# Show Me A Function: More Than Meets The Eye

1

<sup>by</sup> Chinedu Eleh

(Advisor: Dr. Hans Werner van Wyk)

#### **Definition of Function**

A function from a set X to a set Y assigns to each element of X exactly one element of Y



## **Using Simple Functions to Build Complex Ones**

#### > Functions we learn in precalculus, calculus, etc

- polynomials
- exponential
- trigonometric
- inverse
- composite functions, etc

## **Polynomial Functions**

- > Spline Interpolation
- > Finite elements
- > ReLU activation function

## **Spline Basis**

Let  $\phi_i$  be the indicator function of  $[x_i, x_{i+1}]$ .

$$\phi_i(x) = \begin{cases} 1, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{cases}$$



## **Spline Interpolation**



#### **Finite Element Basis**

- > Finite elements method built on similar idea of spline basis
- > Basis could be constant, linear, quadratic, or higher order piecewise poly

$$\phi_i(x) = \begin{cases} 0, & x < x_{i-1}; \\ \frac{x - x_{i-1}}{h} & x_{i-1} \le x < x_i; \\ \frac{x_{i+1} - x}{h} & x_i \le x < x_{i+1}; \\ 0, & x_{i+1} \le x. \end{cases}$$



## **Finite Element Approximation**

➤ Goal is to solve boundary value problems, say

$$-\nabla \cdot (q(x)\nabla u) = f(x), \ x \in \Omega,$$
$$u = 0, \ x \in \partial \Omega$$

Discretization of the form

$$u(x) = \sum_{i=i}^{n} c_i \phi_i(x), \ \phi_i(x) \in V^h$$

is assumed, where  $V^h$ , spanned by  $\phi_i$ , is a finite dimensional approximation of the unknown infinite dimensional space.

Differential Form  $\implies$  Weak Form  $\implies$  Discretization  $\implies$  Linear System

#### **ReLU Activation**

> The ReLU activation function is defined as

$$\phi(x) = \max(0, x) = \begin{cases} x, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

It can create sufficient nonlinearities in neural network layers to learn virtually any mapping

## **Neural Networks**

Made up of composition of affine functions with activations creating nonlinearity where necessary

$$f(x) = (\ell \circ \phi_3 \circ \phi_2 \circ \phi_1)(x)$$

 $\phi_i(x) = \sigma_i(W_i x + b_i)$ 

- $\square \ \sigma_i$  is one of sigmoid, tanh, ReLU, linear, etc functions
- □ ℓ is mostly linear, sigmoid, softmax depending if a regression, binary classification, or multiclass classification problem
- Can take any tensor input (CNN, RNN, VAE, etc)



## **Trigonometric Functions**

#### > Very well applicable in

- Fourier transform
- Activation functions (sinc)
- Anywhere periodicity is desired

## **Exponential Functions**

- Exponential growth and decay
- > Density
- ➢ Kernels (SVM, RKHS, covariance)
- Activation functions (sigmoid, softmax)
- > Wavelets

#### **Inverse Functions**

- > Activation functions (arctan)
- > Loss function (e.g. log in cross entropy, KL divergence)

## **Function Discovery**

- > Three main ways of discovering new functions
  - Calculus of variations
  - Statistics
  - Differential equations
- Calculus of variations date back to Euler and Lagrange, statistical methods and differential equations have rich history as well, but part of state of the art

#### **Calculus of Variations**

The Classical Isoperimetric Problem: Determine a curve with a length of s that connects points A to B, such that when combined with the line segment AB, forms the largest possible enclosed area.

 $ds^2 = dx^2 + dy^2$ 



Length of curve:

Area to be maximized:

$$A = \int_{a}^{b} y(x) dx$$

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
$$s = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

1. 2

$$\begin{array}{l} \underset{y \in \mathcal{F}}{\text{maximize }} \int_{a}^{b} y(x) dx \\ \text{s.t } \int_{a}^{b} \sqrt{1 + (y')^{2}} dx = s \end{array}$$

## **Euler-Lagrange Equations**

The maximizer of the constrained optimization is a section of the circle

$$(x - c_1)^2 + (y - c_2)^2 = r^2$$

which is a solution to the Euler-Lagrange (differential) equation

$$\frac{\partial}{\partial y}\mathcal{L}(x,y,y') - \frac{d}{dx}\left(\frac{\partial}{\partial y'}\mathcal{L}(x,y,y')\right) = 0$$

> The isoperimetric problem is solved by a function.

## More on Calculus of Variations

- > The arclength problem
- > Brachistochrone problem
- > Fermat's principle
- ➤ Shape of a hanging rope

#### **Statistical Methods**

Find equation of the line which passes through the points: (0,0) and  $(2,4\pi)$  (slido only)



 $y = 2\pi x$ 

## **Question (slido only)**

As a mathematician, in one sentence, describe  $\pi$ 

## A Line Through $\,n\,$ Points?



- Given a pencil, a ruler, and a pair of compass
- > Draw many circles and measure

• the circumference (C)

- the radius (x)
- > What is C/x?
- > Before  $\pi$  was discovered, nobody knew C/x is constant
- However, given a circle, one could easily measure its radius and circumference

Abundance of Data

#### Yes, Using Tools from Linear Algebra

$$y_{1} = \xi_{0} + \xi_{1}x_{1}$$

$$y_{2} = \xi_{0} + \xi_{1}x_{2}$$

$$\vdots$$

$$y_{n} = \xi_{0} + \xi_{1}x_{n}$$

$$\Rightarrow \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \vdots \\ 1 & x_{n} \end{pmatrix} \begin{pmatrix} \xi_{0} \\ \xi_{1} \end{pmatrix}$$

$$\Rightarrow \text{How to Solve } A\xi = y ?$$

### **Moore-Penrose Inverse (Newton Method)**

> The Moore-Penrose Pseudo Inverse  $A^+ = (A^T A)^{-1} A^T$  satisfies  $\xi = A^+ y$ as a minimizer of the optimization problem

$$\underset{\xi \in \mathbb{R}^2}{\text{minimize }} \|A\xi - y\|^2$$

> A dual formulation of the minimization problem is

 $\underset{\xi \in \mathbb{R}^2}{\text{maximize } p(y|\xi, x)}$ 

the maximum likelihood estimate, where

$$y = \xi^T x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

and x has 1 in its first dimension.

