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ABSTRACT
The recently proposed spin-flip symmetry-adapted perturbation theory (SF-SAPT) first-order exchange energy [Patkowski et al.,
J. Chem. Phys. 148, 164110 (2018)] enables the standard open-shell SAPT approach to treat arbitrary spin states of the weakly
interacting complex. Here, we further extend first-order SF-SAPT beyond the single-exchange approximation to a complete
treatment of the exchanges of electrons between monomers. This new form of the exchange correction replaces the single-
exchange approximation with a more moderate single-spin-flip approximation. The newly developed expressions are applied
to a number of small test systems to elucidate the quality of both approximations. They are also applied to the singlet-triplet
splittings in pancake bonded dimers. The accuracy of the single-exchange approximation deteriorates at short intermolecular
separations, especially for systems with few electrons and for the high-spin state of the complex. In contrast, the single-spin-flip
approximation is exact for interactions involving a doublet molecule and remains highly accurate for any number of unpaired
electrons. Because the single-exchange approximation affects the high-spin and low-spin states of pancake bonded complexes
evenly, the resulting splitting values are of similar accuracy to those produced by the formally more accurate single-spin-flip
approximation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086079

I. INTRODUCTION

The interaction of two open-shell molecules in their high-
spin states produces a whole bundle of asymptotically degen-
erate states corresponding to different values of the total spin
quantum number S for the complex. The splittings between
these states arise from the resonance tunneling of electrons
between the two subsystems. Thus, when the intermolecu-
lar interaction is described in terms of symmetry-adapted
perturbation theory (SAPT),1 the splittings can be attributed
exclusively to the exchange terms in the interaction: the
remaining electrostatic, induction, and dispersion terms are
the same for the entire asymptotically degenerate bundle. On
the other hand, a uniform description of all spin states is chal-
lenging for the more conventional supermolecular approach
to interaction energies: while the highest-spin state might
often be well described by a single-reference treatment, all
the remaining, low-spin states are genuinely multireference.

Therefore, in computational studies of open-shell com-
plexes, obtaining sufficiently accurate potential energy sur-
faces (PESs) for low-spin states is nontrivial. For example, for
the interaction of two ground-state (3Σ−g ) O2 molecules, an
accurate PES for the high-spin quintet state could be con-
structed using restricted coupled-cluster theory with singles,
doubles, and perturbative triple excitations (RCCSD(T)).2 On
the other hand, the PESs for the multireference singlet and
triplet states of this complex had to be obtained by com-
bining the RCCSD(T) quintet PES with lower-level (complete
active space second order perturbation theory, CASPT2, or
multireference configuration interaction with single and dou-
ble excitations, MRCI) estimates of the singlet-quintet and
triplet-quintet splittings.3

As long as the noninteracting monomers are amenable
to a single-reference description (in this work, via spin-
restricted high-spin determinants ΨA and ΨB), the evalua-
tion of SAPT corrections does not require constructing a
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multireference wavefunction for the complex. Instead, the
perturbation series is built on top of a zeroth-order func-
tion Ψ0 = ΨAΨB and the corrections are expressed in terms
of single, double, . . . excitations out of the single Ψ0 ref-
erence. However, the established open-shell SAPT formu-
lations, based on either spin-restricted4 on unrestricted5,6

Hartree-Fock (HF) or Kohn-Sham (KS) determinants, suffer
from a different limitation: it is assumed that Ψ0 is a pure
spin state (an eigenfunction of the Ŝ2 operator). This is true
only if the asymptotically degenerate bundle reduces to a
single spin state, that is, when either one of the interacting
molecules is a singlet or the complex is in the high-spin state,
MS = ±S. Thus, the open-shell SAPT approaches of
Refs. 4–6 are only applicable to the high-spin state of the
complex. When the interaction energy in a low-spin state is
needed, these high-spin approaches can provide the elec-
trostatic, induction, and dispersion corrections, but not the
exchange corrections. No estimate of spin splittings can be
extracted from these theories.

As the first step towards extending SAPT beyond the
high-spin state of the complex, we have recently developed7

a new first-order exchange correction valid for an arbitrary
spin state of two interacting high-spin open-shell molecules,
each described by a restricted open-shell HF (ROHF) deter-
minant. The new formalism involves explicitly projecting Ψ0
onto the subspace corresponding to the desired value of the
spin quantum number S. Similarly to nearly all exchange cor-
rections in closed-shell (and high-spin open-shell) SAPT, the
evaluation of matrix elements involving the (NA + NB)-electron
antisymmetrizer is greatly simplified by the use of the single-
exchange approximation, also called the S2 approximation as
it retains terms up to second order in intermolecular over-
lap integrals.1 As shown in Ref. 7, the S2 approximation allows
expressing the first-order exchange energy E(10)

exch for an arbi-
trary spin state as a linear combination of two matrix ele-
ments: a diagonal exchange energy that quantifies the spin-
averaged effect and a spin-flip term responsible for splittings
between multiplets. The coefficients in this linear combination
do not depend on a particular system and arise solely from
the angular momentum algebra. The name “spin-flip term”
reflects the fact that the matrix elements of this term are com-
puted between ΨAΨB and a function Ψ↓AΨ

↑

B where one of the
unpaired spins on one monomer has been lowered and one
of the unpaired spins on the other monomer has been raised
(that is, an intermolecular spin exchange has occurred). Thus,
the new formalism, termed spin-flip SAPT (SF-SAPT), bears
some similarities to the spin-flip electronic structure theories
of Krylov and co-workers:8,9 in both approaches, a multirefer-
ence low-spin state is accessed from a single reference con-
figuration. However, the excitations in the methods of Krylov
et al. alter the total spin of the system (the quantum number
MS is changed). On the other hand, the excitations involved in
spin-flip SAPT do not change the value of MS as a spin raise
on one monomer is always accompanied by a spin lowering on
the other monomer.

The spin-flip electronic structure formalism has been
generalized to multiple spin flips;10 however, a simple and

often adequate approximation11 relies on using the single-
spin-flip approach (accessing the second-highest spin state
from the high-spin one) to determine the coupling parameter
JAB within the Heisenberg spin Hamiltonian model. Within this
scheme, the knowledge of JAB is sufficient to recover the entire
bundle of lower-spin states. As demonstrated in Ref. 7, in the
case of spin-flip SAPT, the same single-parameter Heisen-
berg picture is a direct consequence of the single-exchange
approximation where the value of JAB results from the single-
spin-flip matrix elements (the corresponding elements involv-
ing two or more spin flips vanish within the single-exchange
approximation).

While it would not be fair to expect quantitative accu-
racy from such a (conceptually and computationally) sim-
ple approximation as first-order perturbation theory, the
SF-SAPT approach to E(10)

exch has been shown7 to provide rea-
sonable, qualitatively correct multiplet splittings for a num-
ber of representative complexes. The accuracy of first-order
SF-SAPT is generally similar to the (much more involved)
supermolecular complete active space self-consistent field
(CASSCF) calculation and the method does not break down
at large separations as is the case for size-inconsistent
approaches such as MRCI. However, the accuracy of SF-SAPT
splittings in the region of strong intermolecular overlap is
limited by two issues: the lack of second- and higher-order
exchange effects and the single-exchange approximation.
Addressing the first issue involves deriving and implementing
the SF-SAPT generalizations of the second-order exchange
corrections E(20)

exch−ind and E(20)
exch−disp, which is in progress in

our group and will be described in a separate publication.
In this work, we focus on addressing the second issue by
deriving and implementing an improved expression for E(10)

exch
in SF-SAPT, in which the single-exchange approximation
has been replaced by a much milder single-spin-flip (1-flip)
approximation.

The full nonapproximated E(10)
exch expression in standard

closed-shell SAPT has been introduced a long time ago12 and
this expression, unlike those for higher SAPT exchange cor-
rections, is available in most SAPT implementations includ-
ing the high-spin open-shell ones.4–6 Much more recently,
Schäffer and Jansen derived and implemented nonapproxi-
mated expressions for the second-order exchange correc-
tions E(20)

exch−ind
13 and E(20)

exch−disp.14 We will directly adopt Schäf-
fer and Jansen’s approach, based on the properties of singly
and doubly excited determinants and their cofactors, in our
development of the SF-SAPT E(10)

exch correction (in fact, as we
will see below, the spin-flip excitation is just another kind
of double excitation such as the one in the formulas for
E(20)

exch−disp). It should be mentioned that the nonapproximated
second-order closed-shell SAPT corrections of Refs. 13 and
14 have recently been implemented within the freely available
PSI4NUMPY framework.15

