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Abstract

Stellar blends are a challenge in visualizing celes-
tial bodies and are typically disambiguated through
expensive methods. To address this, we propose
an automated pipeline to distinguish single stars
and blended stars in low resolution images. We
apply different normalizations to the data, which
are passed as inputs into machine learning meth-
ods and to a computationally efficient Gaussian pro-
cess model (MuyGPs). MuyGPs with 𝑁 𝑡ℎ root local
min-max normalization achieves 86% accuracy (i.e.
12% above the second-best). Moreover, MuyGPs
outperforms the benchmarked models significantly
on limited training data. Further, MuyGPs low-
confidence predictions can be redirected to a spe-
cialist for human-assisted labeling.1
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1 Introduction

There are several wide-aperture ground-based sky surveys
that image a large area of sky, gathering large volumes of
data. Some of them are the Large-aperture Synoptic Survey
Telescope (LSST), Sloan Digital Sky Survey (SDSS), Dark
Energy Spectroscopic Instrument (DESI), Legacy Imaging
Survey and the Zwicky Transient Facility (ZTF). The data col-
lected by those telescopes are often used to study dark matter
through gravitational lensing. One inherent challenge is the
distortions in universe observation caused by the matter along
the line of sight between an observer and a star. When those
light distortions cause two or more celestial bodies to visually
overlap in an image it generates an effect called stellar blend.
Stellar blends are typically disambiguated through expensive
methods (i.e., spectroscopy or high-resolution images using
ground-based telescopes). Therefore, to handle the high vol-
ume of data generated by those telescopes, approaches using
machine learning can enable the automated classification of
images into a single star or blended stars. The main difficulty
is that the cutout images from those surveys are low resolu-
tion in nature and cannot be distinguished visually between
blended and non-blended stars.

1Prepared by LLNL under Contract DE-AC52-07NA27344 with
release number LLNL-ABS-843297.

2 Methods

2.1 Models

One traditional approach is to manually engineer features as
inputs to classification models. Sevilla-Noarbe (2015) used
decision trees and Odewahn (1992) applied deep neural net-
works (DNN) to successfully distinguish stars from galaxies.
Kim (2016) applied convolutional neural networks (CNN)
to SDSS data, 5 channels and 44×44 pixels. These models
have demonstrated to incorrectly classify out-of-distribution
samples with confidence. Muyskens (2021) present a compu-
tationally efficient Gaussian process (GP) algorithm that has
been applied successfully to other similar astronomical ap-
plications, e.g. star-galaxy disambiguation and galaxy blend
detection. MuyGPs uses an approximate k-nearest neighbors
with 𝑘 neighbors in batches of size 𝑏 to achieve a computa-
tional complexity of 𝑂 (𝑏𝑘3) compared to a maximum likeli-
hood expectation method that is𝑂 (𝑛4), where 𝑛 is the training
set size. In the MuyGPs framework, a threshold can be de-
fined based on the model’s prediction confidence, and the
ambiguous samples can be further investigated. We compare
all these models (decision trees, DNN, CNN, GP) using data
with different normalizations.

2.2 Normalization

Applying normalizations to the data before training a model
can favor computational optimization and generate better dis-
tribution of the data. We employ several normalizations to this
dataset and report results from a local min-max (Equation 1),
a global min-max (Equation 2) and a combination of 𝑁 𝑡ℎ root
and local min-max (Equation 3). In Equations 1-3, 𝑥 is the
complete dataset, 𝑥𝑖 is 𝑖𝑡ℎ sample, and 𝑟 ∈ R+ and 𝑟 ∈ (0, 1).
To visualize the normalized data distribution, we use Uniform
Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018) as a dimension reduction technique and analyze
the embedded space.

𝐿𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑚𝑎𝑥 (𝑥𝑖) =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
, (1)

𝐺𝑙𝑜𝑏𝑎𝑙𝑚𝑖𝑛𝑚𝑎𝑥 (𝑥𝑖) =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) , (2)

𝑁 𝑡ℎ𝑟𝑜𝑜𝑡𝐿𝑜𝑐𝑎𝑙,𝑚𝑖𝑛𝑚𝑎𝑥 (𝑥𝑖) =
(

𝑥𝑖 − 𝑚𝑖𝑛(𝑥𝑖)
𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)

)𝑟
. (3)



3 Data
Single stars and stellar blends are determined by making cuts
on a subset of data from the DESI Legacy Imaging Survey.
Due to the nature of astronomical cataloging and innate error
there is a chance of mislabeling objects (noisy label).

Figure 1: Sample images from the dataset for the different
classes and with normalizations

The dataset consists of 27253 images extracted from ZTF,
15110 single stars and 12143 stellar blends. The stellar blends
have two sub-categories: blended stars (7414) and binary stars
(4729). The images are energy flux for the i-band (i.e. ∼700-
900 nm) of an earth-based telescope with one channel and
with size 10×10 pixels. Sample images for both classes with
and without normalizations are presented in Figure 1. For
training and evaluation a data split of 80% for training, 10%
for validation and 10% for test is used.

4 Discussion
We see the importance of normalization in Figure 2, further
supported by the results presented in Table 1. Even though the
samples from Figure 1 are similar, when visualizing them in
an embedding as in Figure 2, we see that the classes become
more easily separable with local min-max normalizations. All
studied models perform better with normalization. MuyGPs
performs significantly better than the other models with and
without normalization (Table 1). We conclude that the pro-
posed automated pipeline can successfully distinguish single
stars from blended stars in low-resolution images. In special,
when the data is limited (Figure 3) there is significantly better
performance in MuyGPs. Some of it might be due to the
noisy label characteristic of astronomic data and MuyGPs is
able to deal better with it than the other models. Finally, in a
real application, Figure 4 shows how one can set a threshold
for uncertainty, determine the expected accuracy and see what
proportion of the data is expected to be ambiguous and need
further annotation by a different system or a human specialist.
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Figure 2: Normalization visualization using UMAP.

Model Normalization Accuracy
Decision Tree Raw Pixel 0.64
DNN Raw Pixel 0.65
CNN Raw Pixel 0.62
MuyGPs Raw Pixel 0.76
Decision Tree 𝑁 𝑡ℎ root Local Min-Max 0.69
DNN Local Min-Max 0.70
CNN 𝑁 𝑡ℎ root Local Min-Max 0.74
MuyGPs 𝑁 𝑡ℎ root Local Min-Max 0.86

Table 1: Comparison of different model performances.

Figure 3: Accuracy for different amounts of training data.

Figure 4: MuyGPs evaluation of ambiguous predictions at
different confidence thresholds.
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