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ABSTRACT
The theoretical foundation has been developed for establishing whether cluster perturbation (CP) series for the energy, molecular properties,
and excitation energies are convergent or divergent and for using a two-state model to describe the convergence rate and convergence patterns
of the higher-order terms in the CP series. To establish whether the perturbation series are convergent or divergent, a fictitious system is
introduced, for which the perturbation is multiplied by a complex scaling parameter z. The requirement for convergent perturbation series
becomes that the energy or molecular property, including an excitation energy, for the fictitious system is an analytic, algebraic function of
z that has no singularities when the norm |z| is smaller than one. Examples of CP series for the energy and molecular properties, including
excitation energies, are also presented, and the two-state model is used for the interpretation of the convergence rate and the convergence
patterns of the higher-order terms in these series. The calculations show that the perturbation series effectively become a two-state model at
higher orders.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053622

I. INTRODUCTION

In Paper I,1 we introduced a new class of perturbation
models—the cluster perturbation (CP) models—for which the
major drawbacks of Møller-Plesset perturbation theory (MPPT)2,3

and coupled cluster perturbation theory (CCPT)4–6 have been
overcome. The theoretical foundation for CP theory is given in
Paper I.1

In CP theory,1 we consider a target excitation space rela-
tive to a Hartree-Fock (HF) state and partition the target exci-
tation space into a parent and an auxiliary excitation space. The
zeroth-order state in CP theory is a coupled cluster (CC) state in
the parent excitation space, and we here assume that the target
state is a CC state in the target excitation space. In CP theory,
we determine perturbation series for the energy and for molec-
ular properties, including excitation energies, in orders of the
CC parent-state similarity-transformed fluctuation potential, where
the zeroth-order term in the series is the energy or molecular

property for the CC parent state and where the series formally
converge to the energy or molecular property for the CC target
state.

MPPT has recently been generalized to CCPT,4–6 where the
zeroth-order state is a CC state in the parent excitation space and
where the target state is a CC state in the target excitation space. For
both CCPT and CP theory, perturbation series for the energy are
determined with the CC parent-state similarity-transformed fluc-
tuation potential as the perturbation operator. However, in CCPT,
terms are collected strictly as zeroth-order Fock operator contribu-
tions and first-order perturbation operator contributions, whereas
in CP theory, a new, generalized order concept is introduced where
one selected perturbation operator contribution is treated as a
zeroth-order contribution. Using this generalized order concept,
perturbation series can be determined on an equal footing for the
energy and for molecular properties, contrary to CCPT for which
perturbation series can only be determined for the ground-state
energy.
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In this paper, we examine the formal requirements for CP
series to be convergent for the ground-state energy, for excitation
energies, and for molecular properties. For the latter, we focus on
first-order molecular properties and on molecular properties that
can be described by the linear response function. We also discuss
the theoretical foundation for setting up a two-state model7,8 and
for using this model to interpret the asymptotic convergence of
CP perturbation series. The asymptotic convergence of CP series
determines the convergence rate and the convergence patterns of
the higher-order terms in the CP series. The two-state model has
recently been thoroughly examined,9 and its convergence rate has
been determined. Furthermore, the different archetypes that can
arise for the higher-order terms in the perturbation series for dif-
ferent strengths of the interaction between the two states have
been determined. We present numerical examples illustrating how
the two-state model can be used to understand the convergence
rate and the convergence pattern of the higher-order terms in CP
series.

CP models1 are characterized by the CC parent state, which
is defined in the parent excitation space, and by an auxiliary
excitation space. This can be expressed using a notation, where
the parent excitation space is followed by the auxiliary space in
parentheses. For example, CPSD(T) denotes a CP model with
a coupled-cluster singles-and-doubles (CCSD) parent state and a
triples auxiliary space. Furthermore, the notation CPSD(T) implies
that a CC target state is used. If the auxiliary space is fol-
lowed by a number, as for example in CPSD(T-3), the number
denotes that perturbation corrections are determined through that
order.

In Sec. II, we describe a general theoretical framework, which
can be used for establishing whether the MPPT, CCPT, and CP
energy series are convergent. The premises for setting up the
two-state model for describing the asymptotic convergence of
the perturbation series are also discussed. The requirements for
energy series to be convergent, as well as the use of the two-state
model for describing the asymptotic convergence of the energy
series, have previously been considered for MPPT7,8,10–12 and for
CCPT.13

In this paper, we consider the requirements for CP series to
be convergent not only for the energy, but also for excitation ener-
gies and molecular properties, where for the latter, we specifically
consider first-order properties and properties that can be deter-
mined from the linear response function. To develop these require-
ments, we summarize in Sec. III how CP perturbation series is
determined for the energy and for cluster amplitudes, and also for
the Jacobian, by introducing the new, generalized order concept of
CP.

In Sec. IV, the specific requirements for having convergent
energy series in CP theory are developed. This is followed by numer-
ical examples of CP series, for which the convergence rate and the
convergence patterns of the higher-order terms are interpreted using
the two-state model.9 In Sec. V, the requirements for convergent CP
series are investigated for excitation energies and numerical exam-
ples are provided to illustrate how the asymptotic convergence of the
series can be interpreted using the two-state model. Section VI con-
tains a discussion of the requirements for convergent CP series for
first-order molecular properties and for molecular properties that
can be determined from the linear response function, along with

numerical illustrations. Section VII contains a short summary and
some concluding remarks.

II. PERTURBATION THEORY
WITH A MØLLER-PLESSET
PARTITIONING OF THE HAMILTONIAN
A. Requirements for convergent energy
perturbation series

For a molecular system with the electronic Hamiltonian H,
the electronic Schrödinger equation for the ground state |0⟩ can be
written as

H∣0⟩ = E0∣0⟩, (1)
where E0 is the ground-state energy. In MPPT, CCPT, and CP the-
ory, the electronic Schrödinger equation is solved by projection
using perturbation theory. The Møller-Plesset partitioning is used
for the Hamiltonian,

H = f +Φ, (2)
where f is the Fock operator and Φ is the fluctuation potential oper-
ator, and a perturbation series is determined for the ground-state
energy,

E0 = E(0)0 +
∞

∑
p=1

E(p)0 , (3)

where E(0)0 is the zeroth-order energy and E(p)0 is a term of order p
in the perturbation. We discuss in this paper the theoretical founda-
tion for establishing whether the perturbation series are convergent
or divergent. Furthermore, we discuss the theoretical foundation for
using the two-state model to describe the asymptotic convergence of
the perturbation series.

We start by considering a fictitious system where a complex
strength parameter z is multiplied on the fluctuation potential. The
Hamiltonian for the fictitious system becomes

H(z) = f + zΦ. (4)

The electronic Schrödinger equation for the fictitious system can be
written as

H(z)∣0(z)⟩ = E0(z)∣0(z)⟩, (5)
where E0(z) is an energy function in the complex plane z. For z = 1,
the energy function gives the energy for the physical system,

E0(1) = E0. (6)

For z = 0, we require that the energy function becomes the zeroth
order energy for the physical system,

E0(0) = E(0)0 . (7)

E0(z) can be expanded in a Taylor series with z = 0 as the expansion
point, giving

E0(z) = E(0)0 +
∞

∑
p=1

zpE(p)0 , (8)

where E(p)0 is the pth-order expansion coefficient in the Taylor series.
For z = 1, Eq. (8) gives the perturbation series in Eq. (3).

E0(z) can have critical points zc, at which E0(z) is equal to
another energy Ex(z),

E0(zc
) = Ex(zc

) = Ex0. (9)

The critical point with the smallest norm |zc| is called the primary
critical point. The requirement for having a convergent ground-state
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energy series in Eq. (3) is that there are no critical points in the com-
plex plane for E0(z) inside the unit circle |z| ≤ 1. The primary critical
point determines the convergence radius of the Taylor expansion in
Eq. (8) and therefore has a central role for the determination of the
asymptotic convergence of the perturbation series.

A state x with the energy Ex(zc) that is degenerate with E0(zc)
inside the unit circle |z| ≤ 1 is called an intruder state. If Re(zc

) > 0,
the state is called a front-door intruder state; conversely a back-door
intruder state has Re(zc

) < 0.8 Intruder states lead to divergent per-
turbation series. A state x with the energy Ex(zc) that is equal to the
ground-state energy, E0(zc), where |zc| > 1, is called a crosser state. If
a crosser state has Re(zc

) ≥ 0, it is called a front-door crosser state,
while a crosser state with Re(zc

) < 0 is called a back-door crosser
state.

In a finite dimensional space, the solution to the electronic
Schrödinger equation for the fictitious system in Eq. (5) becomes a
matrix equation,

H(z)C(z) = E(z)C(z), (10)

where the Hamiltonian is partitioned into a zeroth-order Hamilto-
nian H0 and a perturbation V,

H(z) = H0 + zV. (11)

For configuration interaction (CI) target states as in MPPT the per-
turbation, V is a matrix representation of the fluctuation poten-
tial and it is symmetric, and E0(z) is the lowest eigenvalue of the
CI eigenvalue equation. The primary critical point is the point of
degeneracy between the ground state and an excited state in the CI
eigenvalue equation with the smallest norm |zc|. For MPPT, the per-
turbation series in Eq. (3) thus describes a perturbation expansion of
an eigenvalue equation.

For CCPT and CP theory, the target state is a CC state and E0(z)
is the CC energy, where amplitudes are determined by the set of
non-linear cluster amplitude equations for the fictitious system. For
CCPT, we have discussed in Ref. 13 the formal requirements for con-
vergence of the CCPT energy series and have shown that intruder
states occur as excitation operators, which give singularities within
the unit circle for the perturbation-dependent Jacobian that is deter-
mined as the derivative of the CCPT cluster amplitude equations. In
this paper, we discuss the theoretical foundation for having conver-
gent ground-state CP series and show that the formal requirement
for a convergent energy series is that the CP perturbation-dependent
Jacobian J(z) does not have a singularity within the unit circle. We
further discuss the requirements for having convergent CP series
for molecular properties, including excitation energies. For CCPT
and CP theory, the perturbation operator is the CC parent-state
similarity-transformed fluctuation potential and the perturbation V
in Eq. (11) is therefore non-symmetric.

B. The two-state model
The asymptotic convergence of a perturbation series deter-

mines the convergence rate of the perturbation series and the con-
vergence patterns of the higher-order terms in the series. When
studying the asymptotic convergence of MPPT series, it has been
found that the correction vectors for these series for higher orders
become nearly linearly dependent.7,14 The asymptotic convergence
of the MPPT series therefore can be studied using a two-state
expansion. It has also been found that simple convergence patterns

in MPPT and CCPT energy series can be described in terms of a two-
state model7,8 where the Hamiltonian matrix in Eq. (10) is set up
for the fictitious system for the two states that compose the primary
critical point. In this paper, we demonstrate that the asymptotic con-
vergence of the CP energy series can be described in terms of a
two-state model for the two states composing the primary critical
point.

