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abstract: The dynamics of an age-structured population in a fluc-
tuating environment is determined by the stochastic individual con-
tributions from annual survival and fecundity to the total repro-
ductive value of the population the next year. All parameters required
to describe the population dynamics are simple properties of the
distribution of these individual demographic contributions, which
we call individual reproductive value. The asymptotic population
growth rate in the average environment and the demographic and
environmental variances are respectively the mean individual repro-
ductive value over individuals through time and the variance within
and between years. Our approach leads to an intuitive understanding
of demographic and environmental variances in age-structured pop-
ulations and their decomposition into additive age-specific compo-
nents due to survival and reproduction. We show how to apply this
approach to estimate the demographic and environmental variances
and their components. The estimates are based on yearly random
samples of individual vital rates and require no information about
the total population size.

Keywords: individual reproductive value, age structure, demographic
stochasticity, environmental stochasticity, reproductive value, age-
dependent stochastic demography.

Introduction

Classical demographic models assuming no density reg-
ulation and a constant environment (Lotka 1924; Leslie
1945, 1948) revealed that age dependence in life histories
causes multiple time delays in the population dynamics
and transient fluctuations in age structure (Caswell 2001).
To overcome this problem, Fisher (1930) introduced the
concept of reproductive value, describing the extent to
which individuals of different age contribute to future pop-
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ulation growth. Fisher showed that for a large population
in a constant environment, the total reproductive value,
defined as the sum of the reproductive value of all indi-
viduals in the population, increases at a rate equal to the
population’s asymptotic growth rate, regardless of whether
the population is in stable age distribution. By considering
the change in total reproductive value one can obtain es-
timates of the population growth rate that are not biased
by transient fluctuations in age structure (Crow and Ki-
mura 1970, pp. 20–22; Charlesworth 1994, pp. 39–40).

Two sources of stochasticity, not included in Fisher’s
(1930) deterministic model, create continual fluctuations
in population size and age structure. In a finite population,
demographic stochasticity arises from random variation
in individual vital rates, operating independently among
individuals (Lande et al. 2003). Demographic stochasticity
was included in age-dependent projection models by Pol-
lard (1966, 1973) and Goodman (1967), who computed
moments of future population sizes and probability of
extinction using a projection matrix for expected popu-
lation size as well as covariances. Environmental stochas-
ticity affects the whole population or age class in the same
or similar fashion (Lande et al. 2003). Expressions for the
long-run growth rate and environmental variance in2je

large age-structured populations were first derived by Co-
hen (1977, 1979), Tuljapurkar and Orzack (1980), and
Tuljapurkar (1982, 1989), who assumed that the projection
matrices do not depend on population size and that the
population is large enough to neglect demographic sto-
chasticity. Lande and Orzack (1988) showed that an ac-
curate diffusion approximation for the total size of a large
age-structured population could be obtained by using the
long-run growth rate and the environmental variance, and
this was extended to include demographic stochasticity in
a small population by Engen et al. (2005).

Stochasticity in age-structured populations may affect
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the vital rates of age-specific survival and reproduction of
all age classes (Gaillard and Yoccoz 2003). Nevertheless,
Engen et al. (2005) showed that the stochasticity can be
decomposed into environmental and demographic com-
ponents, as in the case of no age structure. Assuming
density-independent population dynamics and no tem-
poral autocorrelation in vital rates, the stochastic dynamics
of total population size or total reproductive value can be
accurately described using only three parameters, the long-
run growth rate and the environmental and demographic
variances. The environmental and demographic variances
are additive components of the variance in annual change
in the total reproductive value of the population (Engen
et al. 2007). Time lags due to age structure create auto-
correlation in population size and age structure, even when
the environment has no autocorrelation. In contrast, the
noise in the total reproductive value is white, with no
temporal autocorrelations to the first order, explaining the
success of the diffusion approximation (Engen et al. 2005)
in describing the dynamics of age-structured populations.
If the population attains the stable age distribution given
by the mean projection matrix, then the total reproductive
value equals exactly the total population size. Engen et al.
(2007) showed that the difference between the population
size and the total reproductive value is a process fluctuating
around zero with short memory and a return time to
equilibrium on the order of one generation. Consequently,
information about future population sizes is contained
solely in the properties of the stochastic process describing
the total reproductive value. Therefore, the three param-
eters expressing this process contain all information about
future population size and time to extinction that can
possibly be obtained at a given time. Decompositions of
the variances will further give information about the im-
portance of different stochastic components of vital rates
in determining future population sizes.

