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ABSTRACT

The theoretical foundation has been developed for establishing whether cluster perturbation (CP) series for the energy, molecular properties,
and excitation energies are convergent or divergent and for using a two-state model to describe the convergence rate and convergence patterns
of the higher-order terms in the CP series. To establish whether the perturbation series are convergent or divergent, a fictitious system is
introduced, for which the perturbation is multiplied by a complex scaling parameter z. The requirement for convergent perturbation series
becomes that the energy or molecular property, including an excitation energy, for the fictitious system is an analytic, algebraic function of
z that has no singularities when the norm |z| is smaller than one. Examples of CP series for the energy and molecular properties, including
excitation energies, are also presented, and the two-state model is used for the interpretation of the convergence rate and the convergence
patterns of the higher-order terms in these series. The calculations show that the perturbation series effectively become a two-state model at

higher orders.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053622

I. INTRODUCTION

In Paper I,' we introduced a new class of perturbation
models—the cluster perturbation (CP) models—for which the
major drawbacks of Meller-Plesset perturbation theory (MPPT)*’
and coupled cluster perturbation theory (CCPT)"® have been
overcome. The theoretical foundation for CP theory is given in
Paper L.’

In CP theory,” we consider a target excitation space rela-
tive to a Hartree-Fock (HF) state and partition the target exci-
tation space into a parent and an auxiliary excitation space. The
zeroth-order state in CP theory is a coupled cluster (CC) state in
the parent excitation space, and we here assume that the target
state is a CC state in the target excitation space. In CP theory,
we determine perturbation series for the energy and for molec-
ular properties, including excitation energies, in orders of the
CC parent-state similarity-transformed fluctuation potential, where
the zeroth-order term in the series is the energy or molecular

property for the CC parent state and where the series formally
converge to the energy or molecular property for the CC target
state.

MPPT has recently been generalized to CCPT,"* where the
zeroth-order state is a CC state in the parent excitation space and
where the target state is a CC state in the target excitation space. For
both CCPT and CP theory, perturbation series for the energy are
determined with the CC parent-state similarity-transformed fluc-
tuation potential as the perturbation operator. However, in CCPT,
terms are collected strictly as zeroth-order Fock operator contribu-
tions and first-order perturbation operator contributions, whereas
in CP theory, a new, generalized order concept is introduced where
one selected perturbation operator contribution is treated as a
zeroth-order contribution. Using this generalized order concept,
perturbation series can be determined on an equal footing for the
energy and for molecular properties, contrary to CCPT for which
perturbation series can only be determined for the ground-state
energy.
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In this paper, we examine the formal requirements for CP
series to be convergent for the ground-state energy, for excitation
energies, and for molecular properties. For the latter, we focus on
first-order molecular properties and on molecular properties that
can be described by the linear response function. We also discuss
the theoretical foundation for setting up a two-state model”” and
for using this model to interpret the asymptotic convergence of
CP perturbation series. The asymptotic convergence of CP series
determines the convergence rate and the convergence patterns of
the higher-order terms in the CP series. The two-state model has
recently been thoroughly examined,” and its convergence rate has
been determined. Furthermore, the different archetypes that can
arise for the higher-order terms in the perturbation series for dif-
ferent strengths of the interaction between the two states have
been determined. We present numerical examples illustrating how
the two-state model can be used to understand the convergence
rate and the convergence pattern of the higher-order terms in CP
series.

CP models' are characterized by the CC parent state, which
is defined in the parent excitation space, and by an auxiliary
excitation space. This can be expressed using a notation, where
the parent excitation space is followed by the auxiliary space in
parentheses. For example, CPSD(T) denotes a CP model with
a coupled-cluster singles-and-doubles (CCSD) parent state and a
triples auxiliary space. Furthermore, the notation CPSD(T) implies
that a CC target state is used. If the auxiliary space is fol-
lowed by a number, as for example in CPSD(T-3), the number
denotes that perturbation corrections are determined through that
order.

In Sec. II, we describe a general theoretical framework, which
can be used for establishing whether the MPPT, CCPT, and CP
energy series are convergent. The premises for setting up the
two-state model for describing the asymptotic convergence of
the perturbation series are also discussed. The requirements for
energy series to be convergent, as well as the use of the two-state
model for describing the asymptotic convergence of the energy
series, have previously been considered for MPPT”*'""'* and for
CCPT."”

In this paper, we consider the requirements for CP series to
be convergent not only for the energy, but also for excitation ener-
gies and molecular properties, where for the latter, we specifically
consider first-order properties and properties that can be deter-
mined from the linear response function. To develop these require-
ments, we summarize in Sec. III how CP perturbation series is
determined for the energy and for cluster amplitudes, and also for
the Jacobian, by introducing the new, generalized order concept of
CP.

In Sec. 1V, the specific requirements for having convergent
energy series in CP theory are developed. This is followed by numer-
ical examples of CP series, for which the convergence rate and the
convergence patterns of the higher-order terms are interpreted using
the two-state model.” In Sec. V, the requirements for convergent CP
series are investigated for excitation energies and numerical exam-
ples are provided to illustrate how the asymptotic convergence of the
series can be interpreted using the two-state model. Section VI con-
tains a discussion of the requirements for convergent CP series for
first-order molecular properties and for molecular properties that
can be determined from the linear response function, along with
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numerical illustrations. Section VII contains a short summary and
some concluding remarks.

Il. PERTURBATION THEORY
WITH A MOLLER-PLESSET
PARTITIONING OF THE HAMILTONIAN

A. Requirements for convergent energy
perturbation series

For a molecular system with the electronic Hamiltonian H,
the electronic Schrédinger equation for the ground state |0) can be
written as

H|0) = Eo|0), (1)
where Ej is the ground-state energy. In MPPT, CCPT, and CP the-
ory, the electronic Schrédinger equation is solved by projection
using perturbation theory. The Moller-Plesset partitioning is used
for the Hamiltonian,

H=f+0®, (2)
where f is the Fock operator and @ is the fluctuation potential oper-
ator, and a perturbation series is determined for the ground-state
energy,

E=E” + S EP, (3)

p=1

where E((,O) is the zeroth-order energy and E(()p ) is a term of order P
in the perturbation. We discuss in this paper the theoretical founda-
tion for establishing whether the perturbation series are convergent
or divergent. Furthermore, we discuss the theoretical foundation for
using the two-state model to describe the asymptotic convergence of
the perturbation series.

We start by considering a fictitious system where a complex
strength parameter z is multiplied on the fluctuation potential. The
Hamiltonian for the fictitious system becomes

H(z) =f +zO. 4)

The electronic Schrodinger equation for the fictitious system can be
written as

H(2)[0(2)) = Eo(2)[0(2)), ()
where Eo(z) is an energy function in the complex plane z. For z = 1,
the energy function gives the energy for the physical system,

Ey(1) = Ep. (6)

For z = 0, we require that the energy function becomes the zeroth
order energy for the physical system,

Eo(0) = E”. 7)

Eo(z) can be expanded in a Taylor series with z = 0 as the expansion
point, giving

Eo(z) = B + 226, ()
p=1
where Eép ) is the pth-order expansion coefficient in the Taylor series.
For z = 1, Eq. (8) gives the perturbation series in Eq. (3).
Eo(z) can have critical points z°, at which Ey(z) is equal to
another energy Ex(z),

Eo(zc) = Ex(zc) = Eyo. (9)

The critical point with the smallest norm |z°] is called the primary
critical point. The requirement for having a convergent ground-state
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energy series in Eq. (3) is that there are no critical points in the com-
plex plane for Ey(z) inside the unit circle |z| < 1. The primary critical
point determines the convergence radius of the Taylor expansion in
Eq. (8) and therefore has a central role for the determination of the
asymptotic convergence of the perturbation series.

A state x with the energy E,(z°) that is degenerate with Eo(z°)
inside the unit circle |z| < 1 is called an intruder state. If Re(z°) > 0,
the state is called a front-door intruder state; conversely a back-door
intruder state has Re(z°) < 0.” Intruder states lead to divergent per-
turbation series. A state x with the energy Ex(z°) that is equal to the
ground-state energy, Eo(z%), where || > 1, is called a crosser state. If
a crosser state has Re(z°) > 0, it is called a front-door crosser state,
while a crosser state with Re(z°) < 0 is called a back-door crosser
state.

In a finite dimensional space, the solution to the electronic
Schrodinger equation for the fictitious system in Eq. (5) becomes a
matrix equation,

H(z)C(2) = E(2)C(2), (10)

where the Hamiltonian is partitioned into a zeroth-order Hamilto-
nian Hy and a perturbation V,

H(z) =Hp +2V. (11)

For configuration interaction (CI) target states as in MPPT the per-
turbation, V is a matrix representation of the fluctuation poten-
tial and it is symmetric, and Ey(z) is the lowest eigenvalue of the
CI eigenvalue equation. The primary critical point is the point of
degeneracy between the ground state and an excited state in the CI
eigenvalue equation with the smallest norm |z°|. For MPPT, the per-
turbation series in Eq. (3) thus describes a perturbation expansion of
an eigenvalue equation.

For CCPT and CP theory, the target state is a CC state and Eo(z)
is the CC energy, where amplitudes are determined by the set of
non-linear cluster amplitude equations for the fictitious system. For
CCPT, we have discussed in Ref. 13 the formal requirements for con-
vergence of the CCPT energy series and have shown that intruder
states occur as excitation operators, which give singularities within
the unit circle for the perturbation-dependent Jacobian that is deter-
mined as the derivative of the CCPT cluster amplitude equations. In
this paper, we discuss the theoretical foundation for having conver-
gent ground-state CP series and show that the formal requirement
for a convergent energy series is that the CP perturbation-dependent
Jacobian J(z) does not have a singularity within the unit circle. We
further discuss the requirements for having convergent CP series
for molecular properties, including excitation energies. For CCPT
and CP theory, the perturbation operator is the CC parent-state
similarity-transformed fluctuation potential and the perturbation V
in Eq. (11) is therefore non-symmetric.

B. The two-state model

The asymptotic convergence of a perturbation series deter-
mines the convergence rate of the perturbation series and the con-
vergence patterns of the higher-order terms in the series. When
studying the asymptotic convergence of MPPT series, it has been
found that the correction vectors for these series for higher orders
become nearly linearly dependent.”'* The asymptotic convergence
of the MPPT series therefore can be studied using a two-state
expansion. It has also been found that simple convergence patterns
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in MPPT and CCPT energy series can be described in terms of a two-
state model”* where the Hamiltonian matrix in Eq. (10) is set up
for the fictitious system for the two states that compose the primary
critical point. In this paper, we demonstrate that the asymptotic con-
vergence of the CP energy series can be described in terms of a
two-state model for the two states composing the primary critical
point.