In this paper, we also consider the convergence of CP series
for an excitation energy, ωx = Ex − E0, that is obtained by diag-
onalizing the Jacobian for the CC target state. We show that the
requirement for a convergent CP excitation energy series for ωx is
that the excitation energy ωx(z) = Ex(z) − E0(z), which is obtained
by diagonalizing the Jacobian for the fictitious system J(z), does not
have for |z| < 1 another excitation energy, ωy(z) = Ey(z) − E0(z),
that is degenerate with ωx(z). The primary critical point for ωx(z) is
the point of degeneracy where ωx(zc) is equal to another excitation
energy ωy(zc) with the smallest norm |zc|. The primary critical point
thus determines whether the CP series for the excitation energy ωx is
convergent.

For excitation energies, we also show in this paper that the
asymptotic convergence of the CP series can be described in terms of
a two-state model for the two states composing the primary critical
point. The two-state model for excitation energies is obtained by set-
ting up the perturbation-dependent Jacobian J(z) for the two states
composing the primary critical point. We note that setting up the
two-state model for the perturbation-dependent Jacobian is equiv-
alent to setting up a two-state model for the equation-of-motion
coupled cluster (EOM-CC) eigenvalue equation for the degener-
ate pair of excited state energies Ex(z) and Ey(z) since the Jacobian
eigenvalue equation can be obtained from the EOM-CC eigenvalue
equation15 by subtracting the ground-state energy E0(z) from the
diagonal.

To set up a two-state model that can be used for CP ground-
state energy series and also for CP excitation energy series, we have
to consider a more general two-state model than the one in Refs. 7
and 8, where the perturbation matrix in Eq. (11) was assumed to
be symmetric. The Jacobian and the EOM-CC eigenvalue equations
contain a non-symmetric matrix, and the interaction matrix between
the two states composing the primary critical point therefore cannot
be required to be symmetric. We have recently presented a general
two-state model,9 where the interaction matrix is not symmetric and
we summarize below the main features of this model.

1. The two-state model and its critical points
Using the same notation for the two-dimensional space,

defined by the primary critical point, as for the full space in Eqs. (10)
and (11), and assuming that the basis vectors of the two-dimensional
space are orthonormal and diagonalize the zeroth-order Hamilto-
nian, the zeroth-order Hamiltonian and the perturbation can be
written as9

H0 = (
α 0
0 β + γ), (12)

V = (
0 δ2
δ1 −γ), (13)

where α and β + γ are the two zeroth-order energies, and γ and δ1, δ2
are the gap shift and the coupling terms, respectively. The coupling
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terms, δ1 and δ2, can differ, and the perturbation matrix is therefore
not required to be symmetric. We will in the following assume that
β > α and β + γ > α, so the numerical order of the diagonal terms is
the same in H0 and H0 + V.

The two eigenvalues of the matrix H0 + zV are determined
as7,9

E±(z) =
α + β + (1 − z)γ

2
±

√
(α − β − (1 − z)γ)2 + 4δ1δ2z2

2
. (14)

Equation (14) shows that the eigenvalues, as functions of z, depend
on the product δ1δ2 and not on the individual coupling ele-
ments. We can therefore replace the individual coupling coeffi-
cients with a positive geometric average of these, δ, and a symmetry
factor, σ,

δ =
√

∣δ1δ2∣ (15)

σ =
⎧⎪⎪
⎨
⎪⎪⎩

+1, if δ1δ2 ≥ 0

−1, if δ1δ2 < 0,
(16)

so
δ1δ2 = σδ2. (17)

The eigenvalues of Eq. (14) can be written in terms of σ and δ as

E±(z) =
α + β + (1 − z)γ

2
±

√
(α − β − (1 − z)γ)2 + 4σδ2z2

2
. (18)

For the physical system, where z = 1, the square root in Eq. (18)
becomes

√
(α − β)2 + 4σδ2 and its deviation from |β − α| depends

on the symmetry factor σ. Since the square root is a monotonically
increasing function, it is first noted that

√
(α − β)2 + 4σδ2 is larger

than |β − α| for σ = 1 and smaller than |β − α| for σ = −1. For the
symmetric perturbation, σ = 1, the lowest eigenvalue, E−, is thus
below α and the largest eigenvalue, E+, is above β. For an asym-
metric perturbation, σ = −1, and for ∣δ∣ ≤ ∣β−α∣

2 , one obtains a real
lowest eigenvalue that is larger than α and a real largest eigenvalue
that is lower than β, whereas for ∣δ∣ > ∣β−α∣

2 , one obtains a pair of
complex eigenvalues. For the ground-state energy, we have that the
eigenvalue of interest is the lowest and that the perturbation expan-
sion reduces the total energy. When applying the two-state model to
the ground-state energy, we therefore only need to consider sym-
metric perturbations, σ = +1, and use Eq. (18) with this value of
σ when deriving perturbation expansions for the two-state model.
However, when applying the two-state model to CP series for exci-
tation energies, we can encounter cases where the lower excitation
energy increases and the higher excitation energy decreases when the
perturbation is applied, and we then in addition also have to consider
the asymmetric perturbations, σ = −1.

The primary critical points are defined by E−(z) = E+(z) and
become

zc
± =

β − α + γ
4σδ2 + γ2 (γ ± 2

√
−σδ2). (19)

For symmetric perturbations, σ = 1, the critical point becomes a
complex pair

zc
± =

β + γ − α
4δ2 + γ2 (γ ± 2δi), (20)

whereas for asymmetric perturbations, σ = −1, the critical point
becomes real

zc
± =

β − α + γ
−4δ2 + γ2 (γ ± 2δ). (21)

In this paper, we will report prototype examples of CP series for
the ground-state energy and for excitation energies to illustrate that
the asymptotic convergence of the series at high-orders effectively
becomes a two-state problem. For the excitation energy series, we
consider only examples where the asymptotic convergence of the
CP series is described by symmetric perturbations. In the following,
we therefore only consider the asymptotic convergence for symmet-
ric perturbations and refer to Ref. 9 for a more complete treatment.
The asymptotic rate of convergence, r, is equal to the inverse of the
norm of the critical point, r = 1/|zc|, so the location of the critical
point does not only define whether the expansion is convergent or
divergent, but it also defines the rate of convergence for a convergent
expansion.

Since β + γ− α by assumption is positive, it is seen from Eq. (20)
that the sign of the gap shift defines the position of the critical points
in the complex plane: a positive gap shift leads to the critical point
being located in the half plane with positive real values, whereas
a negative gap shift leads to a critical point in the negative half
plane.

2. Perturbation expansions of the energies
for symmetric perturbations

In Ref. 9, we have identified perturbation expansions for the
two-state model for both symmetric and non-symmetric perturba-
tions. In this paper, we consider CP series only for symmetric per-
turbations, for which the energy corrections for E−(1) can be written
as7,8

E−(1) =
∞

∑
n=0

E(n), (22)

E(0) = α, (23)

E(1) = 0. (24)

The explicit expressions for E(i), i = 2, 3, . . ., can be found in
Ref. 8. To obtain a perturbation expansion for the excited state
E+(z), we see from Eq. (18) that the sum of the two eigen-
values contains only terms that are linear in the perturbation
parameter,

E−(z) + E+(z) = α + β + (1 − z)γ. (25)

Denoting the perturbation corrections of E+(z) as E(n)+ and retaining
the notation E(n) for the perturbation expansion of E−(z), we obtain
the energy corrections for E+(z) as9

E(0)+ = β + γ, (26)

E(1)+ = −γ, (27)

E(n)+ = −E(n), n > 1. (28)

The second- and higher-order corrections for the excited eigenvalue
are therefore equal to minus the correction E(n) obtained for the
lowest state.
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3. Archetypes of convergence

In Ref. 9, we have analyzed the form of the energy corrections
for the two-state perturbation expansion for general choices of γ, δ,
and σ. For the symmetric perturbations, there are five archetypes of
convergence patterns. Of these five archetypes—zigzag, interspersed
zigzag, triadic, geometric, and ripples—all but the zigzag have been
observed.9 We will examine the asymptotic convergence of CP series
for the ground-state energy and for excitation energies, and we will
as prototype examples consider the two archetypes: geometric and
ripples. To have the background for examining the asymptotic con-
vergence for these two archetypes, the properties and typical patterns
of these two archetypes are given in Table I. For both archetypes,
corrections and deviations are plotted for negative and positive gap
shifts. The plots are logarithmic, and a simple color code is used
to differentiate between positive (blue) and negative (red) correc-
tions and deviations. To avoid unnecessary cluttering of the plots,
the color codes are defined only on the first plot. The geometric and
ripple archetypes arise when the absolute value of the gap shift γ is
larger than the absolute value of the coupling element δ. If the gap
shift is much larger than the coupling, the archetype is geometric,

where the convergence exhibits a simple geometric form. For this
archetype, a positive value of the gap shift implies that all corrections
are negative, which in the table is denoted by (−), whereas a negative
value of the gap shift leads to corrections of alternating sign, which
is denoted by (1+, 1−). The sign of the gap shift can therefore be
directly deduced from the signs of the corrections. In the ripple pat-
tern, there are recurring ripples that are delineated by marked local
minima in the size of the corrections and deviations. The number of
orders spanned by a ripple, n∗, is proportional to the ratio ∣

γ
δ ∣. The

signs of the corrections depend on the sign of the gap shift. If the
gap shift is negative, the corrections have an alternating sign within
a ripple, with the exception occurring at the boundary between two
ripples, where two corrections have the same sign. If the gap shift is
positive, all corrections have the same sign in a given ripple and the
sign changes, when going from one ripple to the next.

C. Outline

In the remainder of this paper, we will examine the for-
mal requirements for having convergent CP series for the energy

TABLE I. Archetypes of convergence patterns for two-state perturbation expansions (see text for details).

Archetype Geometric Ripples

Identification |γ| ≫ |δ| |γ| > |δ|

Typical absolute corrections and deviations

Sign pattern γ < 0: (1+, 1−) γ < 0: (1+, 1−)
of corrections γ > 0: (−) γ > 0: (n∗−, n∗ +)

Period n∗ . . . 2.5 +
√

2∣ γδ ∣
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and also for molecular properties, including excitation energies.
Furthermore, we will describe how the two-state model can be used
to describe the asymptotic convergence of the CP series for the
ground-state energy, excitation energies, and molecular properties.
We also give numerical examples of CP series to demonstrate how
the two-state model can be applied. However, before this can be
done, we need to describe how perturbation series are obtained in
CP theory for the energy and cluster amplitudes, and also for the
Jacobian, and in particular how a new, generalized order concept is
introduced in CP theory, compared to MPPT and CCPT, that allows
perturbation series to be determined not only for the energy but also
for molecular properties, including excitation energies.

III. CLUSTER PERTURBATION THEORY
FOR THE ENERGY AND AMPLITUDE EQUATIONS
AND FOR THE JACOBIAN

In CP theory, we consider a target excitation space, comprising
all excitations through an excitation level t, that is partitioned into
a parent excitation space, with excitations through a level p, and an
auxiliary excitation space, with excitation levels p + 1 through t. The
zeroth-order state in CP theory is a CC state in the parent excitation
space. We assume here that the target state is a CC state8,16 in the
target excitation space.

