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ABSTRACT
We introduce a new class of perturbation models—the cluster perturbation (CP) models—where the major drawbacks of Møller-Plesset
perturbation theory and coupled cluster perturbation theory have been eliminated. In CP theory, we consider a target excitation space relative
to the Hartree-Fock state and partition the target excitation space into a parent and an auxiliary excitation space. The zeroth-order state is a
coupled cluster (CC) state in the parent excitation space, and the target state is either a cluster linear or a CC state in the target excitation space.
In CP theory, perturbation series are determined in orders of the CC parent state similarity-transformed fluctuation potential for the energy
and for a molecular property, where the zeroth-order term in the series is the energy or a molecular property for the CC parent state and where
the series formally converge to the energy or a molecular property for the target state. In CP theory, we use a generalized order concept, where
the zeroth-order component of the extended parent-state Jacobian contains a fluctuation potential contribution, and use this new generalized
order to treat internal relaxation in the parent excitation space at zeroth order and hence remove it from the perturbation calculation. Even
more importantly, using this new generalized order concept, CP series can be determined for molecular properties of ground and excited
states and for transition properties between these states, including excitation energies and energies of the excited states. The applicability of
CP theory to both the energy and molecular properties and numerical results for the CP energy and molecular property series demonstrate
the superiority of CP theory compared to previous perturbation models. Low-order corrections in the CP perturbation series can be expected
soon to become state-of-the-art electronic structure models for the determination of energies and molecular properties of target-state quality
for single-configuration dominated molecular systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5004037

I. INTRODUCTION
Møller-Plesset perturbation theory (MPPT) is a standard wave-

function method for determining ground-state energies1,2 and static
ground-state molecular properties.3–6 The zeroth-order state in
MPPT is the Hartree-Fock (HF) state, and the target energy and
the target molecular properties are the ones of full configuration-
interaction (FCI) wave function calculations. The major drawbacks
of MPPT are the following:

1. The zeroth-order state is a non-correlated HF state.
2. The target energy and static molecular properties are the

ones of FCI calculations. High excitation levels are therefore

considered even if these only have little or no effect on the
calculated energy and molecular properties.

3. MPPT can be applied only to the ground-state energy and
static molecular properties.

4. The zeroth-order energy and static molecular properties are
determined by the Fock operator, and the perturbation correc-
tions, required to obtain the FCI energy and static molecular
properties, therefore become large. The zeroth-order ground-
state energy is thus a sum of the orbital energies for the occu-
pied orbitals of the HF state, and the target energy is the FCI
energy. Hence, the energy correction in MPPT is large and, in
particular, much larger than the correlation energy.
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5. The MPPT perturbation series for the ground-state energy and
static molecular properties are plagued by divergences also for
single-configuration dominated molecular systems, in partic-
ular when augmented basis sets are used that contain diffuse
functions.7,8

In this paper, we introduce a new class of perturbation
models—the cluster perturbation (CP) models—where the major
drawbacks of MPPT have been overcome. We describe below the
general features of CP theory and how the major drawbacks of
MPPT are removed. MPPT has recently been generalized to coupled
cluster perturbation theory (CCPT).9–11 We also discuss the relation
between CP theory and CCPT and the advantages of using CP theory
compared to CCPT.

In CP theory, we consider a target excitation space relative to
an HF state and partition the target excitation space into a parent
excitation space and an auxiliary excitation space. The zeroth-order
state in CP theory is a coupled cluster (CC) state in the parent excita-
tion space. In CP theory, we thus use a correlated zeroth-order state
and not a non-correlated HF state as in MPPT.

In CP theory, we consider target states that are expanded
either in terms of the many-body excitation operators or the state-
transfer operators of the target excitation space. Furthermore, the
target states are expanded with the CC parent state as an expan-
sion point. Using the many-body excitation operators, the CP target
states become exponentially parameterized and describe standard
CC states but in a non-conventional parameterization. Using state-
transfer operators, the CP target state becomes linearly parameter-
ized and will be denoted as the cluster linear (CL) target state. CP
target states can be truncated at an arbitrary excitation level, and
therefore high excitation levels, which have little or no effect on the
energy or molecular property, do not need to be considered. We
assume in this paper that the CP target state is a CC state and defer
the derivation of CP theory for CL target states to Paper V of this
series.12

In CP theory, we determine perturbation series in orders of
the perturbation operator that in CP theory is the CC parent-
state similarity-transformed fluctuation potential. We determine CP
series for both the energy and molecular properties, including exci-
tation energies. The zeroth-order term in the CP series is the energy
or molecular property of the CP parent state, and the CP series for-
mally converge to the energy or molecular property of the CP target
state. The perturbation corrections that are determined in CP theory
both for the energy and for molecular properties are small and con-
sist of the difference between the energy and molecular property for
the CC parent and the CC target state.