It should be stressed that while the single-exchange
approximation implies the single-spin-flip approximation (the
neglect of matrix elements involving double and higher spin
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flips), the two approximations are not nearly equivalent. For
example, in any interaction involving an ROHF monomer in a
doublet state, there is only one unpaired spin on this monomer
that can be flipped, so the 1-flip approximation is exact. On the
other hand, the single-exchange approximation is not exact
for any spin states of the monomers, even closed-shell sin-
glets. It should be noted that the interaction energy in the
high-spin state of the complex (S = SA + SB) can be obtained
in two fully equivalent ways: using the high-spin formalism
of Refs. 4–6 (which leads to the S, MS = S configuration)
and using the SF-SAPT formalism (which leads to the S, MS
= SA − SB configuration degenerate with the previous one).
As the first-order exchange energy in the high-spin formal-
ism does not need to involve the S2 approximation, we will
be able to verify the importance of both approximations for
the high-spin state of the complex (but not for the low-
spin states) by comparison with the high-spin method imple-
mented, e.g., in the PSI4 package.6,16 In fact, in Ref. 7, the
largest errors due to the S2 approximation in the high-spin
complex occurred for the doublet-doublet Li–Li interaction,
and this approximation might be far from exact for another
doublet-doublet complex tested there, the pancake-bonded
phenalenyl (PLY) dimer. Thus, the replacement of the single-
exchange approximation by the 1-flip one (which is exact for
two interacting doublets) might be expected to significantly
improve the short-range splittings in some of the systems
studied in Ref. 7 and possibly in pancake bonded complexes in
general.17

The structure of the rest of this article is as follows: In
Sec. II, we develop the formalism and derive formulas for
the arbitrary-spin first-order exchange correction in terms
of molecular-orbital (MO) integrals. In Sec. III, we recast the
MO formulas into the atomic-orbital (AO) basis to facilitate
an efficient implementation that does not require integral
transformation and can utilize the benefits of density fit-
ting (DF). Sec. IV contains the results of our new method-
ology for the systems studied in Ref. 7 as well as several
larger pancake-bonded complexes. Finally, Sec. V presents
conclusions.

II. MOLECULAR ORBITAL FORMALISM
Throughout this paper, the indices i and j denote all occu-

pied spinorbitals of monomers A and B, respectively. Further-
more, the index i is split into inactive (k, corresponding to
a doubly occupied orbital) and active (m) spinorbitals of A,
and the index j is split into inactive (l) and active (n) spinor-
bitals of B. The indices r and s are used for arbitrary spinor-
bitals occupied in the zeroth-order wavefunction regardless
of the monomer. We will add an arrow ↑ or ↓ to the spinor-
bital index whenever an explicit specification of the spin is
necessary. ΨA and ΨB are the ground-state wavefunctions for
the individual monomers and are assumed to be ROHF wave-
functions where the unpaired electrons in ΨA have α spin
and the unpaired electrons of ΨB have β spin. The prod-
uct of these two wavefunctions is considered the zeroth-
order dimer wavefunction. As with the previous derivation

of the SF-SAPT first-order exchange correction within the
single-exchange approximation, the current correction is
computed within the symmetrized Rayleigh-Schrödinger
(SRS) formalism.1,18 In the case of low-spin states, the (NA
+ NB)-electron antisymmetrizer A is accompanied by the
spin projector PSMS , which projects the dimer wavefunc-
tion onto the subspace corresponding to the spin quantum
numbers S and MS. As such, the SAPT first-order interac-
tion energy for a desired total spin is obtained from the
expression

E(10)
int =

〈ΨAΨB |VAPSMS |ΨAΨB〉

〈ΨAΨB |APSMS |ΨAΨB〉
, (1)

where V is the perturbation operator that collects the inter-
actions between the monomers. The spin projector acting
on the dimer wavefunction is approximated by its expansion
truncated after a single spin flip

PSMSΨAΨB = c0ΨAΨB + c1Ψ
↓

AΨ
↑

B, (2)

where c0 and c1 are the Clebsch-Gordan coefficients
〈S(SA − SB)|SASASB (−SB)〉 and 〈S(SA − SB)|SA(SA − 1)SB(−SB + 1)〉,
respectively. The arrow superscripts denote a spin-flipped
monomer wavefunction, defined as Ψ↓X = (1/

√
2SX)Ŝ−ΨX or

Ψ
↑

X = (1/
√

2SX)Ŝ+ΨX. Ŝ± are spin-raising and spin-lowering
operators, which act on a wavefunction by applying the
one-electron spin-lowering or raising operators to all elec-
trons in the wavefunction. The result of this operation is
the sum of the wavefunctions where one of the active elec-
trons (and only the active electrons) has had its spin flipped.
The terms in parentheses in the above definitions normal-
ize the functions Ψ↓X and Ψ↑X as required in Eq. (2). Due to
the assumed spins of the active electrons in ΨA and ΨB,
the spin lowering only makes sense for ΨA and spin rais-
ing only makes sense for ΨB. While the application of the
full spin projector produces terms with multiple spin flips,7
the truncation in Eq. (2) to terms with no more than singly
spin-flipped monomers is the essence of the single-spin-flip
approximation.

The combination of Eqs. (1) and (2) produces the following
modified interaction energy equation:

E(10)
int =

〈ΨAΨB |VA |ΨAΨB〉 + c1
c0
〈ΨAΨB |VA |Ψ↓AΨ

↑

B〉

〈ΨAΨB |A |ΨAΨB〉 + c1
c0
〈ΨAΨB |A |Ψ↓AΨ

↑

B〉
. (3)

Thus, in order to compute the first-order exchange energy
E(10)

exch within the single-spin-flip approximation, one needs
to evaluate the four matrix elements present in Eq. (3) and
subtract the electrostatic contribution:

E(10)
exch = E(10)

int − E(10)
elst = E(10)

int − 〈ΨAΨB |V |ΨAΨB〉. (4)

The leading terms in the numerator and denominator of
Eq. (3) are the previously derived components of the complete
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SAPT first-order interaction energy12 and have the following
forms:

〈ΨAΨB |A |ΨAΨB〉 =
NA!NB!

N!
S, (5)

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!

(
WABS +

∑
ir

BirSir

+
∑

jr

AjrSjr +
1
2

∑
ijrs

〈ij | |rs〉Sij,rs) , (6)

where S is the determinant of the overlap matrix of occupied
spinorbitals of both monomers, S

S =


1 SAB

(SAB)T 1


. (7)

In Eq. (6), Sir is a first cofactor of the determinant S, Sij,rs

is a second cofactor, WAB is the nuclear repulsion between
monomers A and B, Bir and Ajr are elements of the nuclear
attraction matrices for the corresponding monomer, and
〈ij||rs〉 are antisymmetrized two-electron integrals in the
physicists’ notation. The first cofactor Sir of a determinant is
obtained by the deletion of row i and column r from the origi-
nal determinant and multiplying the resulting determinant by
(−1)i+r. The second cofactor Sij,rs is obtained by the deletion of
two rows i, j and two columns r, s from the original determi-
nant and multiplying the resulting determinant by (−1)i+j+r+s.
Furthermore, it is antisymmetric with respect to the order of
deletions: Sji,rs

= −Sij,rs and Sij,sr
= −Sij,rs.

The Cramer’s rule for the relationship between a deter-
minant, its inverse, and its cofactors implies that

Dri =
1
SS

ir, (8)

where Dri are the elements of the inverse of the overlap
matrix, D = S−1. It is instructive to examine the structure of
matrices S and D in more detail. Obviously, S, and thus also D,
is block-diagonal with respect to spin. Now, the spin-up and
spin-down blocks of S are not the same: the spin-up block
contains overlap between orbital types k, m, and l, and the
spin-down block contains overlap between orbital types k, l,
and n. Thus, the spin-up and spin-down blocks of the inverse
matrix D are completely distinct even for the common indices
such as k: Dα

kk′ , Dβ

kk′ . Therefore, in the final orbital formulas
for the SF-SAPT expressions, we will explicitly specify the spin
block of matrix D as Dα

rs or Dβ
rs. Finally, note that the matrix D,

as an inverse of a symmetric matrix S, is also symmetric.
According to Eq. (8) and the relationship between the first

and second cofactors,19 the second cofactors are equivalent to

Sij,rs
= S(DriDsj − DsiDrj). (9)

Note that the second cofactors are indeed antisymmetric with
regard to swapping either i and j or r and s. Using Eqs. (8) and
(9), Eq. (6) can be rewritten in the form making explicit use of

the Dri matrix elements

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!
S


WAB +

∑
ir

BirDri +
∑

jr

AjrDrj

+
∑
ijrs

(〈ij |rs〉 − 〈ij |sr〉)DriDsj


, (10)

where we have used the fact that r and s span the same
spinorbital space and are therefore interchangeable.

The other terms in the numerator and denominator of
Eq. (3) contain the spin-flipped wavefunctions where one
active electron from each monomer has had its spin flipped.
These terms are a specific subset of the double excita-
tions needed for the computation of the nonapproximated
second-order SAPT exchange dispersion correction which
was recently derived by Schäffer and Jansen.14 Adopting the
approach of Ref. 14, the second terms in the numerator and
denominator of Eq. (3) are rewritten as

〈ΨAΨB |A |Ψ↓AΨ
↑

B〉 =
1

2
√

SASB

∑
mn
〈ΨAΨB |A |ΨA,m↑→m↓ΨB,n↓→n↑〉

=
NA!NB!

N!
1

2
√

SASB

∑
mn

Sm↑→m↓,n↓→n↑ (11)

and

〈ΨAΨB |VA |Ψ↓AΨ
↑

B〉 =
1

2
√

SASB

∑
mn
〈ΨAΨB |VA |ΨA,m↑→m↓ΨB,n↓→n↑〉

=
NA!NB!

