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In this work, the problem of transient scattering by arbitrarily shaped two-dimensional di- 
electric cylinders is solved using the marching-on-in-time technique. The dielectric problem 
is approached via the equivalence principle. Three different formulations, namely, the elec- 
tric field integral equation formulation, the magnetic field integral equation formulation, 
and the combined field integral equation formulation are considered. Numerical results are 
presented for two cross sections, namely, a circle and a square, and compared with inverse 
discrete Fourier transform (IDFT) techniques. In each case, good agreement is obtained 
with the IDFT solution. 

1. INTRODUCTION 

In recent times, the numerical solution of scattering prob- 
lems directly in the time domain has received consider- 
able attention mainly owing to the availability of fast com- 
puters. Of all the available time domain techniques, only 
the marching-on-in-time technique, developed by Bennett 
[1968], deals with the solution of integral equations, wherein 
the domain of the problem is confined to the scattering 
structure. Several cases have been studied using this tech- 
nique involving one-dimensional [Miller et ai., 1973], two- 
dimensional [Damaskos et ai., 1985], and three-dimensional 
[Bennett and Ross, 1978; Rao and Wilton, 1991] structures. 
Please note that no attempt is made to cite all the refer- 
ences. However, one common problem associated with the 
marching-on-in-time technique is the occurrence of late- 
time oscillations. Various different reasons were attributed 

for these instabilities such as insufficient sampling, accu- 
mulation of round-off/truncation errors and so on. Of late, 
a series of papers were published by Smith [1990], Rynne 
and Smith [1990], and Rynne [1991] suggesting that these 
instabilities are mainly due to the nonuniqueness of the 
solution of the integral equation at certain characteristic 
frequencies. Our objective in this work is to verify this 
claim by developing alternate formulations which are free 
from the nonuniqueness problem and examining them. 

It is well known that the dielectric cylinder problem can 
be formulated in three different ways using the equiva- 
lence principle, namely, the electric field integral equation 
(EFIE) formulation, the magnetic field integral equation 
(HFIE) formulation, and the combined field integral equa- 
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tion (CFIE) formulation [Kishk and Shafai, 1986]. It is also 
known, from the experience in frequency domain solutions, 
that both the EFIE and HFIE exhibit nonuniqueness at 
certain frequencies of the incident wave whereas the CFIE 
generates a unique solution at all frequencies [Mautz and 
Harrington, 1978]. However, as presented in the following, 
when attempted in the time domain, all the three formu- 
lations exhibit late-time oscillations suggesting that these 
oscillations are not entirely due to the internal resonances 
alone. 

2. INTEGRAL EQUATION FORMULATION 

Consider an arbitrary shaped dielectric cylinder infinite 
in length along the z axis. Let the cross section be denoted 
by some •:ontour C. At each point on C let •n represent 
an outward-directed unit vector normal to the contour. 

The circumferential vector, •, is then obtained by • - 
•z x •n. The cylinder has material parameters of/•d and 
ed, while exterior to the cylinder is a homogeneous medium 
with parameters/•e and ee. The total fields exterior to the 
cylinder are designated by œ• and 7/•, while interior to the 
cylinder the fields are given by œa and 7/a. The incident 
field is a plane wave with its electric field polarized in the 
z direction (transverse magnetic (TM)incidence). The 
transverse electric (TE) solution may be obtained through 
the use of duality. 

The equivalence principle will be employed to split the 
original problem into two separate problems. One is where 
the fields are equivalent external to the body, and the other 
is where the fields are equivalent internal to the body. The 
original problem is shown in Figure la and the equivalent 
exterior problem in Figure lb. In this case, we restrict 
that only the fields exterior to the body remain the same. 
Then, we are free to choose what the interior fields are to 
be. For simplicity, the interior fields will be set to zero, and 
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Fig. 1. Application of the equivalence principle. (a) 
Original problem, (b) exterior equivalent problem, and (c) 
Interior equivalent problem. 

the interior material parameters will be set to be the same 
as those external to the body. Since the tangential fields 
are no longer continuous (i.e., some finite value outside and 
zero inside), equivalent electric currents, ,7, and magnetic 
currents, A4, are required along the contour C to make 
up for this discontinuity. For TM incidence, the electric 
currents are only in the $z, direction while the magnetic 
currents are in the ae direction. These currents are now 
radiating in a homogeneous unbounded medium so that we 
may use the free space Green's function for the vector and 

scalar potentials. If we take any point inside C, we require 
that the sum of the incident field and the scattered field 