The requirement that the CP target state is expanded with the
CC parent state as the expansion point defines a unique pathway
connecting the determination of the CC parent state and the CC tar-
get state and is one of the important features that make it possible to
determine CP series for both the energy and molecular properties.
Molecular properties are in CP theory determined using response
function theory, where the response functions for the CC parent
state determine the molecular properties for the CC parent state and
where the response functions for the CC target state determine the
molecular properties for the CC target state.

To determine perturbation series for the energy and for molec-
ular properties on an equal footing also requires that we introduce

a new generalized order concept, where selected fluctuation poten-
tial contributions are treated as zeroth-order contributions. The CC
parent-state Jacobian contains a fluctuation potential contribution,
but it, nevertheless, is treated in CP theory as a zeroth-order term.
In practice, this is done by solving sets of linear equations in the
parent excitation space that contains the CC parent-state Jacobian
when cluster amplitudes and response amplitudes are determined.
By treating the CC parent-state Jacobian as a zeroth-order contribu-
tion, internal relaxation in the parent excitation space is treated at
zeroth order, and hence it is removed from the energy and response
function perturbation calculations.

MPPT has been generalized to coupled cluster perturbation
theory (CCPT), where the zeroth-order state, as in CP theory, is a
CC state in the parent excitation space and where the target state
is a CC state.9–11 Using CCPT, two energy series similar to the
energy series of CP theory have been developed.9,11 The main dif-
ference between these two series is that for the series of Kristensen
et al.,11 the energy of the CC target state is parameterized with the
CC parent state as the expansion point, while for the series of Erik-
sen et al.,9 the energy Lagrangian is parameterized with the CC
parent state and its bi-orthonormal parent multiplier state as the
expansion point. The energy Lagrangian thus contains information
about both the CC target state and its bi-orthonormal multiplier
state, which stabilizes the convergence of the Lagrangian series com-
pared to the energy series.11 We denote the CCPT series of Kris-
tensen et al.11 as the CCPT energy series and the series of Eriksen
et al.9 as the CCPT Lagrangian series. The CCPT energy series may
be obtained from the CP series if the CC parent state Jacobian is
divided into a Fock operator contribution and a fluctuation poten-
tial contribution, and terms are collected strictly as zeroth-order
Fock operator contributions and first-order fluctuation potential
contributions. Collecting terms strictly as zeroth-order Fock oper-
ator contributions and first-order fluctuation potential contribu-
tions, when solving amplitude equations, is common to both the
CCPT energy and the CCPT Lagrangian method and stands in con-
trast to CP theory, where one fluctuation potential contribution—
the fluctuation potential contribution in the parent-state Jacobian—
is treated as a zeroth-order contribution. CCPT can be used to
determine ground-state energy series but not molecular property
series.

For MPPT, it has been shown that divergence of the pertur-
bation energy series is the rule rather than exception for basis sets
containing diffuse functions.7,8,13 For the CCPT energy series, it
has also been shown that the underlying conditions for conver-
gence (divergence) of the CCPT series are the same as for the MPPT
series.14 The requirements for convergence of CP energy series dif-
fer from the ones of the MPPT and CCPT series. The theoretical
foundation for convergent CP energy series is described in Paper
IV,15 where it is also shown how the asymptotic convergence of the
CP energy series can be modeled using a simple two-state model.
The asymptotic convergence of the CP energy series determines the
convergence rate and the convergence patterns of the higher-order
terms in the CP series.

In this paper, the theoretical foundation for determining CP
series for the ground-state energy is developed for general parent
and target excitation spaces. We also show that CP series can be
determined for molecular properties, but the detailed derivation of
CP molecular property series is deferred to future articles. Explicit
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expressions are given for the lowest-order energy corrections for CP
series with a CCSD parent state and a CCSDT target state, and the
CP energy series are compared to the corresponding CCPT energy
and CCPT Lagrangian series. We also report calculations for CP
energy series for various parent and target excitation spaces and
examine the convergence of these series. For the lower-order con-
vergence, we examine how well these corrections can reproduce the
total energy correction. The convergence rate and the convergence
patterns of the higher-order terms in the CP energy series are also
examined using the two-state model. To carry out this examina-
tion, we rely on the thorough analysis of the two-state model that
has been performed in Ref. 16. Finally, the performance of the CP
energy series is compared with the one of the CCPT energy and
CCPT Lagrangian series.