The purpose of this article is to develop a general theory
for age-structured populations in a fluctuating environ-
ment by analyzing the contribution from each individual
to the total reproductive value in the population the next
year, which we henceforth call individual reproductive
value. We deal only with the use of reproductive value to
analyze the demography of an age-structured population,
not its genetic variation or evolution (Taylor 1990; Grafen
2006; Engen et al. 2009). We show how the environmental
and demographic variances can be partitioned into ad-
ditive components due to survival and fecundity in each
age class, giving a simple intuitive representation of var-
iance components in age-structured populations. This en-
ables construction of new estimators of demographic and
environmental variances and their components from
individual-based demographic data obtained from samples
of known-aged individuals with observed survival and re-

production. Previously, no theory has been able to estimate
the environmental variance in age-structured populations
without having a time series of the total population size
as well as the size of each age class (Engen et al. 2005,
2007). Hence, our theory, combined with well-known dif-
fusion approximation (Lande et al. 2003), provides a new
method for analyzing extinction and predicting future sizes
of age-structured populations.

Preliminary Population Model without Age Structure

If all females become adults after 1 year, with subsequent
annual survival and reproduction independent of age, then
in the next year the total number of females in the pop-
ulation is simply the sum of all individual contributions,

(Engen et al. 1998). The individual contribution of eachW
female is the number of her female offspring that survive
to age 1, plus 1 if she survives to the next year (Sæther et
al. 1998b). The annual change in population size is con-
sequently . In this preliminary model theDN p � W � N
environmental and demographic variances are defined by
conditioning on the environment, :Z

Var (W ) p E Var (WFZ) � Var E(WFZ)

2 2p j � jd e

(Engen et al. 1998). The demographic variance 2j pd

is the mean through time of the variance ofE Var (WFZ)
individual contributions within years, while the environ-
mental variance is the variance through2j p Var E(WFZ)e

time of the mean individual contribution within years.
Hence, the total variance in individual contribution is par-
titioned into two additive components, the demographic
and environmental variances. Adding all individual con-
tributions together and subtracting the previous popula-
tion size gives the total yearly change in population size
with expectation ,E(DNFN) p N EW � N p (l � 1)N
where is the mean individual contribution in al p EW
particular year, and variance 2Var (DNFN) p j N �d

(see Engen et al. 1998 for details).2 2j Ne

Age-Structured Model

Consider an age-structured model with stochastic projec-
tion matrix so that the population vector the next yearL
is . Using superscript T for the transpose ofn � Dn p Ln
a vector, is a column vector of num-Tn p (n , n , … , n )1 2 k

ber of individuals in the different age classes. We assume
prebreeding census so that the first row of shows theL
fecundities including first-year survival, while the subdi-
agonal defines the survivals of age classes to . Let1 k � 1
the projection matrix have expectation and definel p EL
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as the real dominant eigenvalue of , with right and leftl l
eigenvectors (column vector) and (row vector) definedu v
by and . If these eigenvectors are scaledlu p lu vl p lv
using and , then is the stable� u p 1 vu p � u v p 1 ui i i

age distribution for the deterministic model defined by ,l
while the components of are the reproductive values forv
the different age classes (Caswell 1978). The total repro-
ductive value of the population is the sum of reproductive
values of all individuals, that is, . In a con-V p vn p � n vi i

stant environment with a population large enough to ignore
demographic stochasticity, the total reproductive value
grows at a constant geometric rate , regardless of whetherl

the population deviates from the stable age distribution,
because (FisherV � DV p v(n � Dn) p vln p lvn p lV
1930; Crow and Kimura 1970; Charlesworth 1994). The
reproductive value of any subpopulation then also grows
at the same geometric rate in a constant environment.

Engen et al. (2007) showed that in a fluctuating envi-
ronment, the stochastic process fluctuates around theV
total population size and to first order (for smallN p � ni

noise) has no temporal autocorrelation. If at some mo-
ment the population has exactly the same age distribution
as the deterministic model, that is, , then then p Nui i

reproductive value equals the pop-V p � n v p � Nu vi ii i

ulation size because . The variance in theN � u v p 1i i

reproductive value process can be split into environmental
and demographic components as in the case of no age
structure:

2 2 2Var (DVFV ) ≈ j N � j Ne d

2 2 2≈ j V � j V. (1)e d

The environmental and demographic variances and2je

are given by the distribution of vital rates within and2jd

between years for the different age classes and by the dom-
inant eigenvectors of the mean matrix (Engen et al. 2007).
For statistical analysis of population dynamics it is usually
preferable to work on the log scale (Cohen 1977, 1979;
Tuljapurkar 1982; Lande et al. 2003). Then, writing V �

