	2400.00
31-35	10000.00	8000.00	2000.00
36-40	10500.00	9000.00	1500.0.
41-45	10000.00	9500.00	1300.00
46-50	10900.00	9800.00	1100.00
51-55	11300.00	10200.00	1100.00
56-60	11800.00	10500.00	1300.00
61-6.5	12200.00	11000.00	1200.00
TOTALS	472900.00	421000.00	48550.00

SUMMARY OF INCOME AND RATE OF RETURN INFORMA'CION

	AVERAGE INCOME	AVERAGE INCOME				
	WITH COLLEGE	WITHOUT COLLEGE		AVERAGE	MIN	MAX
NUMBER	Education	EDUCATION	RATE	OF RETURN	RATE OF RETURN	RATE OF RETURN
3	407966.63	349800.00		8.0	7.0	9.0

SUMMARY OF INCOME AND RATE OF RETURN INFORMA:ION BY SEX.

SUMMARY OF INCOME AND RATE OF RETURN INFORM.TION BY ACADEMIC CLASS.

SUMMARY OF INCOME AND RATE OF RETURN IIFORMATION BY SCHOOL OR COLLEGE

CODE	NUMBER	AVERAGE INCOME WITH COLLEGE	AVERAGE INCOME WITHOUT COLLEGE	AVERAGE	MIN	MAX	N
		EDUCATION	EDUCATION	RATE OF RETURN	RATE OF RETURN	RATE OF RETURN	\cdots
AGRICULTURE	1	472900.00	421000.00	9.0	9.0	9.0	
ARCHITECTURE	1	473300.00	396700.00	7.0	7.0	7.0	
ARTS AND SCIENCES	1	277700.00	231700.00	8.0	8.0	8.0	

0

```
C USE AS MANY OF CARD TYPES Z& 3 AS NEEOEO.FOR ALL
                CURRICULA AND SCHOOLS.
    ONE OF CARD TYPE & IS REQUIRED FOR EACH STUUENT.
    USE AS NANY OF CARD TYPES 5, 6 AND 7 AS NEEDED FOR ALL
    COSTS ANO EXPECTED INCOMES. BEGIN EACH OF THE THREE
    TYPES OF DATA ON A NEW CARD.
    ONE SET OF CARDS TYPES 4,5,6 AND 7 IS REQUIRED FOR
                EAGT STUDEMT.
        If SUMmary tables by SEX, ACADEmIC CLASS, CURRICULUM,
        ANO SCHOOL ARE NOT DESIFED, LEAVE THESE FIELDS BLANK
        FOR EACH STUDENT.
        OIMENSION NAMEC(12) ,NAME (40),COLCOS(15),HISCH(24),
    1 COLLEG(24),ADINC(24),PV(68),SEX(2,6),CLASS(6,6),CURR(
    290,6),ISEx(2),ICLASS(6),ICURR(90), CURRCD (90,6),SC(12,6)
    3,15C(12),SCCOD(12,6)
        INTEGER BLANK/: '/
        IRO=5
        READ(5,720) NAMEC,NCODE,NSC
        DO 140 J=1,6
        00 100 I=1:2
100 SEX(I,J)=0.0
    00 110 1=1,6
110 CLASS(I,J)=0.0
    DO 120 I=1,NCOOE
120 CURG (I, j)=0.0
    00 130 1:1.12
130 SC(1,J)=0.0
140 CONTINUE
    IYC=0
    00 1501-1.2
    SEX(1,5)=10.**20
150 SEX(1.6)=0.0
    00 150 1=1.6
    CLASS (1-5)=10***20
160 CLASS{I:6:=0.0
    DO 170 1=19NCODE
    CURR(I,5)=10**20
170 CURR(1,6)=0.0
    DO 180 1=1.NSC
    SC(I.5)=10*%20
180 SC(1.6)=0.0
    TOTNO=0.0
    TOTALH=0.0
    TOTALC=0.0
    TOTALR=0.0
    XMLN=10.**20
    XMAX=0.0
    IRETC=0
```