An extensive literature exists for the determination of an energy
correction to a CC parent-state energy arising from an excitation
level that is higher than that of the parent state. This literature
has been reviewed in Ref. 9 and presented from the perspective of
CCPT. As CP series for the ground-state energy describe an exten-
sion of the CCPT series, we refer to Ref. 9 for a review of the
literature, where also a CP perspective can partly be obtained. To
exemplify this perspective, we consider a CP energy series for the
CCSD parent state, where the energy corrections converge to the
CCSDT energy. The CP series has non-vanishing contributions that
start in third order. The third- and fourth-order corrections contain
triples contributions, which are identical to the two lowest non-
vanishing order contributions in the CCPT Lagrangian series and
to the two lowest non-vanishing order triples-only contributions in
the CC(2)PT(m) series of Hirata et al.17–19 Furthermore, the triples-
only contribution in the CCSD(2) model of Gwaltney and Head-
Gordon20,21 gives the third-order contribution in the CP series,
whereas in the method of moments of CC (MMCC) equations of
Piecuch and co-workers,22–24 the third-order contribution in the CP
series is also obtained but with the denominators in the energy cor-
rections being those of Epstein-Nesbet second-order perturbation
theory rather than the orbital-energy differences of Møller-Plesset
perturbation theory. Both the CCPT Lagrangian series and the CP
energy series are developed within a CC framework, and they may
therefore target the CCSDT energy, whereas the other methods are
developed within an EOM-CC framework25,26 and therefore have
to target the FCI energy. In the fifth order, the CP series contains
relaxation contributions in the singles-and-doubles sub-space due
to the presence of the triples excitation space, and the energy con-
tributions of the CCPT Lagrangian series and of the CP series start
to differ at this order as they also do in higher orders. For the
methods developed within the EOM-CC framework, it has turned
out to be difficult to obtain a proper description of the higher-
order contributions, where, for example, the energy corrections are
size-extensive.

In Sec. II, the theoretical framework for CP theory is established
and CP energy series are derived for arbitrary parent and target exci-
tation spaces. We further show that CP series can also be derived for
molecular properties. In Sec. III, the lowest-order energy corrections
are determined through fifth order for the CP energy series with a
CCSD parent state and a CCSDT target state, and the CP energy
corrections are compared with the ones of the CCPT Lagrangian
series. The mathematical theory needed for analyzing the conver-
gence of perturbation theory is summarized in Sec. IV, where we

also review the two-state model and the convergence archetypes
that can be encountered for perturbation series, which effectively
become a two-state problem at higher orders. In Sec. V, we present
calculations of CP energy series for general CC parent and CC tar-
get states. Section VI contains a short summary and concluding
remarks.

II. THEORETICAL FRAMEWORK FOR CLUSTER
PERTURBATION (CP) THEORY
A. Standard coupled cluster theory

In CC theory,8,27 the wave function is exponentially parame-
terized,

∣CC⟩ = eT ∣HF⟩, (1)
where the cluster operator,

T =∑

µi
tµiθµi , (2)

contains the cluster amplitudes tµi and the many-body excitation
operators θµi that acting on the Hartree-Fock state |HF⟩ produce its
orthogonal complement set of states,

∣µi⟩ = θµi ∣HF⟩. (3)

In Eqs. (2) and (3), i denotes an excitation level and µi an excitation
at this level.