(due to the currents) combine to zero. Let C- designate 
points just inside the contour C, then 

[E•[,•',.t•4] q- E inc] - 0 on C- (1) tan ' 

['•:[•.•',./•4] q- ,•inc] -- 0 on C- (2) tall ' 

Similarly, we can form an equivalent interior problem (see 
Figure lc), where the external fields have been set to zero 
and the exterior material parameters are set to the interior 
parameters. As before, equivalent currents along C are 
set up to satisfy the discontinuity in the fields. It turns 
out that these equivalent currents are just the negative of 
the currents for the exterior equivalent problem. Here we 
require that the fields radiated by these currents are zero 
for any point exterior to the body. Specifically, for points 
just outside C (C+), we have 

[e•[--•q',--.A•]]ta n -- 0 • [e•[•q',,Ad]]ta n -- 0 on C+{3) 
[•[--,•',--.&4llta n -- 0===• [•[,•',.&4llta n -- 0 on C+(4) 

We now have four equations with which to solve for the 
two unknowns ,7 and A4. The EFIE formulation is ob- 

tained by using equations (1) and (3) since only the electric 
field is involved. Similarly, the HFIE is formed by using 
equations (2) and (4). The CFIE may be obtained by using 
[a(1) + •, x r/,(1 - a)(2)] and [a(3) + a, x r/,(1- a)(4)], 
where 0 < a < 1 and r/, is the wave impedance in the 
external medium. 

The scattered fields radiated by the equivalent electric 
and magnetic currents may be written in terms of the elec- 
tric and magnetic vector and scalar potentials. That is, 

œ•[,Y,.&4] = O.A,• I V' x •', (5) Ot eu ' 

= + x (6) 
Ot p• 

where 

tt - Ir- r'l, the distance from the field point r to the 
source point r' and t• = e or d. The magnetic surface 
charge density p• may be related to the magnetic surface 
current density by the continuity equation 

v-.an - Opt at ' (10) 
It may be noted that in general there is an electric scalar 
potential, X7•*,,, in equation (5). However, for TM inci- 
dence, the electric current density only has a z component, 
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and we are assuming that all derivatives with respect to z 
are zero; therefore V(I'ev - 0. 

3. NUMERICAL SOLUTION PROCEDURE 

In this section the numerical implementation of the 
EFIE, HFIE, and CFIE formulations using the method of 
moments is described to obtain a set of coupled marching- 
on-in-time equations. 

3.1. Grid scheme and definition of basis functions 

The grid scheme that is used is similar to that shown 
in Figure 2, and the actual cylinder is closed for pene- 

trable objects. The body may be divided into rectangu- 
lax patches. The ruth zone has a width of A•m and that 
whole column (-co < z < co) is divided into zones with 
Az = A•m. Therefore the patch heights from one column 
to another are generally different. For simplicity, we will 
restrict ourselves to observing the current at z = 0 due to 
the invariance with respect to z. 

We define a set of basis functions for expansion purposes 
as follows 

1 p6p,•_« to p,,+« (11) fro(P) - 0 otherwise. 

z=0 

Source Patch 

c 

z 

Field 

A z m 

Fig. 2. The grid scheme used for dividing up the cylinder. 
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The rn,œth patch is located between Prn-l/2 and Prn+l/2 
along the contour and zt- Azm/2 and zt 4- Azm/2 along 
the z axis, where zt = œAzm. The patch centers are lo- 
cated at (pm,œAZm). These expansion functions are just 
the standard pulse functions on a rectangular patch. The 
testing functions will also be pulse functions, but since we 
are restricting ourselves to the z - 0 plane, they are de- 
fined along the contour to be 

gin(P)--{ laz p6pm_• to Pro+« 0 otherwise. 

