Show Me A Function: More Than Meets The Eye

by
Chinedu Eleh
(Advisor: Dr. Hans Werner van Wyk)

Definition of Function

$>$ A function from a set X to a set Y assigns to each element of X exactly one element of Y

Using Simple Functions to Build Complex Ones

> Functions we learn in precalculus, calculus, etc

- polynomials
- exponential
- trigonometric
- inverse
- composite functions, etc

Polynomial Functions

> Spline Interpolation
> Finite elements
> ReLU activation function

Spline Basis

Let ϕ_{i} be the indicator function of $\left[x_{i}, x_{i+1}\right]$.

$$
\phi_{i}(x)= \begin{cases}1, & x \in\left[x_{i}, x_{i+1}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Spline Interpolation

Finite Element Basis

> Finite elements method built on similar idea of spline basis
> Basis could be constant, linear, quadratic, or higher order piecewise poly

$$
\phi_{i}(x)= \begin{cases}0, & x<x_{i-1} \\ \frac{x-x_{i-1}}{h} & x_{i-1} \leq x<x_{i} \\ \frac{x_{i+1}-x}{h} & x_{i} \leq x<x_{i+1} \\ 0, & x_{i+1} \leq x\end{cases}
$$

Finite Element Approximation

$>$ Goal is to solve boundary value problems, say

$$
\begin{aligned}
-\nabla \cdot(q(x) \nabla u)=f(x), & x \in \Omega, \\
u=0, & x \in \partial \Omega
\end{aligned}
$$

$>$ Discretization of the form

$$
u(x)=\sum_{i=i}^{n} c_{i} \phi_{i}(x), \phi_{i}(x) \in V^{h}
$$

is assumed, where V^{h}, spanned by ϕ_{i}, is a finite dimensional approximation of the unknown infinite dimensional space.

Differential Form \Rightarrow Weak Form \Rightarrow Discretization \Rightarrow Linear System

ReLU Activation

> The ReLU activation function is defined as

$$
\phi(x)=\max (0, x)= \begin{cases}x, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

$>$ It can create sufficient nonlinearities in neural network layers to learn virtually any mapping

Neural Networks

$>$ Made up of composition of affine functions with activations creating nonlinearity where necessary

$$
\begin{gathered}
f(x)=\left(\ell \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}\right)(x) \\
\phi_{i}(x)=\sigma_{i}\left(W_{i} x+b_{i}\right)
\end{gathered}
$$

$\square \sigma_{i}$ is one of sigmoid, tanh, ReLU, linear, etc functions
l ℓ is mostly linear, sigmoid, softmax depending if a regression, binary classification, or multiclass classification problem
> Can take any tensor input (CNN, RNN, VAE, etc)

Trigonometric Functions

> Very well applicable in

- Fourier transform
- Activation functions (sinc)
- Anywhere periodicity is desired

Exponential Functions

$>$ Exponential growth and decay
> Density
$>$ Kernels (SVM, RKHS, covariance)
$>$ Activation functions (sigmoid, softmax)
$>$ Wavelets

Inverse Functions

$>$ Activation functions (arctan)
$>$ Loss function (e.g. log in cross entropy, KL divergence)

Function Discovery

$>$ Three main ways of discovering new functions

- Calculus of variations
- Statistics
- Differential equations
> Calculus of variations date back to Euler and Lagrange, statistical methods and differential equations have rich history as well, but part of state of the art

Calculus of Variations

> The Classical Isoperimetric Problem: Determine a curve with a length of S that connects points A to B, such that when combined with the line segment $A B$, forms the largest possible enclosed area.

Length of curve:

$$
\begin{aligned}
d s^{2} & =d x^{2}+d y^{2} \\
d s & =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
s & =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Area to be maximized:

$$
A=\int_{a}^{b} y(x) d x
$$

$$
\begin{aligned}
\underset{y \in \mathcal{F}}{\operatorname{maximize}} & \int_{a}^{b} y(x) d x \\
& \text { s.t } \int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=s
\end{aligned}
$$

Euler-Lagrange Equations

$>$ The maximizer of the constrained optimization is a section of the circle

$$
\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2}=r^{2}
$$

which is a solution to the Euler-Lagrange (differential) equation

$$
\frac{\partial}{\partial y} \mathcal{L}\left(x, y, y^{\prime}\right)-\frac{d}{d x}\left(\frac{\partial}{\partial y^{\prime}} \mathcal{L}\left(x, y, y^{\prime}\right)\right)=0
$$

$>$ The isoperimetric problem is solved by a function.

More on Calculus of Variations

> The arclength problem
> Brachistochrone problem
> Fermat's principle
> Shape of a hanging rope

Statistical Methods

Find equation of the line which passes through the points: $(0,0)$ and $(2,4 \pi)$ (slido only)

$$
y=2 \pi x
$$

Question (slido only)

As a mathematician, in one sentence, describe π

A Line Through n Points?

> Given a pencil, a ruler, and a pair of compass
> Draw many circles and measure

- the circumference (C)
- the radius (x)
$>$ What is C / x ?
$>$ Before π was discovered, nobody knew C / x is constant
$>$ However, given a circle, one could easily measure its radius and circumference

Abundance of Data

Yes, Using Tools from Linear Algebra

$$
\left.\begin{array}{cc}
y_{1}=\xi_{0}+\xi_{1} x_{1} \\
y_{2}=\xi_{0}+\xi_{1} x_{2} \\
\vdots & \vdots \\
y_{n}=\xi_{0}+\xi_{1} x_{n}
\end{array}\right\} \Rightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right)\binom{\xi_{0}}{\xi_{1}}
$$

$$
\text { How to Solve } A \xi=y ?
$$

Moore-Penrose Inverse (Newton Method)

$>$ The Moore-Penrose Pseudo Inverse $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$ satisfies $\xi=A^{+} y$ as a minimizer of the optimization problem

$$
\underset{\xi \in \mathbb{R}^{2}}{\operatorname{minimize}}\|A \xi-y\|^{2}
$$

> A dual formulation of the minimization problem is

$$
\underset{\xi \in \mathbb{R}^{2}}{\operatorname{maximize}} p(y \mid \xi, x)
$$

the maximum likelihood estimate, where

$$
y=\xi^{T} x+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

and x has 1 in its first dimension.