The CC parent state can be written as

∣CC∗
⟩ = e∗T

∣HF⟩, (29)
∗T =

∗T1 +⋯ + ∗Tp, (30)
∗Ti =∑

µi

∗tµiθµi , 1 ≤ i ≤ p. (31)

The cluster operator ∗Ti contains the parent-state cluster ampli-
tudes ∗tµi and the many-body excitation operators θµi that carry
out excitations from the Hartree-Fock determinant |HF⟩ to excited
determinants,

∣µi⟩ = θµi ∣HF⟩. (32)

In Eqs. (31) and (32), i denotes an excitation level and µi an excita-
tion at this level. The amplitudes of the CC parent state satisfy the
cluster amplitude equations,

⟨µi∣e−∗TH0e∗T
∣HF⟩ = ⟨µi∣H

∗T
0 ∣HF⟩ = 0, 1 ≤ i ≤ p, (33)

where the parent-state energy is

∗E0 = ⟨HF∣H
∗T
0 ∣HF⟩. (34)

In Eqs. (33) and (34), we have introduced the CC parent-state
similarity-transformed Hamiltonian,

H
∗T
0 = e−

∗TH0e
∗T . (35)

For p = 0, the parent excitation space is empty and ∗T vanishes, so
the parent state becomes the Hartree-Fock state.

The CC target state in CP theory is parameterized using the CC
parent state as the expansion point,

∣CC⟩ = eT
∣HF⟩ = e

∗T+δT
∣HF⟩ = eδT

∣CC∗
⟩, (36)

where
T =

∗T + δT, (37)
and

δT =
t
∑
i=1
∑
µi

δtµiθµi . (38)

The similarity-transformed Schrödinger equation for the CC target
state can be written as

e−δTe−
∗TH0e

∗TeδT
∣HF⟩ = E0∣HF⟩ (39)

and solved by projection in the target excitation space giving the
cluster energy and amplitude equations,

E0 = ⟨HF∣e−δTe−
∗TH0e

∗TeδT
∣HF⟩ = ⟨HF∣e−δTH

∗T
0 eδT

∣HF⟩, (40)

Ωµi(δt) = 0, 1 ≤ i ≤ t, (41)

Ωµi(δt) = ⟨µi∣e−δTe−
∗TH0e

∗TeδT
∣HF⟩

= ⟨µi∣e−δTH
∗T
0 eδT

∣HF⟩, 1 ≤ i ≤ t. (42)

In CC theory, excitation energies are determined as eigenvalues
of the CC response eigenvalue equation,17

J Rx = ωx Rx, (43a)
Lx J = Lx ωx, (43b)
LxRy = δxy, (43c)

where Rx and Lx are right and left eigenvectors for an excited state x
and ωx is the excitation energy

ωx = Ex − E0, (44)

where Ex is the energy of excited state x. The left and right eigen-
vectors in Eq. (43) have been chosen to be biorthonormal. The Jaco-
bian J in CP theory is parameterized with the CC parent state as an
expansion point,

Jµiνj
= ⟨µi∣[e−δTH

∗T
0 eδT , θνj]∣HF⟩, i, j = 1, 2, . . . , t, (45)

where the cluster amplitudes of δT are determined from Eqs. (41)
and (42). The Hamiltonian can be partitioned into a Fock operator,
f, and a fluctuation potential operator, Φ, and H

∗T
0 in Eq. (35) can

then be expressed as

H
∗T
0 = f

∗T + Φ
∗T . (46)

In CP theory, Φ
∗T is used as the perturbation operator.1

The extended parent-state Jacobian,

Aµiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩, i, j = 1, 2, . . . , t, (47)

is a key quantity in CP theory. It appears in both a Baker-Campbell-
Hausdorff (BCH) expansion of the cluster amplitude equations in
Eqs. (41) and (42) and a BCH expansion of the Jacobian in Eq. (45).
In CP theory, the extended parent-state Jacobian is partitioned into
a zeroth-order and a first-order component,1

A = J(0) + J(1), (48)
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where

J(0)µiνj = JP
µiνj(1 − Sip)(1 − Sjp)

+ ⟨µi∣[f
∗T , θνj]∣HF⟩δµiνj SipSjp, 1 ≤ i, j ≤ t ; p < t,

(49)

J(1)µiνj = ⟨µi∣[Φ
∗T , θνj]∣HF⟩(1 − Sip)Sjp

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩Sip(1 − Sjp)

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩SipSjp, 1 ≤ i, j ≤ t ; p < t, (50)

JP
µiνj = ⟨µi∣[H

∗T
0 , θνj]∣HF⟩, 1 ≤ i, j ≤ p, (51)

and where we have introduced the integer step function Sab,

Sab = {
0, for a ≤ b
1, for a > b. (52)

JP is the CC parent state Jacobian, which constitutes the parent space
component of J(0) and contains a Φ

∗T contribution.
In CP theory, the cluster amplitude equations in Eqs. (41) and

(42) are solved order by order in Φ
∗T with the exception that JP, and

thereby J(0), is defined to be of zeroth order although it contains the
parent-state similarity-transformed fluctuation potential projected
onto the parent excitation space. It is the treatment of JP as a zeroth-
order contribution that is the key for the new order concept in CP
theory, and it is this treatment of JP that allows CP series to be deter-
mined not only for the ground-state energy but also for excitation
energies and molecular properties.

To determine the CP series for the cluster amplitudes and for
the Jacobian, we BCH expand the cluster amplitude equations in
Eq. (42) and the Jacobian in Eq. (45) and use Eqs. (46)–(51) and then
obtain

Ωµi(δt) =
t
∑
j=1
∑
νj

J(0)µiνjδtνj + ⟨µi∣Φ
∗T

∣HF⟩Sip

+
t
∑
j=1
∑
νj

J(1)µiνjδtνj +
1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩, 1 ≤ i ≤ t,
(53)

Jµiνj
= J(0)µiνj + J(1)µiνj + ⟨µi∣[[Φ

∗T ,δT], θνj]∣HF⟩

+
1
2
⟨µi∣[[[Φ

∗T ,δT],δT], θνj]∣HF⟩

+
1
6
⟨µi∣[[[[Φ

∗T ,δT],δT],δT], θνj]∣HF⟩, 1 ≤ i, j ≤ t.
(54)

A detailed derivation of Eqs. (53) and (54) can be found in Paper
II.18

From the amplitude equations in Eqs. (41) and (53), we
can determine a CP series in orders of Φ

∗T for the cluster
amplitudes,

δtµi = δt(1)µi + δt(2)µi +⋯, (55)

with a vanishing zeroth-order term.1 Substituting the cluster ampli-
tude expansion in Eq. (55) into the energy in Eq. (40) and into the
Jacobian in Eq. (54), we can determine CP series in orders of Φ

∗T for
the energy and the Jacobian,

E0 =
∗E0 +

∞

∑
n=1

E(n)0 , (56)

J = J(0) + J(1) + J(2) + . . . . (57)

A detailed derivation of the CP series in Eqs. (55) and (56) can be
found in Paper I1 and of Eq. (57) in Paper II.18

In CP theory, the electronic Schrödinger equation for the
CC target state in Eq. (39) is thus solved using projection giv-
ing the energy in Eq. (40) and the cluster amplitude equations
in Eqs. (41) and (53). The cluster amplitude equations are solved
using Φ

∗T as the perturbation operator, where J(0) in Eq. (49) is
treated as a zeroth-order term. The energy in Eq. (40) can be written
as

E0(δt) = ∗E0 + ∆E0(δt), (58)

where ∗E0 is the parent state energy in Eq. (34) and ∆E0(δt) is the
energy correction that gives the CC target state energy,

∆E0(δt) = ⟨HF∣Φ
∗T+δT

−Φ
∗T

∣HF⟩. (59)

The parent state energy ∗E0 is the zeroth-order energy and contains
a fluctuation potential contribution. ∆E0(δt) in Eq. (59) vanishes in
the absence of the perturbation since δtµi are then zero.

IV. CONVERGENCE OF THE CP ENERGY SERIES
We describe in Subsection IV A the theoretical foundation for

examining whether the CP ground-state energy series are conver-
gent or divergent and give in Subsection IV B numerical exam-
ples to illustrate the convergence of the CP ground-state energy
series.

A. Theory
We now consider the fictitious system, described in Sec. II A,

where we introduce a complex strength parameter z such that the
perturbation becomes zΦ

∗T . For the fictitious system, the electronic
Schrödinger equation can be solved for the CC target state using
projection, giving the energy and amplitude equations

E0(δt, z) = ∗E0(z) + ∆E0(δt, z), (60)

∆E0(δt, z) = z⟨HF∣Φ
∗T+δT

−Φ
∗T

∣HF⟩, (61)
Ωµi(δt, z) = 0, (62)

Ωµi(δt, z) =
t
∑
j=1
∑
νj

J(0)µiνj(z)δtνj + ⟨µi∣zΦ
∗T

∣HF⟩Sip

+ z
t
∑
j=1
∑
νj

J(1)µiνjδtνj +
1
2
⟨µi∣[[zΦ

∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[zΦ

∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[zΦ

∗T ,δT],δT],δT],δT]∣HF⟩, (63)
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where the parent-state energy and amplitudes are determined from
the equations

∗E0(z) = ⟨HF∣e−
∗TH(z)e

∗T
∣HF⟩, (64)

⟨µi∣e−
∗TH(z)e

∗T
∣HF⟩ = 0, (65)

where H(z) is given in Eq. (4). J(0) formally depends on the perturba-
tion strength z through the z dependence of the perturbation oper-
ator contribution in the CC parent-state Jacobian. However, when
the amplitude equations in Eqs. (62) and (63) are solved for δtµi , this
z dependence is treated explicitly and therefore does not need to be
considered when the perturbation expansion of δtµi is determined.
For z = 1, the amplitude equations in Eqs. (62) and (63) become the
amplitude equations for the physical system in Eqs. (41) and (53),
and for z = 0, the amplitudes δtµi vanish. For z = 1, the energy E0(δt,
z) becomes the energy in Eq. (58) of the physical system, and for
z = 0, the energy E0(δt, z) becomes ∗E0.

E0(δt, z) is an analytic algebraic function of the cluster ampli-
tudes δt and the complex strength parameter z. The amplitudes δt
depend on z, and we can therefore perform a Taylor series expansion
of E0(δt, z) with z = 0 as the expansion point,

E0(δt, z) = ∗E0 +
∞

∑
n=1

E(n)0 zn. (66)

For z = 1, Eq. (66) becomes the CP series for the ground-state energy
in Eq. (56). The Taylor series is convergent provided the derivative
of the cluster amplitude equations with respect to the cluster ampli-
tudes is non-singular inside the unit circle |z| ≤ 1.19 The derivative
becomes

Jµiνj(z) =
d

dtνj

Ωµi(δt, z) = J(0)µiνj + zJ(1)µiνj + ⟨µi∣[[zΦ
∗T ,δT], θνj]∣HF⟩

+
1
2
⟨µi∣[[[zΦ

∗T ,δT],δT], θνj]∣HF⟩

+
1
6
⟨µi∣[[[[zΦ

∗T ,δT],δT],δT], θνj]∣HF⟩, (67)

where the z-dependence of J(0) is suppressed since it is treated explic-
itly when the cluster amplitude equations are solved. For z = 1,
Eq. (67) gives the CP Jacobian for the CC target state for the physical
system in Eq. (54).