The inner product will be defined as 

(12) 

{a,b} - •s a. bds'. (13) 
3.2. EFIE formulation 

The EFIE formulation is obtained by using equations (1) 
and (3). Rewriting the scattered electric field in terms of 
the potential functions, taking an extra derivative with 
respect to time, and applying the testing procedure, gives 

O"A, + I v x _ 

for v = e or d. Even though it is not needed in this formu- 
lation, the extra derivative is introduced here so that when 
the fields are combined for the CFIE formulation, it may 
be of the same form as the magnetic field equation. Ap- 
proximating the time derivatives of the potential functions 
by finite differences, we get 

(gin, z gm 
o 

where 

E 

= 

(15) 

I [.•(p, t,+•) - .•(p, t,)] •16) +--X7x 

Note that the derivative O•'•/Ot is approximated by us- 
ing a forward difference scheme. This approximation is 
required in order to obtain a pair of linearly independent 
equations for ..7 and .A/t. The incident field is assumed to 
be known so that its derivative may be evaluated analyti- 
cally. Let 

N 

..7(p,t) - az •-]:•k(t)fk(P) (17) 
k=l 

N 

.A/t(p,t) = a• •]•Mk(t)f•(p), (18) 
k:l 

where N is the number of linear segments along the contour 
C. Let us now look at the evaluation of .A•(p, tn) and 
•'•(p, tn), at a time tn and an observation point p located 
in the rnth patch. Combining equations (17) and (7) gives 

where 

•//, ds' •½k,t -- R ' 
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-AA(ff,t,R) 1 --- xV ds'.(2•) cv • 

Note that 
1 p- r' R 

X7• -- R 3 = R 2 (22) 
where fl. is a unit vector in the direction of p- r'. Letting 

tr - t, - •, we have 

v x •(o',t,- -a-a) - v x •(o',t,)a• 
, •'"1 •'"1 

The • operator is operating on unprimed coordinates, 
so V x • - O. Using the vector identity Vf(c(t•)) = 
O f /Oc(t• ) . Vt• , we get 

0• 

' - 

Thus 

VxAd(p' t, a): 1 (Oy•4a, ' . 
Combining equations (21)-(23) then gives 

R 

x (p, tn -- • .• a• x 
10•A(p', tr) • ds' (24) + ac--• ot, a• x . 

Now combining equations (18) and (24) results in 

ds' 

• d,'. (25) 

Even though there are three components from the cross 
product, only the •z component "survives" because of the 
symmetry. As before, the nonself term integrals may be 
approximated by the patch area times the integrand eval- 
uated at the patch centers. The O.AAa/Otr term is approx- 
imated by a first-order backward difference 

• At 
- • )-•(t._•- • ) 

Finally, the curl of the vector potential may be written as 

lvx:•(p,•)-ñ• •)•,+ x •(p,•) (=c) 
Note that the •• ]2 is obtained by extracting the Cauchy 
principM value kom the curl term. The plus sign is for 
• = e, and the minus sign is for • = d. 

FinMly, if we replace n • n- 1, combine equations (15), 
(20), and (26), t&e all known quantities (n- 1, n-2,...) to 
the right side, •d use a 1-point integration for the testing 
procedure, we get the following pair of equations: 

4.At 2 •m(tn) + •m(t.) - {g• Y•) (27) 

4•At a •(t•)- •(t•) - (g•,Y•), (28) 
where 

¾•. _ • Ot 

r• = -/g•[,,Y,•], (30) 
•."[•, •l - 

(29) 

+ x .(31) 
e• At 

By examining equations (27) and (28) it is evident that 
the left-hand side only involves terms at t - t,, while 
the right-hand side contains the terms retarded in time. 
Therefore, the currents may be obtained by the marching- 
on-in-time procedure. Once the currents at t, are found 
for all 1 < rn < N, the time step is incremented, and 
the currents at tn+• can then be found in the same man- 
ner since all of the previous currents are known. Thus, 
the numerical procedure starts at n - 2, assuming every- 
thing zero at n - 0 and n = 1, and then marches on in 
time for n - 3,4,5, .... An important factor to note in 
deriving equations (27) and (28) is that the time step At 
should be less than l•min/max{ce,cd}, where J•min is the 
minimum distance between patch centers. This allows the 
currents to be solved for explicitly without the need for 
matrix inversion. However, Courant's stability condition 
dictates that in order to generate a stable numerical result 
At < Rmin/(max{ce, ca}Vt') [R9nne and Smith, 1990], and 
in the present work we chose At -- 0.SRmi,/max{c•,cd}. 