, we find thatDV p lV � � D ln (V ) p ln l � ln [1 �
, giving the first-order approxi-�/(lV )] ≈ ln l � �/(lV )

mation

2 2j je d �1Var (D ln VFV ) ≈ � V .
2 2l l

Here, to make the notation as simple as possible, we
choose to derive the results on the absolute scale and to
define the variances on this scale. However, it follows from
the above derivation that all variances should be divided
by when applied on the log scale (Lande et al. 2003).2l

The general derivation of the above results was given

by Engen et al. (2005, 2007). Our first goal is now to
demonstrate that the decomposition given by equation (1)
can be simplified using statistics of individual reproductive
value. We first consider separately models with only de-
mographic or only environmental noise before we treat
the general model in which both sources of stochasticity
act together.

Demographic Stochasticity Only

Consider an individual in age class with reproductivei
value and let be its contribution to the total repro-v Wii

ductive value of the population the next year, which we
call individual reproductive value. Then be-EW p lvi i

cause, as mentioned above, any subpopulation has geo-
metric growth in reproductive value with multiplicative
rate in the deterministic model. The mean over all in-l

dividuals in the population is, however, ¯EW p lv p
. Notice that individual reproductive value isl� u v p li i

a stochastic variable defined for each individual at each
stage. The distribution of may differ between stagesW ii

but is assumed to be the same for individuals in the same
stage.

We let be the indicator of survival for this individualJi

in age class so that if the individual survives andi J p 1i

if it dies. Writing for the number of offspring itJ p 0 Bi i

produces, the annual contribution from a single individual
to the total reproductive value the next year is

W p J v � B v . (2)i i ii�1 1

Equation (2) defines a decomposition of individual re-
productive value into additive components due toJ vi i�1

individual survival and due to individual fecundityB vi 1

and offspring survival to age 1. If estimates of the mean
vital rates defining the expected projection matrix arel
available, then the vector of reproductive values can bev
computed, and the annual reproductive values can be
computed for individuals of age from their vital ratesi

and . We can also consider a simple stage-structuredJ Bi i

model in which individuals below age are classified byk
their age and all individuals of age ≥k are included in a
terminal stage . Individuals in stage thus remain in thisk k
stage if they survive, so the above equation is also valid
for provided that we define . Writingi p k v p v pik�1 k

and for the mean and variance of ands p p (1 � p ) Jdi i i i

for the variance of , we see that the variance of re-f Bdi i

productive value next year produced by an individual of
age in the case of no environmental stochasticity isi

, where2 22j p Var (W) p s v � f v � 2c v v c pdi i di di di dii�1 1 i�1 1

. Since there are individuals in class andCov (J , B ) n ii i i

assuming that all contributions are independent among
individuals when there is no environmental stochasticity,
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the variance of the total reproductive value the next year
is . Finally, approximating using the stable� n Var (W) ni i i

age distribution, we have , and the variance in then ≈ Nui i

reproductive value the next year, assuming that contri-
butions from different individuals are uncorrelated, is

k

2 2Var (V � DVFV ) ≈ N u (s v � f v � 2c v v )� i di di dii�1 1 i�1 1
ip1

2p N u j . (3)� i di

This variance is approximately proportional to the pop-
ulation size , and the total demographic variance isN ≈ V
accordingly (cf. eq. [1])

k

2 22 2j p u (s v � f v � 2c v v ) p u j , (4)� �d i di di di i dii�1 1 i�1 1
ip1

where is the within-year variance of indi-2j p Var (W)di i

vidual reproductive value among individuals of age .i
This is the expression for the demographic variance given

by Engen et al. (2005). Notice that equation (4) defines a
simple decomposition of into additive components from2jd

the stochasticity in survival and reproduction, as well as the
covariation between them, for each age class.