In this paper, we also consider the convergence of CP series
for an excitation energy, wx = Ex — Ey, that is obtained by diag-
onalizing the Jacobian for the CC target state. We show that the
requirement for a convergent CP excitation energy series for wy is
that the excitation energy wx(z) = Ex(z) — Eo(z), which is obtained
by diagonalizing the Jacobian for the fictitious system J(2), does not
have for |z| < 1 another excitation energy, wy(z) = E,(z) — Eo(2),
that is degenerate with wx(z). The primary critical point for wx(z) is
the point of degeneracy where wx(z) is equal to another excitation
energy wy(z°) with the smallest norm |z‘|. The primary critical point
thus determines whether the CP series for the excitation energy wy is
convergent.

For excitation energies, we also show in this paper that the
asymptotic convergence of the CP series can be described in terms of
a two-state model for the two states composing the primary critical
point. The two-state model for excitation energies is obtained by set-
ting up the perturbation-dependent Jacobian J(z) for the two states
composing the primary critical point. We note that setting up the
two-state model for the perturbation-dependent Jacobian is equiv-
alent to setting up a two-state model for the equation-of-motion
coupled cluster (EOM-CC) eigenvalue equation for the degener-
ate pair of excited state energies Ex(z) and E,(z) since the Jacobian
eigenvalue equation can be obtained from the EOM-CC eigenvalue
equation”” by subtracting the ground-state energy Ey(z) from the
diagonal.

To set up a two-state model that can be used for CP ground-
state energy series and also for CP excitation energy series, we have
to consider a more general two-state model than the one in Refs. 7
and 8, where the perturbation matrix in Eq. (11) was assumed to
be symmetric. The Jacobian and the EOM-CC eigenvalue equations
contain a non-symmetric matrix, and the interaction matrix between
the two states composing the primary critical point therefore cannot
be required to be symmetric. We have recently presented a general
two-state model,” where the interaction matrix is not symmetric and
we summarize below the main features of this model.

1. The two-state model and its critical points

Using the same notation for the two-dimensional space,
defined by the primary critical point, as for the full space in Egs. (10)
and (11), and assuming that the basis vectors of the two-dimensional
space are orthonormal and diagonalize the zeroth-order Hamilto-
nian, the zeroth-order Hamiltonian and the perturbation can be
written as’

Ho = (g ﬁgy), (12)

(0 &
V—((Sl _y), (13)

where a and 8 + y are the two zeroth-order energies, and y and 81, >
are the gap shift and the coupling terms, respectively. The coupling
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terms, &1 and &5, can differ, and the perturbation matrix is therefore
not required to be symmetric. We will in the following assume that
B >aand  + y > a, so the numerical order of the diagonal terms is
the same in Ho and Hy + V.

The two eigenvalues of the matrix Hy + zV are determined
as™’

a+B+(1-2)y . V(=B - (1-2)y)*+46,6,22

Ei(z) = 5 5 (14)

Equation (14) shows that the eigenvalues, as functions of z, depend
on the product §;6, and not on the individual coupling ele-
ments. We can therefore replace the individual coupling coeffi-
cients with a positive geometric average of these, §, and a symmetry
factor, o,

8 = /[0103] (15)
+1, if616,>0
= (16)
-1, if(5152<0,
SO
810, = 06" (17)

The eigenvalues of Eq. (14) can be written in terms of o and & as

a+B+(1-2)y . V(=B - (1-2)y)*+406°22
2 2 '

E.(z2) =

For the physical system, where z = 1, the square root in Eq. (18)

becomes \/(a — $)? + 4062 and its deviation from |8 — «| depends

on the symmetry factor o. Since the square root is a monotonically
increasing function, it is first noted that \/(a — )% + 4062 is larger
than |8 — a| for 0 = 1 and smaller than | — «| for ¢ = —1. For the
symmetric perturbation, o = 1, the lowest eigenvalue, E_, is thus
below « and the largest eigenvalue, E., is above . For an asym-
metric perturbation, ¢ = -1, and for |§] < 1B~ “I, one obtains a real
lowest eigenvalue that is larger than « and a real largest eigenvalue

that is lower than f3, whereas for |§] > Iﬁ;le) one obtains a pair of
complex eigenvalues. For the ground-state energy, we have that the
eigenvalue of interest is the lowest and that the perturbation expan-
sion reduces the total energy. When applying the two-state model to
the ground-state energy, we therefore only need to consider sym-
metric perturbations, ¢ = +1, and use Eq. (18) with this value of
o when deriving perturbation expansions for the two-state model.
However, when applying the two-state model to CP series for exci-
tation energies, we can encounter cases where the lower excitation
energy increases and the higher excitation energy decreases when the
perturbation is applied, and we then in addition also have to consider
the asymmetric perturbations, o = —1.

(18)

The primary critical points are defined by E_(z) = E+(z) and
become
c_PB-a+y y
= S (y £2V-08%). (19)

For symmetric perturbations, ¢ = 1, the critical point becomes a
complex pair

c ty—«a .
2 = %(y +25i), (20)
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whereas for asymmetric perturbations, ¢ = -1, the critical point
becomes real
c PB-a+y
ze = ———(y +£29). 21
=T 402 42 O ) 1)

In this paper, we will report prototype examples of CP series for
the ground-state energy and for excitation energies to illustrate that
the asymptotic convergence of the series at high-orders effectively
becomes a two-state problem. For the excitation energy series, we
consider only examples where the asymptotic convergence of the
CP series is described by symmetric perturbations. In the following,
we therefore only consider the asymptotic convergence for symmet-
ric perturbations and refer to Ref. 9 for a more complete treatment.
The asymptotic rate of convergence, 1, is equal to the inverse of the
norm of the critical point, r = 1/|z°|, so the location of the critical
point does not only define whether the expansion is convergent or
divergent, but it also defines the rate of convergence for a convergent
expansion.

Since B + y — a by assumption is positive, it is seen from Eq. (20)
that the sign of the gap shift defines the position of the critical points
in the complex plane: a positive gap shift leads to the critical point
being located in the half plane with positive real values, whereas
a negative gap shift leads to a critical point in the negative half
plane.

2. Perturbation expansions of the energies
for symmetric perturbations

In Ref. 9, we have identified perturbation expansions for the
two-state model for both symmetric and non-symmetric perturba-
tions. In this paper, we consider CP series only for symmetric per-
turbations, for which the energy corrections for E_(1) can be written
aSiS

E-(1)= S E™, (22)
n=0

E® - q, (23)

EW =0, (24)

The explicit expressions for E(i), i=2,3, ..., can be found in
Ref. 8. To obtain a perturbation expansion for the excited state
E.(z), we see from Eq. (18) that the sum of the two eigen-
values contains only terms that are linear in the perturbation
parameter,

E_(2)+Ei(z) =a+f+(1-2)y. (25)
Denoting the perturbation corrections of E. (z) as Eﬁ") and retaining

the notation E™ for the perturbation expansion of E(z), we obtain
the energy corrections for E.(z) as’

ED = B4y, (26)
ED =y, (27)
EW = _E™ oy (28)

The second- and higher-order corrections for the excited eigenvalue

are therefore equal to minus the correction E™ obtained for the
lowest state.

J. Chem. Phys. 150, 134111 (2019); doi: 10.1063/1.5053622
Published under license by AIP Publishing

150, 134111-4


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

3. Archetypes of convergence

In Ref. 9, we have analyzed the form of the energy corrections
for the two-state perturbation expansion for general choices of y, §,
and o. For the symmetric perturbations, there are five archetypes of
convergence patterns. Of these five archetypes—zigzag, interspersed
zigzag, triadic, geometric, and ripples—all but the zigzag have been
observed.” We will examine the asymptotic convergence of CP series
for the ground-state energy and for excitation energies, and we will
as prototype examples consider the two archetypes: geometric and
ripples. To have the background for examining the asymptotic con-
vergence for these two archetypes, the properties and typical patterns
of these two archetypes are given in Table 1. For both archetypes,
corrections and deviations are plotted for negative and positive gap
shifts. The plots are logarithmic, and a simple color code is used
to differentiate between positive (blue) and negative (red) correc-
tions and deviations. To avoid unnecessary cluttering of the plots,
the color codes are defined only on the first plot. The geometric and
ripple archetypes arise when the absolute value of the gap shift y is
larger than the absolute value of the coupling element J. If the gap
shift is much larger than the coupling, the archetype is geometric,
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where the convergence exhibits a simple geometric form. For this
archetype, a positive value of the gap shift implies that all corrections
are negative, which in the table is denoted by (-), whereas a negative
value of the gap shift leads to corrections of alternating sign, which
is denoted by (1+, 1-). The sign of the gap shift can therefore be
directly deduced from the signs of the corrections. In the ripple pat-
tern, there are recurring ripples that are delineated by marked local
minima in the size of the corrections and deviations. The number of
orders spanned by a ripple, n*, is proportional to the ratio |§| The
signs of the corrections depend on the sign of the gap shift. If the
gap shift is negative, the corrections have an alternating sign within
a ripple, with the exception occurring at the boundary between two
ripples, where two corrections have the same sign. If the gap shift is
positive, all corrections have the same sign in a given ripple and the
sign changes, when going from one ripple to the next.

C. Outline

In the remainder of this paper, we will examine the for-
mal requirements for having convergent CP series for the energy

TABLE 1. Archetypes of convergence patterns for two-state perturbation expansions (see text for details).

Archetype Geometric Ripples
Identification ly| > |0] ly| > 19|
Typical absolute corrections and deviations
v<0, absolute corrections y> 0, absolute corrections vy <0, absolute corrections y> 0, absolute corrections
10° — ————— 102 ——r— — .
Negative @
102 F Positive -
107 ]
6 i
10 1078
10°® ]
1070 1
-12
10 T
TR R T L ol D) N o2l vy
2 4 6 8101214161820 2 4 6 8 1012141618 20 2 4 6 8 1012 14 16 18 20 2 4 6 8 101214 16 18 20
¥ <0, absolute deviations , ! >0, absolute deviations ¥<0, absolute deviations > 0, absolute deviations
T 10° T T T 107" T T T T T T T T T T T T T T
] 107 1
i -4
10 T
102¢
R -3
107 ¢ E 10 4
-8 |
] 1073 10
] -10 |
L X od bl vy . 10
2 4 6 8101214161820 2 4 6 8 10121416 18 20 10% [ R R RENT . Y 10712 T S S T R N R
Order Order 2 4 6 8 10121416 18 20 2 4 6 8101214161820
Sign pattern y<0:(1+,1-) y<0:(1+,1-)
of corrections y>0:(—) y>0:(n*—, n* +)
Period n* 2.5+ \/§|%|
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and also for molecular properties, including excitation energies.
Furthermore, we will describe how the two-state model can be used
to describe the asymptotic convergence of the CP series for the
ground-state energy, excitation energies, and molecular properties.
We also give numerical examples of CP series to demonstrate how
the two-state model can be applied. However, before this can be
done, we need to describe how perturbation series are obtained in
CP theory for the energy and cluster amplitudes, and also for the
Jacobian, and in particular how a new, generalized order concept is
introduced in CP theory, compared to MPPT and CCPT, that allows
perturbation series to be determined not only for the energy but also
for molecular properties, including excitation energies.