A Line Through n Points

Moore-Penrose Inverse Sensitive to Outliers

Methods of Solving Least Squares Problems

Linear Least Squares:
> Moore-Penrose Inverse
$>$ Newton Method
Nonlinear Least Squares:
> Gradient Descent
> Gauss-Newton Method
$>$ Levenberg-Marquardt method
$>$ Stochastic Gradient Descent

Remarks

> Errors encountered in π estimation are mostly parallax error
> Parallax errors can be minimized by statistical averages, but pose uncertainties in measurements
> In heterogeneous media such as composites, geological media, gels, foams, and cell aggregates, these uncertainties could take any distribution, and in fact, could be undetermined useful material properties
> An accurate description of a measured value would as well characterize uncertainties in the obtained value

Differential Equations

> The Euler-Lagrange equation is a differential equation
> Rates are ubiquitous in day to day life

- speed
- acceleration
- reaction rate
- power
- inflation rate
- tax rate
- unemployment rate
- birth rate
- interest rate
- marginal
> More rates from Newton's laws and conservation laws in the natural and physical sciences

Functions From Differential Equations

$>$ Consider the simple elliptic equation

$$
\left.\begin{array}{rl}
-\frac{d}{d x}\left(\xi(x) \frac{d y}{d x}\right) & =f(x), \quad x \in \Omega=[a, b] \\
y(a) & =y_{a}, y(b)=y_{b}
\end{array}\right\}
$$

where ξ could be

- Young's modulus of a material
- Absolute permeability of rocks

Data Driven Modeling

$>$ For any of these problems, ξ is never known but $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ are easily, and in most cases, cheaply obtained
$>$ Finding $y(x)$ from data is called data driven modeling
$>$ In certain community, ξ is discovered through inverse problems
$>$ In general, $\xi=\xi(x, y)$ may be heterogeneous

Regression

> Close your eyes to the physical law and fit

$$
y(x)=\sum_{i=0}^{n} \xi_{i} \phi_{i}(x)
$$

where $\phi_{i}{ }^{\text {' }}$ s are elements of any suitable basis known to the researcher such as $\left\{1, x, x^{2}, \cdots, x^{n}\right\}$
$>$ Suffers

- inductive bias
- futile adventure if solution lives outside the span of $\phi_{i}{ }^{\text {'s }}$
- prior knowledge of physical laws are not exploited
$>$ If solution lives in a subspace of the span of $\phi_{i}{ }^{\text {'s }}$, techniques such as PCA are used to handle collinearity and dimensionality reduction

Weak Form (FEM)

$>$ Let $v \in H^{1}(\Omega)$. Multiplying the differential form by v and integrating by parts gives

$$
\begin{gathered}
\int_{\Omega} \xi(x) y^{\prime} v^{\prime} d x=\int_{\Omega} f v d x \quad \text { for all } v \in H^{1}(\Omega) \\
H^{m}(\Omega):=\left\{u \in L^{2}(\Omega): \partial^{i} u \in L^{2}(\Omega) \text { for all } \quad i \in[m]\right\}
\end{gathered}
$$

Finite Element Approximation - Revisit

$>$ Let V^{h} be a finite dimensional subspace of $H^{1}(\Omega)$ in which we seek an approximate solution of the form

$$
y(x) \approx y_{k}(x)=\sum_{i=0}^{k} c_{i} \phi_{i}(x)
$$

$>$ Within the Galerkin framework, we assume $v \approx \phi_{j} \in V^{h} h$. So

$$
\sum_{i=0}^{k} c_{i} \int_{\Omega} \xi(x) \phi_{i}^{\prime} \phi_{j}^{\prime} d x=\int_{\Omega} f \phi_{j} d x \quad \forall j \in[k]
$$

simplifying to $A c=b$ where $a_{i j}=\int_{\Omega} \xi(x) \phi_{i}^{\prime} \phi_{j}^{\prime} d x \quad$ and $\quad b_{j}=\int_{\Omega} f \phi_{j} d x$

Numerical Experiments

$>$ With $\Omega=(-1,1) \xi(x)=1+0.5 x, y(-1)=0, y(1)=2$ the load $f(x)=-(2.5+2 x)$ and 30 elements

Neural Networks - Experiments

$>$ We train a network of 3 fully connected layers, at 1000 sampled points, ReLU activation at the first two layers, MSE Ioss
$>$ Adam optimizer, learning rate of 0.0001

[^0]
Convergence Requires High Epoch

Epoch 5001

Summary

> We presented a brief trajectory of functions in mathematics, from Euler-Lagrange to the state of the art machine learning models
> Gave insight on where the "least of the leasts" are applied in day to day life
$>$ Showed how functions are discovered from data via statistics and differential equations
> Made connections between statistics, differential equations and calculus of variation
> Whether you are interested in pure or applied mathematics, you are stuck with functions
> The next time you think of pressing a button to get you a cup of coffee, I challenge you to think about the function behind the scene, no functions, no automation

Thanks for your attention

[^0]: Net (
 (fc1): Linear(in features=1, out features=10, bias=True)
 (fc2): Linear(in features=10, out features=10, bias=True)
 (fc3): Linear(in features=10, out features=1, bias=True)