Environmental Stochasticity Only

Now consider a population sufficiently large that demo-
graphic stochasticity can be ignored, that is, N (or V ) k

so that the demographic term in equation (1) can2 2j /jd e

be ignored compared to the environmental term (Lande
et al. 2003). The model is then , where isn � Dn p Ln L
a function of the environment , so that its stochasticityZ
is determined primarily by temporal environmental fluc-
tuations. The total reproductive value the next year is then

. Again approximating by(n � Dn)v p Lnv p � L n v nij j jiij

, we find that the variance in total reproductive valueNuj

the next year is

2Var (V � DVFV ) ≈ N v v u u Cov (L , L )� j l ij kli k
ijkl

2 2p N j (5)e

so that the environmental variance is

2j p v v u u Cov (L , L ). (6)�e j l ij kli k
ijkl

Here, , and (Caswell 1978).v u p �l/�l v u p �l/�lj ij l {kl}i k

Thus, is the environmental variance given by Tulja-2je

purkar (1982, 1989) except for the factor . As already�2l

pointed out, this factor is just determined by choice of

scale for measuring population size ( vs. ). The en-N ln N
vironmental variance for to the first order is the aboveln N
expression divided by and hence agrees with the result2l

of Tuljapurkar (1982).
In the previous model with demographic stochasticity

only, all individuals had independent annual reproductive
values generating the stochasticity. In contrast, when there
is environmental stochasticity only, the variation in in-
dividual reproductive value between individuals in the
same age class is negligible by the law of large numbers.
The variance in total reproductive value the next year,

, is now generated by change in mean indi-2 2 2 2j V ≈ j Ne e

vidual reproductive value among years and still equals the
variance through time of the sum of individual repro-
ductive values over all individuals in the population.

For a Leslie matrix with nonzero components repre-
senting survival and reproduction, including the extended
case with possible survival of individuals in the last stage
class, equation (6) also defines a decomposition into ad-
ditive components from survival, reproduction, and their
covariation, now for each pair of age classes. Defining
the survival contributions withs p Cov (L , L )eij i�1, i j�1, j

, the fecundity contributionsL p L f pk�1, k k, k eij

, and the covariation ,Cov (L , L ) c p Cov (L , L )1i 1j eij i�1, i 1, j

the expression for the environmental variance by analogy
with equation (4) takes the form

22j p u u (s v v � f v � c v v )�e i j eij eij eiji�1 j�1 1 i�1 1
ij

p u u t . (7)� i j eij
ij

General Model with Demographic and
Environmental Stochasticity

As with no age structure, the variance in the individual
demographic contributions to the next year can generally
be partitioned into environmental and demographic com-
ponents:

2j p Var (W)i i

p E Var (WFZ) � Var E(WFZ) (8)i i

2p j � t ,di eii

where we define so thatt p Cov [E(WFZ), E(WFZ)] teij i j eii

is the between-year variance in the expected individual
reproductive values of individuals of age generated byi
temporal fluctuations in the environment . The demo-Z
graphic component is the temporal mean of the vari-2jdi

ance within year in individual reproductive value of in-
dividuals of age .i
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These variance components are the age-specific contri-
butions to the total demographic and environmental var-
iances that are found by considering the sum of individual
reproductive values over all individuals:

Var (V � DV ) p E Var (V � DVFZ) � Var E(V � DVFZ).

(9)

For a given constant environment , isZ Var (V � DVFZ)
exactly the demographic variance for the environment Z
multiplied by , as in equation (4), which we now denoteN

. Consequently, the demographic variance is2Nj (Z)d

, where the expectation refers to the distri-2 2j p Ej (Z)d d

bution of the environment through time. Similarly, allZ
variance components of equation (4) are functions of .Z
Hence, the demographic variance is the sum in equation
(4), with the modification that variances and covariances
are replaced by their mean values through time. For ex-
ample, if the survival of age class in environment isi Z

, then must be replaced byp (Z) s p p (1 � p )i di i i

Es (Z) p Ep (Z)[1 � p (Z)]di i i

p Ep (Z)[1 � Ep (Z)] � Var [p (Z)].i i i

Similarly, and are replaced by and .f c Ef (Z) Ec (Z)di di di di

With these definitions the complete decomposition of the
demographic variance in equation (4) is valid in a fluc-
tuating environment.

Considering the second term in equation (9),
, we write for the expected projec-Var E(V � DVFZ) L(Z)

tion matrix in a particular environment ; that is, itsZ
components are the probabilities of survival and expected
number of offspring for a given . Then, in environmentZ

, by the definition of theZ E(V � DVFZ) p � L (Z)n vij j iij

age-structured model defining the next year asni

. Consequently, the variance in equation (6)� L (Z)nij jj

now has replaced by . Finally, this produces anL L (Z)ij ij

environmental variance equivalent to equation (7) with
the modification that is replaced byCov (L , L )ij kl