The complex Jacobian J(z) in Eq. (67) satisfies the eigenvalue
equation

J(z) Rx(z) = ωx(z) Rx(z), (68a)
Lx(z) J(z) = Lx(z) ωx(z), (68b)
Lx(z)Rx(z) = 1, (68c)

where
ωx(z) = Ex(z) − E0(z), (69)

and E0(z) is the energy of the CC target state in Eq. (60) and Ex(z)
is the energy of an excited state x for the strength parameter z.
The requirement for a convergent ground-state energy expansion is
thus that the Jacobian J(z) has no singularities inside the unit circle
|z| ≤ 1. At a singular point zc of the Jacobian, the Jacobian has a
vanishing eigenvalue,

ωx(zc
) = Ex(zc

) − E0(zc
) = 0, (70)

and we have thus determined a critical point for E0(δt, z). The
determination of critical points for the energy function E0(δt, z)
is thus equivalent to determining singularities for the Jacobian
J(z).

The search for the most important critical points for E0(z) can
be performed by searching for avoided crossings on the real axis
Re(z) for E0(Re(z)). When critical points are identified as singu-
lar points (zero eigenvalues) for the Jacobian J(z), the search for the
avoided crossings for the primary critical point on the real axis Re(z)
for E0(Re(z)) can be replaced by a search for the avoided cross-
ings on the real axis Re(z) for the smallest eigenvalue ωx(Re(z))
= Ex(Re(z)) − E0(Re(z)) of J(Re(z)).

We now sketch how intruder states can arise when searching
for avoided crossings on the real axis Re(z) for the energy function
E0(Re(z)). We will divide the search into two cases: a case where the
parent space is either empty or contains singles, i.e., p = 0 or p = 1,
and a case where p > 1.

For the first case with p = 0, Φ is the perturbation operator. The
energy for the physical ground state, E0(1), is the CP(SD. . .) energy,
and the energy for the non-interacting system is E0(0) =∑iεi, where
εi denotes the orbital energy for an occupied orbital i. For p = 1, the
singles cluster amplitudes in Eq. (33) vanish and Φ again becomes
the perturbation operator. The energy for the physical ground state,
E0(1), is the CPS(DT. . .) energy, and the energy for the unperturbed
system, E0(0), is the Hartree-Fock energy. For both p = 0 and p = 1,
the energy shift E0(1) − E0(0) is numerically large and negative. The
energy shift E0(1) − E0(0) becomes, in particular, numerically large
for electron-rich molecular systems. In Fig. 1(a), we have sketched
a cartoon where we have marked the energy for the ground-state
with a straight line that goes through E0(0) and E0(1), assuming lin-
earity for the ground-state energy as a function of z. Furthermore,
in Fig. 1(a), we have sketched a mechanism that gives a back-door
intruder and a mechanism that gives a front-door intruder. For the
mechanism that gives the back-door intruder, we consider a physical
state Ey that is highly excited and diffuse. The energy of this state is
nearly independent of the perturbation, and the energy of Ey there-
fore is nearly independent of z. Because of the large negative slope of
the ground-state energy, the diffuse excited state with energy Ey gives
rise to an avoided crossing at about z = −0.7 and thus to a back-door
intruder. In Fig. 1(b), we have displayed E0(δt, z) in the complex
plane and marked with a circle the critical point associated with the
back-door intruder. The circle has been located close to the real axis
because of the very weak interaction between the highly excited dif-
fuse state and the physical ground state. In Fig. 1(a), we have also
sketched how a front-door intruder can arise as a result of an avoided
crossing between a low lying physical state x with the energy Ex and
the physical ground state with the energy E0. Because of the strong
interaction between these two states, the point of degeneracy rep-
resenting the front-door intruder state in Fig. 1(b) is located away
from the real axis but inside the unit circle resulting in a divergent
CP series.

For p > 1, the cluster amplitudes of the CC parent state are non-
vanishing and the perturbation operator becomes Φ

∗T . The energy
E0(0) becomes the energy of the CC parent state, and E0(1) becomes
the energy of the CC target state. The energy difference E0(1)
− E0(0) is small and negative, and in Fig. 2(a), we have sketched
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FIG. 1. For a parent excitation space,
which contains at most single excita-
tions, panel (a) sketches an energy dia-
gram for a real perturbation strength
Re(z) that contains the ground-state
energy E0 and the excited-states ener-
gies Ex and Ey . The excited-state energy
Ex has an avoided crossing with the
ground-state energy E0, which gives rise
to a front-door intruder. For excited state
Ey , the avoided crossing between Ey

and E0 gives rise to a back-door intruder.
In panel (b), the cross denotes the critical
point associated with the avoided cross-
ing between E0 and Ex , whereas the crit-
ical point associated with this back-door
intruder is marked with a circle.

how a front-door intruder state can arise due to an avoided crossing
between a low lying physical excited state Ex and the physical ground
state E0. Due to the strong interaction between the low lying excited
state and the ground state, the point of degeneracy representing the
front door intruder is located away from the real axis in Fig. 2(b) but
inside the unit circle. When the p value of the parent space increases,
the front-door intruder becomes better and better described by the
CC parent state and the state giving rise to the front-door intruder
eventually moves outside the unit circle and becomes a crosser
state.

For p > 1, the avoided crossing between the ground state and
the highly diffuse excited state with energy Ey is displaced toward a
large negative z value due to the numerically small negative slope
of the ground-state energy E0, and the back-door intruder state
becomes a back-door crosser state. Back-door intruders therefore
are much less frequent for parent excitation spaces that contain

double and higher excitation levels. By increasing its diffuseness, the
excited state will become less dependent of the perturbation and the
back-door crosser state then will be displaced toward a numerically
smaller negative z value, and the back-door intruder can eventu-
ally be reintroduced. The diffuseness of the excited state can be
increased either by using a basis that contains more diffuse func-
tions or by increasing the excitation level of the target excitation
space.

Summarizing, the convergence of CP energy series is deter-
mined by states that are degenerate with the ground state in the com-
plex plane for the energy in Eq. (60). Furthermore, these states can
be determined by searching on the real axis Re(z) for avoided cross-
ings for the lowest eigenvalues of the Jacobian J(Re(z)) of Eq. (68).
The asymptotic convergence of a CP energy series is determined
by the point of degeneracy in the energy function in Eq. (60) with
the smallest distance to the origin, i.e., the primary critical point. In

FIG. 2. For a parent excitation space,
which contains at least single and double
excitations, panel (a) sketches an energy
diagram for real perturbation strength
Re(z) that contains the ground-state
energy E0 and the excited-state energy
Ex . The excited-state energy Ex has an
avoided crossing with the ground-state
energy E0 that gives rise to a front-door
intruder. In panel (b), the cross denotes
the critical point associated with the
avoided crossing between E0 and Ex .
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Subsection IV B, we give numerical examples, which show how the
asymptotic convergence of the CP energy series can be described
using the two-state model for the fictitious system, which describes
the interaction between the two states composing the avoided cross-
ing associated with the primary critical point.

B. Numerical illustrations
We now present calculations of CP ground-state energy

series to exemplify the above findings. We consider initially how
back-door intruders can arise when the excitation level of the target
excitation space is increased. We use the Ne atom in the aug-cc-
pVDZ basis20,21 as a first example and consider CP ground-state
energy series where the parent excitation space contains only sin-
gle excitations or both single and double excitations and where the
target excitation space increases to contain up to hextuple excita-
tions. The calculations were carried out with the LUCIA program22

where the generalized CC code23 has been adapted to calculate CP
ground-state and excitation energy series with general choices of the
parent and the target excitation space. In Fig. 3, we have displayed
logarithmic plots of the absolute errors of the ground-state energy
for the series CPS(D-n), CPS(DT-n), . . ., CPS(DTQ56-n), where the
errors are measured with respect to the CC target state energy. In
Fig. 4, corresponding plots are given where the singles parent excita-
tion space is replaced by a parent space containing both singles and
doubles.

The plots in Figs. 3 and 4 show a geometric progression,
which, according to Table I, is characteristic for a primary criti-
cal point, where |δ/γ| ≪ 1. The sign of the corrections alternates
as exemplified by Fig. 5, where we have plotted the signed correc-
tions for the convergent ground-state energy for the CPS(D-n) series
and for the divergent CPS(DTQ56-n) ground-state energy series,
which both exhibit an alternating pattern. Table I shows that the
geometrical progressions in Figs. 3 and 4 can be associated with a

negative gap shift and thereby with back-door intruder and crosser
states.

From Fig. 3, we see that the fastest convergence is obtained for
the CPS(D-n) series. When higher excitation levels are considered
in the target excitation space, the convergence becomes slower, and
for the CPS(DTQ5-n) series, the ground state energy series diverges.
The above trend is in accordance with the fact that the primary back-
door crosser state in the energy function in Eq. (60) for the CPS(D-n)
series shows up for a large negative z value and when the excitation
level of the target excitation space increases, the diffuseness of the
primary back-door crosser state increases and becomes more inde-
pendent of the perturbation, and the negative z value for the avoided
crossing becomes numerically smaller. For the CPS(DTQ5-n) series,
the primary back-door crosser state becomes a back-door intruder
state and the CP series diverges.

For the CPSD(T. . .) series in Fig. 4, the back-door intruder state
shows up for hextuple excitations and thus for a higher excitation
level than for the CPS(D. . .) series in Fig. 3. When increasing the
excitation level of the parent excitation space to contain doubles, the
intruder state can only have a very small doubles component and
a higher target excitation level is therefore required to get a suffi-
ciently diffuse excited state to introduce a back-door intruder. We
also see from Figs. 3 and 4 that for a given target excitation space,
the CP series converge faster for an increased excitation level of the
parent excitation space. For example, the CPS(DT) series converges
to a 10−6 a.u. accuracy at order 30, whereas for the CPSD(T) series,
the same accuracy is obtained at order 8.

We now consider CP calculations of the ground-state energy
series for BH at an internuclear distance of 3.5 a.u., i.e., about 1.5
times the equilibrium distance, using an aug-cc-pVDZ basis. The
ground-state is multiconfigurational at this distance with a weight
of 0.9 for the Hartree-Fock configuration 1σ22σ23σ2 and a large
1σ22σ24σ2 component. In Fig. 6, we have displayed logarithmic
plots of the absolute errors for the ground-state energy for the

FIG. 3. Plots of the absolute errors for the
ground-state energy for cluster perturba-
tion series with a singles parent excita-
tion space and an increasing size of the
auxiliary excitation space for Ne in the
aug-cc-pVDZ basis.
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FIG. 4. Plots of the absolute errors for the
ground-state energy for cluster perturba-
tion series with a singles and doubles
parent excitation space and an increas-
ing size of the auxiliary excitation space
for Ne in the aug-cc-pVDZ basis.

FIG. 5. Signed energy corrections for
cluster perturbation calculations for the
ground-state energy series CPS(D-n)
and CPS(DTQ56-n) for Ne in the aug-cc-
pVDZ basis.