N!
1

2
√

SASB

∑
mn

(
WABSm↑→m↓,n↓→n↑

+
∑
ir

Bir̃Sir
m↑→m↓,n↓→n↑ +

∑
jr

Ajr̃Sjr
m↑→m↓,n↓→n↑

+
1
2

∑
ijrs

〈ij | |r̃s̃〉Sij,rs
m↑→m↓,n↓→n↑

+/
-

=
NA!NB!

N!
1

2
√

SASB

∑
mn

(I1 + I2 + I3 + I4), (12)

where Sm↑→m↓,n↓→n↑ is the determinant of the overlap matrix
that results from flipping the spin of m and n in the ket, and
Sir

m↑→m↓,n↓→n↑ and Sij,rs
m↑→m↓,n↓→n↑

are the first and second cofac-
tors of that determinant. The arrows on the indices denote
spin up or spin down. The tilded indices r̃, s̃ in Eq. (12) denote
the contents of the columns r, s in the spin-flipped deter-
minant Sm↑→m↓,n↓→n↑ : thus, when r = m↑, r̃ = m↓, and when
r = n↓, r̃ = n↑ (otherwise, r̃ = r). Note that this mean-
ing of a tilde over an index is completely different from
the notation of Refs. 13 and 14. The four consecutive terms
I1, . . ., I4 in this equation will be analyzed separately—see
below. It is obvious at this point that NA !NB !

N! appears in all terms
in the top and bottom of Eq. (3) and will be canceled out in the
total interaction energy.

It is beneficial at this time to define the relationships
between non-excited, singly excited, and doubly excited
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determinants and their cofactors. The relationship between a
determinant S and a singly excited determinant Si→a is such
that

Si→a =
∑

r
SraS ri

= S
∑

r
DirSra, (13)

where Sra are elements of the overlap matrix. The first and
second cofactors of a singly excited determinant can be
expressed in terms of singly excited determinants and the first
and second cofactors of the non-excited determinant in the
following ways:13

S rs
i→a =




S ri s = i
1
S

(
S rsSi→a − S riSs→a

)
s , i,

(14)

S rs,tu
i→a =




S rs,iu t = i

S rs,ti u = i

1
S

(
S rs,tuSi→a − S rs,iuSt→a − S rs,tiSu→a

)
i < {t, u}.

(15)

The doubly excited determinants can be written in terms of
singly excited determinants as

Si→a,j→b =
1
S (Si→aSj→b − Si→bSj→a). (16)

The first and second cofactors of doubly excited determi-
nants can be expressed in terms of the other components
as14

S rs
i→a,j→b =




S ri
j→b s = i

S rj
i→a s = j

1
S

(
Si→a,j→bS rs

− Ss→a,j→bS ri
− Si→a,s→bS rj) s < {i, j},

(17)

S rs,tu
i→a,j→b =




S rs,ij t = i, u = j

S rs,ji t = j, u = i

S rs,tj
i→a t , i, u = j

S rs,ti
j→b t , j, u = i

S rs,iu
j→b t = i, u , j

S rs,ju
i→a t = j, u , i

1
S

(
Si→a,j→bS rs,tu

− St→a,j→bS rs,iu
− Su→a,j→bS rs,ti

−Si→a,t→bS rs,ju
− Si→a,u→bS rs,tj + St→a,u→bS rs,ij) i, j < {t, u}.

(18)

With the relationships between various determinants and
cofactors now defined, it is possible to express the remaining
parts of Eqs. (11) and (12) in terms of the elements of the D and
S matrices. Starting with the term from the denominator,

〈ΨAΨB |A |Ψ↓AΨ
↑

B〉

=
NA!NB!

N!
1

2
√

SASB

∑
mn

Sm↑→m↓,n↓→n↑

=
NA!NB!

N!
1

2
√

SASB

∑
mn

(
1
S (Sm↑→m↓Sn↓→n↑ − Sn↓→m↓Sm↑→n↑ )

)

= −
NA!NB!

N!
1

2
√

SASB
S

∑
mn

*.
,

∑
j

Dn↓jSjm↓
+/
-

*
,

∑
i

Dm↑iSin↑
+
-
, (19)

where the cancellation of the Sm↑→m↓Sn↓→n↑ term is due
to the spin-diagonal nature of S and D [cf. Eq. (13)]. A
singly excited determinant with a spin-flipping excitation

requires coupling S and D matrix elements of opposite spin,
resulting in a zero spin integral. This property will be used
repeatedly to simplify the following equations. The new sum-
mations in the last line have been truncated from r since
m↓ is orthogonal to all occupied spinorbitals on A and n↑ is
orthogonal to all occupied spinorbitals on B (note that, e.g.,
the index j covers both the inactive spinorbitals l↑, l↓ and active
spinorbitals n↓). The complete denominator is thus equal to

NA!NB!
N!

S
(
1 −

c1

2c0
√

SASB

∑
mnij

(Dn↓jSjm↓Dm↑iSin↑ )
)
. (20)

For the numerator term, we will analyze the consecu-
tive contributions In to Eq. (12). The first of these terms, I1,
is simply the nuclear repulsion term multiplied by the same
doubly excited determinant that appears in the denominator.
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It is easy to see that the terms in the numerator that contain
the nuclear repulsion are, in fact, equal to the denominator
multiplied by the nuclear repulsion. As such, the total inter-
action energy contains this term exactly once, which is to be
expected.

I2, the term containing the nuclear potential of monomer
B, contains a first cofactor of a doubly excited determinant.
As the summation over r contains both m↑ and n↓, it has to be
broken into three parts accounting for the special cases shown
in Eq. (17). The resulting equation is

I2 =
∑

i

Bim↓Sim↑
n↓→n↑ +

∑
i

Bin↑Sin↓
m↑→m↓ +

∑
ir,r,(m↑,n↓)

Bir̃
1
S

×

(
Sm↑→m↓,n↓→n↑Sir

− Sr→m↓,n↓→n↑Sim↑
− Sm↑→m↓,r→n↑Sin↓

)
.

(21)

We expand the first summation in this term as∑
i

Bim↓Sim↑
n↓→n↑ =

∑
i

Bim↓

(
1
S

(
Sim↑Sn↓→n↑ − Sin↓Sm↑→n↑

))
= −

∑
ii′

SBim↓Dn↓iDm↑i′Si′n↑ , (22)

and the analogous result for the second summation is∑
i

Bin↑Sin↓
m↑→m↓ = −

∑
ij

SBin↑Dm↑iDn↓jSjm↓ . (23)

The third summation in I2 contains the same doubly excited
determinant that was previously described, as well as two
others. Following the same logic as above to eliminate the
singly excited determinants that vanish by spin integration
and expand the remaining determinants, and noting that r̃ = r
for all terms in the restricted summation, this last term is equal
to

∑
ir,r,(m↑,n↓)

SBir
*.
,
−Dri

∑
i′j

Dm↑i′Si′n↑Dn↓jSjm↓

+ Dm↑i

∑
i′j

Dri′Si′n↑Dn↓jSjm↓ + Dn↓i

∑
i′j

Dm↑i′Si′n↑DrjSjm↓
+/
-
. (24)

The restriction in the summation in Eq. (24) to r not equal to
either m↑ or n↓ can be lifted since the result of the additional
r = m↑ and r = n↓ terms is equal to zero in these cases. For
example, when r = m↑, the first two terms in parentheses can-
cel each other and the third term is zero due to spin. A similar
result can be obtained for r = n↓.

With these results in hand, the complete I2 term is

I2 = − S
(∑

ii′
Bim↓Dn↓iDm↑i′Si′n↑ +

∑
ij

Bin↑Dm↑iDn↓jSjm↓

+
∑
ir

Bir
(
Dri

∑
i′j

Dm↑i′Si′n↑Dn↓jSjm↓ − Dm↑i

∑
i′j

Dri′Si′n↑Dn↓jSjm↓

− Dn↓i

∑
i′j

Dm↑i′Si′n↑DrjSjm↓
))

. (25)

An analogous derivation for I3 gives

I3 = − S
(∑

ij

Ajm↓Dn↓jDm↑iSin↑ +
∑
jj′

Ajn↑Dm↑jDn↓j′Sj′m↓

+
∑

jr

Ajr
(
Drj

∑
ij′

Dm↑iSin↑Dn↓j′Sj′m↓ − Dm↑j

∑
ij′

DriSin↑Dn↓j′Sj′m↓

− Dn↓j

∑
ij′

Dm↑iSin↑Drj′Sj′m↓
))

. (26)

The breakdown of the most complicated I4 term in Eq. (12)
involves each of the cases in Eq. (18)

I4 =
1
2

( ∑
ij,r=m↑,s=n↓

〈ij | |m↓n↑〉Sij,m↑n↓ +
∑

ij,r=n↓,s=m↑
〈ij | |n↑m↓〉Sij,n↓m↑

+
∑

ij,r,m↑,s=n↓
〈ij | |rn↑〉Sij,rn↓

m↑→m↓
+

∑
ij,r,n↓,s=m↑

〈ij | |rm↓〉Sij,rm↑

n↓→n↑

+
∑

ij,r=m↑,s,n↓
〈ij | |m↓s〉Sij,m↑s

n↓→n↑
+

∑
ij,r=n↓,s,m↑

〈ij | |n↑s〉Sij,n↓s
m↑→m↓

+
∑

ijrs,(r,s),(m↑,n↓)