. Applying the same definitions to theCov [L (Z), L (Z)]ij kl

components , , and , equation (7) is also valid fors f ceij eij eij

a finite population with demographic stochasticity.
Using the relation andE(V � DVFZ) p � N E(WFZ)i i

again inserting we reestablish the decompositionN ≈ Nui i

in equation (7) with defined as following equation (8).teij

Stochasticity of the Projection Matrix

To establish the relations between the above variance com-
ponents and the variances and covariances of elements of
the projection matrix, we first observe that the matrix
elements are yearly mean values and of survival andJ B

fecundity (Engen et al. 2005). Since the demographic sto-
chastic components are independent between individuals,
the demographic contribution to is differentCov (L , L )ij kl

from zero only for different columns, that is, for .j ( l
Hence, for we get only the environmental contri-i ( j
butions , , andCov (L , L ) p s Cov (L , L ) p fi�1, i j�1, j eij 1, i 1, j eij

. For the demographic com-Cov (L , L ) p c i p ji�1, i 1, j eij

ponents , , and must be added to produce,s /N f /N c /Ndi i di i di i

for example, . Since theCov (L , L ) p s � s /Ni�1, i i�1, i eii di i

number of individuals in age class the next year is giveni
by , these relations determine the covariance matrix� L nij j

for the population vector conditioned on the population
vector the previous year, the covariance between andni

next year being .n � n n Cov (L , L )j k m ik jmkm

Estimation

Although estimation of environmental stochasticity from
individual data in general may be rather uncertain (Lande
et al. 2003; Sæther et al. 2005), such data, if collected over
a number of years, contain information about environ-
mental as well as demographic stochasticity. We have used
a single subscript to indicate that the variables , , andi J Bi i

are the stochastic variables describing age-specific var-Wi

iation in survival and reproduction and to indicate their
combined effect in the individual reproductive value of
individuals in age class . When variables referring to twoi
different age classes are considered jointly, we use sub-
scripts and to indicate age classes such as ini j

. To describe the data to be used for estimationCov (W , W )i j

we need two additional subscripts and , writing, form t
example, for the observed number of offspring pro-Bimt

duced by individual number among those of age re-m i
corded at time . The complete data set is accordinglyt
records of survival and reproduction, , for ages(J , B )imt imt

; in years ; and individualsi p 1, 2, … , k t p 1, 2, … , T
, where is the number of individualsm p 1, 2, … , n nit it

in age class recorded at year . When a distinction betweeni t
two different individual recordings is required, we use sub-
scripts as well as for numbering individuals. Similarlyq m
we use as well as to denote time when required.y t

Expected Projection Matrix

The mean values of all records of then lead to(J , B )imt imt

an estimate of the mean projection matrix , froml p EL
which estimates of the long-run growth rate , the stablel

age distribution , and reproductive values can be com-u v
puted. Uncertainties can be found by simulating bootstrap
replicates of the data. Since yearly variation in the envi-
ronments is not important for these estimates, the best
bootstrap replicates are simply resampling of the record-
ings of with replacement within each year.(J , B )imt imt
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Demographic Stochasticity

Using the estimate of the expected projection matrix, we
can then calculate the individual reproductive values de-
fined by equation (2) for each individual recorded; that
is, . Estimation of all variance com-W p J v � B vimt imt imti�1 1

ponents can now be performed using these observed values
of individual reproductive value, the definitions 2j pdi

and , and theE Var (WFZ) t p Cov [E(WFZ), E(WFZ)]i eij i j

relations and . For a particular2 2 2j p � u u t j p � u je i j eij d i diij i

year with environment (which is unknown), an un-t Z
biased estimator for the demographic variance component

is the simple sum of squares:2j (Z) p Var (WFZ)di i

nit1
2 2ĵ (Z) p (W � W ) , (10)�di imt itn � 1 mp1it

where . The estimate of is the
nit�1 2 2ˆW p n � W j jit imt di diit mp1

weighted mean of the above estimates over years with at
least two records from individuals in the age class with
weights , and the estimate of the total demographicn � 1ti

variance is . Bootstrap replicates can simply2 2ˆ ˆj p � u jd i di

be performed as for the estimation of the expected pro-
jection matrix because the variation between years is not
important for the demographic stochasticity. However, the
expected value (with respect to the bootstrap sampling)
of the sum of squares for year and age class divided byt i

is an unbiased estimate for the corresponding em-n � 1it

pirical variance . Therefore each of
nit�1 2n � (W � W )it imt itmp1

these sums of squares should be multiplied by n /(n �it it

to make the bootstrap replicates unbiased for the es-1)
timator in equation (10).