3.3. HFIE Formulation 

The HFIE formulation'is obtained by using equations (2) 
and (4). Rewriting the scattered magnetic field in terms 
of the potentials, taking an extra derivative with respect 
to time, and applying the testing procedure, gives 
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/ gin, an X at . (32) 
o 

The extra derivative is taken so that the continuity equa- 
tion (10) may be used. Following similar steps as in the 
EFIE, we obtain 

o 

where 

O•t inc (t ,• ) / Ot , 

(33) 

L • [,•' .A4 ] -- '7z" ( P' tn + l ) -- 2'7z" ( p' tn ) -{- '7z" ( p' tn-1) ' At2 

V•(p, tn) - •V [•.(P, tn+•)- •(p, tn) x 

p• At 

and 

ß • = 

(34) 

(35) 

Next, the current expansions of equations (17) and (18) 
will be used to expand the operator L•"[..7', Ad]. The eval- 
uation of •'• is very similar to the determination of Jt• in 
the EFIE. The only difference is that the currents arc• in 
the circumferential direction. Therefore 

Likewise, 

lV • = x (•,tn) 

We now turn our attention to the evaluation of 

Vg•m(p,/.). By changing the order of the scalar prod- 
uct and using the fact that the line integral of the gradient 
of a potential function is the function evaluated at its end- 
points, we can rewrite the gradient term as 

(am,an x V•y(p, tn)) -- fs V•y(P, tn) ß a• x an d•' 
= 9•(pm+«,t,)- 9•(pm_«,tn). (38) 

Combining equations (9), (10), and (35) gives 

4•pyjCj z =_• 
(39) 

where R - (IPm+• - r'[ 2 + z'2) •/2. Note that in equa- 
tion (39) the derivative is with respect to the first argu- 
ment only. Using equation (18) for the expansion of • in 
(39) results in 

1 N 

• • -•(t" •)• •Y(P•+•'t") - 4•. : •:-• - •• 

[, oh/o• d•'. (40) 
Since pulse b•is functions are being used, Of•/O• results 
in two delta functions; one at p•+•/2 and one at p•_•/2. 
We can spread the "effect" of these delta functions across 
the contour from p•_• to p•+•. This b•ically amounts 
to approximating the derivative by a finite difference. We 
can now express equation (40) • 

N 

where 

-1 •(t.- •-• 
9?+ (Om+ « ' t" ) -47r#,• A• + x 

,-, , •lpm+• - p'l • + z'• 

with 

(41) 

, (42) 

, (43) 

+ 
Rink t V/lPm+« - p•_«l 2 + z '•, 

viipro+« - p•+« I • + z '•, 

Zl = Zt 2 ' 
Azk 

z2 = zt + --. 

While calculating •m(pm+l/ tn) some computational 
time may be saved by observing that the integral for 
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is the same as that for •m+. The currents, however, are 
not the same so an interpolation still needs to be done. 
The calculation of •(Pm-1/a,tn) proceeds exactly the 

m 
same as • (Pm+l/a,tn) except that Pm+•/a is replaced 
with P,,•-l/a. Computational time can also be decreased 
when we move to the next field point by observing the fact 
that •(p,,•+1/•,t,): •(p,,,_l/•,t,) when m' = m+ 1. 

By combining equations (34)-(37) and equations (41)- 
(43), replacing n • n- 1, taking all the known quantities 
(those involving currents prior to and including t,-1) to 
the right, and using a 1-point integration for the testing 
procedure, gives 

.AA,n(t,) - (gin,a,-, xYe"},(44) 

./tAm(tn) - (gin,an X Y•},(45) 

where 

y. 07tinc(tn-1) 
Y• - -/•[..7,.A4], (47) 

/•[..7,.Ad]- V•m(Pm,tn-1)q - 
/•(Pm,tn) - 2.T'•(Pm,tn_l) + .T'•(Pm,tn-2) 

At • 

••(Prn, tn) -- •4•(Pm, tn-1) ] ,,Xt . (48) 

Equations (44) and (45) can then be used with the 
marching-on-in-time technique to solve for the currents 
Lrm(t,) and .aA,,•(t,). 

3.4. CFIE formulation 

The equations for the CFIE will follow quickly since 
most of the work has been done in the EFIE and HFIE 

formulations. The CFIE is obtained by forming two new 
equations by taking a(1) + a, x r/e(1 - a)(2) and a(3) + 
a, x r/e(1-a)(4), where 0 < a < 1. Taking a(14)+ 
a)(32) and using the field operators from equations (16) 
and (34), we obtain 

{gin, aL•[..7, A,4] + a, x r/e(1 - a)L•"[,.7, •]} - 

gm a--•-•-- + •. x' •.(1 - a) 0•inc , o, . (4•) 
o 

Replacing n • n- 1 and taking all known quantities to 
the right gives 

(•,.• + • • ..(1 - .)•), (50) 

(g•,.• + •. x ..(1 - .)•), (51) 

where 

•.•zx•.• zx•.• (52) all -- a 4•rAt2 + r]e(1- a) 2At' 

a• - •• + .•(• -•) (53) 4•Ata ' 

pdn•A• A• (54) aa• - a 4•At a -•(1-a) 2At, 

4•At a ' 

where •[•, •] and •[•, •] are defined by equations 
(31), and (48), while Y•, Y•, Y•, and Y• are given by 
equations (29), (30), (46), and (47), respectively. 