I1l. CLUSTER PERTURBATION THEORY
FOR THE ENERGY AND AMPLITUDE EQUATIONS
AND FOR THE JACOBIAN

In CP theory, we consider a target excitation space, comprising
all excitations through an excitation level ¢, that is partitioned into
a parent excitation space, with excitations through a level p, and an
auxiliary excitation space, with excitation levels p + 1 through t. The
zeroth-order state in CP theory is a CC state in the parent excitation

space. We assume here that the target state is a CC state®'* in the
target excitation space.
The CC parent state can be written as
|CC )= *TIHF> (29)
="Ti++"Tp, (30)
1<i<p. (31)

Ti = Z t!‘t Hi>
Hi

The cluster operator *T; contains the parent-state cluster ampli-
tudes *#,, and the many-body excitation operators 6,, that carry
out excitations from the Hartree-Fock determinant |HF) to excited
determinants,

|ui) = 0,,|HF). (32)

In Egs. (31) and (32), i denotes an excitation level and y; an excita-
tion at this level. The amplitudes of the CC parent state satisfy the
cluster amplitude equations,

{uil Ho " |HF) =

(wile”"Hoe*"|HF) = 1<i<p,  (33)

where the parent-state energy is

*Ey = (HF|H, " |HF). (34)
In Egs. (33) and (34), we have introduced the CC parent-state
similarity-transformed Hamiltonian,

HST = eJTHoe*T. (35)

For p = 0, the parent excitation space is empty and * T vanishes, so
the parent state becomes the Hartree-Fock state.

The CC target state in CP theory is parameterized using the CC
parent state as the expansion point,

*T+6T

ICC) = e"[HF) = e "T|HF) = ’T|CC*), (36)
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where
T="T+6T, (37)
and
t
8T = > 8t,,0,,. (38)

i=1 i

The similarity-transformed Schrodinger equation for the CC target
state can be written as

—0T —*T *T 8T
€ €

Hoe "' |HF) = Eo|HF) (39)

and solved by projection in the target excitation space giving the
cluster energy and amplitude equations,

Eo = (HF|e®Te™ THye "e’T|HF) = (HF|e *TH, "’ T[HF),  (40)

Q. (o) =0, 1<i<t, (41)

Q (88) = (uile™""e” " Hoe e |HE)
= (uile™H, "M HE),  1<is<t, (42)

In CC theory, excitation energies are determined as eigenvalues
of the CC response eigenvalue equation,”

JR: = wx Ry, (43a)
Ly J = Lx ws, (43b)
LR, = 0, (43¢)

where Ry and Ly are right and left eigenvectors for an excited state x
and wy is the excitation energy

wx = Ex — Eo, (44)

where E, is the energy of excited state x. The left and right eigen-
vectors in Eq. (43) have been chosen to be biorthonormal. The Jaco-
bian J in CP theory is parameterized with the CC parent state as an
expansion point,

I‘u’v] _ <‘ui|[e—§T *T 5T)

where the cluster amplitudes of T are determined from Egs. (41)
and (42). The Hamiltonian can be partitioned into a Fock operator,

6, ][HF),  ij=12....t,  (45)

£, and a fluctuation potential operator, @, and HST in Eq. (35) can
then be expressed as
TofTyo T (46)
In CP theory, ® ” is used as the perturbation operator.’
The extended parent-state Jacobian,
Auy, = @il[H .0, JJHB),  ij=12,....1, (47)

is a key quantity in CP theory. It appears in both a Baker-Campbell-
Hausdorff (BCH) expansion of the cluster amplitude equations in
Egs. (41) and (42) and a BCH expansion of the Jacobian in Eq. (45).
In CP theory, the extended parent-state Jacobian is partitioned into
a zeroth-order and a first-order component,l

A= ](0) + ](1), (48)
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where

IO = I, (1= $p) (1= Sp)

@l 70y, [ HE) S, SpSps 1<ij<t 5 p<t,
(49)
i) = il [T, 6, ]IHE) (1 - $,)S;p
+(ul[@7, 0, ] IHF)S;p(1 - S3p)
+@il[® 7,6, |HR)SSp,  1<ij<t 5 p<t,  (50)
Jow, = il [Ho",6,]HF),  1<ij<p, (1)

and where we have introduced the integer step function S,

0,
Sab = {1

J? is the CC parent state Jacobian, which constitutes the parent space

for a<b

for a > b. (52)

component of J'” and contains a @'" contribution.

In CP theory, the cluster amplitude equations in Eqgs. (41) and
(42) are solved order by order in @7 with the exception that J*, and
thereby J), is defined to be of zeroth order although it contains the
parent-state similarity-transformed fluctuation potential projected
onto the parent excitation space. It is the treatment of J© as a zeroth-
order contribution that is the key for the new order concept in CP
theory, and it is this treatment of J* that allows CP series to be deter-
mined not only for the ground-state energy but also for excitation
energies and molecular properties.

To determine the CP series for the cluster amplitudes and for
the Jacobian, we BCH expand the cluster amplitude equations in
Eq. (42) and the Jacobian in Eq. (45) and use Egs. (46)-(51) and then
obtain

Q,,(8t) = Zz]§°>atvj+<,4|q> IHF)S;,

j=1 v;

+ Z S et, + %(M[[cb*T, 8T],8T]HF)

Jj=1 v;

+ f(,MiI[[[d;T,6T],6T],6T]|HF)

+—<y|[[[[ 8T],0T],8T).6T]HF), 1<i<t,
(53)
T, = i, + 158 + (il (@7, 871.6,, ]I HE)
+gwfl[[[&m,aT],ev,uHm
Lo ar)orar) o m, 1<
(54)

A detailed derivation of Egs. (53) and (54) can be found in Paper
'

(41) and (53), we
can determine a CP series in orders of @ ©
amplitudes,

From the amplitude equations in Egs.
for the cluster

Sty = 018 + 8t 4 ) (55)
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with a vanishing zeroth-order term. Substituting the cluster ampli-
tude expansion in Eq. (55) into the energy in Eq. (40) and into the
Jacobian in Eq. (54), we can determine CP series in orders of ® T for
the energy and the Jacobian,

Eo="Ep+ > EM, (56)
n=1
S0 L (DR L (57)

A detailed derivation of the CP series in Eqs. (55) and (56) can be
found in Paper I' and of Eq. (57) in Paper IL."*
In CP theory, the electronic Schrodinger equation for the
CC target state in Eq. (39) is thus solved using projection giv-
ing the energy in Eq. (40) and the cluster amplitude equations
in Egs. (41) and (53). The cluster amplitude equations are solved
using @7 as the perturbation operator, where J© in Eq. (49) is
treated as a zeroth-order term. The energy in Eq. (40) can be written
as
Eo(8t) = "Eo + AEy(5t), (58)

where *Ey is the parent state energy in Eq. (34) and AE,(8¢) is the
energy correction that gives the CC target state energy,

*T+T _

AEy(8t) = (HF|® @ T|HE). (59)

The parent state energy *Ej is the zeroth-order energy and contains
a fluctuation potential contribution. AEy(d¢) in Eq. (59) vanishes in
the absence of the perturbation since 8t,, are then zero.

IV. CONVERGENCE OF THE CP ENERGY SERIES

We describe in Subsection I'V A the theoretical foundation for
examining whether the CP ground-state energy series are conver-
gent or divergent and give in Subsection IV B numerical exam-
ples to illustrate the convergence of the CP ground-state energy
series.

A. Theory
We now consider the fictitious system, described in Sec. II A,
where we introduce a complex strength parameter z such that the
perturbation becomes z® 7. For the fictitious system, the electronic
Schrodinger equation can be solved for the CC target state using
projection, giving the energy and amplitude equations
E0(8t,z) = *Eo(z) +AEO(51’,Z), (60)

AEo(8t,2) = z(HE|® "7 — @ T|HF), (61)

Q. (6t,2) =0, (62)

Q,,(8t,2) = Z S IO (2)0t, + (uilz0 T HE)S,,

j=1 vj
1 .
+zz Z],E,lv),&v] + 5(;4,-|[[z<l> T
j=1 v;

+ é(yi|[[[zq>*T,5T],6T],5T]|HF)

,8T],8T|[HF)

+ o l[[[z07707). 67} O] OT]HE,  (63)
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where the parent-state energy and amplitudes are determined from
the equations

*Eo(z) = (HFle™ "H(z)e '|HF), (64)

(uie” TH(z)e T[HF) = 0, (65)

where H(z) is given in Eq. (4). ](0) formally depends on the perturba-
tion strength z through the z dependence of the perturbation oper-
ator contribution in the CC parent-state Jacobian. However, when
the amplitude equations in Egs. (62) and (63) are solved for 8¢, this
z dependence is treated explicitly and therefore does not need to be
considered when the perturbation expansion of d¢,, is determined.
For z = 1, the amplitude equations in Egs. (62) and (63) become the
amplitude equations for the physical system in Eqgs. (41) and (53),
and for z = 0, the amplitudes 8¢, vanish. For z = 1, the energy Eo(6t,
z) becomes the energy in Eq. (58) of the physical system, and for
z =0, the energy E(dt, z) becomes *Ej.

Eo(8t, ) is an analytic algebraic function of the cluster ampli-
tudes &t and the complex strength parameter z. The amplitudes &t
depend on z, and we can therefore perform a Taylor series expansion
of Ey(dt, z) with z = 0 as the expansion point,

Eo(8t,2) = "By + 3 €M 2" (66)

n=1

For z =1, Eq. (66) becomes the CP series for the ground-state energy
in Eq. (56). The Taylor series is convergent provided the derivative
of the cluster amplitude equations with respect to the cluster ampli-
tudes is non-singular inside the unit circle |z| < 1."” The derivative
becomes

d *
Jun,(2) = 7 (96,2) = I + 2150 + (il [0, 6T, 6,, ] HF)

t,

+ 2 [ [0, 67),67]. 0,1
+ = [[[0"".07).87],67]6, ] 1B, 67)

where the z-dependence of J'* is suppressed since it is treated explic-
itly when the cluster amplitude equations are solved. For z = 1,
Eq. (67) gives the CP Jacobian for the CC target state for the physical
system in Eq. (54).