The age-specific components generated by survival and
fecundity, and , can similarly be estimated by replacings fdi di

by and , respectively, while the estimate forW J Bimt imt imt

the covariance is the corresponding sum of crosscdi

products.

Environmental Stochasticity

To estimate the components of the environmental vari-
ance, we first consider the decomposition of the covariance
between recordings of individual reproductive values the
same year. The recordings for any two individuals in a
particular year are assumed to be independent when con-
ditioned on the environment . This assumption of noZ
demographic covariance, as defined by Engen et al. (1998),
was also made in the derivation of equation (4) and the
yearly demographic variance for a given environ-2j (Z)d

ment . Applying the formula for the total covarianceZ

Cov (W , W ) p E Cov [W , W FZ]imt jqt imt jqt

� Cov [E(W FZ), E(W FZ)],imt jqt

we then see that

Cov (W , W ) p Cov [E(W FZ), E(W FZ)]imt jqt imt jqt

p t ,eij

where when and refer to the same age classm ( q i j
( ). To estimate this covariance we consider the twoi p j
bivariate observations and at times(W , W ) (W , W )′ ′imt jqt im y jq y

, where and may refer to any age classes. Ift ( u i j i p
we must require that and , while the last′ ′j q ( m q ( m

subscript otherwise may refer to any observed individual
in the class. Then, from the assumption of stochastic in-
dependence of vital rates between years, we find

Cov (W � W )(W � W )′ ′imt im y jqt jq y

p Cov (W , W ) � Cov (W , W )′ ′imt jqt im y jq y

p 2t .eij

Because the factors like have zero expec-(W � W )′imt im y

tation each product of the type (1/2)(W � W )(W �′imt im y jqt

has expectation . We thus obtain an efficient un-W ) t′jq y eij

biased estimator for as the mean value of these productsteij

over all combinations of , and all appropriate com-t ( y
binations of the second subscript, which is straightforward
to compute even if the number of terms is large.

Since environmental stochasticity is generated by
among-year variation in the environments, bootstrapping
for uncertainties in components of the environmental var-
iance must be performed in a way that reflects the variation
among years in the data (the variation among individuals
within years is accounted for by estimation of demographic
variance). This can be done by choosing years at randomT
with replacement and using the data from these years to
calculate one bootstrap estimate. Because the same year
tends to appear more than once, the bootstrap variances
tend to be a little too small. It is therefore recommended
to multiply all estimates of environmental variance with
the appropriate factor making the mean of the bootstrap
estimates equal to the estimate obtained from data.

Estimation of the age-specific variance components seij

and due to survival and fecundity can be done in thefeij

same way, replacing the by the recordings of andW Jimt imt

, respectively. To estimate the covariance terms , weB cimt eij

consider the cross product with(1/2)(J � J )(B � B )′ ′imt im y jqt jq y

expectation and again compute the mean over all com-ceij

binations. Bootstrap replicates are produced by the same
resampling scheme as that used for .teij
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Figure 1: The distribution of the bootstrap replicates ( ) of then p 1,000
population growth rate, the demographic variance, and the environ-
mental variance, for the population of Columbian ground squirrel. The
thick black lines denote the estimated values, and the 95% confidence
intervals are , , and for , , and ,2 21.12–1.22 0.28–0.37 0.004–0.045 l j jd e

respectively.

Table 1: The age-specific contributions from fecundity and
survival to the demographic variance of the Columbian
ground squirrel

Age
(years)

Component

Fecundity Survival
Covariance between

fecundity and survival

1 .0046 .0362 .0005
2 .0292 .0390 .0063

3≥ .1082 .0727 .0058

Total .1420 .1478 .0126

An Example: Columbian Ground Squirrel

We illustrate the application of the estimation procedures
by analyzing demographic data from a population of Co-
lumbian ground squirrel (Spermophilus columbianus) dur-