〈ij | |r̃s̃〉
1
S

(
Sm↑→m↓,n↓→n↑Sij,rs

− Sr→m↓,n↓→n↑Sij,m↑s

− Ss→m↓,n↓→n↑Sij,rm↑
− Sm↑→m↓,r→n↑Sij,n↓s

− Sm↑→m↓,s→n↑Sij,rn↓ + Sr→m↓,s→n↑Sij,m↑n↓ )) . (27)

Before tackling these summations, we can take advantage of
antisymmetry relations of integrals and cofactors to reduce
the number of terms that need to be expanded in the first line
of Eq. (27)

〈ij | |n↑m↓〉Sij,n↓m↑
= −〈ij | |m↓n↑〉Sij,n↓m↑

= 〈ij | |m↓n↑〉Sij,m↑n↓ . (28)

Therefore, we need to expand only one of these summations

〈ij | |m↓n↑〉Sij,m↑n↓
=

(
〈ij |m↓n↑〉 − 〈ij |n↑m↓〉

)
S

(
Dm↑iDn↓j − Dn↓iDm↑j

)
= −〈ij |n↑m↓〉SDm↑iDn↓j − 〈ij |m

↓n↑〉SDn↓iDm↑j,

(29)

where the two terms that are omitted in the second line are
zero due to spin.

When dealing with the summations in the second and
third line of Eq. (27), it is again possible to equate some terms
to each other using their antisymmetry. Additionally, r and s
can be swapped arbitrarily since they both span the complete
occupied space. Therefore,
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∑
r,m↑

〈ij | |rn↑〉Sij,rn↓

m↑→m↓
=

∑
s,m↑

〈ij | |sn↑〉Sij,sn↓

m↑→m↓
=

∑
s,m↑

〈ij | |n↑s〉Sij,n↓s
m↑→m↓

(30)

and ∑
r,n↓

〈ij | |rm↓〉Sij,rm↑

n↓→n↑
=

∑
s,n↓

〈ij | |sm↓〉Sij,sm↑

n↓→n↑
=

∑
s,n↓

〈ij | |m↓s〉Sij,m↑s
n↓→n↑

. (31)

Now, expanding the term in Eq. (30)

〈ij | |rn↑〉Sij,rn↓

m↑→m↓
=
〈ij | |rn↑〉

S
(
Sm↑→m↓Sij,rn↓

− Sr→m↓Sij,m↑n↓
− Sn↓→m↓Sij,rm↑

)
= − 〈ij |rn↑〉Sr→m↓Dm↑iDn↓j + 〈ij |n↑r〉Sr→m↓Dm↑iDn↓j + 〈ij |rn↑〉Sr→m↓Dn↓iDm↑j

− 〈ij |n↑r〉Sr→m↓Dn↓iDm↑j − 〈ij |rn↑〉Sn↓→m↓DriDm↑j + 〈ij |n↑r〉Sn↓→m↓DriDm↑j

+ 〈ij |rn↑〉Sn↓→m↓Dm↑iDrj − 〈ij |n↑r〉Sn↓→m↓Dm↑iDrj

= S
(
〈ij |n↑r〉Dm↑iDn↓j

∑
j′

(
Drj′Sj′m↓

)
+ 〈ij |rn↑〉Dn↓iDm↑j

∑
j′

(
Drj′Sj′m↓

)
− 〈ij |rn↑〉DriDm↑j

∑
j′

(
Dn↓j′Sj′m↓

)
+ 〈ij |n↑r〉DriDm↑j

∑
j′

(
Dn↓j′Sj′m↓

)
+ 〈ij |rn↑〉Dm↑iDrj

∑
j′

(
Dn↓j′Sj′m↓

)
− 〈ij |n↑r〉Dm↑iDrj

∑
j′

(
Dn↓j′Sj′m↓

))
(32)

with the terms that are removed vanishing due to spin integration. The analogous treatment of the other term containing single
excitations yields

〈ij | |rm↓〉Sij,rm↑

n↓→n↑
= S

(
〈ij |m↓r〉Dn↓iDm↑j

∑
i′

(Dri′Si′n↑ ) + 〈ij |rm↓〉Dm↑iDn↓j

∑
i′

(Dri′Si′n↑ ) − 〈ij |rm↓〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ )

+ 〈ij |m↓r〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ ) + 〈ij |rm↓〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ ) − 〈ij |m
↓r〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ )
)
. (33)

The restrictions in Eq. (27) of r , m↑ and r , n↓ for the summations involving Eqs. (32) and (33), respectively, can be lifted since it
can now be seen that these conditions reduce the given term to zero.

For the last summation of I4, we begin by noting that r̃ = r, s̃ = s under the restrictions of this summation. Next, we expand
the doubly excited determinants. The first of them has been handled above and the others expand as follows:

Sr→m↓,n↓→n↑ =
1
S (Sr→m↓Sn↓→n↑ − Sr→n↑Sn↓→m↓ ) = −S

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ),

Ss→m↓,n↓→n↑ =
1
S (Ss→m↓Sn↓→n↑ − Ss→n↑Sn↓→m↓ ) = −S

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ),

Sm↑→m↓,r→n↑ =
1
S (Sm↑→m↓Sr→n↑ − Sm↑→n↑Sr→m↓ ) = −S

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ),

Sm↑→m↓,s→n↑ =
1
S (Sm↑→m↓Ss→n↑ − Sm↑→n↑Ss→m↓ ) = −S

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ),

Sr→m↓,s→n↑ =
1
S (Sr→m↓Ss→n↑ − Sr→n↑Ss→m↓ ) = S

(∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) −
∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ )
)
.

(34)

Now we make the necessary replacements and expand the integrals and second cofactors for the last summation in Eq. (27)
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S
[
− 〈ij |rs〉DriDsj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DsiDrj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉DriDsj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |sr〉DsiDrj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉Dm↑iDsj

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ) − 〈ij |rs〉DsiDm↑j

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |sr〉Dm↑iDsj

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉DsiDm↑j

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |rs〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) − 〈ij |sr〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ )

+ 〈ij |rs〉Dn↓iDsj

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ) − 〈ij |rs〉DsiDn↓j

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ) − 〈ij |sr〉Dn↓iDsj

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ )

+ 〈ij |sr〉DsiDn↓j

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ) + 〈ij |rs〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) − 〈ij |rs〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ )

− 〈ij |sr〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) + 〈ij |sr〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) + 〈ij |rs〉Dm↑iDn↓j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ )

− 〈ij |rs〉Dn↓iDm↑j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) − 〈ij |sr〉Dm↑iDn↓j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) + 〈ij |sr〉Dn↓iDm↑j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ )

− 〈ij |rs〉Dm↑iDn↓j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ ) + 〈ij |rs〉Dn↓iDm↑j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ ) + 〈ij |sr〉Dm↑iDn↓j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ )

− 〈ij |sr〉Dn↓iDm↑j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ )
]
. (35)

Inspection of the terms in Eq. (35) shows that four of them vanish upon spin integration. Moreover, upon the summation over r, s,
the remaining 24 terms can be collected into 12 equal pairs when we again take advantage of the fact that r and s can be swapped.
Again, the restrictions (r, s) , (m↑, n↓) on the summation can be lifted because the sum of the terms reduces to zero when either
r or s is equal to m↑ or n↓. The total I4 term can now be rewritten as

I4 = S
(∑

ij

[
− 〈ij |n↑m↓〉Dm↑iDn↓j − 〈ij |m

↓n↑〉Dn↓iDm↑j

]
+
∑
ijr

[
〈ij |n↑r〉Dm↑iDn↓j

∑
j′

(Drj′Sj′m↓ ) + 〈ij |rn↑〉Dn↓iDm↑j

∑
j′

(Drj′Sj′m↓ )

− 〈ij |rn↑〉DriDm↑j

∑
j′

(Dn↓j′Sj′m↓ ) + 〈ij |n↑r〉DriDm↑j

∑
j′

(Dn↓j′Sj′m↓ ) + 〈ij |rn↑〉Dm↑iDrj

∑
j′

(Dn↓j′Sj′m↓ ) − 〈ij |n
↑r〉Dm↑iDrj

∑
j′

(Dn↓j′Sj′m↓ )

+ 〈ij |m↓r〉Dn↓iDm↑j

∑
i′

(Dri′Si′n↑ ) + 〈ij |rm↓〉Dm↑iDn↓j

∑
i′

(Dri′Si′n↑ ) − 〈ij |rm↓〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ ) + 〈ij |m↓r〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ )

+ 〈ij |rm↓〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ ) − 〈ij |m
↓r〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ )
]

+
∑
ijrs

[
− 〈ij |rs〉DriDsj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ )

+ 〈ij |rs〉DsiDrj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) − 〈ij |rs〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |sr〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ )

− 〈ij |rs〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) − 〈ij |sr〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) + 〈ij |sr〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ )

− 〈ij |rs〉Dn↓iDm↑j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) − 〈ij |sr〉Dm↑iDn↓j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ )
])