The CC Schrödinger equation may be expressed as

e−TH0eT ∣HF⟩ = E0∣HF⟩, (4)

where H0 is the Hamiltonian and E0 is the ground-state energy. The
CC Schrödinger equation may be solved by projection against the
basis ⟨B∣ = ∣B⟩†, where

∣B⟩ = {∣HF⟩, ∣µi⟩, i = 1, 2, . . .}, (5)

leading to the CC energy and amplitude equations,

E0 = ⟨HF∣e−TH0eT ∣HF⟩ = ⟨HF∣H0∣HF⟩ + ⟨HF∣H0T2∣HF⟩

+
1
2
⟨HF∣H0T2

1 ∣HF⟩, (6)

⟨µi∣e−TH0eT ∣HF⟩ = 0, (7)

where we have used the Brillouin theorem to obtain the energy in
Eq. (6). In a standard coupled cluster calculation, a CC state with
a truncated cluster operator is determined in a truncated excitation
space, which we denote as the target excitation space. The cluster
amplitudes are determined from the cluster amplitude equations in
Eq. (7) in the target excitation space, and the energy is determined
from Eq. (6). In this paper, we introduce cluster perturbation (CP)
theory where the amplitudes and the energy of the CC target state
are determined using perturbation theory.

B. Amplitude equations in CP theory
In CP theory, we consider a target excitation space (1 ≤ i ≤ t)

that is partitioned into a parent excitation space (1 ≤ i ≤ p) and an
auxiliary excitation space (p < i ≤ t). The zeroth-order state is a CC
state in the parent excitation space,
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∣CC∗
⟩ = e

∗T
∣HF⟩, (8)

where the cluster amplitudes satisfy the cluster amplitude equation
in the parent excitation space,

⟨µi∣e−
∗TH0e

∗T
∣HF⟩ = 0, 1 ≤ i ≤ p, (9)

∗T =
∗T1 +⋯ + ∗Tp, (10)

∗Ti =∑
µi

∗tµiθµi , 1 ≤ i ≤ p, (11)

and where the parent-state energy is
∗E0 = ⟨HF∣e−

∗TH0e
∗T

∣HF⟩. (12)

In this paper, the target state is assumed to be a CC target state that
is parameterized in terms of the CC parent state embedded in an
exponentially parameterized target excitation space,

∣CC⟩ = eT ∣HF⟩ = eδT+∗T
∣HF⟩ = eδT ∣CC∗

⟩, (13)

where

δT =

t
∑

i=1
∑

µi
δtµiθµi . (14)

CP theory can also be developed for target states where the embed-
ding of the CC parent state in the target excitation space is described
using a linear parameterization. We refer to such CP target states as
cluster linear (CL) target states. The development of CP theory for
CL target states is addressed in Paper V.12

The similarity-transformed Schrödinger equation for the CP
target state in Eq. (13) may be written as

e−δTe−
∗TH0e

∗TeδT ∣HF⟩ = E0∣HF⟩. (15)

Projecting Eq. (15) against the basis ⟨B∣ = ∣B⟩† of Eq. (5) gives the
energy and amplitude equations,

E0 = ⟨HF∣e−δTe−
∗TH0e

∗TeδT ∣HF⟩ = ⟨HF∣e−δTH∗T
0 eδT ∣HF⟩, (16)

⟨µi∣e−δTe−
∗TH0e

∗TeδT ∣HF⟩ = ⟨µi∣e−δTH∗T
0 eδT ∣HF⟩ = 0, 1 ≤ i ≤ t,

(17)

with

H∗T
0 = e−

∗TH0e
∗T . (18)

To determine the amplitude corrections, δtµi , we carry out
a Baker-Campbell-Hausdorff (BCH) expansion in the amplitude
equations of Eq. (17),

⟨µi∣H∗T
0 ∣HF⟩Sip +

t
∑

j=1
∑

νj
⟨µi∣[H∗T

0 , θνj]∣HF⟩δtνj

+
1
2
⟨µi∣[[H∗T

0 ,δT],δT]∣HF⟩ +
1
6
⟨µi∣[[[H∗T

0 ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[H∗T

0 ,δT],δT],δT],δT]∣HF⟩ = 0, 1 ≤ i ≤ t; p < t,

(19)

where to obtain the first term, we have used Eq. (9) and introduced
the integer step function Sab,

Sab =
⎧
⎪⎪
⎨
⎪⎪
⎩

0, for a ≤ b

1, for a > b.
(20)

Introducing the Møller-Plesset partitioning of the Hamiltonian,

H0 = f + Φ, (21)

where f is the Fock operator in the canonical Hartree-Fock basis and
Φ is the fluctuation potential, we determine in CP theory amplitude
corrections to the CC parent state in orders of the CC parent state
similarity-transformed fluctuation potential and write the amplitude
equations [Eq. (19)] as

⟨µi∣Φ∗T
∣HF⟩Sip +

t
∑

j=1
∑

νj
⟨µi∣[H∗T

0 , θνj]∣HF⟩δtνj

+
1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩ +

1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩ = 0, 1 ≤ i ≤ t; p < t,

(22)

where we have used

⟨µi∣[f , ∗T]∣HF⟩Sip =
p

∑

j=1
∑

νj

∗tνj⟨µi∣[f , θνj]∣HF⟩Sip

=

p

∑

j=1
∑

νj
ενj

∗tνj⟨µi∣θνj ∣HF⟩Sip =0, 1 ≤ i ≤ t; p < t.