ing the period 1992–2002 at the Sheep River Wildlife Sanc-
tuary in the Rocky Mountains of southwestern Alberta
(50�N, 110�W; 1,500 m elevation). In 1990 all older adults
older than 1 were removed, leaving only 1-year-olds, so
when the study started in 1992, the population was likely
to be far below the carrying capacity. Accordingly, the
population grew continuously throughout the study period
from 14 females at least 1 year old in 1992 to 77 females
in 2002. Columbian ground squirrels emerge from their
hibernation burrows in spring and mate within a few days.
The active season is short because the families start to
prepare for the 8–9-month period of hibernation soon
after the young are weaned in early summer (Dobson et
al. 1999). Life histories are extremely plastic and are
strongly influenced by the body condition of the females
(Dobson and Murie 1987; Dobson 1992; Broussard et al.
2005). Mean litter size increases from 2.6 among females
breeding for the first time yearlings to 3.0 among expe-
rienced females (Broussard et al. 2008). Columbian ground
squirrels are quite long lived for such a small mammal (to
about 9 years; Dobson and Oli 2001). Here we have used
a model with three stages where individuals of age ≥3
define the terminal stage. The growth of this Columbian
ground squirrel population was rapid ( ). Bothl̂ p 1.17
the demographic and environmental variances were sig-
nificantly different from 0 (fig. 1; and2 2ˆ ˆj p 0.32 j pd e

). The estimators appeared to be approximately un-0.014
biased with relatively small uncertainties in the population
growth rate and demographic variance, with somewhat
larger uncertainty in the environmental variance (fig. 1).

An important feature of our approach is that it can
decompose the stochasticity in population dynamics into
age-specific components. The overall contributions from
fecundity and survival to the demographic variance were
nearly equal, with a significant positive covariation be-
tween them (table 1). Contributions to the demographic
variance differed by age class, with the largest contribu-
tions from both fecundity and survival coming from the
oldest age class. Overall, the environmental stochasticity
in fecundity ( ) was larger than that from sur-f̂ p 0.005e

vival ( ), and both were significantly ( )ŝ p 0.003 P ≈ .01e
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larger than 0. However, the covariance between environ-
mental components of fecundity and survival was not sig-
nificant ( ). The (symmetric) matrix of the esti-P ≈ .08
mated environmental components wast̂eij

0.0015 0.0002 0.0016 
T̂ p 0.0002 0.0002 0.0015 .e  

0.0016 0.0015 0.0058 

This shows that the largest contribution to the envi-
ronmental stochasticity arises from fluctuations in the old-
est age classes operating through an influence on both
fecundity ( ) and survival ( ).2ˆ ˆf p 0.0030 s p 0.0017e33 e33

Discussion

Fisher (1930) originated the concept of reproductive value
for a density-independent age-structured population in a
constant environment in continuous time. In his model,
the reproductive value is defined for individuals of agevx

, such that all individuals of a given age have the samex
reproductive value. Regardless of the initial age distribu-
tion in the population at time 0, the total reproductive
value at a later time of the descendants of a group oft
individuals with reproductive value is exactly , wherertv v ex x

is the asymptotic growth rate of the log population sizer
(Charlesworth 1994; Caswell 2001). This result does not
depend on the scaling of Fisher’s reproductive value (e.g.,
Crow and Kimura 1970; Charlesworth 1994; Caswell
2001). Often is chosen equal to 1. However, it may bev0

more appropriate, as we do here, to choose the scaling
that makes the total reproductive value equal to the pop-
ulation size when the population reaches its stable age
distribution.

We employ a discrete time model in which the repro-
ductive values are the components of the left eigenvector
associated with the dominant eigenvalue of the meanl

projection matrix. Using these reproductive values we de-
fine the individual reproductive value, , as the stochasticWi

contribution by individuals of age to the total repro-i
ductive value in the population the next year as in equation
(2). For a standard age-structured model, or a simple
stage-structured model (Caswell 2001) in which the oldest
individuals are combined into a terminal stage, the indi-
vidual reproductive value is the sum of two components,
due to stochastic survival and reproduction. Brommer et
al. (2007) used a similar decomposition in their definition
of individual reproductive value in a study of senescence,
although they failed to include the weighting by repro-
ductive values, which is required to find the correct ex-
pected contribution to future generations. Another at-
tempt, which is related to the statistical technique of
jackknifing and is termed the method of “de-lifing,” was

proposed by Coulson et al. (2006). This method is also
based on contributions from individuals of different ages,
but it fails to filter out the stochastic fluctuations in con-
tributions due to age structure fluctuations, which is one
important goal of our method, which is based on Fisher’s
reproductive value.