C READ INPUT UATA.
READ $(5,730)((\operatorname{CURRCO}(1, J), J=1,6), I=1, \operatorname{NCODE})$
$\operatorname{READ}(5,730)((\operatorname{SCCOO}(1, J), J=1,6), I=1,(\mathrm{NSC})$
190 READ (IKD, 740 , END $=500$) NAME, NYEAKS, NRETIR,NCLASS, NCURF.
LNSEX,NQT, NYR,NSCH
IRET=0
200 IF (NSEX.GT. 21 GO TO 210
IF (NCLASS.GT.6) 60 TO 220
IF (NCURR.GT. NCOOE) GO TO 230
IF (NSCH.GT.NSC) 60 TO 240
60 TO 260
210 WRITE (59.750) NAME
READ (1FO, $740, E N O=500$) NANE, NYEARS, NRE TIK,NCLASS, NCURR. INSEX, NQT, NYR, NSCH
IF (NAME (I). EQ. BLANK) (GO TO 250
6010200
220 WRITE $(6,760)$ NAME
READ (IRO, 740, END=500) NAME, NYEARS, NRETIR,NCLASS,NCUKR. INSEX. NQT,NYR, NSCH
IF (NAME (1).EQ.BLANK) GO 10250
60.10200

230 WRITE $(5,770)$ NAME
READ (IRU, 740 , END $=500$) NAME, NYEARS, NRETIR,NCLASS,NCUKR,
INSEX, NQT, NYR, MSCH:
IF (NAME (1). EO. BLANK) 60 TG 250
GO TO 200
240 WRITE (6.780) NAMF
KEAO (IFO, 740, ENU 500 (NAME, NYEARS, NRETIR, NCLASS, NCURR,
INSEX,NQT,NYR,NSCH
IF (NAME (1).EQ.BLANK) GO TO 250
60 TO 200
250 READ (IRO, 740 , END $=500$) NAME, NYEARS, NRETIR,NCLASS $N C U K R$,
INSEX,NOT, NYR, NSCH
IF (NAME (1).EQ.BLANK) 60 TO 250
60 TO 200
$260 \mathrm{PVAD}=0.0$
TOTHI $=0.0$
TOTCO $=0.0$
TOTAD $=0.0$
C NWORK IS THE NUMEER OF WORKING YEARS.
C ninc is the number of lines filleo in on manuout.
(TAE NUMBER OF DATA ELEMENTS)
htot is the number of years from age io until retire.
NTOT $=$ NRE T $1 R-17$
NWORK=NTOT-NYEARS
NINC $=($ NHETIR15 $)+7$
READ (IRD, 790) (COLCOS (I), I = 1, NYEARS)
READ (IRO,790)(HISCH(I), I=1,NINC)
READ(IKO, 790)(COLLEG(I), I=I,NINC)

```
            DO 270 I=1,NYEARS
            ADINC(I)=COLLEG(I)-(COLCOS(I)+HISCH(I))
    270 CONTINUE
    MYY=NYEARS+1
    00 280 I=NY,NINC
    AOINC(I)=COLLEG(I)-HISCH(I)
    280 CONTINUE
    00 300. I =1,NINC
    IF(I.GT.13) GO TO 290
    TOTHI=TOTHI +HISCH(I)
    TOTCO=TOTCO+COLLEG(I)
    TOTAD=TOTAD+AOINC(I)
    60 TO 300
    290 TOTHI=TOTHI+HISCH(I)*5.0
    TOTCO=TOTCO+COLLEG(I)}$5.
    TOTAD=TOTAD+ADINC(I)*5.0
    300 CONTINUE
    00 310 I =1.13
    PV(I)=ADINC(I)
    310 CONTINUE
    J=-1
    DO 330 I=14,NINC
    K=I +J
    DO 320 L=1.5
    KJ=K+L
    PV(KJ)=ADINC(I)
    320 cONTINUE
    j=J+4
    330 CONTINUE
    OO 340 I=1,NTOT
    IF(PV(I).LT.0.0) GU TO }35
    340 CONTINUE
    IRETC=IRETC+1
    IRET=1
    GO T0 400
C CALCULATION OF RATE OF RETURN ON INVESTMENT IN
c educatIom.
C RINT IS THE DISCOUNT RATE.