FIG. 6. Plots of the absolute errors for
cluster perturbation calculations of the
ground-state energy for the CPS(DT-n)
and CPSD(T-n) series for BH at the inter-
nuclear distance 3.5 a.u. using the aug-
cc-pVDZ basis.
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CPS(DT-n) and CPSD(T-n) series. From Fig. 6, we see that both CP
series converge fast and the energy function in Eq. (60) therefore
has neither front-door nor back-door intruders. For FH molecule
at 1.5 of its equilibrium distance and using the aug-cc-pVDZ basis,
the CPS(DT-n) ground-state energy series diverges due to a back-
door intruder. The multiconfigurational character is about the same
for the FH and BH system. However, for the FH system, we have a
large negative energy gap between the energy of the physical state,
E0(1), and the Hartree-Fock parent state energy, E0(0), because FH
is an electron-rich molecular system. This energy gap is numerically
strongly reduced for the electron-poor BH system, and the intruder
state for the FH system therefore becomes a crosser state for the BH
system with Re(zc

) << −1.
The higher-order convergence for the CPS(DT-n) series in

Fig. 6 is systematic, and from Table I, we recognize that it has a rip-
ple pattern, for which |γ| > |δ|. For the plot of the CPS(DT-n) series
in Fig. 6, we have introduced a color scheme for the absolute energy
deviation, where a red circle indicates that the deviation is negative
and a blue star denotes a positive energy deviation. We note that
the deviations within a ripple have a constant sign. Comparing the
deviation plot for the CPS(DT-n) series in Fig. 6 with the deviation
plot for a ripple pattern with γ > 0 in Table I, the two plots show
an amazing similarity. The ripple pattern is thus due to a primary
front-door crosser state. The avoided crossing, which introduces this
primary front-door crosser state, can be associated with the avoided
crossing between the HF ground state and a singly excited state that
has a large component of the 1σ22σ24σ2 determinant. For the two
states defining the avoided crossing, we know that |γ| > |δ|, where
|δ| can be relatively large, since the interaction between these two
states is large because BH has a multiconfigurational character at the
distorted geometry.

The absolute error for the CPSD(T-n) ground-state energy is
also given in Fig. 6 and shows a geometric progression. The color
scheme for this curve shows that the energy deviations at each order
have the same sign, and from Table I, we therefore recognize that the
geometric progression is due to a primary front-door crosser state
for which |γ| ≫ |δ|. For the CPSD(T-n) ground-state energy calcula-
tion, the avoided crossing for the primary critical point arises from
the same two states that gave rise to the avoided crossing for the pri-
mary critical point for the CPS(DT-n) ground-state energy calcula-
tion. The only difference is that both the ground state and the excited
state in the CPSD(T-n) calculation now are described to high accu-
racy in the parent excitation space and that the interaction between
these two states therefore becomes very small. This means that
|γ| ≫ |δ| and therefore leads to the geometric convergence pattern
for the CPSD(T-n) series.

V. CONVERGENCE OF CP EXCITATION
ENERGY SERIES

We describe in Subsection V A the theoretical foundation for
examining the convergence of CP excitation energy series and give
in Subsection V B numerical examples to illustrate the convergence
of the CP series.

A. Theory
The Jacobian for the physical system in Eq. (57) is expanded

in orders of the perturbation Φ
∗T . The excitation energy ωx and the

right eigenvector Rx of the Jacobian eigenvalue equation in Eq. (43)
can also be expanded in the orders of the perturbation,

ωx = ω(0)x + ω(1)x + ω(2)x +⋯, (71)

Rx = R(0)x + R(1)x + R(2)x +⋯, (72)

and the CP perturbation series in Eqs. (71) and (72) can be deter-
mined by substituting Eqs. (53), (71), and (72) in Eq. (43) and solving
Eq. (43) order by order in Φ

∗T , assuming that Rx is intermediate
normalized against L(0)x . The zeroth-order equation reads

J(0) R(0)x = ω(0)x R(0)x , (73a)

L(0)x J(0) = L(0)x ω(0)x , (73b)

L(0)x R(0)x = 1, (73c)

where J(0) is given in Eq. (49). In a two-component form, referencing
the parent (P) and auxiliary (A) excitation space components, we can
write Eq. (73a) as

(
JP 0
0 εA

)(
RP

x
0 ) = ω p

x (
RP

x
0 ), (74)

where εA is a diagonal matrix containing orbital energy differences.
To obtain Eq. (74), we have used the CC parent state Jacobian
eigenvalue equation,

JP RP
x = ω

P
x RP

x , (75a)

LP
x JP

= LP
x ω

P
x , (75b)

LP
xR

P
x = 1. (75c)

In zeroth order, we therefore have

ω(0)x = ω p
x , (76)

R(0)x = (
RP

x
0 ), (77)

L(0)x = (LP
x 0). (78)

The CP series for the excitation energy ωx in Eq. (71) is determined
in Paper II.18

For the fictitious system, the Jacobian J(z) in Eq. (67) can be
expanded in orders of the perturbation zΦ

∗T and becomes

J(z) = J(0) + zJ(1) + z2J(2) + . . . . (79)

For z = 0, the Jacobian eigenvalue equation in Eq. (68) becomes
the zeroth-order eigenvalue equation described by Eqs. (73)–(78),
and for z = 1, the Jacobian eigenvalue equation in Eq. (68)
becomes the Jacobian eigenvalue equation for the physical system
in Eq. (43).

Let us assume that the Jacobian has no singularities inside the
unit circle and that the CP expansion of δt in Eq. (55) therefore con-
verges. ωx(z) in Eq. (68) is then an analytic algebraic function in
the complex plane of z and the eigenvector Rx(z). The eigenvalue
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FIG. 7. Panel (a) sketches an energy dia-
gram where excitation energies that are
obtained by solving the Jacobian eigen-
value equation in Eq. (68) for real per-
turbation strength Re(z) are plotted as
a function of z. The excitation energies
are plotted relatively to the ground-state
energy E0(z) = 0. Panel (a) shows an
avoided crossing between ωy and ωx

which introduces a front-door intruder for
ωx . In panel (b), the critical point associ-
ated with the avoided crossing is marked
with a cross.

ωx(z) can be expanded in orders of z with z = 0 as the expansion
point,

ωx(z) = ωP
x +

∞

∑
n=1

w
(n)
x zn, (80)

where ωP
x is an eigenvalue of JP. For z = 1, Eq. (80) gives the

CP expansion of the excitation energy in Eq. (71). The addi-
tional requirement for obtaining a convergent CP excitation energy
expansion is therefore that there are no degeneracies of ωx(z) inside
the unit circle |z| ≤ 1 and that ωx(z) therefore differs from the other
excitation energies ωy(z) inside the unit circle.

The search for degeneracies in the complex plane for ωx(z)
can in practice be performed searching for avoided crossings on
the real axis Re(z) for J(Re(z)). Solving the Jacobian eigenvalue

problem for Re(z) is equivalent to determining the eigenvalues
for the Hamiltonian matrix, but using an energy scale where the
ground-state energy is subtracted, since the Jacobian eigenvalue
equation can be obtained from the EOM-CC eigenvalue equation
by subtracting the ground-state energy on the diagonal and remov-
ing the ground-state dimension.15 For z = 0, J(0) gives the parent
state excitation energies, and for z = 1, J(1) gives the excitation
energies of the physical system. The two-state model is for exci-
tation energies obtained by carrying out a search for an avoided
crossing between ωx and another excitation energy ωy and setting
up the Jacobian eigenvalue equation for the fictitious system in
the basis defined by the avoided crossing. We now consider the
determination of the avoided crossing for ωx and ωy. Figure 7(a)
depicts an energy diagram, where excitation energies for ωx and

FIG. 8. Panel (a) sketches an energy dia-
gram where excitation energies that are
obtained by solving the Jacobian eigen-
value equation in Eq. (68) for real per-
turbation strength Re(z) are plotted as
a function of z. The excitation energies
are plotted relatively to the ground-state
energy E0(z) = 0. Panel (a) shows an
avoided crossing between ωy and ωx

which introduces a back-door intruder for
ωx . In panel (b), the critical point associ-
ated with the avoided crossing is marked
with a cross.
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FIG. 9. Absolute deviations from the tar-
get CCSD values for excitation energies
(eV) of the two lowest-lying 1Π states
of the CO molecule, calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis using a bond distance of
1.129 Å.

ωy are added to the ground-state reference energy E0(z) = 0.
Figure 7(a) sketches how an avoided crossing can lead to a front-
door intruder between ωx and ωy. In Fig. 7(b), we have used a
cross to mark the point of degeneracy in the complex plane that
is associated with the avoided crossing for the excitation energy
ωx(Rx, z),

ωx(zc
) = ωy(zc

) = ωxy. (81)

For the avoided crossing, we have a large interaction between
the two states and the primary critical point in Fig. 7(b) there-
fore has been given a larger imaginary component. We have

also in Fig. 7(a) displayed the excitation energies for two other
states, ωv and ωw . For these excitation energies, there is no
point of degeneracies inside the unit circle. The point of degen-
eracy ωxy for ωx(zc) and ωy(zc) thus does not affect whether
the excitation energy series for ωv and ωw are convergent or
divergent.

Figure 8(a) depicts an excitation energy diagram for excitation
energy ωx and ωy, which leads to a back-door intruder. In contrast
to Fig. 7(a), the degeneracy in the excitation energy is now due to a
non-physical interaction as the strength parameter z has a negative
sign.

FIG. 10. Absolute deviations from the tar-
get CCSD values for excitation energies
(eV) of the four lowest-lying 1Σ+ states
of the CO molecule, calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis and a bond distance of
1.129 Å.
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In Figs. 7(a) and 8(a), the excitation ωy introduces a front-door
and a back-door intruder, respectively, in ωx(Rx, z),

ωx(zc
) = ωy(zc

) = ωxy. (82)

The excitation energy ωx will similarly give rise to a front-door and
a back-door intruder in ωy(Ry, z). The excitations composing the
avoided crossing therefore are the same for ωx(z) and for ωy(z),
and the two-state model therefore becomes identical for ωx(z) and
ωy(z). This happens independently of whether the primary critical
point is associated with an intruder or a crosser excitation. The target
excitation energy for excitation x can be written as

ωT
x =

k
∑
j=0
ω(j)x +

∞

∑
j=k+1

ω(j)x = ωxk +
∞

∑
j=k+1

ω(j)x , (83)

where

ωxk =
k
∑
j=0
ω(j)x . (84)

Adding the target excitation energies for excitation x and y gives

ωT
x + ωT

y = ωxk + ωyk +
∞

∑
j=k+1

(ω(j)x + ω(j)y ). (85)

For the two-state model,9 we have for excitations x and y, in
accordance with Eq. (28), that

TWOω(k)x = −
TWOω(k)y . (86)

Assuming that the two-state model can be applied to ωT
x and ωT

y
starting from order k + 1, we have

TWOω(j)x = −
TWOω(j)y = ω(j)x = −ω(j)y , j ≥ k + 1, (87)

and Eq. (85) then becomes

ωT
x + ωT

y = ωxk + ωyk. (88)

Thus, even if the perturbation series for ωT
x and ωT

y are divergent,
their sum for order k and larger will be equal to the sum of the
two target excitation energies. In Subsection V B, we give numer-
ical examples of excitation energies where we show that Eqs. (87)
and (88) are satisfied to higher and higher accuracy when the order
of the perturbation series increases, and this is also for divergent CP
excitation energy series.