, (36)

where the common S has been factored out and the 1
2 canceled by the factor of 2 from the term pairings.
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With all necessary terms in hand, there remain a few
minor points to consider. First, it can now be seen that S
appears in all terms in the numerator and denominator of
the total energy equation and will cancel out. Second, we
introduce the following function:7

Z(SA, SB, S) =
c1

2c0
√

SASB

=
S(S + 1) + 2SASB − SA(SA + 1) − SB(SB + 1)

4SASB
, (37)

which replaces both the ratio of the Clebsch-Gordan coeffi-
cients and normalization factors from the spin-flipped wave-
functions. Through a proper choice of the factor Z, the desired
spin state is obtained.7 Finally, the equations up to this point
remain in the spinorbital form and spin integration has only
been accounted for as a means of eliminating terms that van-
ish. We will now make the spin integration explicit and spec-
ify the exact spin blocks of the D matrix that give nonzero

contributions in the resulting orbital expressions. This step
is necessary in preparation for the atomic-orbital equivalents
of these expressions (which will be derived in Sec. III), as the
latter would otherwise lose any information about the spin
combinations that result in nonvanishing contributions. In the
resulting expressions below, all sums run over the respective
orbitals and not spinorbitals. However, the spin integration
results in different ranges of summation for orbitals occu-
pied by spin-up and spin-down electrons. These ranges will
be specified by an overbar for spin-up indices and an under-
bar for the spin-down ones: specifically, i, j, and r represent
the occupied orbitals of A, B, or either monomer, respec-
tively, which can be combined with an α spin function, and
i, j, and r denote the corresponding orbital types that can
be combined with a β spin function. In terms of the inac-
tive and active orbitals on both monomers, the summations
over i, j, r, i, j, and r break up into summations over (k, m),
(l), (k, l, m), (k), (l, n), and (k, l, n), respectively. In this nota-
tion, the orbital equivalents of Eqs. (10), (19), (25), (26), and (36)
are

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!
S



WAB +
∑
ir

BirDα
ri +

∑
ir

BirDβ

ri +
∑

jr

AjrDα
rj +

∑
jr

AjrDβ

rj +
∑
ijrs

〈ij |rs〉Dα
riD

α
sj +

∑
ijrs

〈ij |rs〉Dα
riD

β

sj +
∑
ijrs

〈ij |rs〉Dβ

riD
α
sj

+
∑
ijrs

〈ij |rs〉Dβ

riD
β

sj −
∑
ijrs

〈ij |sr〉Dα
riD

α
sj −

∑
ijrs

〈ij |sr〉Dβ

riD
β

sj


, (38)

I1 = −SWAB
*..
,

∑
j

Dβ

njSjm
+//
-

*.
,

∑
i

Dα
miSin

+/
-
, (39)

I2 = −S
(∑

ii′

BimDβ

niD
α
mi′Si′n +

∑
ij

BinDα
miD

β

njSjm +
∑
ir

BirDα
ri

∑
i′j

Dα
mi′Si′nDβ

njSjm +
∑
ir

BirDβ

ri

∑
i′j

Dα
mi′Si′nDβ

njSjm

−
∑
ir

BirDα
mi

∑
i′j

Dα
ri′Si′nDβ

njSjm −
∑
ir

BirDβ

ni

∑
i′j

Dα
mi′Si′nDβ

rjSjm

)
, (40)

I3 = −S
(∑

ij

AjmDβ

njD
α
miSin +

∑
jj′

AjnDα
mjD

β

nj′Sj′m +
∑

jr

AjrDα
rj

∑
ij′

Dα
miSinDβ

nj′Sj′m +
∑

jr

AjrDβ

rj

∑
ij′

Dα
miSinDβ

nj′Sj′m

−
∑

jr

AjrDα
mj

∑
ij′

Dα
riSinDβ

nj′Sj′m −
∑

jr

AjrDβ

nj

∑
ij′

Dα
miSinDβ

rj′Sj′m

)
, (41)
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I4 = S
(
−

∑
ij

〈ij |nm〉Dα
miD

β

nj −
∑

ij

〈ij |mn〉Dβ

niD
α
mj +

∑
ijrj′

〈ij |nr〉Dα
miD

β

njD
β

rj′Sj′m +
∑
ijrj′

〈ij |rn〉Dβ

niD
α
mjD

β

rj′Sj′m −
∑
ijrj′

〈ij |rn〉Dα
riD

α
mjD

β

nj′Sj′m

−
∑
ijrj′

〈ij |rn〉Dβ

riD
α
mjD

β

nj′Sj′m +
∑
ijrj′

〈ij |nr〉Dα
riD

α
mjD

β

nj′Sj′m +
∑
ijrj′

〈ij |rn〉Dα
miD

α
rjD

β

nj′Sj′m −
∑
ijrj′

〈ij |nr〉Dα
miD

α
rjD

β

nj′Sj′m

−
∑
ijrj′

〈ij |nr〉Dα
miD

β

rjD
β

nj′Sj′m +
∑
ijri′

〈ij |mr〉Dβ

niD
α
mjD

α
ri′Si′n +

∑
ijri′

〈ij |rm〉Dα
miD

β

njD
α
ri′Si′n −

∑
ijri′

〈ij |rm〉Dα
riD

β

njD
α
mi′Si′n

−
∑
ijri′

〈ij |rm〉Dβ

riD
β

njD
α
mi′Si′n +

∑
ijri′

〈ij |mr〉Dβ

riD
β

njD
α
mi′Si′n +

∑
ijri′

〈ij |rm〉Dβ

niD
β

rjD
α
mi′Si′n −

∑
ijri′

〈ij |mr〉Dβ

niD
α
rjD

α
mi′Si′n

−
∑
ijri′

〈ij |mr〉Dβ

niD
β

rjD
α
mi′Si′n −

∑
ijrsi′j′

〈ij |rs〉Dα
riD

α
sjD

α
mi′Si′nDβ

nj′Sj′m −
∑

ijrsi′j′

〈ij |rs〉Dα
riD

β

sjD
α
mi′Si′nDβ

nj′Sj′m

−
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
α
sjD

α
mi′Si′nDβ

nj′Sj′m −
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
β

sjD
α
mi′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dα
siD

α
rjD

α
mi′Si′nDβ

nj′Sj′m

+
∑

ijrsi′j′

〈ij |rs〉Dβ

siD
β

rjD
α
mi′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dα
riD

α
mjD

α
si′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
α
mjD

α
si′Si′nDβ

nj′Sj′m

−
∑

ijrsi′j′

〈ij |rs〉Dα
miD

α
rjD

α
si′Si′nDβ

nj′Sj′m −
∑

ijrsi′j′

〈ij |sr〉Dα
riD

α
mjD

α
si′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |sr〉Dα
miD

α
rjD

α
si′Si′nDβ

nj′Sj′m

+
∑

ijrsi′j′

〈ij |sr〉Dα
miD

β

rjD
α
si′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dα
riD

β

njD
α
mi′Si′nDβ

sj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
β

njD
α
mi′Si′nDβ

sj′Sj′m

−
∑

ijrsi′j′

〈ij |rs〉Dβ

niD
β

rjD
α
mi′Si′nDβ

sj′Sj′m −
∑

ijrsi′j′

〈ij |sr〉Dβ

riD
β

njD
α
mi′Si′nDβ

sj′Sj′m +
∑

ijrsi′j′

〈ij |sr〉Dβ

niD
α
rjD

α
mi′Si′nDβ

sj′Sj′m

+
∑

ijrsi′j′

〈ij |sr〉Dβ

niD
β

rjD
α
mi′Si′nDβ

sj′Sj′m −
∑

ijrsi′j′

〈ij |rs〉Dβ

niD
α
mjD

β

rj′Sj′mDα
si′Si′n −

∑
ijrsi′j′

〈ij |sr〉Dα
miD

β

njD
β

rj′Sj′mDα
si′Si′n

)
. (42)

III. ATOMIC ORBITAL FORMALISM
We now recast the equations derived in Sec. II from

molecular orbitals to atomic orbitals, which provides sig-
nificant computational benefits as integral transformation
is avoided and efficient generalized Coulomb and exchange
matrix codes can be utilized.7,16,20,21 Let us start from the
expression for the spin diagonal component of the numerator
[Eq. (38)]. In the AO form, the leading nuclear repulsion term
stays the same, so we move to the first attractive potential
term ∑

ir

BirDα
ri =

∑
irKL

CiKBKLCrLDα
ri =

∑
irKL

BLKCrLDα
riCiK

=
∑
KL

BLK(DRI
α )LK = B · DRI

α , (43)

where X · Y =
∑

KLXKLYKL is the matrix dot product, the cap-
ital letter indices span the AO set, B is the nuclear poten-
tial matrix of monomer B in the AO basis, CrK are the SCF
coefficients of spinorbital r, and DRI

α , defined by the above
equation, is the representation of Dα

ri in the AO basis. We
use capital letters in the superscript of DRI

α to remind the
reader that R, I are no longer the indices of the matrix but

merely specify the spinorbital spaces over which the contri-
butions have been summed. The second term involving Bir
results in a fully analogous contribution B ·DRI