    350 XINT=0.0
    PVAD1=99999999
    00 370 I=1,200
    PVAD=0.0
    DO 360 J=1,NTOT
    PVAO=PVAU)+PV(J)/(1.0)+XINT)*#J
    360 CONTINUE
        APVAD=ABS (PVAD)
        IF(PVAD.LE.0..AND.APVAU.LE.PVADI) GO TO 3GO
        IF(PVAD.LE.O..ANO.APVAD.GE.PVADI) GO TO 380
        FVAOI=PVAO
```

```
        XINT=XINT+.01
    370 CONTINUE
    3E0 XINT=XINT -.01
    390 CONTINUE
    XINT=XINT*100.0
    400 WRITE (5.800) NAMEC,NGT,NYE
    WRITE (6,810) NAME,NYEARS,NRETIR,NWORK, (CURRCD(NCURR,J)
        19,J=1,6)
            IF(IRET.EO.I) GO TO 410
            WRITE (6,820) NAME XINT
            GO TO 420
    410 WRITE(t.830) NAME
    420 WRITE (6.840)
    00430,I=1,13
    IAGE=I+17
    430.WRITE(6.850) IAGE,COLLEG(I),HISCH(I).ADINC(I)
    J=0
    DO 440 I=14,NINC
    1AGE=I+17+J
    IAGEI=IAGE+4
    J=J+4
    440 WRITEI(6,860) IAGE,IAGEI,COLLEG(I),HISCH(I),ADINC(I)
    WRITE(6.870) TOTCO,TOTHI,TOTAO
    450 CONTINUE
C BUILD SUMMARY TABLES.
    IF(IRET.EG.1) GO TO 190
    TOTNO=TOTNO+1.0
    TOTALC=TOTALC+TOTCO
    TOTALH=TOTALH+TOTHL
    TOTALR=TOTALR+XINT
    IF(XINT.LE.XMIN) XMIN=XINT
    IF (XINT.GE.XMAX) XMAX=XINT
    IF(NSEX.EO.O) GO TO 460
    SEX(NSEX:1)=SEX(NSEX.1)+1.0
    SEX(11SEX:2)=SEX(NSEX.2) +TOTCO
    SEX(NSEX,3)=SEX(NSEX.3) + TOTHI
    SEX(NSEX,4)=SEX(NSEX,4) + XINT
    IF(XINT,LE.SEX(NSEX,S)) SEX(NSEX,S)=XINT
    IF(XINT.GE.SEX(NSEX,G)) SEX(NSEX,6)=XINT
4%0 IF(NCLASS.EQ.O) GO TO 470
    CL_ASS(NCLASS,1)=CL ASS (NCLASS,1)+1.
    CLASS(NCLASS,2)=CLASS(NCLASS,2)+TOTCO
    CLASS(NCLASS,3)=CLASS(NCLASS,3)+TOTH1
    CLASS(NCLASS,4)=CLASS(NCLASS,4)+XINT
    IF(XINT.LE.CLASS(NCLASS,S)) CLASS(NCLASS,S)=XINT
    IF(XINT.GE.CLASS(NCLASS.6)) CLASS(NCLASS,6)=XINT
470 IF(NCURR.EQ.0) GO TO 480
    CURR (NCURR, 1) =CURR (NCURR,1) +1
    CURR(NCURR,2) =CURR (NCURP,2) + TOTCO
```

```
    CURR (NCURR, 3)=CURR (NCURR, 3) + TOTHI
        CIRR (NCURR*4)=CURR (NCURR,4) + XINT
        IF(XINT,LE,CURR(NCURR,5)) CURR(NCURR,5)=XINT
        IF(XINT.GE.CURR(NCURR,6)) CURR(NCURR,6)=XINT
    480
    IF(NSCH.EQ.0) GO TO 490
    SC(NSCH,1)=SC(NSCH,1)+1
    SC(NSCH,2)=SC(NSCH,2)+TOTCO
    SC(NSCH,3)=SC(NSCH,3)+TOTH1
    SC(NSCH,4)=SC(NSCH,4)+XINT
        IF(NINT.LE.SC(NSCH,5)) SC(NSCH.5)=XINT
        IF(XINT:GE,SC(NSCH,6)) SC(NSCH,6)=XINT
    490 60 T0 190
        WRITE SUMMARY TABLES.
    00 WRITE (6,880)
        ITOTAL=TOTNO+.5
        TOTALH=TOTALH/TOTNO
        TOTALC=TOTALC/TOTNO