#### A Line Through $\,\mathcal{N}\,$ Points



#### **Moore-Penrose Inverse Sensitive to Outliers**





## **Methods of Solving Least Squares Problems**

Linear Least Squares:

- Moore-Penrose Inverse
- Newton Method

Nonlinear Least Squares:

- ➢ Gradient Descent
- Gauss-Newton Method
- Levenberg-Marquardt method
- Stochastic Gradient Descent

#### Remarks

- > Errors encountered in  $\pi$  estimation are mostly parallax error
- Parallax errors can be minimized by statistical averages, but pose uncertainties in measurements
- In heterogeneous media such as composites, geological media, gels, foams, and cell aggregates, these uncertainties could take any distribution, and in fact, could be undetermined useful material properties
- An accurate description of a measured value would as well characterize uncertainties in the obtained value

## **Differential Equations**

- The Euler-Lagrange equation is a differential equation
   Rates are ubiquitous in day to day life
  - speed
  - acceleration
  - reaction rate
  - power
  - inflation rate
  - tax rate
  - unemployment rate
  - birth rate
  - interest rate
  - marginal
- More rates from Newton's laws and conservation laws in the natural and physical sciences

## **Functions From Differential Equations**

Consider the simple elliptic equation

$$-\frac{d}{dx}\left(\xi(x)\frac{dy}{dx}\right) = f(x), \quad x \in \Omega = [a, b]$$
$$y(a) = y_a, \ y(b) = y_b$$

where  $\xi$  could be

- Young's modulus of a material
- Absolute permeability of rocks

## **Data Driven Modeling**

- > For any of these problems,  $\xi$  is never known but  $\{(x_i, y_i)\}_{i=1}^n$  are easily, and in most cases, cheaply obtained
- > Finding y(x) from data is called data driven modeling
- > In certain community,  $\xi$  is discovered through inverse problems
- > In general,  $\xi = \xi(x, y)$  may be heterogeneous

## Regression

Close your eyes to the physical law and fit

$$y(x) = \sum_{i=0}^{n} \xi_i \phi_i(x)$$

where  $\phi_i$  's are elements of any suitable basis known to the researcher such as  $\{1, x, x^2, \cdots, x^n\}$ 

- > Suffers
  - inductive bias
  - $\circ$  futile adventure if solution lives outside the span of  $\phi_i$  's
  - prior knowledge of physical laws are not exploited
- > If solution lives in a subspace of the span of  $\phi_i$  's, techniques such as PCA are used to handle collinearity and dimensionality reduction

## Weak Form (FEM)

► Let  $v \in H^1(\Omega)$ . Multiplying the differential form by v and integrating by parts gives

$$\int_{\Omega} \xi(x) y' v' dx = \int_{\Omega} f v dx \quad \text{for all } v \in H^{1}(\Omega)$$

$$H^{m}(\Omega) := \{ u \in L^{2}(\Omega) : \partial^{i} u \in L^{2}(\Omega) \text{ for all } i \in [m] \}$$

## Finite Element Approximation - Revisit

> Let  $V^h$  be a finite dimensional subspace of  $H^1(\Omega)$  in which we seek an approximate solution of the form

$$y(x) \approx y_k(x) = \sum_{i=0}^k c_i \phi_i(x)$$

▶ Within the Galerkin framework, we assume  $v \approx \phi_j \in V^h h$ . So

$$\sum_{i=0}^{k} c_i \int_{\Omega} \xi(x) \phi'_i \phi'_j dx = \int_{\Omega} f \phi_j dx \qquad \forall \ j \in [k]$$

simplifying to Ac = b where  $a_{ij} = \int_{\Omega} \xi(x) \phi'_i \phi'_j dx$  and  $b_j = \int_{\Omega} f \phi_j dx$ 

#### **Numerical Experiments**

With Ω = (−1,1)  $\xi(x) = 1 + 0.5x$ , y(-1) = 0, y(1) = 2 the load f(x) = -(2.5 + 2x) and 30 elements



#### **Neural Networks - Experiments**

- We train a network of 3 fully connected layers, at 1000 sampled points, ReLU activation at the first two layers, MSE loss
- > Adam optimizer, learning rate of 0.0001





#### **Convergence Requires High Epoch**





Epoch 5001



## Summary

- We presented a brief trajectory of functions in mathematics, from Euler-Lagrange to the state of the art machine learning models
- Gave insight on where the "least of the leasts" are applied in day to day life
- Showed how functions are discovered from data via statistics and differential equations
- Made connections between statistics, differential equations and calculus of variation
- Whether you are interested in pure or applied mathematics, you are stuck with functions
- The next time you think of pressing a button to get you a cup of coffee, I challenge you to think about the function behind the scene, no functions, no automation

## Thanks for your attention