3.5. Stabilization of the late-time oscillations 

The numerical solution procedure, discussed so far, has 
the tendency to become unstable at late-times even af- 
ter satisfying the Coupant stability condition. This phe- 
nomenon is common to most of the time-marching meth- 
ods, and a number of different causes were attributed such 
as insufficient sampling, possibility of internal resonances, 
and/or errors caused while evaluating various intermedi- 
ate quantities. Furthermore, there are a number of differ- 
ent techniques that are proposed to overcome this problem 
[Mieras, 1984; Tijhuis, 1984; Rynne, 1986; Rynne, 1991]. 
In the present work, we propose an averaging scheme which 
is simple, accurate, and involves a negligible amount of ex- 
tra computation. 

First, the currents were found to sometimes grow quite 
quickly, even before the peak of the incident pulse had 
arrived. This was believed to be attributed to numerical 

problems with the relative difference in the magnitude of 
the electric and magnetic currents. The magnetic currents 
generally being approximately a factor of r/larger. There- 
fore, if we scale AA by the constant r/e, (i.e., let Y•l - 
and solve for 2r and Y•l', the currents will be of the same 
order. When scaling was used, better results were ob- 
tained. However, late-time oscillations were still present 
which may be eliminated by the following averaging pro- 
cedure. Let Z,,j and A4,,j be the current coefficients at 
the ruth zone at a time instant jar. In the present sta- 
bilization scheme, we calculate :L,•,i+1 and .AA,,•,•+i using 
equations (27) and (28) for the EFIE, (44) an,d (45) for the 
HFIE, or (50) and (51) for the CFIE, and simply approxi- 
mate the averaged values of Z,•,j and .A4,,• by 

= 41-(L•,•_• + :•z•,• +z•,•+•) (56) 
1 

= 3(•..,•_• + a•.•,• + •.•,•+•). (5?) 
Thus, in the present method, we need to add an extra step 
to the normal marching-on-in-time algorithm, and obvi- 
ously, this step involves very little processing time. More- 
over, it should be noted that this averaging scheme would 
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Fig. 3. Equivalent (a) electric and (b) magnetic currents at point A on a dielectric circular 
cylinder illuminated by a Gaussian plane-wave. The cylinder was divided into 28 segments along 
its perimeter, and no averaging was performed. 

be the same as the one presented by Rynne [1991], if we 
recompute :Zmj+l and .]•rn,j+l after computing :Zrnj and 
Adrnj using equations (56) and (57). However, we ob- 
served that the recomputation of :Zmd+l and .Admj+l was 
not necessary and in some instances led to unstable results. 

4. NUMERICAL RESULTS 

In this section, we present numerical results for the 
equivalent currents on circular and square dielectric cylin- 
ders illuminated by a Gaussian plane-wave. The results are 
compared with data obtained in the frequency domain and 
transformed into the time domain by using inverse discrete 
Fourier transform techniques (IDFT). The method of mo- 
ments was employed for calculating the frequency domain 
solutions. 

The incident electric field is a Gaussian plane-wave of 
the form 

œinc(p,t)- Eo•e '• az 
with 

4 

? - - ,to - 
where ce .•s the velocity of propagation in the external 
medium, k is a unit vector in the direction of propagation 
of the incident wave, T is the pulse width of the Gaus- 
sian impulse, and at t- to the Gaussian pulse reaches its 
maximum value. The pulse width T is defined such that 
for cet - Ceto - p' k - rkT/2 the exponential has fallen 
to about 2% of its peak value. The results in this work 
were obtained with Eo = 1.0, k = -•, T = 2.0 lm (light- 
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meter), and Ceto = 3.0 lm. Note that 1 lm is the unit of 
time taken by the electromagnetic wave to propagate a dis- 
tance of 1.0 m in free space. The external parameters were 
er = 1.0 and #r = 1.0, while the internal parameters were 
er = 2.0 and #r = 1.0. The CFIE results were obtained 
with c• = 0.2. 