        TOTALR=TOTALR/TOTNO
        WRITE (6.890)
        WRITE(G,900) ITOFAL,TOTALC,TOTALH,TOTALR,XMIN,XMAX
        |F(SEX(1,1).EQ.0.0.AND.SEX(2,1).EQ.0.0) GO TO 550
        WRITE(6.910)
        WETTE(6.920)
        00 520 I=1.2
        IF(SEX(I,1).EO.0.0) SEX(I,5)=0.0
        (F(SEX(I.1).EQ.0.0) 60 TO 520
        D0 510 J=2.4
    S10 SEX(I,J)=SEX(I,J)/SEX(1,])
    O0 CONTINUE
        10 530 1=1,2
    50 1SEX(1)=SEX(1.1)+.5
        00 540 1=1,2
        IF(ISEX(I).EQ.0) GO TO.540
        WRITE(6,930) I,ISEX(1),(SEX(I,J),J=2,6)
    540 conTINUE
    5%0 mAX=0
        D0 560 I=1,6
    560. 1F(CLASS(I.1).GT.0.0) MAX=I
        IF(mAx.EQ.0) GO TO 610
        00 580 1=1.MAX
        IF(CLASS(1.1).EO.0.0) GO TO 580
        10 570 j=2,4
570 CLASS(I,J)=CLASS(I,J)/CLASS(I,1)
580 CONTINUE
    DO 590 I=1,MAX
590 ICLASS(I)=CLASS(I.1)+.5
    WRITE(6.940)
    WRITE(6.920)
    00600 I=1,MAX
```

```
    IF(CLASS(1,1).EQ.0.0) GO TO 600
    NRITE(6.930) I,ICLASS(I),(CLASS(I,J),J=2,6)
600 continue
610 in AX=0
    00 620 I=1,NCODE
    IF(CURR(I,1).GT.0.0) MAX=I
G20 CONTINUE
    IF(MAX.EQ.0) GO TO 670
    DO 640 I=1,MAX
    IF(CURR(1,1).E.Q.0.0) 60 T0 640
    DO 630 J=2.4
630}\operatorname{CUPRP(I,J)=\operatorname{CURP}(I,J)/\operatorname{CURR}(1,1)
540 CONTINUE
    DO 650.1=1,MAX
650 ICURR(I)=CURR(I.1)+.5
    WRITE (6,950)
    WRITE(5,960)
    DO 660 I=1,MAX
    IF (CURR(I,1).EQ.0.0) 60 T0 660
    WRITE(6,970) (CIJFRCD(I,J),J=1,6),ICUMR(I),(CURR(I,J),
    1J=2,6)
6 6 0 \text { CONTINUE}
670 WPITE (5.980)
    WRITE (6.920)
    00 680 I=1,WSC
680 ISC(I)=SC(I.1)+.5
    DO 700 1=1,NSC
    IF(SC(I.1).EO.0) 60 TO 700
    00 690 J=2,4
690 SC(I,J)=SC(I,J)/5C(I,1)
700 CONTINUE
    00 710 I=1.NSC
    IF(SC(1,1).EQ.0.0) GO TO 710
    WRITE(5,970) (SCCOO(I,J),J=1,6),ISC(I),(SC(I,J),J=C,()
710 CONTINUE
    WRITE(6.990) IKETC
720 FORMAT (12A4.212)
730 FORMAT(3X,6A4)
740 FORMAT (40A1,8I5)
750 FORMAT(1H1,5x,"InvalIO VALUE FOR 5EX FOH ','04,)
760 FORMAT(1H1,5x,'INVALIO VALUE FOH ACADENIC CLASS FINK ',
    140A1)
770 FORMAT(1H1,5X, "INVALIO VALUE FOR CURRICULUH FOR'.4UAI)
780 FORMAT(1HI,5X,"INVALID VALUE FOR 5CHOOL. FOP ',4OA1)
790 FOKMAT (8F10.0)
800 FORMAT(IHI/%/5x' EXPECTEO INCOHES WITH ANO WITHOUT.",
    1'COLLEGE EDUCATIUN AND RATE'/5x. OF RETURN FOR STUUEN'
    2,'TS IN ',12A4/5x.'DUCING SESSION",12.'OF 1H',I2,'.')
810 FORNAT(///5x,"THIS REPORT IS FOR ',40A1/5X.'nGu EXFEC'
```