(23)

To obtain the second equality in Eq. (23), we have used the commu-
tator relation

[f , θµi] = εµiθµi , (24)

where

εµi = ⟨µi∣f ∣µi⟩ − ⟨HF∣f ∣HF⟩ (25)

denotes orbital energy differences between orbitals that are occupied
in the state ∣µi⟩ = θµi ∣HF⟩ and in the Hartree-Fock state |HF⟩. To
obtain the last equality in Eq. (23), we have used that the excitation
levels i and j belong to different excitation spaces since i > p and
j ≤ p. Furthermore, to obtain Eq. (22), we have used that the Fock
operator contribution vanishes for all terms involving two or more
commutators.

The target-state amplitude equations in Eq. (22) may be written
as

t
∑

j=1
∑

νj
Aµiνjδtνj = −⟨µi∣Φ

∗T
∣HF⟩Sip −

1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

−
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

−
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩,

1 ≤ i ≤ t; p < t, (26)

where we have introduced the extended CC parent-state Jacobian
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Aµiνj =
d

dδtνj
⟨µi∣e−δTH∗T

0 eδT ∣HF⟩∣
δt=0

= ⟨µi∣[H∗T
0 , θνj]∣HF⟩ = ενjδµiνj + ⟨µi∣[Φ∗T , θνj]∣HF⟩, 1 ≤ i, j ≤ t.

(27)

To obtain the last equality in Eq. (27), we have used that

⟨µi∣[f ∗T , θνj]∣HF⟩ = ενjδµiνj , 1 ≤ i, j ≤ t. (28)

The amplitudes of the CC target state can be determined solv-
ing Eq. (26) using perturbation theory with Φ∗T as the perturba-
tion operator. This can be done by partitioning the extended CC
parent-state Jacobian into a zeroth- and a first-order component,

Aµiνj = A(0)µiνj + A(1)µiνj . (29)

Substituting Eq. (29) in Eq. (26) gives the amplitude equation
t
∑

j=1
∑

νj
A(0)µiνjδtνj = −⟨µi∣Φ

∗T
∣HF⟩Sip −

t
∑

j=1
∑

νj
A(1)µiνjδtνj

−
1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

−
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

−
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩,

1 ≤ i ≤ t; p < t. (30)

Solving Eq. (30) order by order in Φ∗T requires that the extended
parent-state Jacobian A is partitioned explicitly into a zeroth- and
first-order component, where A(1) may only contain contributions
that are linear in Φ∗T and A(0) has to contain all the zeroth-order
Fock operator terms. However, A(0) can also contain one or sev-
eral of the fluctuation potential terms of A. Whenever A(0) contains
fluctuation potential terms, these terms are treated as zeroth-order
contributions and we have in this way generalized the order concept
of standard perturbation theory. This is of particular interest when
A(0) can be inverted without affecting the leading-order computa-
tional scaling characteristic for determining the cluster amplitudes
from the cluster amplitude equations in Eq. (30).

The fastest-convergent perturbation series is obtained by
choosing A(0) as the full extended CC parent-state Jacobian, A, with
a vanishing A(1) contribution. This series will describe a fixed Hes-
sian series and is linearly convergent. However, the computational
scaling makes this series non-tractable as this partitioning requires
that sets of linear equations containing the full extended CC parent-
state Jacobian in Eq. (27) are solved in the target excitation space at
each order to obtain the cluster amplitude corrections.