The complex Jacobian J(z) in Eq. (67) satisfies the eigenvalue
equation

J(2) Re(2) = w:(2) Ri(2), (68a)
Le(2) J(2) = Li(2) wx(2), (68b)
Le(2)Re(2) = 1, (68¢)
where
wx(2) = Ex(z) - Eo(2), (69)

and Ey(z) is the energy of the CC target state in Eq. (60) and Ex(z)
is the energy of an excited state x for the strength parameter z.
The requirement for a convergent ground-state energy expansion is
thus that the Jacobian J(z) has no singularities inside the unit circle
|z| < 1. At a singular point z° of the Jacobian, the Jacobian has a
vanishing eigenvalue,
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wx(2°) = Ex(Z°) = Eo(2°) = 0, (70)

and we have thus determined a critical point for Ey(dt, z). The
determination of critical points for the energy function Ey(6t, z)
is thus equivalent to determining singularities for the Jacobian
J(2).

The search for the most important critical points for Ey(z) can
be performed by searching for avoided crossings on the real axis
Re(z) for Eg(Re(z)). When critical points are identified as singu-
lar points (zero eigenvalues) for the Jacobian J(z), the search for the
avoided crossings for the primary critical point on the real axis Re(z)
for Eg(Re(z)) can be replaced by a search for the avoided cross-
ings on the real axis Re(z) for the smallest eigenvalue wy(Re(z))
= E«(Re(z)) — Eo(Re(z)) of J(Re(2)).

We now sketch how intruder states can arise when searching
for avoided crossings on the real axis Re(z) for the energy function
Eo(Re(z)). We will divide the search into two cases: a case where the
parent space is either empty or contains singles, i.e, p=0orp=1,
and a case where p > 1.

For the first case with p = 0, @ is the perturbation operator. The
energy for the physical ground state, Eo(1), is the CP(SD. . .) energy,
and the energy for the non-interacting system is Eo(0) = Y;&i, where
&; denotes the orbital energy for an occupied orbital i. For p = 1, the
singles cluster amplitudes in Eq. (33) vanish and ® again becomes
the perturbation operator. The energy for the physical ground state,
Eo(1), is the CPS(DT. . .) energy, and the energy for the unperturbed
system, Eo(0), is the Hartree-Fock energy. For bothp=0andp =1,
the energy shift Eo(1) — Eo(0) is numerically large and negative. The
energy shift Eo(1) — Eo(0) becomes, in particular, numerically large
for electron-rich molecular systems. In Fig. 1(a), we have sketched
a cartoon where we have marked the energy for the ground-state
with a straight line that goes through Ey(0) and Eo(1), assuming lin-
earity for the ground-state energy as a function of z. Furthermore,
in Fig. 1(a), we have sketched a mechanism that gives a back-door
intruder and a mechanism that gives a front-door intruder. For the
mechanism that gives the back-door intruder, we consider a physical
state E, that is highly excited and diffuse. The energy of this state is
nearly independent of the perturbation, and the energy of E, there-
fore is nearly independent of z. Because of the large negative slope of
the ground-state energy, the diffuse excited state with energy E, gives
rise to an avoided crossing at about z = —0.7 and thus to a back-door
intruder. In Fig. 1(b), we have displayed Ey(6t, z) in the complex
plane and marked with a circle the critical point associated with the
back-door intruder. The circle has been located close to the real axis
because of the very weak interaction between the highly excited dif-
fuse state and the physical ground state. In Fig. 1(a), we have also
sketched how a front-door intruder can arise as a result of an avoided
crossing between a low lying physical state x with the energy E, and
the physical ground state with the energy Ey. Because of the strong
interaction between these two states, the point of degeneracy rep-
resenting the front-door intruder state in Fig. 1(b) is located away
from the real axis but inside the unit circle resulting in a divergent
CP series.

For p > 1, the cluster amplitudes of the CC parent state are non-
vanishing and the perturbation operator becomes @' ". The energy
E(0) becomes the energy of the CC parent state, and Eo(1) becomes
the energy of the CC target state. The energy difference Eo(1)
— Eo(0) is small and negative, and in Fig. 2(a), we have sketched
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FIG. 1. For a parent excitation space,
which contains at most single excita-
tions, panel (a) sketches an energy dia-
gram for a real perturbation strength
Re(z) that contains the ground-state
energy Eq and the excited-states ener-
gies Ey and Ey. The excited-state energy
Ex has an avoided crossing with the
ground-state energy Eg, which gives rise

Re z 0

how a front-door intruder state can arise due to an avoided crossing
between a low lying physical excited state E, and the physical ground
state Eo. Due to the strong interaction between the low lying excited
state and the ground state, the point of degeneracy representing the
front door intruder is located away from the real axis in Fig. 2(b) but
inside the unit circle. When the p value of the parent space increases,
the front-door intruder becomes better and better described by the
CC parent state and the state giving rise to the front-door intruder
eventually moves outside the unit circle and becomes a crosser
state.

For p > 1, the avoided crossing between the ground state and
the highly diffuse excited state with energy E, is displaced toward a
large negative z value due to the numerically small negative slope
of the ground-state energy Ey, and the back-door intruder state
becomes a back-door crosser state. Back-door intruders therefore
are much less frequent for parent excitation spaces that contain

a) AE b)

to a front-door intruder. For excited state
Ey, the avoided crossing between E,
and E gives rise to a back-door intruder.
In panel (b), the cross denotes the critical
point associated with the avoided cross-
ing between Eg and E, whereas the crit-
ical point associated with this back-door
intruder is marked with a circle.

1 Re z

double and higher excitation levels. By increasing its diffuseness, the
excited state will become less dependent of the perturbation and the
back-door crosser state then will be displaced toward a numerically
smaller negative z value, and the back-door intruder can eventu-
ally be reintroduced. The diffuseness of the excited state can be
increased either by using a basis that contains more diffuse func-
tions or by increasing the excitation level of the target excitation
space.

Summarizing, the convergence of CP energy series is deter-
mined by states that are degenerate with the ground state in the com-
plex plane for the energy in Eq. (60). Furthermore, these states can
be determined by searching on the real axis Re(z) for avoided cross-
ings for the lowest eigenvalues of the Jacobian J(Re(z)) of Eq. (68).
The asymptotic convergence of a CP energy series is determined
by the point of degeneracy in the energy function in Eq. (60) with
the smallest distance to the origin, i.e., the primary critical point. In

FIG. 2. For a parent excitation space,
which contains at least single and double
excitations, panel (a) sketches an energy
diagram for real perturbation strength
Re(z) that contains the ground-state
energy Eo and the excited-state energy

Ex. The excited-state energy Ex has an
avoided crossing with the ground-state
energy Ey that gives rise to a front-door
intruder. In panel (b), the cross denotes
the critical point associated with the
avoided crossing between Ej and Ey.
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Subsection IV B, we give numerical examples, which show how the
asymptotic convergence of the CP energy series can be described
using the two-state model for the fictitious system, which describes
the interaction between the two states composing the avoided cross-
ing associated with the primary critical point.

B. Numerical illustrations

We now present calculations of CP ground-state energy
series to exemplify the above findings. We consider initially how
back-door intruders can arise when the excitation level of the target
excitation space is increased. We use the Ne atom in the aug-cc-
pVDZ basis’”*' as a first example and consider CP ground-state
energy series where the parent excitation space contains only sin-
gle excitations or both single and double excitations and where the
target excitation space increases to contain up to hextuple excita-
tions. The calculations were carried out with the LUCIA program””
where the generalized CC code” has been adapted to calculate CP
ground-state and excitation energy series with general choices of the
parent and the target excitation space. In Fig. 3, we have displayed
logarithmic plots of the absolute errors of the ground-state energy
for the series CPS(D-n), CPS(DT-n), ..., CPS(DTQ56-n), where the
errors are measured with respect to the CC target state energy. In
Fig. 4, corresponding plots are given where the singles parent excita-
tion space is replaced by a parent space containing both singles and
doubles.

The plots in Figs. 3 and 4 show a geometric progression,
which, according to Table I, is characteristic for a primary criti-
cal point, where |8/y| <« 1. The sign of the corrections alternates
as exemplified by Fig. 5, where we have plotted the signed correc-
tions for the convergent ground-state energy for the CPS(D-n) series
and for the divergent CPS(DTQ56-n) ground-state energy series,
which both exhibit an alternating pattern. Table I shows that the
geometrical progressions in Figs. 3 and 4 can be associated with a
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negative gap shift and thereby with back-door intruder and crosser
states.

From Fig. 3, we see that the fastest convergence is obtained for
the CPS(D-n) series. When higher excitation levels are considered
in the target excitation space, the convergence becomes slower, and
for the CPS(DTQ5-n) series, the ground state energy series diverges.
The above trend is in accordance with the fact that the primary back-
door crosser state in the energy function in Eq. (60) for the CPS(D-n)
series shows up for a large negative z value and when the excitation
level of the target excitation space increases, the diffuseness of the
primary back-door crosser state increases and becomes more inde-
pendent of the perturbation, and the negative z value for the avoided
crossing becomes numerically smaller. For the CPS(DTQ5-n) series,
the primary back-door crosser state becomes a back-door intruder
state and the CP series diverges.

For the CPSD(T. . .) series in Fig. 4, the back-door intruder state
shows up for hextuple excitations and thus for a higher excitation
level than for the CPS(D. ..) series in Fig. 3. When increasing the
excitation level of the parent excitation space to contain doubles, the
intruder state can only have a very small doubles component and
a higher target excitation level is therefore required to get a suffi-
ciently diffuse excited state to introduce a back-door intruder. We
also see from Figs. 3 and 4 that for a given target excitation space,
the CP series converge faster for an increased excitation level of the
parent excitation space. For example, the CPS(DT) series converges
toa107% a.u. accuracy at order 30, whereas for the CPSD(T) series,
the same accuracy is obtained at order 8.