1. TS TO GO TO SCHOOL FOF .I2. YEARS. $15 \times$ "ANO WURK U" 2, NTIL THE AGE OF .IZ. , WORKING 'IZ. YEARS AFTER' 3.' COLLEGE. $/ 5 \times$.THIS STUDENT 15 ENROLLEO IN •, 6A4)

G20 FORMAT $/ / / / 5 X$, WITH THE EXPECTED INCOMES AND COSTS * 1'GIVEN BELOW, '40A1/5X. 'WILL HAVE AN APPROXIMATE RATE: 2.' OF RETURN•/5X. ON THE INVESTMENT IN EOUCATION OF *. 3F5.1."PERCENT.")
$\triangle 30$ FORMAT $/ / / / 5 X$, WITH THE EXPECTED INCOMES AND COSTS *, I'GIVEN BELOW, *0A1/5X, WILL HAVE AN INFINITE RATE: 2, OF RETURN'/5X.ON THE INVESTMENT IN EDUCATION. ")
 1, 'EXPECTED', TGI, ADOITIONAL'/T16. 'INCOME PER YEAR', T37 2. "INCOME PER YEAR", TSE. "INCOME PER YEAF'/TIB. "WITA CO" 3.'LLEGE ' T37.'WITHOUT COLLEGE'TGO. NITH COLLEGE'/T 420. "EDUCATION", T41, "EDUCATION", TGZ. EDUCATION")

850 FOPMAT (T7.I2.T19.FG.2.T40.F9.2.T62,F9.2)
860 FORMAT (T5.12, *- . $12.119, F 9.2, T 40, F 9.2,162 . F 9.2)$
870 FORMAT (/T5. TOTALS:T18.F10.2.T39.F10.2.TG1.F10.2)
880 FORMAT (IH1///T30, SUMMAFY OF INCOME ANO RATE OF RETUR' 1, 'N INFORMATION:
990 FORMAT (///TZS. AVEQAGE INCOME', T4R. AVERAGE INCOME'/TZ 19. WITH COLLEGE.T4马, WITHOUT COLLEGE. TTZ.'AVERAGE. 2T91. 'MTN'T10E. MAX'/T21. NUABER', T3I, 'EDUCATION'TSO, 3'EDUCATION', TG8, DATE OF RETURN', TGG. "RATE OF RETURN: 4T103. RRATE OF RETUPN:)
900 FOPMAT (/T2Z, $3, T 30, F 10.2, T 49, F 10.2, T 73, F 4.1 \cdot T 90, F 4.1$. 1 1 106.FS.1)
910 FORMAT (IH1//T30. SUMNARY OF INCOME ANO RATE OF RETURN. 1. TNFOPMATION SY SEX.")
 1T29. WITH COLLEGE. T48. "ITHOUT COLLEGE', TTZ. 'AVERAGE:

 4. ATE OF RETURN', TIO3, RaTE OF RETURN:

930 FORMAT (/T15.I2.T22, 13,T30,F10.2.T49.F10.2,T73.F4.I, T90 $1, F 4,1, T 106, F 5.1)$
940 FORMAT (LHI//T3O, SUMMAPY OF INCOME ANO RATE OF RETUFN' 1. INFORMATION BY ACADEMIC CLASS.'

950 FORMAT $11 H 1 / / T 30$. SUMMARY OF INCOME AND RATE OF RETURN' 1.: INFORMATION BY CUFRICULUM.')
960. FOPMAT ////T28. AVEFAGE INCOME, T4O, 'AVEPAGE INCOME', 1T29. "WITH COLLEGE' T48. WITHOUT COLLEGE' T72. 'AVERAGE.
 $3 T 68$. QATE OF RETUKN T8E. RATE OF RETURIN,T103, RAT' 4, 'E OF RETURN')
970 FORMAT (/T2.6A4,T23.I 3.T30.F10.2.T49.F10.2.T72.F5.1.T89 $1, F 5.1, T 106, F 5.11$
980 FOPMAT (IHI///T3O. SUMMAPY OF INCOME AND FATE OF RE TURN. - I. INFORMATION GY SCHOOL OR COLLEGE')

990 FORMAT (///'A TOTAL OF'. 13.1 STUDENTS HAVE AN INFINITE' 1," RATE OF RETURN ON THEIR INVESTMENT IN EOUCATION.")
1000 STOP
END
电