β , and we can now
define

DRI
αβ = DRI

α + DRI
β , (44)

as the AO representations of the D matrices, unlike the MO
ones, are all the same size and can be added. Breaking the
indices into the inactive and active ones, corresponding to a
further restriction of the summations in the definition of DRI

α

and DRI
β , yields

DRI
α = DKK

α + DLK
α + DMK

α + DKM
α + DLM

α + DMM
α , (45)

DRI
β = DKK

β + DLK
β + DNK

β . (46)

Note that the different D matrices are in general not symmet-
ric. The derivation of the remaining nuclear attraction terms
follows an analogous path, giving∑

jr

AjrDα
rj +

∑
jr

AjrDβ

rj = A · DRJ
αβ . (47)
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The two-electron terms give way to similar transfor-
mations of the D matrices. Some representative spin-block
contributions are∑

ijrs

〈ij |rs〉Dα
riD

α
sj =

∑
KLMN

(DRI
α )KL〈KM |LN〉(DRJ

α )MN

= DRI
α · J[D

RJ
α ], (48)

∑
ijrs

〈ij |sr〉Dα
riD

α
sj =

∑
KLMN

(DRI
α )KL〈KN |ML〉(DRJ

α )MN

= DRI
α · K[DRJ

α ], (49)

where J[X] and K[X] are the generalized Coulomb and
exchange matrices, defined as follows:

J[X]KL =
∑
MN

〈KM |LN〉XMN K[X]KL =
∑
MN

〈KN |ML〉XMN. (50)

The other spin blocks give rise to analogous contributions and
the complete spin diagonal term can now be written in the AO
form as

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!
S

[
WAB + B · DRI

αβ + A · DRJ
αβ

+DRI
αβ · J[D

RJ
αβ ]−DRI

α ·K[DRJ
α ]−DRI

β ·K[DRJ
β ]

]
.

(51)

Next, we move to the spin-flipped term of the numerator
[Eq. (12)]. The I1 term in Eq. (12) is the nuclear repulsion part
for the spin-flip term and is explicitly defined in Eq. (39). This
term is transformed into the AO basis as follows:

I1 = −WABS
∑

ijKLMN

Dβ

njCjKSAO
KL CmLDα

miCiMSAO
MNCnN

= −WABS
∑

ijKLMN

(CnNDβ

njCjKSAO
KL ) · (CmLDα

miCiMSAO
MN)

= −WABS
∑
LN

(DNJ
β SAO)NL(DMI

α SAO)LN

= −WABS[(DNJ
β SAO) · (DMI

α SAO)T]. (52)

Note that we used the fact that the orbitals are spin-restricted
so that, for example, Cm↑L = Cm↓L = CmL. The term in the last
line of Eq. (52) also constitutes the spin-flip part of the denom-
inator after dividing by WAB. Using the same methods as above,
the I2 and I3 terms of Eq. (12) transform as

I2 = −S
(
B · (DMI

α SAODNI
β ) + B · (DNJ

β SAODMI
α )

+ (B · DRI
αβ )

(
(DMI

α SAODNJ
β ) · SAO

)
− B · (DRI

α S
AODNJ

β SAODMI
α ) − B · (DRJ

β SAODMI
α SAODNI

β )
)

(53)

and

I3 = −S
(
A · (DMI

α SAODNJ
β ) + A · (DNJ

β SAODMJ
α )

+ (A · DRJ
αβ )

(
(DMI

α SAODNJ
β ) · SAO

)
− A · (DRI

α S
AODNJ

β SAODMJ
α ) − A · (DRJ

β SAODMI
α SAODNJ

β )
)
. (54)

Finally, I4 transforms into the following form:

I4 = S
(
−DMI

α · K[DNJ
β ]T −DNI

β · K[DMJ
α ]T + K[DNJ

β ]T · (DRJ
β SAODMI

α ) + K[DNI
β ]T · (DRJ

β SAODMJ
α ) − J[DRI

αβ ] · (DNJ
β SAODMJ

α )

+ K[DRI
α ]T · (DNJ

β SAODMJ
α ) + K[DRJ

α ]T · (DNJ
β SAODMI

α ) − J[DRJ
αβ ] · (DNJ

β SAODMI
α ) + K[DMJ

α ]T · (DRI
α S

AODNI
β ) + K[DMI

α ]T · (DRI
α S

AODNJ
β )

− J[DRI
αβ ] · (DMI

α SAODNJ
β ) + K[DRI

β ]T · (DMI
α SAODNJ

β ) + K[DRJ
β ]T · (DMI

α SAODNI
β ) − J[DRJ

αβ ] · (DMI
α SAODNI

β )

− (DRI
αβ · J[D

RJ
αβ ])((DMI

α SAODNJ
β ) · SAO) + (DRI

α · K[DRJ
α ]T)((DMI

α SAODNJ
β ) · SAO) + (DRI

β · K[DRJ
β ]T)((DMI

α SAODNJ
β ) · SAO)

+ J[DRI
αβ ] · (DRI

α S
AODNJ

β SAODMJ
α ) − K[DRJ

α ]T · (DRI
α S

AODNJ
β SAODMI

α ) − K[DRI
α ]T · (DRI

α S
AODNJ

β SAODMJ
α )

+ J[DRJ
αβ ] · (DRI

α S
AODNJ

β SAODMI
α ) + J[DRI

αβ ] · (DRJ
β SAODMI

α SAODNJ
β ) − K[DRJ

β ]T · (DRJ
β SAODMI

α SAODNI
β ) − K[DRI

β ]T · (DRJ
β SAODMI

α SAODNJ
β )

+ J[DRJ
αβ ] · (DRJ

β SAODMI
α SAODNI

β ) − (DRJ
β SAODMJ

α ) · K[DRI
α S

AODNI
β ]T − (DRJ

β SAODMI
α ) · K[DRI

α S
AODNJ

β ]T
)
. (55)

Note that the final formula (55) can be written in many
equivalent ways due to the “Hermitian-like” symmetry of the
Coulomb and exchange matrices

X · J[Y] = Y · J[X] X · K[Y] = Y · K[X]. (56)

The form adopted in Eq. (55) minimizes the number of
Coulomb and exchange matrix evaluations necessary.

IV. RESULTS
Both the MO and AO formulas for the newly devel-

oped E(10)
exch correction were implemented using PSI416 and the

PSI4NUMPY framework.15 The agreement between the high-spin
SF-SAPT results and the conventional ROHF-based SAPT in
PSI46 was verified for the test systems where the single-spin-
flip approximation is exact, e.g., the systems containing Li. For
other systems, the 1-flip values are compared with the exact
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high-spin E(10)
exch to determine the adequacy of the proposed

approximation.
The aug-cc-pVTZ basis set22–24 was used for the Li· · · Li,

Li· · ·N, N· · ·N, and Mn· · ·Mn complexes. The results for the
pancake bonded systems were obtained in the aug-cc-pVDZ
basis set.22,23 To allow for comparison with the previous
results, the O2 · · ·O2 calculations were performed in the ANO-
VTZ basis set25,26 and the Li· · ·H calculations were performed
in the basis set of Ref. 27. When the density fitting (DF) approx-
imation was utilized, the def2-QZVPP/JKFIT28 sets were used
for Li and Mn atoms as well as for O2 · · ·O2. All other atoms
used the aug-cc-pVXZ/JKFIT29 sets with X being the same as
for the orbital basis set. Throughout the discussion below, we
will refer to the exchange splitting between the highest and
lowest spin states of the complexes, which is defined as

∆E(10)
exch = E(10)

exch(S = SA + SB) − E(10)
exch(S = |SA − SB |). (57)

For the Mn· · ·Mn complex, difficulties converging the
ROHF iterations in PSI4 led us to use MOLPRO30 for the monomer
calculations. The ROHF orbital energies and vectors were read
from the MOLPRO output and passed into PSI4NUMPY. It should also
be noted that in the initial SF-SAPT work (Ref. 7), the Mn· · ·Mn
results were computed from incorrectly converged monomer
ROHF wavefunctions. Therefore, the corrected SF-SAPT(S2)
results for this system will be presented below.

A. Diatomics and the O2 dimer
The first of the smaller test complexes that we consider is

Li· · ·H, where only one pair of electrons can be exchanged.
As already mentioned, the single-spin-flip approximation is
exact whenever at least one monomer in the complex is a
doublet. The values of E(10)

exch calculated in both approxima-
tions for the singlet and triplet states of the Li· · ·H com-
plex are provided in Table I, along with the ∆E(10)

exch value and
the full configuration interaction (FCI) based SAPT results of
Ref. 27. While the 1-flip results agree remarkably well with the

FCI-based values, confirming that the effects of intramolec-
ular correlation are minuscule for this system as observed
earlier,7 there is a noticeable discrepancy between these val-
ues and the S2 results. While it may come as a surprise, the S2

approximation in the commonly used form is not exact even
in this case. During the derivation of the E(10)

exch correction in
the S2 approximation,31 the following intermediate formula is
reached:

〈V〉〈P〉 + E(10)
exch + E(10)

exch〈P〉 = 〈VP〉, (58)

where P is the single-exchange operator. A related formula is
obtained during the derivation of the E(10)

exch(S2) correction in

SF-SAPT [Eq. (9) of Ref. 7]. At that point, the E(10)
exch〈P〉 term on

the lhs of Eq. (58) is normally neglected because it is at least of
the order S4 [S2 in E(10)

exch and S2 in 〈P〉]. However, this term is
not zero even for systems such as Li· · ·H where only a single
electron exchange is possible. We have verified that the differ-
ences between the S2 and nonapproximated results for Li· · ·H
originate solely from the removal of the E(10)

exch〈P〉 term.