We now consider CP calculations of the ground-state energy
series for BH at an internuclear distance of 3.5 a.u,, i.e., about 1.5
times the equilibrium distance, using an aug-cc-pVDZ basis. The
ground-state is multiconfigurational at this distance with a weight
of 0.9 for the Hartree-Fock configuration 10°2¢%3¢” and a large
10*20%40” component. In Fig. 6, we have displayed logarithmic
plots of the absolute errors for the ground-state energy for the

10° T T T T T T
CPS(D-n) ——
CPS(DT-n) —+—
CPS(DTQ-n)
CPS(DTQ5-n)
CPS(DTQ56-n) —+—
102
10 |
E
[
o
w
10 |
108 |
1010

FIG. 3. Plots of the absolute errors for the
ground-state energy for cluster perturba-
tion series with a singles parent excita-
tion space and an increasing size of the
auxiliary excitation space for Ne in the
aug-cc-pVDZ basis.
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10° T T T T T T T
CPSD(T-n) —+—
CPSD(TQ-n)
CPSD(TQ5-n)
CPSD(TQ56-n) —+—
102 - -
104 - 1 FIG. 4. Plots of the absolute errors for the
_:-_;, ground-state energy for cluster perturba-
B tion series with a singles and doubles
i parent excitation space and an increas-
108 L i ing size of the auxiliary excitation space
for Ne in the aug-cc-pVDZ basis.
10°% - 1
10-10 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Order
0.001 T T T T T
CPS(D-n) —+—
CPS(DTQ56-n) —=—
0.0005 /\ s
FIG. 5. Signed energy corrections for
0 A Ar/;& + A A\ + A + A + /:\ + A + A + Z\ ************ cluster perturbation calculations for the
v v v \/ \/ \/ v v v \/ ground-state energy series CPS(D-n)
and CPS(DTQ56-n) for Ne in the aug-cc-
-0.0005 - . pVDZ basis.
-0.001 I 1 I 1 1 I
5 10 15 20 25 30 35 40
Order
10° T T T T T T T
CPS(DT-n), negative errors @
CPS(DT-n), positive errors
CPSD(T-n), positive error
AN
AN
10-2 L \ .
AN
N\
\\
4| i
10 FIG. 6. Plots of the absolute errors for
_:-_;, cluster perturbation calculations of the
uf ground-state energy for the CPS(DT-n)
iy and CPSD(T-n) series for BH at the inter-
108 L i nuclear distance 3.5 a.u. using the aug-
. cc-pVDZ basis.
N
N
AN
. N
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CPS(DT-n) and CPSD(T-n) series. From Fig. 6, we see that both CP
series converge fast and the energy function in Eq. (60) therefore
has neither front-door nor back-door intruders. For FH molecule
at 1.5 of its equilibrium distance and using the aug-cc-pVDZ basis,
the CPS(DT-n) ground-state energy series diverges due to a back-
door intruder. The multiconfigurational character is about the same
for the FH and BH system. However, for the FH system, we have a
large negative energy gap between the energy of the physical state,
Ey(1), and the Hartree-Fock parent state energy, Eo(0), because FH
is an electron-rich molecular system. This energy gap is numerically
strongly reduced for the electron-poor BH system, and the intruder
state for the FH system therefore becomes a crosser state for the BH
system with Re(z°) << -1.

The higher-order convergence for the CPS(DT-n) series in
Fig. 6 is systematic, and from Table I, we recognize that it has a rip-
ple pattern, for which |y| > |8|. For the plot of the CPS(DT-n) series
in Fig. 6, we have introduced a color scheme for the absolute energy
deviation, where a red circle indicates that the deviation is negative
and a blue star denotes a positive energy deviation. We note that
the deviations within a ripple have a constant sign. Comparing the
deviation plot for the CPS(DT-n) series in Fig. 6 with the deviation
plot for a ripple pattern with y > 0 in Table I, the two plots show
an amazing similarity. The ripple pattern is thus due to a primary
front-door crosser state. The avoided crossing, which introduces this
primary front-door crosser state, can be associated with the avoided
crossing between the HF ground state and a singly excited state that
has a large component of the 16°20%40” determinant. For the two
states defining the avoided crossing, we know that |y| > |§|, where
|8] can be relatively large, since the interaction between these two
states is large because BH has a multiconfigurational character at the
distorted geometry.

The absolute error for the CPSD(T-n) ground-state energy is
also given in Fig. 6 and shows a geometric progression. The color
scheme for this curve shows that the energy deviations at each order
have the same sign, and from Table I, we therefore recognize that the
geometric progression is due to a primary front-door crosser state
for which |y| > |8]. For the CPSD(T-n) ground-state energy calcula-
tion, the avoided crossing for the primary critical point arises from
the same two states that gave rise to the avoided crossing for the pri-
mary critical point for the CPS(DT-n) ground-state energy calcula-
tion. The only difference is that both the ground state and the excited
state in the CPSD(T-n) calculation now are described to high accu-
racy in the parent excitation space and that the interaction between
these two states therefore becomes very small. This means that
|y| > |8] and therefore leads to the geometric convergence pattern
for the CPSD(T-n) series.

V. CONVERGENCE OF CP EXCITATION
ENERGCY SERIES

We describe in Subsection V' A the theoretical foundation for
examining the convergence of CP excitation energy series and give
in Subsection V B numerical examples to illustrate the convergence
of the CP series.

A. Theory

The Jacobian for the physical system in Eq. (57) is expanded
in orders of the perturbation ®'". The excitation energy wy and the
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right eigenvector Ry of the Jacobian eigenvalue equation in Eq. (43)
can also be expanded in the orders of the perturbation,

Wy = w,(co) + wj(cl) + w}({z) + (71)
R.=R” +RV+RP 4., (72)
and the CP perturbation series in Eqs. (71) and (72) can be deter-
mined by substituting Eqs. (53), (71),and (72) in Eq. (43) and solving

Eq. (43) order by order in o7, assuming that R, is intermediate
normalized against L. The zeroth-order equation reads

JO RO = o R, (73a)
L9 @ - L o, (73b)
LORO -, (73¢)

where J© is given in Eq. (49). In a two-component form, referencing
the parent (P) and auxiliary (A) excitation space components, we can

write Eq. (73a) as
P P P
0\(R] R’
0 -5) w

where &4 is a diagonal matrix containing orbital energy differences.
To obtain Eq. (74), we have used the CC parent state Jacobian
eigenvalue equation,

P

J' Ry =y Ry, (752)
LY ) =L o}, (75b)
PR = 1. (75¢)
In zeroth order, we therefore have

0 = wf, (76)

P

) _ [Rx
- (%) m
L= (12 o). (78)

The CP series for the excitation energy wy in Eq. (71) is determined
in Paper IL."
For the fictitious system, the Jacobian J(z) in Eq. (67) can be

expanded in orders of the perturbation z® T and becomes
J(2) =1V + gD + 21D (79)

For z = 0, the Jacobian eigenvalue equation in Eq. (68) becomes
the zeroth-order eigenvalue equation described by Egs. (73)-(78),
and for z = 1, the Jacobian eigenvalue equation in Eq. (68)
becomes the Jacobian eigenvalue equation for the physical system
in Eq. (43).

Let us assume that the Jacobian has no singularities inside the
unit circle and that the CP expansion of 8t in Eq. (55) therefore con-
verges. wx(z) in Eq. (68) is then an analytic algebraic function in
the complex plane of z and the eigenvector Ry(z). The eigenvalue
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FIG. 7. Panel (a) sketches an energy dia-
gram where excitation energies that are
obtained by solving the Jacobian eigen-
value equation in Eq. (68) for real per-
turbation strength Re(z) are plotted as
a function of z. The excitation energies
are plotted relatively to the ground-state

Re z

Eo

wx(z) can be expanded in orders of z with z = 0 as the expansion
point,

wx(z) = wi + Z wj(c")z", (80)
n=1

where wf is an eigenvalue of ]P. For z = 1, Eq. (80) gives the
CP expansion of the excitation energy in Eq. (71). The addi-
tional requirement for obtaining a convergent CP excitation energy
expansion is therefore that there are no degeneracies of w.(z) inside
the unit circle |z| < 1 and that w(z) therefore differs from the other
excitation energies wy(z) inside the unit circle.

The search for degeneracies in the complex plane for wx(z)
can in practice be performed searching for avoided crossings on
the real axis Re(z) for J(Re(z)). Solving the Jacobian eigenvalue

a) Ao b)

Imz
oy T

energy Eg(z) = 0. Panel (a) shows an
avoided crossing between wy and wy
which introduces a front-door intruder for
wy. In panel (b), the critical point associ-
ated with the avoided crossing is marked
with a cross.

1 Rez

problem for Re(z) is equivalent to determining the eigenvalues
for the Hamiltonian matrix, but using an energy scale where the
ground-state energy is subtracted, since the Jacobian eigenvalue
equation can be obtained from the EOM-CC eigenvalue equation
by subtracting the ground-state energy on the diagonal and remov-
ing the ground-state dimension."” For z = 0, J(0) gives the parent
state excitation energies, and for z = 1, J(1) gives the excitation
energies of the physical system. The two-state model is for exci-
tation energies obtained by carrying out a search for an avoided
crossing between w, and another excitation energy w, and setting
up the Jacobian eigenvalue equation for the fictitious system in
the basis defined by the avoided crossing. We now consider the
determination of the avoided crossing for wy and w,. Figure 7(a)
depicts an energy diagram, where excitation energies for wyx and

FIG. 8. Panel (a) sketches an energy dia-
gram where excitation energies that are
obtained by solving the Jacobian eigen-
value equation in Eq. (68) for real per-
turbation strength Re(z) are plotted as
a function of z. The excitation energies
are plotted relatively to the ground-state

energy Eg(z) = 0. Panel (a) shows an
avoided crossing between wy and wy
which introduces a back-door intruder for
wy. In panel (b), the critical point associ-
ated with the avoided crossing is marked
with a cross.

1 Rez
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FIG. 9. Absolute deviations from the tar-
get CCSD values for excitation energies
(eV) of the two lowest-lying 'IT states
of the CO molecule, calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis using a bond distance of
1129 A.

Order

w, are added to the ground-state reference energy Eo(z) = 0.
Figure 7(a) sketches how an avoided crossing can lead to a front-
door intruder between wyx and w,. In Fig. 7(b), we have used a
cross to mark the point of degeneracy in the complex plane that
is associated with the avoided crossing for the excitation energy
wx(Rx> ),

wx(Z°) = wy(2°) = wyy. (81)

For the avoided crossing, we have a large interaction between
the two states and the primary critical point in Fig. 7(b) there-
fore has been given a larger imaginary component. We have

102 T T T T T T

40

also in Fig. 7(a) displayed the excitation energies for two other
states, w, and w,. For these excitation energies, there is no
point of degeneracies inside the unit circle. The point of degen-
eracy wyy for wy(z°) and wy(z°) thus does not affect whether
the excitation energy series for w, and w, are convergent or
divergent.

Figure 8(a) depicts an excitation energy diagram for excitation
energy wy and wy, which leads to a back-door intruder. In contrast
to Fig. 7(a), the degeneracy in the excitation energy is now due to a
non-physical interaction as the strength parameter z has a negative
sign.

Absolute deviation from target value (eV)

FIG. 10. Absolute deviations from the tar-
get CCSD values for excitation energies
(eV) of the four lowest-lying '>* states
of the CO molecule, calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis and a bond distance of
1129 A.