In CCPT, the amplitude equations are obtained by assigning
all Fock operator contributions of A to A(0) and all fluctuation
potential terms to A(1). In Subsection II C, we describe how the
amplitude equations are solved in CCPT. We further discuss how
internal relaxation in the parent sub-space is partly removed from
perturbation calculation in CCPT by parameterizing the target-state
cluster amplitudes, t = ∗t + δt, with the parent-state cluster ampli-
tudes, ∗t of Eq. (11), as the expansion point [see Eq. (13)]. How-
ever, we also describe that the amplitude corrections in CCPT still

contain internal relaxation contributions in the parent excitation
space. In Subsection II D, we introduce CP theory, in which inter-
nal relaxation in the parent sub-space is fully removed from the
perturbation calculation. This is a key feature of CP theory, which
allows for two fundamental improvements compared to CCPT:
First, as the internal relaxation in the parent excitation space can
be large, its removal from the perturbation calculation can lead to
a faster-convergent energy series. Second, and particularly impor-
tant, this removal makes it possible to determine CP series on an
equal footing for the energy and for molecular properties, includ-
ing frequency-dependent properties, transition properties, and
excitation energies.

C. CCPT amplitude equations
When the amplitude equations in Eq. (30) are solved in CCPT

theory, the extended CC parent-state Jacobian is partitioned into a
zeroth-order component,A(0), that contains the Fock operator terms
and a first-order component, A(1), that contains the Φ∗T terms,

A(0)µiνj = ενjδµiνj , 1 ≤ i, j ≤ t, (31a)

A(1)µiνj = ⟨µi∣[Φ∗T , θνj]∣HF⟩, 1 ≤ i, j ≤ t. (31b)

We denote this partitioning of A as the Fock operator partitioning.
Substituting Eq. (31) into Eq. (30) gives

εµiδtµi = −⟨µi∣Φ
∗T

∣HF⟩Sip −
t
∑

j=1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δtνj

−
1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

−
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

−
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩, 1 ≤ i ≤ t. (32)

Equation (32) may be solved order by order in Φ∗T giving the kth
order amplitude equations

εµiδt
(k)
µi = −⟨µi∣Φ∗T

∣HF⟩Sipδk1 −
t
∑

j=1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δt(k−1)

νj

−

⎧
⎪⎪
⎨
⎪⎪
⎩

1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

−
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩

⎫
⎪⎪
⎬
⎪⎪
⎭

{k}

, 1 ≤ i ≤ t,

(33)

where { . }{k} denotes that the terms of order k inΦ∗T are picked up
and gathered from the expression in the parentheses. The amplitude
corrections of Eq. (33), when inserted in Eq. (16), give the CCPT
energy series of Kristensen et al.11

Internal relaxation in the parent excitation space is described
by the ∗t amplitudes, which satisfy the cluster amplitude equations
in the parent excitation space in Eq. (9). When deriving the CCPT
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cluster amplitude equations in Eq. (32), the first term on the right-
hand side is obtained using Eq. (9). In CCPT, internal relaxation
in the parent excitation space is therefore partly removed by using
the parent-state cluster amplitudes ∗t as the expansion point for the
CC target-state amplitudes. Note that by using ∗t as the expansion
point, it is Φ∗T , rather than Φ, that becomes the perturbation oper-
ator. However, the CCPT amplitudes determined from Eq. (32) still
contain a contribution [the second term on the right-hand side of
Eq. (32)]

p

∑

j=1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δtνj , 1 ≤ i ≤ p

that describes internal relaxation in the parent excitation space.
To fully remove internal relaxation in the parent excitation space
from the perturbation calculation, we have to move this term to
the left-hand side in Eq. (32) and treat it as a zeroth-order contri-
bution. This is what is done in CP theory, as we will describe in
Subsection II D.

D. CP amplitude equations
We will now describe how the cluster amplitude equations can

be derived in CP theory. As discussed in Subsection II C, the CP
cluster amplitude equations are obtained by moving the internal
relaxation contribution in the second term on the right-hand side
of Eq. (32) to the left-hand side of this equation, giving

t
∑

j=1
∑

νj

⎛

⎝

εµiδµiνj + ⟨µi∣[Φ∗T , θνj]∣HF⟩(1 − Sip)(1 − Sjp)
⎞

⎠

δtνj

= −⟨µi∣Φ∗T
∣HF⟩Sip −

t
∑

j=p+1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δtνj

−

p

∑

j=1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δtνjSip −

1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

−
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

−
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩, 1 ≤ i ≤ t. (34)

Equation (34) can conveniently be partitioned into a parent- and an
auxiliary-space component as

p

∑

j=1
∑

νj
JPµiνjδt

(k)
νj

= −

t
∑

j=p+1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δt(k−1)

νj

− (
1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩)

(k)

, 1 ≤ i ≤ p,

(35a)