We first consider a circular cylinder with a radius of 
0.25 m and centered about the origin. The contour was di- 
vided into 28 zones, and the time step was ceAt = 0.02764 
lm. The frequency domain solution was obtained by cal- 
culating the currents for a range of frequencies and then 
using a discrete inverse Fourier transform. At a specific 
frequency, the incident field was weighted by an amount 
proportional to the magnitude of the frequency compo- 
nent of the incident pulse at that frequency. The range of 
frequencies for this problem was from 0 to 1.0 GHz with 

256 sample points. Figure 3 shows the equivalent electric 
and magnetic currents at •b = 0 ø obtained by the vari- 
ous formulations discussed earlier. All three formulations 

agree very well with the frequency domain solution. The 
averaging algorithm was not employed here, and as can 
be seen, late-time instabilities have set in. The CFIE also 
suffers from a late-time instability. This suggests that the 
instabilities are not solely due to internal resonances. The 
same currents are shown in Figure 4 with the averaging 
process included. Again, the agreement is very good and 
the late-time instabilities have been removed. 

Next, a square cylinder is considered. This geometry 
is 1.0 m on a side and is centered about the origin. The 
time domain solution used a total of 40 zones while the 

frequency domain solution used 80 zones. This allowed 
the currents to be obtained at the same locations due to 
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•) XXXX IDFT ./2•/-/'•'2• ( 
3.0 !-- l! .... E F I E /•x•x. •_x///2 • _ 

/ I I ...... H F I E •'• 
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(-F) 

0.0 

-,.ot I i I I 
0.0 3.0 6.0 9.0 •2.0 t5.0 

Time (lm) 
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I I I I 

_ (b) • xxxx I'DFT • - 
• .... E F I E ,•z'-o.25m 

2. o • --.'.i'- H F I E •/////A -- _ -- 

mV 

oo 

o.o 3.0 6.0 9.0 t2.o t5.o 

Time (lm) 

Fig. 4. Equivalent (a) electric and (b) magnetic currents at point A on a dielectric circular 
cylinder illuminated by a Gaussian plane-wave. The cylinder was divided into 28 segments along 
its perimeter and averaging was performed on the currents. 
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Fig. 5. Equivalent (a) electric and (b) magnetic currents at point A on a dielectric square cylinder 
illuminated by a Gaussian plane-wave. The cylinder was divided into 40 zones (80 zones for the 
IDFT), and no averaging was performed. 

a slight difference in the way the two results were com- 
puted which results in a half zone shift in the discretized 
contours. The time step was ceAt - 0.3536 lm. The fre- 
quency domain solution considered frequencies between 0 
and 1.0 GHz with 256 sample points. The unaveraged elec- 
tric and scaled magnetic currents at the center of the !it 
side are shown in Figure 5. The time domain solutions 
compare very well with the frequency solution in the early 
time. After the main pulse passes the differences are larger 
for the EFIE and the HFIE. Again, late-time instabilities 
arise in the three formulations. Figure 6 shows the electric 

and magnetic currents when the averaging process is used. 
The currents agree very well during the main pulse, and 
the instabilities have been removed. The CFIE appears to 
agree better than the EFIE and HFIE. 

5. SUMMARY AND CONCLUSIONS 

In this work the marching-on-in-time technique has been 
used to solve the transient scattering problem of two- 
dimensional homogeneous dielectric cylinders of arbitrary 
shape. Using the surface equivalence principle, a set of cou- 
pled integral equations were derived. The objective was to 
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Fig. 6. Equivalent (a) electric and (b) magnetic currents at point A on a dielectric square cylinder 
illuminated by a Gaussian plane-wave. The cylinder was divided into 40 zones (80 zones for the 
IDFT), and averaging was performed on the currents. 

develop alternate formulations to see if the late-time insta- 
bilities are due to the nonuniqueness of the solution of the 
integral equation. Three formulations, namely, the EFIE, 
HFIE, and CFIE were derived. The solution procedure 
was based on the method of moments, and the numeri- 
cal results were in good agreement with those obtained by 
inverse discrete Fourier transform techniques. However, 
late-time instabilities were present in all three formulations 
suggesting that the oscillations are not entirely due to the 
internal resonances alone. A simple and efficient averaging 
scheme was also presented which removed the late-time in- 
stabilities. The stable results were also in good agreement 
with alternate methods. 
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