For the Li dimer and the Li· · ·N complex, the single-
spin-flip E(10)

exch result is exact due to the doublet nature of a
lithium atom, meaning there is only one spin to be flipped.
Figure 1 shows how severely the E(10)

exch values for the lithium
dimer are affected by the S2 approximation. The deviation
of the S2 results from exact E(10)

exch is already visible at the
van der Waals minimum of the triplet state (7.9 bohrs), and
is on its way to catastrophic failure at the chemical mini-
mum of the singlet state (5.0 bohrs). At around 4.2 bohrs,
the splitting predicted by E(10)

exch(S2) changes sign, leading to
an unphysical energetic ordering of the two states. It can
also be seen that the S2 value for the singlet deviates from
its complete E(10)

exch counterpart at a slower rate than for the
triplet. Similar results are seen for the Li· · ·N complex in Fig. 2.
The two methods give equivalent results near the 10.2 bohr
van der Waals minimum for the quintet state of this system

TABLE I. Singlet and triplet E(10)
exch values and the∆E(10)

exch splitting (cm−1) in the Li· · ·H complex as a function of interatomic

distance (bohr) from FCI-based SAPT27 and SF-SAPT with and without the single-exchange approximation.

E(10)
exch(S = 0) E(10)

exch(S = 1) ∆E(10)
exch

R FCI S2 1-flip FCI S2 1-flip FCI S2 1-flip

6.00 −1434.15 −1484.93 −1434.71 1562.92 1509.18 1564.05 2997.07 2994.11 2998.76
7.00 −602.08 −611.89 −602.71 624.05 615.34 624.87 1226.13 1227.23 1227.58
8.00 −230.99 −232.81 −231.39 234.31 233.31 234.76 465.30 466.12 466.15
9.00 −83.09 −83.48 −83.28 83.54 83.55 83.75 166.63 167.03 167.03
10.00 −28.39 −28.49 −28.47 28.44 28.50 28.53 56.83 56.99 56.99
11.00 −9.24 −9.27 −9.27 9.25 9.28 9.28 18.49 18.55 18.55
11.50 −5.18 −5.19 −5.19 5.18 5.19 5.19 10.35 10.39 10.39
12.00 −2.86 −2.87 −2.87 2.86 2.87 2.87 5.72 5.74 5.74
12.50 −1.56 −1.56 −1.56 1.55 1.56 1.56 3.11 3.12 3.12
13.00 −0.83 −0.84 −0.84 0.83 0.84 0.84 1.66 1.67 1.67
14.00 −0.23 −0.23 −0.23 0.23 0.23 0.23 0.45 0.45 0.45
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FIG. 1. Singlet and triplet E(10)
exch values (kcal/mol) in

the lithium dimer as a function of interatomic distance
(bohr) from SF-SAPT with and without the single-exchange
approximation.

(excluded from the figure) and the S2 results for the triplet
also deviate slowly from the complete exchange results. At
the chemical minimum of the triplet state (3.5 bohrs), the
S2 approximation diverges considerably from the complete
results, recovering 92% of the exchange energy for the triplet,
88% for the quintet, and 58% of ∆E(10)

exch.
For the Li dimer, we also investigated the significance of

the E(10)
exch〈P〉 term, which can easily be incorporated into the

S2 approximation by solving Eq. (58) for E(10)
exch. Even though

the S2 approximation does not become exact for this system
when the E(10)

exch〈P〉 term is taken into account (one is still miss-
ing the effects of double and triple electron exchanges), the
inclusion of this term resulted in a much improved agreement
with the complete exchange results. Therefore, the inclusion
of E(10)

exch〈P〉 while neglecting all other multiple exchanges was
tested on a number of other small complexes. Unfortunately,
such a treatment was found to drastically overcorrect for the
effects missing in E(10)

exch(S2) so that the resulting values were

FIG. 2. Triplet and quintet E(10)
exch values (kcal/mol) of

Li· · ·N as a function of interatomic distance (bohr) from SF-
SAPT with and without the single-exchange approximation.
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FIG. 3: E(10)
exch values (kcal/mol) of the N· · ·N complex as a

function of interatomic distance (bohr) from exact high-spin
SAPT and SF-SAPT with and without the single-exchange
approximation.

in worse agreement with the complete exchange results than
the S2 data. We suspect that the good performance of the
E(10)

exch〈P〉 inclusion for Li· · · Li is merely a consequence of each
monomer having only one valence electron.

The N· · ·N complex is the first of our test systems where
the exact and single-spin-flip E(10)

exch values are distinct. Both
of these results can be calculated for the high-spin state [the
exact one using the standard high-spin SAPT(ROHF) imple-
mentation4,6]. This provides an opportunity to gauge the rel-
ative accuracy of the 1-flip and S2 approximations, as shown
in Fig. 3. The 1-flip treatment is a much milder approximation
that slightly overestimates the exact E(10)

exch value, as opposed
to the single-exchange approximation which underestimates
it. Figure 3 also shows the low-spin exchange energies, where
again the singlet state is less affected by the S2 approxi-
mation than the highest spin state. In this way, the differ-
ence in the splittings predicted by the two approximations
is primarily driven by the high-spin state error. The range
presented in Fig. 3 falls between the septet van der Waals
minimum of 7.2 bohrs and the singlet chemical minimum of
2.1 bohrs.

Table II provides the SF-SAPT E(10)
exch values for the man-

ganese dimer. For the undecaplet exchange energies, the
single-spin-flip results maintain perfect agreement with the
exact high-spin E(10)

exch throughout nearly the entire range pre-
sented here, while the S2 results begin to deviate at a relatively
long-range distance of 9 bohrs. That said, the energy splittings
from the two approximations are in close agreement due to
the more even deviation of the S2 values from the 1-flip ones
for both the highest and lowest spin states of this system.

The last system that we consider in this section is the first
bimolecular complex, the O2 dimer. This system is interest-
ing due to the large effect that geometry has on the splitting

between the singlet and quintet states. Figure 4 shows the
∆E(10)

exch values for the four representative geometries at several
center-of-mass distances. The spin splitting is much larger in
the L (linear) configuration and much smaller in the X con-
figuration. For the H, T, and X structures, the 1-flip and S2

splittings are virtually indistinguishable, while the two approx-
imations slightly deviate from each other at short range for
the L configuration. We report in the supplementary material
that the 1-flip results show great agreement with the exact
high-spin E(10)

exch values for all four geometries. The very good
recovery of the singlet-quintet splitting by the S2 approxima-
tion, shown in Fig. 4, stems from a cancellation of beyond-S2

effects between the two spin states of the complex.

TABLE II. Singlet and undecaplet E(10)
exch values and ∆E(10)

exch splittings (kcal/mol) for

the manganese dimer as a function of interatomic distance (bohr). The S2 and exact

E(10)
exch values are different than in Ref. 7, as the ROHF convergence issues of the

former calculations have been corrected.

E(10)
exch(S = 0) E(10)

exch(S = 5) ∆E(10)
exch

R S2 1-flip S2 1-flip Exact S2 1-flip

4.50 115.32 157.35 117.51 159.52 159.51 2.19 2.17
5.00 79.10 99.44 79.89 100.23 100.23 0.79 0.79
5.50 52.96 62.39 53.25 62.69 62.69 0.29 0.30
6.00 34.62 38.84 34.73 38.95 38.95 0.11 0.11
6.50 22.16 23.98 22.20 24.02 24.02 0.04 0.04
7.00 13.92 14.68 13.94 14.70 14.70 0.02 0.02
7.50 8.60 8.91 8.61 8.92 8.92 0.01 0.01
8.00 5.25 5.37 5.25 5.37 5.37 0.00 0.00
9.00 1.88 1.90 1.88 1.90 1.90 0.00 0.00
10.00 0.65 0.65 0.65 0.65 0.65 0.00 0.00
11.00 0.22 0.22 0.22 0.22 0.22 0.00 0.00
12.00 0.07 0.07 0.07 0.07 0.07 0.00 0.00
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FIG. 4. The ∆E(10)
exch approximation to the singlet-quintet

splitting (kcal/mol) for different geometries of the O2 dimer
(as illustrated) as a function of the center-of-mass distance
(bohr) from SF-SAPT with the single-exchange approxima-
tion and the single-spin-flip approximation.