εµiδt
(k)
µi = −⟨µi∣Φ∗T

∣HF⟩δk1 −
t
∑

j=1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δt(k−1)

νj

− (
1
2
⟨µi∣[[Φ∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[Φ∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ∗T ,δT],δT],δT],δT]∣HF⟩)

(k)

, p < i ≤ t,

(35b)

where we have introduced the CC parent-state Jacobian,

JPµiνj = ⟨µi∣[H∗T
0 , θνj]∣HF⟩(1 − Sip)(1 − Sjp)

= (⟨µi∣H∗T
0 ∣νj⟩ − ⟨HF∣H∗T

0 ∣HF⟩δµiνj)

× (1 − Sip)(1 − Sjp), 1 ≤ i, j ≤ t. (36)

When the kth-order amplitude corrections are determined in CP
theory, sets of linear equations containing the parent-state Jacobian
have to be solved in the parent excitation space. Equation (35a)
substantiates that internal relaxation in the parent excitation space
is removed from the perturbation calculation since the first term
on the right-hand side of Eq. (35a) only introduces a coupling
between the parent excitation space and the auxiliary excitation
space.

The amplitude corrections in Eqs. (35) determine the CP
energy series. The two lowest-order amplitude corrections read

δt(1)µi = 0, 1 ≤ i ≤ p, (37a)

εµiδt
(1)
µi = −⟨µi∣Φ∗T

∣HF⟩, p < i ≤ t, (37b)

p

∑

j=1
∑

νj
JPµiνjδt

(2)
νj = −

t
∑

j=p+1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δt(1)νj , 1 ≤ i ≤ p,

(38a)

εµiδt
(2)
µi = −

t
∑

j=p+1
∑

νj
⟨µi∣[Φ∗T , θνj]∣HF⟩δt(1)νj , p < i ≤ t. (38b)

Equation (34) shows that the extended CC parent-state Jaco-
bian of CP theory in Eq. (29) is partitioned as

A(0)µiνj = ⟨µi∣[H∗T
0 , θνj]∣HF⟩(1 − Sip)(1 − Sjp)

+ ενjδµiνjSipSjp, 1 ≤ i, j ≤ t, (39a)

A(1)µiνj = ⟨µi∣[Φ∗T , θνj]∣HF⟩(1 − Sip)Sjp + ⟨µi∣[Φ∗T , θνj]∣HF⟩Sip(1 − Sjp)

+ ⟨µi∣[Φ∗T , θνj]∣HF⟩SipSjp, 1 ≤ i, j ≤ t. (39b)

We denote this partitioning as the parent-state Jacobian partitioning
of the extended CC parent-state Jacobian. An important feature of
the parent-state Jacobian partitioning is that the parent-space sub-
block of A(0) contains the CC parent-state Jacobian JP and thus a
fluctuation potential contribution. The fluctuation potential contri-
bution in the CC parent-state Jacobian is in CP theory treated as a
zeroth-order contribution by solving sets of linear equations in the
parent excitation sub-space [Eq. (35a)] containing JP. We have thus
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introduced in CP theory a new generalized order concept, where
one fluctuation potential contribution is treated as a zeroth-order
contribution.

E. Equivalence between computational scaling
of CP and CCPT

In CCPT, the Fock operator partitioning is used for the
extended CC parent-state Jacobian, whereas in CP theory, the
parent-state Jacobian partitioning is used. For both partitioning
schemes, the right-hand sides of the auxiliary space amplitude equa-
tions contain the vector∑t

j=1∑νj⟨µi∣[Φ
∗T , θνj]∣HF⟩δt(k−1)

νj Sip, which
introduces coupling between the parent and auxiliary excitation
spaces and also a coupling internally in the auxiliary excitation space.
In addition, for the Fock operator partitioning, the right-hand sides
contain the vector

b(k)µi (δt(k−1)
) =

p

∑

j=1
∑

νj
(1 − Sip)⟨µi∣[Φ∗T , θνj]∣HF⟩δt(k−1)

νj , (40)

where coupling is introduced internally in the parent excitation
space.