The CC parent and target state Jacobian JP and J in Eqs. (75)
and (43), respectively, and the perturbation scaled Jacobian J(z) of
Eq. (68) are non-Hermitian, and we can therefore not guarantee that
the Jacobian eigenvalue equations can be solved giving real eigen-
values and thus real excitation energies for truncated target exci-
tation spaces. However, for the calculation of excitation energies
for CC target states truncated at a given excitation level, the non-
Hermiticity of the Jacobian have caused no problems with respect to
obtaining real excitation energies and we will not discuss this issue
in any further detail.

B. Numerical illustrations
To illustrate the above findings, we report CPS(D-n) calcu-

lations of the lowest excitation energies of 1Π and 1Σ+ symme-
try for CO at the internuclear distance RCO = 1.129 Å, using the

TABLE II. Excitation energy calculated through order k, ωk = ω(0) + ω(1) +⋯ + ω(k ),
for the two lowest 1Σ+ states of CO molecule in aug-cc-pVDZ basis using a bond
distance of 1.129 Å. Corrections at a given order, ω(k ), and the sum of excitation
energies for both states at a given order, ωk (B1Σ+) + ωk (C1Σ+), are also reported.
Note that ω(0) = ωCCS, ω(1) = 0, and ω2 = ωCIS(D). All results in eV.

B1Σ+ C1Σ+

k ω(k) ωk ω(k) ωk ωk(B1Σ+) + ωk(C1Σ+)

0 12.347 12.347 12.799 12.799 25.146
1 0.000 12.347 0.000 12.799 25.146
2 −0.898 11.448 −1.182 11.618 23.066
3 −0.131 11.317 −0.193 11.425 22.742
4 −0.110 11.208 0.189 11.614 22.821
5 0.032 11.239 0.064 11.677 22.917
6 −0.124 11.115 0.063 11.740 22.855
7 0.013 11.128 0.051 11.790 22.918
8 −0.056 11.072 −0.028 11.763 22.834
9 0.027 11.099 0.050 11.813 22.911
10 0.009 11.108 −0.086 11.727 22.834
11 0.051 11.159 0.022 11.749 22.908
12 0.020 11.179 −0.089 11.660 22.839
13 0.067 11.246 −0.004 11.656 22.902
14 −0.021 11.225 −0.037 11.619 22.844
15 0.053 11.279 −0.001 11.619 22.897
16 −0.073 11.205 0.026 11.644 22.849
17 0.007 11.212 0.036 11.680 22.892
18 −0.084 11.128 0.047 11.726 22.854
19 −0.037 11.092 0.069 11.796 22.887
20 −0.036 11.056 0.007 11.803 22.859
21 −0.027 11.029 0.051 11.854 22.883
22 0.037 11.067 −0.058 11.796 22.862
23 0.043 11.110 −0.026 11.770 22.880
24 0.072 11.182 −0.087 11.684 22.865
25 0.110 11.292 −0.098 11.585 22.877
26 0.032 11.324 −0.042 11.544 22.868
27 0.083 11.407 −0.075 11.469 22.875
28 −0.058 11.349 0.052 11.521 22.870
29 −0.056 11.293 0.059 11.580 22.873
30 −0.122 11.172 0.119 11.699 22.871
31 −0.189 10.983 0.190 11.889 22.872
32 −0.090 10.894 0.089 11.978 22.872
33 −0.147 10.747 0.146 12.125 22.871
34 0.041 10.788 −0.040 12.085 22.873
35 0.106 10.894 −0.108 11.977 22.871
36 0.185 11.078 −0.183 11.795 22.873
37 0.358 11.437 −0.361 11.434 22.871
38 0.207 11.643 −0.204 11.230 22.873
39 0.291 11.934 −0.293 10.937 22.871
40 0.021 11.955 −0.019 10.918 22.873
41 −0.182 11.773 0.179 11.097 22.871

aug-cc-pVDZ basis. The CPS(D-n) excitation energy corrections
through an arbitrary order have been implemented using Psithon—a
Python interface to the PSI4 program24—and employing the Numer-
ical Python Library (Numpy).25 In Fig. 9, the absolute deviations
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are plotted for the two lowest excitations of 1Π symmetry (A1Π,
E1Π), and in Fig. 10, the absolute deviations are given for the
four lowest excitations of 1Σ+ symmetry (B1Σ+, C1Σ+, F1Σ+, 41Σ+).
From the figures, we see that for both the 1Π and the 1Σ+ exci-
tations, the lowest-order corrections give a good estimate of the
total excitation energy correction, which improves during the initial
iterations.

In Paper III,26 we have benchmarked excitation energy correc-
tions for the CPS(D-2) and CPS(D-3) models, recalling that the first-
order excitation energy correction vanishes. For single-replacement
dominated excitations the maximum and mean absolute errors
(∆max, ∆abs), obtained by comparison with CCSD excitation ener-
gies, are (0.96 eV, 0.30 eV) for CPS(D-2) and (0.14 eV, 0.07 eV) for
CPS(D-3). The errors for 1Π and 1Σ+ excitation energies are in line
with the benchmark results. The CPS(D-3) model can therefore be
used to get excitation energies of CCSD quality, in the sense that the
difference between CPS(D-3) and CCSD excitation energies is of the
same size or smaller than the effect of adding triples corrections to
CCSD excitation energies.26 Note that the CPS(D-2) model is identi-
cal to the configuration-interaction singles with a doubles correction
[CIS(D)] model of Head-Gordon et al.27

We now consider the higher-order convergence of the excita-
tion energies and start with the excitations of 1Π symmetry. After
a monotonically convergent trend for initial orders, the A1Π exci-
tation shows a zig-zag pattern from orders 5-11 followed by a geo-
metric convergence pattern. The excitation energy corrections have
alternating sign, and according to Table I, the geometric progres-
sion therefore can be assigned to a back-door diffuse crosser state,
where the distance of the critical point from the origin is large since
the convergence for the geometric progression is fast. For the E1Π
excitation, the convergence shows a ripple pattern with a period of
about 30. Furthermore, the signs of the corrections within a ripple
alternate, and according to Table I, the convergence pattern for the

E1Π excitation can be assigned to a negative gap shift. Furthermore,
as the period of the ripple is large, the size of the gap shift is much
larger than the coupling.

Comparing the higher order convergence for the A 1Π and
E 1Π excitations, we see from the curvature of the geometric conver-
gence for the A 1Π excitation that the convergence pattern actually
is a ripple structure with a period that is larger than the period for
the E 1Π excitation. The ripple structure is due to an avoided cross-
ing between the A 1Π excitation and a diffuse highly excited state
probably the same diffuse excited state that gave rise to the backdoor
ripple structure for the E 1Π excitation and with an avoided crossing
located at a larger distance from the origin than the avoided crossing
for the E 1Π excitation.

We now consider the higher order convergence of the excita-
tions of 1Σ+ symmetry given in Fig. 10. After a converging trend
for the first 3-4 orders, we see in Fig. 10 some orders with fluc-
tuations in the excitation energy corrections. For the excitation
pair (B1Σ+, C1Σ+), divergent ripple patterns of period 6 start at
order 18, where the ripples are similar in the first period and
become nearly identical in the later periods. For the excitation
pair (F1Σ+, 41Σ+), similar divergent ripple patterns start at order
11 with a period 10, and also for this pair, the patterns are simi-
lar and become nearly identical after the first period. According to
the two-state model, ripple patterns are due to a significant cou-
pling with intruder and crosser states, where the numerical value
of the gap shift is larger than the interaction, i.e., |δ/γ| < 1 (see
Table I).

To get a more detailed understanding of the divergence behav-
ior for the two excitation pairs, we consider initially the exci-
tation pair (B1Σ+, C1Σ+). At the coupled-cluster singles (CCS)
level, the excitation energy to the B1Σ+ state is 12.34 eV and
the excitation vector has two dominant components: (5σ → 6σ)
and (5σ → 7σ) with about equal weight. For the C1Σ+ state, the

FIG. 11. Excitation energy corrections,
ω(k ) (eV), for the B1Σ+ and C1Σ+ states
of the CO molecule calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis using a bond distance
of 1.129 Å. The horizontal line, where
the excitation energy is zero, is a mir-
ror plane for the higher-order excitation
energy corrections.
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CCS excitation energy is 12.80 eV and the excitation is described
by the same two dominant excitations as for the B1Σ+ state.
At the CCSD level, the two excitations are separated, with the
B1Σ+ state having a CCSD excitation energy of 11.17 eV and
the (5σ → 7σ) excitation as the dominant configuration, while
the C1Σ+ state has an excitation energy of 11.71 eV and the
(5σ → 6σ) excitation as the dominant configuration. This leads
to an avoided crossing with a front-door intruder for ωB(z) and
ωC(z).

In Table II, convergence characteristics are given for the B1Σ+

and the C1Σ+ state through order 40. The two-state model predicts
that the excitation energy corrections for the two states assigned
to an avoided crossing become equal and of opposite sign. From
Table II and Fig. 11, we see that the excitation energy corrections
for the B1Σ+ and the C1Σ+ states for increasing orders become equal
and have opposite sign. Furthermore, the two-state model also pre-
dicts that for a front-door intruder and the associated positive gap
shift, the sign of the excitation energy corrections within a ripple is
the same and that the sign changes when going from one ripple to
the next. From Table II and Fig. 11, we see, as predicted, that the sign
of the excitation energy corrections for higher orders changes with
the period of 6 of the ripples.

Assuming that CP excitation energy series can be described
asymptotically by the two-state model, the sum of the exci-
tation energies ωk(B1Σ+) + ωk(C1Σ+) in the last column of
Table II will converge toward the sum of the CCSD excitation
energies,

ωCCSD
B + ωCCSD

C = 22.88 eV.

This sum is clearly approached for increasing k in the last col-
umn of Table II. The deviation of ωk(B1Σ+) + ωk(C1Σ+) from
22.88 eV for increasing k gives an indication when the asymptotic
region is reached and shows that this happens at about order 20,
where the ripples pattern in Fig. 10 for the two states becomes
identical and where the excitation energy corrections for the B1Σ+

and the C1Σ+ state in Fig. 11 become mirror images of each
other.

Although the divergence pattern for the (B1Σ+, C1Σ+) and the
(F1Σ+, 41Σ+) pairs looks similar, their origin differs. The divergence
for the (B1Σ+, C1Σ+) pair is due to an avoided crossing between the
B1Σ+ and C1Σ+ excitations that introduces a front-door intruder
state, whereas the divergence for the (F1Σ+, 41Σ+) pair is due to
a back-door intruder. To confirm that this is the case, we report
in Table III convergence characteristics for the (F1Σ+, 41Σ+) exci-
tation pair. The two-state model for a back door intruder pre-
dicts that the excitation energy corrections alternate within a ripple
and that two corrections with the same sign occur at the border
between two consecutive ripples. From Table III, we also see that
for orders 12 and 13, the excitation energy corrections for both
the F1Σ+ and the 41Σ+ state have the same sign and are followed
by 7 orders with an alternating sign, 2 orders with the same sign,
8 orders with an alternating sign, 2 orders with the same sign,
and so on. This is precisely what the two-state model predicts for
a back-door intruder state with a small interaction between the
states. In Fig. 12, we have plotted excitation energy corrections for
the F1Σ+ and the 41Σ+ excitations. For orders larger than 10, the
excitation energy corrections become mirror images and display the

TABLE III. Excitation energy calculated through order k, ωk = ω(0) + ω(1) +⋯ + ω(k ),
for the F1Σ+ and 41Σ+ states of CO molecule in aug-cc-pVDZ basis using a bond
distance of 1.129 Å. Corrections at a given order, ω(k ), and the sum of excitation
energies for both states at a given order, ωk (F1Σ+) + ωk (41Σ+), are also reported.
Note that ω(0) = ωCCS, ω(1) = 0, and ω2 = ωCIS(D). All results in eV.