Order
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In Figs. 7(a) and 8(a), the excitation wy introduces a front-door
and a back-door intruder, respectively, in wx(Ry, 2),

wx(2) = wy(2°) = wy- (82)

The excitation energy w, will similarly give rise to a front-door and
a back-door intruder in w,(Ry, z). The excitations composing the
avoided crossing therefore are the same for wy(z) and for wy(z),
and the two-state model therefore becomes identical for wy(z) and
wy(z). This happens independently of whether the primary critical
point is associated with an intruder or a crosser excitation. The target
excitation energy for excitation x can be written as

k B o B el .
wf = Zw,(cj) + Z w,((]) = Wy + Z w,(cj), (83)
j=0 j=k+1 j=k+1
where
S0
Wxk = Z Wy (84)
=0
Adding the target excitation energies for excitation x and y gives
wf+wyT:ka+wyk+ > (w,(cj) +w§i)). (85)
j=k+1

For the two-state model,” we have for excitations x and y, in
accordance with Eq. (28), that

™WO () _ _TWOw)(/k). (86)

Assuming that the two-state model can be applied to w! and w;
starting from order k + 1, we have

Twow,((j) = 7TWOwJ(,j) = a),((j) = 7w§,j), jzk+1, (87)

and Eq. (85) then becomes

wI + w; = Wy + wyk. (88)
Thus, even if the perturbation series for wf and wyT are divergent,
their sum for order k and larger will be equal to the sum of the
two target excitation energies. In Subsection V B, we give numer-
ical examples of excitation energies where we show that Egs. (87)
and (88) are satisfied to higher and higher accuracy when the order
of the perturbation series increases, and this is also for divergent CP
excitation energy series.

The CC parent and target state Jacobian J* and J in Eqs. (75)
and (43), respectively, and the perturbation scaled Jacobian J(z) of
Eq. (68) are non-Hermitian, and we can therefore not guarantee that
the Jacobian eigenvalue equations can be solved giving real eigen-
values and thus real excitation energies for truncated target exci-
tation spaces. However, for the calculation of excitation energies
for CC target states truncated at a given excitation level, the non-
Hermiticity of the Jacobian have caused no problems with respect to
obtaining real excitation energies and we will not discuss this issue
in any further detail.

B. Numerical illustrations

To illustrate the above findings, we report CPS(D-n) calcu-
lations of the lowest excitation energies of 'TI and '=* symme-
try for CO at the internuclear distance Rco = 1.129 A, using the
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TABLE II. Excitation energy calculated through order k, wy = @@ + o) + ... + (k)|
for the two lowest '=* states of CO molecule in aug-cc-pVDZ basis using a bond
distance of 1.129 A. Corrections at a given order, w(¥), and the sum of excitation
energies for both states at a given order, w,(B'=*) + wy(C'E*), are also reported.
Note that ® = wC8, (" =0, and w, = w®S). All results in eV.

B12+ CIZ+
k w® w w® W wr(B'ZH) + wi(Clzh)
0 12.347 12.347 12.799 12.799 25.146
1 0.000 12.347 0.000 12.799 25.146
2 —0.898 11.448 —1.182 11.618 23.066
3 —0.131 11.317 —0.193 11.425 22.742
4 —0.110 11.208 0.189 11.614 22.821
5 0.032 11.239 0.064 11.677 22.917
6 —0.124 11.115 0.063 11.740 22.855
7 0.013 11.128 0.051 11.790 22.918
8 —0.056 11.072 —0.028 11.763 22.834
9 0.027 11.099 0.050 11.813 22911
10 0.009 11.108 —0.086 11.727 22.834
11 0.051 11.159 0.022 11.749 22.908
12 0.020 11.179 —0.089 11.660 22.839
13 0.067 11.246 —0.004 11.656 22.902
14 —0.021 11.225 —0.037 11.619 22.844
15 0.053 11.279 —0.001 11.619 22.897
16 —0.073 11.205 0.026 11.644 22.849
17 0.007 11.212 0.036 11.680 22.892
18 —0.084 11.128 0.047 11.726 22.854
19 —0.037 11.092 0.069 11.796 22.887
20 —0.036 11.056 0.007 11.803 22.859
21 —0.027 11.029 0.051 11.854 22.883
22 0.037 11.067 —0.058 11.796 22.862
23 0.043 11.110 —0.026 11.770 22.880
24 0.072 11.182 —0.087 11.684 22.865
25 0.110 11.292 —0.098 11.585 22.877
26 0.032 11.324 —0.042 11.544 22.868
27 0.083 11.407 —0.075 11.469 22.875
28 —0.058 11.349 0.052 11.521 22.870
29 —0.056 11.293 0.059 11.580 22.873
30 —0.122 11.172 0.119 11.699 22.871
31 —0.189 10.983 0.190 11.889 22.872
32 —0.090 10.894 0.089 11.978 22.872
33 —0.147 10.747 0.146 12.125 22.871
34 0.041 10.788 —0.040 12.085 22.873
35 0.106 10.894 —0.108 11.977 22.871
36 0.185 11.078 —0.183 11.795 22.873
37 0.358 11.437 —0.361 11.434 22.871
38 0.207 11.643 —0.204 11.230 22.873
39 0.291 11.934 —0.293 10.937 22.871
40 0.021 11.955 —0.019 10.918 22.873
41 —0.182 11.773 0.179 11.097 22.871

aug-cc-pVDZ basis. The CPS(D-n) excitation energy corrections
through an arbitrary order have been implemented using Psithon—a
Python interface to the PSIs program”‘ —and employing the Numer-
ical Python Library (Numpy).” In Fig. 9, the absolute deviations
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are plotted for the two lowest excitations of 'IT symmetry (A'TL,
EIH), and in Fig. 10, the absolute deviations are given for the
four lowest excitations of 'X" symmetry (B'2", C'Z¥, F'z*, 4'5%).
From the figures, we see that for both the T and the 'St exci-
tations, the lowest-order corrections give a good estimate of the
total excitation energy correction, which improves during the initial
iterations.

In Paper II,”° we have benchmarked excitation energy correc-
tions for the CPS(D-2) and CPS(D-3) models, recalling that the first-
order excitation energy correction vanishes. For single-replacement
dominated excitations the maximum and mean absolute errors
(Amaxs Agps), obtained by comparison with CCSD excitation ener-
gies, are (0.96 eV, 0.30 eV) for CPS(D-2) and (0.14 eV, 0.07 eV) for
CPS(D-3). The errors for 'TI and '=* excitation energies are in line
with the benchmark results. The CPS(D-3) model can therefore be
used to get excitation energies of CCSD quality, in the sense that the
difference between CPS(D-3) and CCSD excitation energies is of the
same size or smaller than the effect of adding triples corrections to
CCSD excitation energies.l“ Note that the CPS(D-2) model is identi-
cal to the configuration-interaction singles with a doubles correction
[CIS(D)] model of Head-Gordon ef al.”’

We now consider the higher-order convergence of the excita-
tion energies and start with the excitations of 'IT symmetry. After
a monotonically convergent trend for initial orders, the A'IT exci-
tation shows a zig-zag pattern from orders 5-11 followed by a geo-
metric convergence pattern. The excitation energy corrections have
alternating sign, and according to Table I, the geometric progres-
sion therefore can be assigned to a back-door diffuse crosser state,
where the distance of the critical point from the origin is large since
the convergence for the geometric progression is fast. For the E'TI
excitation, the convergence shows a ripple pattern with a period of
about 30. Furthermore, the signs of the corrections within a ripple
alternate, and according to Table I, the convergence pattern for the
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E'I excitation can be assigned to a negative gap shift. Furthermore,
as the period of the ripple is large, the size of the gap shift is much
larger than the coupling.

Comparing the higher order convergence for the A 'IT and
E 'II excitations, we see from the curvature of the geometric conver-
gence for the A 'TT excitation that the convergence pattern actually
is a ripple structure with a period that is larger than the period for
the E 'TI excitation. The ripple structure is due to an avoided cross-
ing between the A 'IT excitation and a diffuse highly excited state
probably the same diffuse excited state that gave rise to the backdoor
ripple structure for the E 'TT excitation and with an avoided crossing
located at a larger distance from the origin than the avoided crossing
for the E 'TT excitation.

We now consider the higher order convergence of the excita-
tions of '=* symmetry given in Fig. 10. After a converging trend
for the first 3-4 orders, we see in Fig. 10 some orders with fluc-
tuations in the excitation energy corrections. For the excitation
pair (B'X*, C'Z*), divergent ripple patterns of period 6 start at
order 18, where the ripples are similar in the first period and
become nearly identical in the later periods. For the excitation
pair (F'2*, 4'5*), similar divergent ripple patterns start at order
11 with a period 10, and also for this pair, the patterns are simi-
lar and become nearly identical after the first period. According to
the two-state model, ripple patterns are due to a significant cou-
pling with intruder and crosser states, where the numerical value
of the gap shift is larger than the interaction, i.e., |8/y| < 1 (see
Table I).

To get a more detailed understanding of the divergence behav-
ior for the two excitation pairs, we consider initially the exci-
tation pair (B'Z*, C'Z%). At the coupled-cluster singles (CCS)
level, the excitation energy to the B'E" state is 12.34 eV and
the excitation vector has two dominant components: (5¢ — 60)
and (50 — 70) with about equal weight. For the C'X" state, the

FIG. 11. Excitation energy corrections,
w™) (eV), for the B'>* and C'=* states
of the CO molecule calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis using a bond distance
of 1.129 A. The horizontal line, where
E the excitation energy is zero, is a mir-
ror plane for the higher-order excitation
energy corrections.
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CCS excitation energy is 12.80 eV and the excitation is described
by the same two dominant excitations as for the B'S*' state.
At the CCSD level, the two excitations are separated, with the
B!Z* state having a CCSD excitation energy of 11.17 eV and
the (50 — 70) excitation as the dominant configuration, while
the C'X" state has an excitation energy of 11.71 eV and the
(50 — 60) excitation as the dominant configuration. This leads
to an avoided crossing with a front-door intruder for wg(z) and
wc(2).

In Table II, convergence characteristics are given for the B'Z*
and the C'Z" state through order 40. The two-state model predicts
that the excitation energy corrections for the two states assigned
to an avoided crossing become equal and of opposite sign. From
Table II and Fig. 11, we see that the excitation energy corrections
for the B'X" and the C' X" states for increasing orders become equal
and have opposite sign. Furthermore, the two-state model also pre-
dicts that for a front-door intruder and the associated positive gap
shift, the sign of the excitation energy corrections within a ripple is
the same and that the sign changes when going from one ripple to
the next. From Table ITand Fig. 11, we see, as predicted, that the sign
of the excitation energy corrections for higher orders changes with
the period of 6 of the ripples.

Assuming that CP excitation energy series can be described
asymptotically by the two-state model, the sum of the exci-
tation energies wi(B'Z*) + w((C'=*) in the last column of
Table I will converge toward the sum of the CCSD excitation
energies,

CCSD CCSD

wg T +wc T =22.88¢eV.