The overall mean of our individual reproductive values
across individuals, age classes, and time is the asymp-Wi

totic multiplicative growth rate of the population in the
average environment . The sum of over all agerl p e Wi

classes and individuals in a given year equals the total
reproductive value the next year. The variance of in-V
dividual reproductive values defines in a simple way the
demographic and environmental variances of an age-
structured population that comprise additive compo-
nents defined by conditioning on the environment (eq.
[9]). The parameters required for an accurate diffusion
approximation of the stochastic dynamics of a density-
independent age-structured population, the deterministic
multiplicative growth rate in the average environment, ,l

and the demographic and environmental variances, and2jd

, are all deduced from the distribution of among2j We i

individuals and between years. The demographic variance
reflects the stochastic variation in individual reproductive
value among individuals within a year, while the environ-
mental variance describes the temporal fluctuations in in-
dividual reproductive value, typically generated by a fluc-
tuating environment.

A practical advantage of this approach is that estimates
of environmental variance can be obtained, assuming no
density dependence, from individual-based demographic
data in population samples, even when time series of fluc-
tuations in total population size are not available (table
1). This implies that the properties of the stochastic process
describing the temporal changes in total reproductive value
can be determined from such data. However, if the goal
is to perform predictions of future population sizes or time
to extinction, then an estimate of the last population size
or total reproductive value must also be available.

Engen et al. (2007) showed that the total reproductive
value obeys a process with no temporal autocorrelations
to the first order, provided that there are no temporal
autocorrelations in the stochastic projection matrices. The
difference between the total population size and theN
total reproductive value is a process fluctuating aroundV
zero with a memory on the order of one generation, rep-
resenting transient fluctuations in age structure. Thus, V
serves as a filter, removing stochastic fluctuations in age
structure, and all information about the total population
size more than a few generations in the future is contained
in alone, in accordance with the initial interpretationV
of Fisher (1958).

The general concept of individual reproductive value can
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be applied to any density-independent stage-structured
model defined by a projection matrix. Even more generally,
the population may be classified into any kind of categories
with transitions among them, for example, with individual
demographic effects that persist across ages (Vindenes et al.
2008) or geographic location of individuals. The variance
of total reproductive value next year can then still be de-
composed into components different from age-specific
survival and fecundity, which may prove informative for
the particular problems under study.

Individual reproductive value defined in this way also
enables construction of simple estimation methods for the
population parameters based on individual data on sur-
vival and reproduction over several or many years. In gen-
eral for density-independent population dynamics, the ob-
served values of are data from a model with additiveW
variance components. The age-specific components of de-
mographic variance are estimated from variances in fitness
within years, whereas the components of environmental
variance are estimated from variances in fitness between
years. The best weighting of observations when estimating
variances between years depends on the unknown vari-
ances. For example, if there is no demographic variance
so that is identical for all individuals of the same ageW
within a year, then there is no additional information
gained from multiple individuals of the same age a par-
ticular year. However, the demographic variance of W
within years, , is often as much as 100 times larger than2jd

the environmental variance among years, . This supports2je

the method we have proposed, which employs all observed
values of with equal weights for all terms when cal-W
culating the mean of the cross-products used to estimate
the components of . Although the derivation of more2je

efficient methods may be an interesting area for further
research, their success will in general depend on the dis-
tribution of individual survival and fecundity within and
between years, which typically is unknown.

This estimation method was applied to the Columbian
ground squirrel population. We estimated to be 0.322jd

(fig. 1), a demographic variance exceeding that for other
mammalian species with litter size of 1–3 offspring (Sæther
et al. 1998a, 2002, 2007a; Lande et al. 2003). The litter
size of adult Columbian ground squirrel females usually
varies from 2 to 6 young (Broussard et al. 2003). In birds,
demographic stochasticity increases with clutch size
(Sæther et al. 2004). Such a relationship may explain the
relatively large demographic variance for the Columbian
ground squirrel.

The estimate of the environmental variance for this pop-
ulation of the Columbian ground squirrel was significantly
larger than 0, with great uncertainty (fig. 1), but within
the range of estimates for other mammalian species
(Sæther et al. 1998a, 1998b, 2002, 2005; Lande et al. 2003).

The great uncertainty occurred because the study period
was only 11 years and reliable estimates of the environ-
mental variance require long time series (Sæther et al.
2007b).

Our method allows stochastic influences on population
dynamics to be partitioned into age-specific components.
Application of this approach to the Colombian ground
squirrel showed strong age-specific differences in contri-
butions to both demographic and environmental stochas-
ticity (table 1). In general, the stochastic effects were larger
among the oldest females. This may be related to the life-
history strategy of this species. Reproductive variance in-
creases strongly with age (Broussard et al. 2003) depending
on the body condition of the females (Dobson et al. 1999;
Broussard et al. 2003, 2005), which in turn seems to be
influenced by resource availability (Dobson and Oli 2001).
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