F1Σ+ 41Σ+

k ω(k) ωk ω(k) ωk ωk(F1Σ+) + ωk(41Σ+)

0 15.967 15.967 16.524 16.524 32.491
1 0.000 15.967 0.000 16.524 32.491
2 −1.416 14.551 −1.745 14.779 29.330
3 0.207 14.758 0.309 15.089 29.846
4 0.054 14.812 −0.083 15.006 29.817
5 0.130 14.942 0.069 15.075 30.016
6 −0.258 14.683 0.178 15.253 29.936
7 0.120 14.803 −0.158 15.095 29.898
8 −0.215 14.588 0.251 15.346 29.933
9 0.201 14.788 −0.239 15.106 29.895
10 −0.195 14.593 0.231 15.338 29.931
11 0.136 14.729 −0.151 15.187 29.916
12 −0.051 14.678 0.052 15.239 29.917
13 −0.039 14.640 0.051 15.290 29.930
14 0.199 14.839 −0.228 15.062 29.901
15 −0.337 14.502 0.377 15.439 29.941
16 0.527 15.028 −0.575 14.864 29.892
17 −0.656 14.372 0.710 15.574 29.946
18 0.777 15.149 −0.832 14.742 29.891
19 −0.792 14.357 0.843 15.585 29.942
20 0.681 15.038 −0.724 14.861 29.898
21 −0.401 14.637 0.434 15.295 29.932
22 −0.115 14.522 0.094 15.389 29.911
23 0.837 15.359 −0.830 14.559 29.918
24 −1.818 13.541 1.823 16.383 29.923
25 2.925 16.466 −2.941 13.442 29.908
26 −4.091 12.375 4.114 17.556 29.930
27 5.057 17.432 −5.083 12.473 29.905
28 −5.558 11.874 5.583 18.056 29.930
29 5.218 17.091 −5.238 12.818 29.910
30 −3.603 13.488 3.615 16.434 29.922
31 0.356 13.844 −0.358 16.076 29.920
32 4.875 18.719 −4.884 11.192 29.911
33 −12.089 6.630 12.109 23.300 29.930
34 21.025 27.655 −21.054 2.246 29.901
35 −30.757 −3.102 30.793 33.039 29.937
36 39.740 36.638 −39.780 −6.740 29.898
37 −45.579 −8.940 45.618 38.877 29.937
38 45.087 36.147 −45.122 −6.245 29.902
39 −34.534 1.613 34.561 28.316 29.929
40 9.951 11.563 −9.967 18.349 29.912
41 31.900 43.463 −31.895 −13.546 29.917

alternating trend described above. Comparing the higher-order con-
vergence for the (B1Σ+, C1Σ+) and the (F1Σ+, 41Σ+) pairs, we fur-
ther observe that while the asymptotic convergence for the (B1Σ+,
C1Σ+) pair starts around order 20, for the (F1Σ+, 41Σ+) pair, it
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FIG. 12. Excitation energy corrections,
ω(k ) (eV), for the F1Σ+ and 41Σ+ states
of the CO molecule calculated using
CPS(D-n) series through order 40 in aug-
cc-pVDZ basis using a bond distance
of 1.129 Å. The horizontal line, where
the excitation energy is zero, is a mir-
ror plane for the higher-order excitation
energy corrections.

starts at around order 10. We also note that the ripples for the rip-
ple pattern for the (F1Σ+, 41Σ+) pair is right-tilted as this pattern
is connected to a fast convergent perturbation series, whereas the
ripple pattern for the B1Σ+ and C1Σ+ states is a protracted pat-
tern with ripples that are nearly symmetric since the ripple pat-
terns in these cases are connected to a slowly divergent perturbation
series.

The sum of the CCSD excitation energy for the F1Σ+ and the
41Σ+ state is

ωCCSD
F + ωCCSD

4 = 29.92 eV.

This sum is clearly obtained at about order 10 in the last column
of Table III and maintained at the consecutive orders, despite the
excitation energy corrections becoming larger than the total excita-
tion energies and the calculated excitation energies at some orders
becoming negative.

For the (B1Σ+, C1Σ+) and (F1Σ+, 41Σ+) excitation pairs, a front-
and a back-door intruder state, respectively, gave rise to the diver-
gent pairs of ripple pattern. For the perturbation series reported in
Paper II,18 we have also seen examples of excitation pairs where the
intruder state for the excitation pair is replaced with a crosser state
and where the overlaying divergent ripple patterns for the excitation
pair therefore become replaced with overlaying convergent ripple
patterns.

The above development shows that the asymptotic convergence
of the excitation energy series can be reproduced by the two-state
model. In fact, if the convergence/divergence behavior of the exci-
tation energy series is examined in detail and through high enough
order, we expect that the asymptotic convergence patterns and the
convergence rate of the series will be dictated by a two-state problem,
except for pathological cases.

VI. CONVERGENCE OF CP SERIES
FOR MOLECULAR PROPERTIES

We now consider the convergence of CP series for molec-
ular properties. In Subsection VI A, we consider the conver-
gence of the CP series for first order molecular properties, and in
Subsection VI B, the convergence is considered for molecular prop-
erties that can be described by the linear response function. Subsec-
tion VI C gives examples of the convergence of CP series for the
various molecular properties.

A. First-order molecular properties
The first-order molecular property for an operator X and a CC

target state can be written as17

⟨⟨X⟩⟩0 = ⟨HF∣XT
∣HF⟩ +

t
∑
i=1
∑
µi

tµi⟨µi∣XT
∣HF⟩. (89)

The cluster amplitudes satisfy the cluster amplitude equations,

⟨µi∣HT
0 ∣HF⟩ = 0, i = 1, 2, . . . , t, (90)

and the multipliers tµi satisfy the multiplier equation,

t J = −η, (91)

where the right-hand side is given by

ηµi = ⟨HF∣HT
0 ∣µi⟩, (92)

and the elements of the Jacobian matrix for the CC target state, J,
read

Jµiνj
= ⟨µi∣[HT

0 , θνj]∣HF⟩, i, j = 1, 2, . . . , t. (93)
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In CP theory, the CC target state is parameterized with the
CC parent state as an expansion point. This implies that the
similarity-transformed operators OT in Eqs. (89)–(93) are replaced
by e−δTO

∗TeδT . For example, the Jacobian in Eq. (93) becomes the
Jacobian in Eq. (45), and the amplitude equations in Eq. (90) become
the amplitude equations in Eqs. (41) and (42). The cluster ampli-
tudes δt and the multipliers t can be expanded in orders of Φ

∗T ,
and CP series can be determined for these parameters. The CP series
for δt is given in Eq. (55), and the CP series for the multipliers
becomes

tµi = t(1)µi + t(2)µi +⋯, (94)

with a vanishing zeroth-order term. Substituting these expansions
into the first-order molecular property expression in Eq. (89), we
obtain a CP series for the first-order molecular property,

⟨⟨X⟩⟩0 = ⟨⟨X⟩⟩
P
0 + ⟨⟨X⟩⟩

(1)
0 + ⟨⟨X⟩⟩

(2)
0 + . . . , (95)

where ⟨⟨X⟩⟩
P
0 is the first-order molecular property for the CC parent

state and ⟨⟨X⟩⟩
(k)
0 is the kth-order term.

We now consider the fictitious system where the complex
strength parameter z is multiplied on the perturbation Φ

∗T . The
first-order molecular property ⟨⟨X⟩⟩0(z) becomes an analytic func-
tion of z, δt(z), and t(z) in the complex plane. For z = 0, ⟨⟨X⟩⟩0(z)
becomes the first-order molecular property for the CC parent state
⟨⟨X⟩⟩

P
0 , and for z = 1, ⟨⟨X⟩⟩0(z) becomes the first-order molecular

property for the physical system given in Eq. (89). ⟨⟨X⟩⟩0(z) can be
expanded with z = 0 as expansion point, giving

⟨⟨X⟩⟩0(z) = ⟨⟨X⟩⟩
P
0 +

∞

∑
n=1

zn
((X))

(n)
0 . (96)

For z = 1, Eq. (96) gives the CP series in Eq. (95). For the CP series
to be convergent, we must require that the CP series for the clus-
ter amplitudes converge and therefore that the Jacobian J(z) has
no singularities in the complex plane inside the unit circle |z| ≤ 1.
Furthermore, the first-order molecular property ⟨⟨X⟩⟩0(z) for the
fictitious system must not have any singularities inside the unit cir-
cle. The singularities of ⟨⟨X⟩⟩0(z) enter through the singularities in
the z dependence of the multipliers t(z) which in turn require that
J(z) has no singularities inside the unit circle |z| ≤ 1. This condition
is equivalent to the condition for having a convergent CP series for
the cluster amplitudes.

When ⟨⟨X⟩⟩
(1)
0 in Eq. (95) is evaluated, it contains terms that

are linear in δt(1) and t(1), whereas the terms that are bi-linear in
δt(1) and t(1) enter in second order. When evaluating ⟨⟨X⟩⟩

(1)
0 , the

leading-order computational scaling arises from the determination
of δt(1) and t(1). The terms that are bi-linear in δt(1) and t(1) can
be calculated without any extra cost when the ⟨⟨X⟩⟩

(1)
0 is evalu-

ated, and it therefore becomes attractive to restructure the series
in Eq. (95) by introducing a generalized order concept where the
term bi-linear in δt(1) and t(1) is accounted for as a first-order
contribution. To implement this generalized order concept for an
arbitrary order k, we introduce the total kth-order amplitudes and
multipliers,

kδt = δt(1) + δt(2) +⋯ + δt(k), (97)
kt = t(1) + t(2) +⋯ + t(k), (98)

and evaluate ⟨⟨X⟩⟩0 through kth order using these total amplitudes
and multipliers,

k
⟨⟨X⟩⟩0 = ⟨HF∣ kX

∗T
∣HF⟩ +

t
∑
i=1
∑
µi

ktµi⟨µi∣
kX

∗T
∣HF⟩, (99)

where

kX
∗T

= X
∗T + [X

∗T , kδT] +
1
2
[[X

∗T , kδT], kδT] (100)

and
kδT =∑

µi

kδtµiθµi . (101)

Note that, formally,

lim
k→∞

k
⟨⟨X⟩⟩0 = ⟨⟨X⟩⟩0. (102)

The leading-order computational scaling for evaluating k
⟨⟨X⟩⟩0

arises from the determination of δt(k) and t(k), as for ⟨⟨X⟩⟩
(k)
0 .