This sum is clearly approached for increasing k in the last col-
umn of Table II. The deviation of wi(B!=") + wi(C'=") from
22.88 eV for increasing k gives an indication when the asymptotic
region is reached and shows that this happens at about order 20,
where the ripples pattern in Fig. 10 for the two states becomes
identical and where the excitation energy corrections for the B'=*
and the C'T* state in Fig. 11 become mirror images of each
other.

Although the divergence pattern for the (B'=*, C'2") and the
(F'2*, 4'*) pairs looks similar, their origin differs. The divergence
for the (B'=*, C'=%) pair is due to an avoided crossing between the
B'Y" and C'E" excitations that introduces a front-door intruder
state, whereas the divergence for the (F12+, 412+) pair is due to
a back-door intruder. To confirm that this is the case, we report
in Table III convergence characteristics for the (F'z*, 4'5%) exci-
tation pair. The two-state model for a back door intruder pre-
dicts that the excitation energy corrections alternate within a ripple
and that two corrections with the same sign occur at the border
between two consecutive ripples. From Table 111, we also see that
for orders 12 and 13, the excitation energy corrections for both
the F'S* and the 4'Z" state have the same sign and are followed
by 7 orders with an alternating sign, 2 orders with the same sign,
8 orders with an alternating sign, 2 orders with the same sign,
and so on. This is precisely what the two-state model predicts for
a back-door intruder state with a small interaction between the
states. In Fig. 12, we have plotted excitation energy corrections for
the F!>* and the 4'3" excitations. For orders larger than 10, the
excitation energy corrections become mirror images and display the
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TABLE IlI. Excitation energy calculated through order k, wy = 0@ + (! + ... + (k)|
for the F'=* and 475" states of CO molecule in aug-cc-pVDZ basis using a bond
distance of 1.129 A. Corrections at a given order, w(¥), and the sum of excitation
energies for both states at a given order, w,(F'=*) + wy(4'=*), are also reported.
Note that ® = w®C8, (" =0, and w, = w®S). All results in eV.

F'z* 4yt
k w® W w® W wr(F1Z) + we(4'z")
0 15.967 15.967 16.524 16.524 32.491
1 0.000 15.967 0.000 16.524 32.491
2 —1.416 14551 —1.745 14.779 29.330
3 0.207 14.758 0.309 15.089 29.846
4 0.054 14.812 —0.083 15.006 29.817
5 0.130 14.942 0.069 15.075 30.016
6 —0.258 14.683 0.178 15.253 29.936
7 0.120 14.803 —0.158 15.095 29.898
8 —0.215 14.588 0.251 15.346 29.933
9 0.201 14.788 —0.239 15.106 29.895
10 —0.195 14.593 0.231 15.338 29.931
11 0.136 14.729 —0.151 15.187 29.916
12 —0.051 14.678 0.052 15.239 29.917
13 —0.039 14.640 0.051 15.290 29.930
14 0.199 14.839 —0.228 15.062 29.901
15 —0.337 14.502 0.377 15.439 29.941
16 0.527 15.028 —0.575 14.864 29.892
17  —0.656 14.372 0.710 15.574 29.946
18 0.777 15.149 —0.832 14.742 29.891
19 —0.792 14.357 0.843 15.585 29.942
20 0.681 15.038 —0.724 14.861 29.898
21 —0.401 14.637 0.434 15.295 29.932
22 —0.115 14.522 0.094 15.389 29911
23 0.837 15.359 —0.830 14.559 29.918
24 —1.818 13.541 1.823 16.383 29.923
25 2925 16.466 —2.941 13.442 29.908
26 —4.091 12.375 4.114 17.556 29.930
27 5.057 17.432 —5.083 12.473 29.905
28 —5.558 11.874 5.583 18.056 29.930
29 5218 17.091 —5.238 12.818 29.910
30 —3.603 13.488 3.615 16.434 29.922
31 0.356 13.844 —0.358 16.076 29.920
32 4,875 18.719 —4.884 11.192 29911
33 —12.089 6.630 12.109 23.300 29.930
34 21.025 27.655 —21.054 2.246 29.901
35 —30.757 —3.102 30.793 33.039 29.937
36 39.740 36.638 —39.780 —6.740 29.898
37 —45.579 —8.940 45.618 38.877 29.937
38 45.087 36.147 —45.122 —6.245 29.902
39 —34.534 1.613 34,561 28.316 29.929
40 9951 11.563 —9.967 18.349 29.912
41 31.900 43.463 —31.895 —13.546 29917

alternating trend described above. Comparing the higher-order con-
vergence for the (B'Z*, C'=") and the (F'Z", 4'=") pairs, we fur-
ther observe that while the asymptotic convergence for the (B'Z*,
clzh) pair starts around order 20, for the (F'z*, 4lzh) pair, it
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FIG. 12. Excitation energy corrections,
™) (eV), for the F'=* and 42" states
of the CO molecule calculated using
CPS(D-n) series through order 40 in aug-

ol Rﬂﬂgmﬂf\f\h/\

cc-pVDZ basis using a bond distance
of 1.129 A. The horizontal line, where
the excitation energy is zero, is a mir-
- ror plane for the higher-order excitation
energy corrections.
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starts at around order 10. We also note that the ripples for the rip-
ple pattern for the (F'X*, 4'%*) pair is right-tilted as this pattern
is connected to a fast convergent perturbation series, whereas the
ripple pattern for the B'S" and C'S* states is a protracted pat-
tern with ripples that are nearly symmetric since the ripple pat-
terns in these cases are connected to a slowly divergent perturbation
series.

The sum of the CCSD excitation energy for the F'S" and the
4'3" state is

CCSD CCSD
wp + Wy

=29.92eV.

This sum is clearly obtained at about order 10 in the last column
of Table IIT and maintained at the consecutive orders, despite the
excitation energy corrections becoming larger than the total excita-
tion energies and the calculated excitation energies at some orders
becoming negative.

For the (B'2*, C'2*) and (F'Z*, 4'2") excitation pairs, a front-
and a back-door intruder state, respectively, gave rise to the diver-
gent pairs of ripple pattern. For the perturbation series reported in
Paper II,'* we have also seen examples of excitation pairs where the
intruder state for the excitation pair is replaced with a crosser state
and where the overlaying divergent ripple patterns for the excitation
pair therefore become replaced with overlaying convergent ripple
patterns.

The above development shows that the asymptotic convergence
of the excitation energy series can be reproduced by the two-state
model. In fact, if the convergence/divergence behavior of the exci-
tation energy series is examined in detail and through high enough
order, we expect that the asymptotic convergence patterns and the
convergence rate of the series will be dictated by a two-state problem,
except for pathological cases.

VI. CONVERGENCE OF CP SERIES
FOR MOLECULAR PROPERTIES

We now consider the convergence of CP series for molec-
ular properties. In Subsection VI A, we consider the conver-
gence of the CP series for first order molecular properties, and in
Subsection VI B, the convergence is considered for molecular prop-
erties that can be described by the linear response function. Subsec-
tion VI C gives examples of the convergence of CP series for the
various molecular properties.

A. First-order molecular properties

The first-order molecular property for an operator X and a CC
target state can be written as'’

((X))o = (HF|X"[HF) + le St (il X [HE). (89)
i=1 i
The cluster amplitudes satisfy the cluster amplitude equations,
(ui|H |HF) = i=1,2,...,t (90)
and the multipliers t,, satisfy the multiplier equation,
t]=-n, (o1)
where the right-hand side is given by
N, = (HE[Hg [, (92)

and the elements of the Jacobian matrix for the CC target state, J,
read

(93)

Vo, = (wil[Hs. 0, ]HB),  ij=12,...,t
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In CP theory, the CC target state is parameterized with the
CC parent state as an expansion point. This implies that the
similarity-transformed operators O in Eqgs. (89)—(93) are replaced
by e*T0' T’ For example, the Jacobian in Eq. (93) becomes the
Jacobian in Eq. (45), and the amplitude equations in Eq. (90) become
the amplitude equations in Eqs. (41) and (42). The cluster ampli-
tudes 0t and the multipliers t can be expanded in orders of o7,
and CP series can be determined for these parameters. The CP series
for &t is given in Eq. (55), and the CP series for the multipliers
becomes

G =t +t P+ (94)

with a vanishing zeroth-order term. Substituting these expansions
into the first-order molecular property expression in Eq. (89), we
obtain a CP series for the first-order molecular property,

()0 = (X6 + (N +((xXNP + .., (95)

where ((X))4 is the first-order molecular property for the CC parent

state and ((X ))(()k) is the kth-order term.

We now consider the fictitious system where the complex
strength parameter z is multiplied on the perturbation ", The
first-order molecular property ((X))o(z) becomes an analytic func-
tion of z, §¢(z), and t(z) in the complex plane. For z = 0, ({X))o(2)
becomes the first-order molecular property for the CC parent state
({(X))}, and for z = 1, {{X))o(z) becomes the first-order molecular
property for the physical system given in Eq. (89). ({X))o(z) can be
expanded with z = 0 as expansion point, giving

((XD)o(2) = ((X))h + i 2 (). (%)

For z = 1, Eq. (96) gives the CP series in Eq. (95). For the CP series
to be convergent, we must require that the CP series for the clus-
ter amplitudes converge and therefore that the Jacobian J(z) has
no singularities in the complex plane inside the unit circle |z| < 1.
Furthermore, the first-order molecular property ((X))o(z) for the
fictitious system must not have any singularities inside the unit cir-
cle. The singularities of ({X))o(z) enter through the singularities in
the z dependence of the multipliers t(z) which in turn require that
J(2) has no singularities inside the unit circle |z| < 1. This condition
is equivalent to the condition for having a convergent CP series for
the cluster amplitudes.

When ((X ))(()1) in Eq. (95) is evaluated, it contains terms that

are linear in 6t and f(l), whereas the terms that are bi-linear in

5t™ and £ enter in second order. When evaluating ((X))él), the
leading-order computational scaling arises from the determination

of 8t and ©. The terms that are bi-linear in 8t and T can
be calculated without any extra cost when the ((X))(()l) is evalu-
ated, and it therefore becomes attractive to restructure the series

in Eq. (95) by introducing a generalized order concept where the

term bi-linear in 6t" and " is accounted for as a first-order
contribution. To implement this generalized order concept for an
arbitrary order k, we introduce the total kth-order amplitudes and
multipliers,

ARTICLE scitation.org/journalljcp
kot = ot 1+ 8t® 4.1 5t (97)
O (98)

and evaluate ((X))o through kth order using these total amplitudes
and multipliers,

(X))o = (HF| "X THE) + i S5, "X THE),  (99)

i=1 p;
where
kT T T k Lrro T & k
X'=X"+[Xx ,6T]+2[[X 8T, "8T] (100)
and
oT =3 *ot,,0,,. (101)
Wi
Note that, formally,
lim *((X))o = ((X))o. (102)

k— oo

The leading-order computational scaling for evaluating *((X))o

arises from the determination of 8t*) and t*, as for ((X))ék).
The major difference between evaluating ((X))o using the series
in Eq. (95) and the one defined by Eq. (99) is that using Eq. (95),
contributions are evaluated strictly of order k. By contrast, when
Eq. (99) is used, the total contribution through order k is evaluated,
but Eq. (99) in addition also contains all higher-order contributions
that can be generated using the amplitude and multiplier corrections
through order k. When the series in Eq. (95) is convergent, the series
defined by Eq. (99) will also be convergent as the series in Eq. (99)
results from a simple restructuring of the terms in the series in
Eq. (95).