B. Pancake bonded systems
An interesting possible application of SF-SAPT, already

initiated in Ref. 7, is the spin-state splittings of pancake
bonded dimers.17 These systems are composed of radicals
with highly delocalized singly occupied orbitals which inter-
act in a fashion that is intermediate between covalent and
noncovalent bonding. The pancake bonded singlet minimum
is separated by a relatively small gap from the van der
Waals-bonded triplet state. SF-SAPT is one of the simplest
approaches to investigate these splittings, and the single-
spin-flip approximation is exact for this doublet-doublet
interaction. We have selected a number of pancake-bonded
complexes to test our method, illustrating the favorable per-
formance of our AO implementation with density-fitted gen-
eralized Coulomb and exchange matrices [Eq. (50)] from PSI4.16

Figure 5 shows the monomers selected for our investiga-
tion. These include the phenalenyl (PLY) radical,32 one of
the prototypical examples of pancake bonding systems, as
well as four of its derivatives33 and the larger trioxotrian-
gulene (TOT) radical.34 The orientations of these systems in
the homodimer prefer a maximum overlap of the delocal-
ized singly occupied orbitals, i.e., the monomers stack directly
on top of one another with their atoms lining up. With the
central carbons of the monomers aligned, these dimers can
have a staggered or eclipsed conformation as illustrated in
Fig. 5. Both conformations of the TOT dimer are considered,
but only the staggered conformation is used for PLY and its
derivatives.

The spin state splitting in the PLY dimer was ana-
lyzed previously within the S2 formulation of first-order
SF-SAPT, together with the (much more demanding) super-
molecular complete active space self consistent field the-
ory (CASSCF).7 Figure 6 presents these results along with

the new nonapproximated ∆E(10)
exch ones, the multireference

averaged quadratic coupled cluster (MR-AQCC)35 benchmark
from Ref. 32, and the density functional theory (DFT) results
obtained with the M05-2X functional.36,37 Similar to the man-
ganese dimer case, the splittings produced by the two versions
of SF-SAPT do not differ greatly within this range. Some devi-
ation can be observed at the shortest ranges in Fig. 6, but
it is not drastic compared to the differences between vari-
ous methods presented. The effect of the S2 approximation
appears to be relatively more consistent between the two spin
states than observed for smaller systems.

The results for the homodimers of the PLY derivatives,
shown in Fig. 7, further indicate that the S2 and 1-flip ∆E(10)

exch
values agree well even at shorter distances. This observa-
tion would seem to support the idea that the removal of
the S2 approximation is less important to the improvement
of the SF-SAPT splittings than the inclusion of higher-order
exchange terms (which is in progress in our group). For com-
parison, we look at the M05-2X splitting values from Ref. 33.
This functional was chosen as the most suitable for pan-
cake bonded systems based on previous benchmarking.37 The
tri(tert-butyl)phenalenyl (TBPLY) dimer has the smallest split-
ting value at the minimum, where the SF-SAPT values for
both approximations agree with each other and represent
about two-thirds of the DFT result. For the other deriva-
tives, the SF-SAPT results are about half the magnitude of the
DFT results at the minimum. Also, for the triaminophenalenyl
(TAPLY), trifluorophenalenyl (TFPLY), and trimethylphenalenyl
(TMPLY) dimers, SF-SAPT shows a different ordering of the
splitting values. The DFT results show the order of the split-
tings as TAPLY > TFPLY > TMPLY, while both SF-SAPT meth-
ods provide the order TMPLY > TAPLY > TFPLY for the
M05-2X-optimized structures.
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FIG. 5. Pancake-bonded radicals considered in this work.
The staggered geometry was used for all dimers, and the
eclipsed geometry was also considered for the trioxotrian-
gulene (TOT) dimer.

FIG. 6. Comparison of the ∆E(10)
exch singlet-triplet splitting

values (kcal/mol) for the staggered phenalenyl dimer as
a function of center-of-mass distance (bohr) with literature
results.7,32,37
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FIG. 7. Singlet-triplet splitting ∆E(10)
exch estimates (kcal/mol)

for the phenalenyl derivative dimers as functions of inter-
planar distance (bohr) compared to the literature M05-2X
results.33 The lines and points are, respectively, the SF-
SAPT results with and without the single-exchange approx-
imation. The plus marks are the M05-2X data.

Finally, we look at the trioxotriangulene dimer in its
staggered and eclipsed conformations in Table III. The SF-
SAPT methods agree with the DFT results on the ordering
of the splittings of the two conformations, showing a larger

TABLE III. Singlet and triplet E(10)
exch values and ∆E(10)

exch splittings (kcal/mol) for the
eclipsed and staggered geometries of the trioxotriangulene dimer as a function of
interatomic distance expressed in units of the M05-2X optimized minimum sepa-

ration (REclipsed
0 = 6.659 bohrs, EM05−2X,Eclipsed

splitting = 3.33 kcal/mol, RStaggered
0

= 5.962 bohrs, EM05−2X,Staggered
splitting = 10.67 kcal/mol).34

E(10)
exch(S = 0) E(10)

exch(S = 1) ∆E(10)
exch

R/R0 S2 1-flip S2 1-flip S2 1-flip

Eclipsed

0.80 225.43 228.41 238.31 241.22 12.88 12.81
0.90 79.48 79.74 84.67 84.89 5.19 5.15
1.00 27.11 27.11 29.05 29.05 1.94 1.93
1.10 9.00 9.00 9.70 9.69 0.70 0.69
1.20 2.92 2.92 3.16 3.16 0.24 0.24
1.40 0.28 0.28 0.31 0.31 0.03 0.03
1.60 0.02 0.02 0.02 0.02 0.00 0.00

Staggered

0.80 417.36 426.73 443.09 453.31 25.74 26.58
0.90 167.05 168.34 179.42 180.70 12.37 12.35
1.00 64.48 64.60 69.86 69.94 5.38 5.34
1.10 24.17 24.17 26.36 26.35 2.19 2.18
1.20 8.85 8.84 9.70 9.69 0.85 0.85
1.40 1.10 1.10 1.22 1.22 0.12 0.12
1.60 0.12 0.12 0.13 0.13 0.01 0.01

splitting for the staggered one. Again, the SF-SAPT values are
between half and two-thirds of the M05-2X values.34 The S2

results for both ∆E(10)
exch and the individual E(10)

exch values are quite
accurate in the presented range for this system compared to
the nonapproximate 1-flip data.

V. SUMMARY
We derived a new formula for the first-order spin-flip

SAPT exchange energy,7 valid for an arbitrary spin state
of a weakly interacting complex, replacing the conven-
tional single-exchange (S2) approximation by the much milder
single-spin-flip approximation. The new SF-SAPT correction,
with the noninteracting monomers described by their ROHF
determinants, involves terms similar to those appearing in the
expressions for the complete (non-S2) first-order exchange
and second-order exchange-dispersion energies.12,14 In this
way, the spin flips are treated as a subset of the double
excitations found in second-order dispersion and exchange-
dispersion corrections. The resulting equations were imple-
mented in both their molecular orbital and atomic orbital
forms, where the latter allows for the application of this
method to much larger systems.

The newly enhanced first-order SF-SAPT approach was
applied to the same selection of diatomic and small molec-
ular test systems as in Ref. 7. The S2 approximation is
not exact even for the Li· · ·H system where only a sin-
gle electron exchange is possible, as this approximation
neglects a term that is a product of two single exchanges.
This approximation is also particularly poor for the lithium
dimer, leading to an unphysical crossing of the singlet and
triplet curves at short range. In contrast, the single-spin-flip
approximation was demonstrated to be much milder than
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the S2 one. The 1-flip treatment is formally exact for any
dimer with at least one doublet monomer and deviates from
the exact E(10)

exch much slower than the S2 variant in other
cases. Another observation made possible by the new devel-
opment is that the S2 approximation is generally better for
the low-spin states of small complexes than for the high-
spin state. As the size of the system increases, at least
for the complexes considered here the effect of the S2

approximation on the high and low-spin states becomes
comparable.

The new E(10)
exch formulation was further applied to

the determination of the singlet-triplet splittings for the
phenalenyl radical dimer and other pancake bonded systems.
These calculations are feasible, thanks to the recasting of the
MO formulas into their AO form, which allows us to take
advantage of PSI4’s efficient tools for producing density-fitted
generalized Coulomb and exchange matrices.16 The result-
ing implementation is only somewhat more expensive than
the E(10)

exch(S2) one of Ref. 7, exhibiting the same N4 scaling
with the basis set size with a somewhat larger prefactor. In
fact, the computation time is dominated by the construc-
tion of the Coulomb and exchange matrices, and the num-
ber of such matrices is 8 for the S2 correction and 11 for the
1-flip one. Despite the formal exactness of the 1-flip treatment,
it does not provide especially different first-order splittings
compared to the S2 approximation. This is due to a more even
effect of the S2 approximation on the singlet and triplet states
of these systems. The SF-SAPT splittings were compared to a
selection of literature values, in particular, the M05-2X results
from Refs. 33, 34, and 37. In comparison to the DFT results,
the first-order SF-SAPT treatment underestimates the split-
tings and shows a different ordering of the PLY derivatives.
While these splittings are generally difficult to calculate and
the literature results are far from benchmark quality, we can-
not expect a high quantitative accuracy from a simple first-
order perturbation theory that also neglects intramolecular
electron correlation. The work to extend the new SF-SAPT
formalism to arbitrary-spin second-order exchange induc-
tion and exchange dispersion energies is in progress in our
group.

SUPPLEMENTARY MATERIAL

See the supplementary material for the numerical data
presented in all figures and the Cartesian coordinates for the
complexes considered in this work.
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discussions.

REFERENCES
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