The major difference between evaluating ⟨⟨X⟩⟩0 using the series
in Eq. (95) and the one defined by Eq. (99) is that using Eq. (95),
contributions are evaluated strictly of order k. By contrast, when
Eq. (99) is used, the total contribution through order k is evaluated,
but Eq. (99) in addition also contains all higher-order contributions
that can be generated using the amplitude and multiplier corrections
through order k. When the series in Eq. (95) is convergent, the series
defined by Eq. (99) will also be convergent as the series in Eq. (99)
results from a simple restructuring of the terms in the series in
Eq. (95).

B. The linear response function
For the operator-frequency pairs (X, ωX) and (Y, ωY ), the linear

response function for a CC target state can be written as17

⟨⟨X; Y⟩⟩ωY =
1
2

C±ωY PXY
ωXωY (η

XtY
(ωY) +

1
2
(tX

(ωX))
T
FtY

(ωY)),

ωX + ωY = 0,
(103)

where
ηX
µi = ⟨HF∣XT

∣µi⟩ +∑
j
∑
νj

tνj⟨νj∣[XT , θµi]∣HF⟩, (104)

Fµiνj = ⟨HF∣[[Φ, θµi], θνj]∣HF⟩δi1δj1

+∑
m
∑
λm

tλm⟨λm∣[[ΦT , θµi], θνj]∣HF⟩. (105)

PXY
ωXωY is the (operator, frequency) pair permutation operator, and

C±ω is the frequency permutation operator. The cluster amplitudes
satisfy the cluster amplitude equation in Eq. (90), and the multi-
pliers satisfy Eq. (91). The first-order frequency dependent ampli-
tude responses tY (ωY ) are determined from the response amplitude
equations,

(J − ωXI)tX
(ωX) = −ξX , (106)
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where the right-hand side is given by

ξX
µi = ⟨µi∣XT

∣HF⟩. (107)

In CP theory, the CC target state is parameterized with the CC
parent state as an expansion point and the similarity-transformed
operators OT in Eqs. (103)–(107) therefore have to be replaced by
e−δTO

∗TeδT as described in Subsection VI A. The cluster ampli-
tudes δt, the multipliers t, and the response amplitudes tX(ωX) can
be expanded in orders of Φ

∗T , and CP series can be determined
for these parameters. The CP series for δt is given in Eq. (55) and
for t in Eq. (94). The CP perturbation series for tX(ωX) is derived
in Ref. 28. Substituting these expansions into the linear response
function, we can determine a CP series for the linear response
function,

⟨⟨X; Y⟩⟩ωY = ⟨⟨X; Y⟩⟩
P
ωY +

∞

∑
n=1

⟨⟨X; Y⟩⟩
(n)
ωY , (108)

where ⟨⟨X; Y⟩⟩
P
ωY is the linear response function for the CC parent

state.28

We now consider the fictitious system where the complex
strength parameter z is multiplied on the perturbation Φ

∗T . The
linear response function for the fictitious system ⟨⟨X; Y⟩⟩ωY (z)
becomes an analytic function of z in the complex plane that depends
on δt, t and tX(ωX) and can be expanded with z = 0 as an expansion
point, giving

⟨⟨X; Y⟩⟩ωY (z) = ⟨⟨X; Y⟩⟩
P
ωY +

∞

∑
n=1

zn
((X; Y))

(n)
ωY

(z). (109)

For z = 1, Eq. (109) gives the CP series for the linear response func-
tion in Eq. (108). For the CP series in Eq. (108) to converge, the
CP series for the cluster amplitudes must converge implying that
the Jacobian J(z) has no singularity in the complex plane inside
the unit circle |z| ≤ 1. Furthermore, ⟨⟨X; Y⟩⟩ωY (z) must not have

singularities in the complex plane inside the unit circle |z| ≤ 1. The
singularities of ⟨⟨X; Y⟩⟩ωY (z) enter through singularities in z depen-
dence of the multipliers t and the response amplitudes tY (ωY ). For
the multipliers, we must require that J(z) has no singularities inside
the unit circle |z| ≤ 1. This condition is equivalent to the condition
for having a convergent series for the cluster amplitudes. For the
response amplitudes, we must also require that J(z) − ωYI has no
singularities inside the unit circle |z| ≤ 1. This condition restricts
the number of convergent expansions of the linear response func-
tion, in particular when ωY is close to an eigenvalue ωx of the
Jacobian J.

When ⟨⟨X; Y⟩⟩
(k)
ωY is evaluated, it requires the amplitudes and

multipliers, δt(k), t(k), and tX(k)
(ωX). The leading-order computa-

tional scaling for evaluating ⟨⟨X; Y⟩⟩
(k)
ωY arises from the evaluation

of δt(k), t(k) and tX(k)
(ωX). As for the evaluation of ⟨⟨X⟩⟩

(k)
0 , it

becomes attractive to introduce a generalized order concept, where
the order k embraces all the terms that can be determined from the
amplitude, multiplier, and response vector corrections, δt(p), t(p),
and tX(p)

(ωX), where p = 0, 1, . . ., k. We denote the kth-order
term in this series as k

⟨⟨X; Y⟩⟩ωY . In practice, the evaluation of this
kth-order term requires that we introduce

ktX
(ωX) = tX(1)

(ωX) + tX(2)
(ωX) +⋯ + tX(k)

(ωX) (110)

in addition to kδt and kt of Eqs. (97) and (98), respectively. Using
these total kth-order amplitudes and multipliers, k

⟨⟨X; Y⟩⟩ωY can
be evaluated from Eq. (103) in the same way k

⟨⟨X⟩⟩0 was evalu-
ated from Eq. (89) in Eq. (99). In Ref. 28, details are given on how
k
⟨⟨X; Y⟩⟩ωY is determined. When the series in Eq. (108) is conver-

gent, the k
⟨⟨X; Y⟩⟩ωY series will also be convergent as the k

⟨⟨X; Y⟩⟩ωY

series results from a simple restructuring of the terms in the series in
Eq. (108).

FIG. 13. Absolute CPS(D) errors (in
atomic units), as compared to tar-
get CCSD values, for the ground-state
energy, E0, Σ component of the perma-
nent dipole moment, ⟨Σ⟩0, and Σ com-
ponent of the static dipole polarizability,
⟨⟨Σ; Σ⟩⟩0, calculated through a given
order for the CO molecule in aug-cc-
pVDZ basis using a bond distance of
1.129 Å.
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C. Numerical illustrations of convergence
of CP series for molecular properties

As an illustration of the convergence requirements for CP
series for molecular properties, we consider calculations on CO
for RCO = 1.129 Å, using the aug-cc-pVDZ basis. The CPS(D-n)
polarizability and dipole moment corrections through an arbitrary
order have been implemented using Psithon—a Python interface to
the PSI4 program24—and employing the Numerical Python Library
(Numpy).25 The convergence of the CPS(D-n) series for the Σ com-
ponent of the static polarizability calculated using Eq. (108), the
dipole moment calculated using Eq. (95), and the energy calcu-
lated as described in Paper I1 are displayed in Fig. 13. The asymp-
totic convergence of the static polarizability, the dipole moment,
and the energy show a geometric progression. The convergence rate
of the CP series for the static polarizability, the dipole moment,
and the energy are very similar. For the energy, the convergence
rate is determined by the inverse distance from the unit circle for
the crosser state associated with the primary critical point and this
appears also to be the case for the static polarizability and the dipole
moment.

VII. SUMMARY AND CONCLUSION
In CP theory, perturbation series are determined in orders

of the CC parent state similarity transformed fluctuation potential
where the zeroth order term in the series is the energy or molec-
ular property for the CC parent state and where the perturbation
series formally converge to the energy or molecular property for
the CC target state. In this paper, we have investigated the theo-
retical foundation for having convergent CP series for the ground-
state energy and for molecular properties including excitation
energies.

The theoretical foundation for convergent CP series is estab-
lished by considering a fictitious system where a complex scal-
ing parameter z is multiplied on the perturbation. The condition
for having a convergent CP ground-state energy series is that
the derivative of the amplitude equation for the fictitious sys-
tem is non-singular inside the unit circle |z| ≤ 1. This con-
dition is equivalent to requiring that the Jacobian J(z) for
the fictitious system is non-singular within the unit circle
|z| ≤ 1.

To have a convergent CP series for an excitation energy ωx,
we must in addition require that the excitation energy for the fic-
titious system, ωx(z), does not become degenerate in the complex
plane inside the unit circle |z| ≤ 1. Since ωx(z) is determined by
diagonalizing the Jacobian J(z) for the fictitious system, the con-
dition for convergence becomes that there must not be another
excitation energy ωy(z) that is equal to ωx(z) inside the unit circle
|z| ≤ 1.

To have a convergent CP molecular property series, the molec-
ular property expression for the fictitious system must not have any
singularities inside the unit circle |z| ≤ 1. Singularities in molec-
ular property expressions are caused by singularities in the clus-
ter amplitudes, multipliers, or response vectors. For the cluster
amplitudes and multipliers, singularities can arise in the Jacobian
J(z). For frequency dependent molecular properties, additional sin-
gularities can arise through singularities in the frequency-shifted
Jacobian.

The identification of singularities and degeneracies in the Jaco-
bian for the fictitious system can be performed by searching for
avoided crossings for the Jacobian J(z) on the real axis Re(z). For
the ground-state energy, the search for singularities identifies mech-
anisms giving front-door and back-door intruder states. The two
states composing the avoided crossing for the singularity with the
smallest distance to the origin can be used to set up a two-state
model for the fictitious system, from which we can obtain an accu-
rate description of the convergence rate and the convergence pat-
terns of the higher-order terms in the CP ground-state energy series.
Numerical examples are given, where the convergence rate and
the convergence patterns of the higher-order terms in the CP
ground-state energy series are modeled using the two-state
model.

When examining the convergence for an excitation energy ωx,
we look for degeneracies and thus avoided crossings between ωx(z)
and another excitation energy ωy(z), when the Jacobian response
eigenvalue equation is solved on the real axis Re(z). For the two exci-
tations that compose the avoided crossing with the smallest distance
to the origin, we can set up a two-state excitation model for the Jaco-
bian eigenvalue equation for the fictitious system, and from this two-
state excitation model, we can obtain an accurate description of the
convergence rate and the convergence patterns of the higher-order
terms in the CP excitation energy series. We give numerical exam-
ples where the convergence patterns of CP excitation energy series is
modeled using the two-state excitation model. We also consider a CP
excitation energy pair, ωx(z) and ωy(z), where ωy(z) is an intruder
state for ωx(z) and vice versa, and where the CP series for these two
excitation energies therefore diverge. For such an excitation energy
pair, we have shown that the excitation energy corrections for higher
orders have opposite sign, and further that the sum of the excita-
tion energies for higher orders becomes equal to the sum of the
target excitation energies, provided that the two-state model accu-
rately describes the higher-order terms in the CP excitation energy
series. We have reported numerical calculations, which show that
the above relations are fulfilled and that the two-state model there-
fore gives an accurate description of the higher-order terms in the
CP excitation energy series. We also note that the point of degenera-
ciesωx(zc) = ωy(zc) inside the unit circle forωx(z) andωy(z) does not
directly affect the convergence of the other excitation energies. Sum-
marizing, the calculations of CP series for the ground-state energy
and for excitation energies show that the convergence of CP series
for the ground-state energy and for excitation energies effectively
becomes the convergence of a two-state problem at higher orders.
We expect this to be a general behavior, except for pathological
cases.
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