B. The linear response function

For the operator-frequency pairs (X, wx) and (Y, wy), the linear

response function for a CC target state can be written as'”

(XY ))ay = %CiwyPﬁwa(nXty(wy) + %(tx(wx))T FtY(wy)),

wx + wy =0,

(103)
where
= (HEX ) + S8, W[XT 0, 1B, (10)
i
o, = (HF[[0,60,1,0, JHB345,
(105)

+ ZAZE,\m()lm[[d)T,GH‘],ij]|HF).

PXY, is the (operator, frequency) pair permutation operator, and
C*“ is the frequency permutation operator. The cluster amplitudes
satisfy the cluster amplitude equation in Eq. (90), and the multi-
pliers satisfy Eq. (91). The first-order frequency dependent ampli-
tude responses t” (wy) are determined from the response amplitude
equations,

(] - wXI)tX(a)x) = &, (106)

J. Chem. Phys. 150, 134111 (2019); doi: 10.1063/1.5053622
Published under license by AIP Publishing

150, 134111-19


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

where the right-hand side is given by

£ = (u|x"[HE).

In CP theory, the CC target state is parameterized with the CC
parent state as an expansion point and the similarity-transformed

operators O” in Egs. (103)-(107) therefore have to be replaced by
e T TeST

(107)

as described in Subsection VI A. The cluster ampli-
tudes 8t, the multipliers t, and the response amplitudes £ (wx) can
be expanded in orders of <D*T, and CP series can be determined
for these parameters. The CP series for 8t is given in Eq. (55) and
for t in Eq. (94). The CP perturbation series for tx(wx) is derived
in Ref. 28. Substituting these expansions into the linear response
function, we can determine a CP series for the linear response
function,

TN,

n=1

(X Y))ay = ((X: V), (108)

where ((X; Y))h, is the linear response function for the CC parent
state.””

We now consider the fictitious system where the complex
strength parameter z is multiplied on the perturbation @' ", The
linear response function for the fictitious system ((X;Y))w,(2z)
becomes an analytic function of z in the complex plane that depends
on 8t, t and t*(wx) and can be expanded with z = 0 as an expansion
point, giving

1)) (2).

For z = 1, Eq. (109) gives the CP series for the linear response func-
tion in Eq. (108). For the CP series in Eq. (108) to converge, the
CP series for the cluster amplitudes must converge implying that
the Jacobian J(z) has no singularity in the complex plane inside
the unit circle |z| < 1. Furthermore, ((X;Y))o, (2) must not have

N+ S (%Y

n=1

(XY ))ay(2) = (109)
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singularities in the complex plane inside the unit circle |z| < 1. The
singularities of ({X; Y))a, (2) enter through singularities i inz depen-
dence of the multipliers t and the response amplitudes t* (wy). For
the multipliers, we must require that J(z) has no singularities inside
the unit circle |z| < 1. This condition is equivalent to the condition
for having a convergent series for the cluster amplitudes. For the
response amplitudes, we must also require that J(z) — wyI has no
singularities inside the unit circle |z| < 1. This condition restricts
the number of convergent expansions of the linear response func-
tion, in particular when wy is close to an eigenvalue wy of the
Jacobian J.

When ((X; Y))(E,k) is evaluated, it requires the amplitudes and

Y
multipliers, 6t™*, ) and ¢ *® (wx). The leading-order computa-

tional scaling for evaluating ((X; Y))fuky) arises from the evaluation

of 8t%, % and tX(k)(wx). As for the evaluation of ({(X ))(k), it
becomes attractive to introduce a generalized order concept, where
the order k embraces all the terms that can be determined from the
amplitude, multiplier, and response vector corrections, &t”, @),
and tx(p)(wx), where p = 0, 1, ..., k. We denote the kth-order
term in this series as *((X; Y))o,. In practice, the evaluation of this
kth-order term requires that we introduce

X x) = 5 (0x) + 6P (o) 1+ 8P (@)  (10)
in addition to “8t and ¥t of Egs. (97) and (98), respectively. Using
these total kth-order amplitudes and multipliers, *((X; Y)),, can
be evaluated from Eq. (103) in the same way *((X))o was evalu-
ated from Eq. (89) in Eq. (99). In Ref. 28, details are given on how

k((x; Y))uJY is determined. When the series in Eq. (1( ) is conver-
gent, the ((X; Y)), series will also be convergent as the “((X; Y))u,
series results from a simple restructuring of the terms in the series in
Eq. (108).

Absolute deviation from target value (a.u.)

10-6 1 1 1

Eo
<>,
<<I;E>>)

FIG. 13. Absolute CPS(D) errors (in
atomic units), as compared to tar-
get CCSD values, for the ground-state
energy, Eq, = component of the perma-
nent dipole moment, (£)o, and = com-
ponent of the static dipole polarizability,
((Z; Z))o, calculated through a given
order for the CO molecule in aug-cc-
pVDZ basis using a bond distance of
1129 A.
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C. Numerical illustrations of convergence
of CP series for molecular properties

As an illustration of the convergence requirements for CP
series for molecular properties, we consider calculations on CO
for Rco = 1.129 A, using the aug-cc-pVDZ basis. The CPS(D-n)
polarizability and dipole moment corrections through an arbitrary
order have been implemented using Psithon—a Python interface to
the PS4 program”* —and employing the Numerical Python Library
(Numpy).zS The convergence of the CPS(D-n) series for the £ com-
ponent of the static polarizability calculated using Eq. (108), the
dipole moment calculated using Eq. (95), and the energy calcu-
lated as described in Paper I' are displayed in Fig. 13. The asymp-
totic convergence of the static polarizability, the dipole moment,
and the energy show a geometric progression. The convergence rate
of the CP series for the static polarizability, the dipole moment,
and the energy are very similar. For the energy, the convergence
rate is determined by the inverse distance from the unit circle for
the crosser state associated with the primary critical point and this
appears also to be the case for the static polarizability and the dipole
moment.

Vil. SUMMARY AND CONCLUSION

In CP theory, perturbation series are determined in orders
of the CC parent state similarity transformed fluctuation potential
where the zeroth order term in the series is the energy or molec-
ular property for the CC parent state and where the perturbation
series formally converge to the energy or molecular property for
the CC target state. In this paper, we have investigated the theo-
retical foundation for having convergent CP series for the ground-
state energy and for molecular properties including excitation
energies.

The theoretical foundation for convergent CP series is estab-
lished by considering a fictitious system where a complex scal-
ing parameter z is multiplied on the perturbation. The condition
for having a convergent CP ground-state energy series is that
the derivative of the amplitude equation for the fictitious sys-
tem is non-singular inside the unit circle |z| < 1. This con-
dition is equivalent to requiring that the Jacobian J(z) for
the fictitious system is non-singular within the unit circle
2] < 1.

To have a convergent CP series for an excitation energy wx,
we must in addition require that the excitation energy for the fic-
titious system, w(z), does not become degenerate in the complex
plane inside the unit circle |z| < 1. Since wx(z) is determined by
diagonalizing the Jacobian J(z) for the fictitious system, the con-
dition for convergence becomes that there must not be another
excitation energy wy(z) that is equal to w.(z) inside the unit circle
2] < 1.

To have a convergent CP molecular property series, the molec-
ular property expression for the fictitious system must not have any
singularities inside the unit circle |z| < 1. Singularities in molec-
ular property expressions are caused by singularities in the clus-
ter amplitudes, multipliers, or response vectors. For the cluster
amplitudes and multipliers, singularities can arise in the Jacobian
J(2). For frequency dependent molecular properties, additional sin-
gularities can arise through singularities in the frequency-shifted
Jacobian.
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The identification of singularities and degeneracies in the Jaco-
bian for the fictitious system can be performed by searching for
avoided crossings for the Jacobian J(z) on the real axis Re(z). For
the ground-state energy, the search for singularities identifies mech-
anisms giving front-door and back-door intruder states. The two
states composing the avoided crossing for the singularity with the
smallest distance to the origin can be used to set up a two-state
model for the fictitious system, from which we can obtain an accu-
rate description of the convergence rate and the convergence pat-
terns of the higher-order terms in the CP ground-state energy series.
Numerical examples are given, where the convergence rate and
the convergence patterns of the higher-order terms in the CP
ground-state energy series are modeled using the two-state
model.

When examining the convergence for an excitation energy wx,
we look for degeneracies and thus avoided crossings between wx(z)
and another excitation energy wy(z), when the Jacobian response
eigenvalue equation is solved on the real axis Re(z). For the two exci-
tations that compose the avoided crossing with the smallest distance
to the origin, we can set up a two-state excitation model for the Jaco-
bian eigenvalue equation for the fictitious system, and from this two-
state excitation model, we can obtain an accurate description of the
convergence rate and the convergence patterns of the higher-order
terms in the CP excitation energy series. We give numerical exam-
ples where the convergence patterns of CP excitation energy series is
modeled using the two-state excitation model. We also consider a CP
excitation energy pair, wx(z) and w,(z), where w,(z) is an intruder
state for wy(z) and vice versa, and where the CP series for these two
excitation energies therefore diverge. For such an excitation energy
pair, we have shown that the excitation energy corrections for higher
orders have opposite sign, and further that the sum of the excita-
tion energies for higher orders becomes equal to the sum of the
target excitation energies, provided that the two-state model accu-
rately describes the higher-order terms in the CP excitation energy
series. We have reported numerical calculations, which show that
the above relations are fulfilled and that the two-state model there-
fore gives an accurate description of the higher-order terms in the
CP excitation energy series. We also note that the point of degenera-
cies wx(z) = wy(z°) inside the unit circle for wy(2) and w,(z) does not
directly affect the convergence of the other excitation energies. Sum-
marizing, the calculations of CP series for the ground-state energy
and for excitation energies show that the convergence of CP series
for the ground-state energy and for excitation energies effectively
becomes the convergence of a two-state problem at higher orders.
We expect this to be a general behavior, except for pathological
cases.
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