The main difference between the Fock operator partitioning
and the parent-state Jacobian partitioning is that the fluctuation
potential term of the CC parent-state Jacobian in Eq. (39a) is in
the Fock operator partitioning a part of the perturbation and enters
on the right-hand side of the amplitude equations. For the parent-
state Jacobian partitioning, this fluctuation potential term of the CC
parent-state Jacobian is treated as a zeroth-order contribution and
it is therefore treated explicitly (not order-by-order) by solving sets
of linear equations in the parent excitation space. In CP theory,
we thus treat internal relaxation in the parent excitation space at
zeroth order and hence remove it from the perturbation calculation.
The parent-parent fluctuation potential block of the CC parent-state
Jacobian can be large compared to the other fluctuation potential
contributions, and a faster-convergent perturbation series is there-
fore obtained when the parent-state Jacobian partitioning is used,
compared to the Fock operator partitioning.

The leading-order computational scaling is the same for the
Fock operator partitioning and the parent-state Jacobian partition-
ing. To see this, recall that the right-hand sides of the two parti-
tioning schemes differ by the term of Eq. (40) and that this term
references only the parent space. The leading-order scaling for cal-
culating this term therefore is N2p+2 where N refers to the size of
the molecular system. By contrast, the calculation of, for example,
the right-hand side terms ∑t

j=p+1∑νj⟨µi∣[H
∗T
0 , θνj]∣HF⟩δt(k−1)

νj has a
leading-order scaling that is at least N2p+4 and is thus at least two
orders higher than the scaling for the term in Eq. (40). The leading-
order scaling for constructing the right-hand sides in the two par-
titioning schemes is therefore equal. For the parent-state Jacobian
partitioning, sets of linear equations [Eq. (35a)], which contain the
parent state Jacobian of Eq. (36), also have to be solved. Solving these
equations with iterative algorithms requires linear transformations
that have the structure of Eq. (40), where Φ∗T is replaced by H∗T

0 .
As discussed above, these linear transformations do not affect the
leading-order computational scaling and we can therefore conclude
that the leading-order scaling is equal for the Fock operator and
parent-state Jacobian partitioning schemes. We also note that the

CC parent-state Jacobian partitioning of A used in CP theory is the
only partitioning of A, in which perturbation operator contributions
can be moved to A(0) yet retaining the leading-order computational
scaling of the Fock operator partitioning.

F. Energy expansion in orders of the fluctuation
potential

The ground-state energy may for both the Fock operator and
the parent-state Jacobian partitioning be obtained from Eq. (16),
giving

E0 =
∗E0 +

∞

∑

k=2
E(k)0 , (41)

where ∗E0 is the parent-state energy of Eq. (12) and where the energy
correction of order k is given by11

E(k)0 = E(k)0 (SD) + E(k)0 (SS), (42)

with
E(k)0 (SD) = ⟨HF∣[Φ∗T ,δT(k−1)

1 + δT(k−1)
2 ]∣HF⟩, (43)

E(k)0 (SS) =
1
2

k−3
∑

h=2
⟨HF∣[[Φ∗T ,δT(h)1 ],δT(k−h−1)

1 ]∣HF⟩. (44)

G. CP theory for molecular properties
A CP energy series is defined by the perturbation operator,

the parent and the target excitation space, the CC parent state,
and the CC target state that identifies the target energy of the CP
perturbation calculation. In addition, to fully define the CP per-
turbation series, we also have to specify that the parent-state Jaco-
bian partitioning is used for the extended CC parent-state Jacobian.
This last requirement is a new requirement that has to be imple-
mented as all perturbation series have hitherto used the Fock oper-
ator partitioning in Eqs. (31). In this subsection, we show that using
the parent-state Jacobian partitioning of the extended CC parent-
state Jacobian, perturbation expansion may be determined also for
molecular properties, where the CC parent-state molecular prop-
erty becomes the zeroth-order term in the series and where the
series formally converges to the molecular property of the CC target
state.

For the CC target state, the energy and amplitude equations
may be determined by projection using the bi-orthonormal basis

∣B∗T⟩ = {e
∗T

∣HF⟩, e
∗T

∣µi⟩P, e
∗T

∣µi⟩A}, (45a)

⟨B∗T ∣ = {⟨HF∣e−
∗T , P⟨µi∣e−

∗T , A⟨µi∣e−
∗T

}, (45b)

where ∣µi⟩P and ∣µi⟩A denote the parent and auxiliary excitation space
components, respectively, of the bi-orthonormal basis. Furthermore,
for the parent-state Jacobian partitioning scheme, the zeroth-order
component of the extended parent-state Jacobian may be written as

A(0) =
⎛

⎜

⎝

P
⟨µi∣e

∗T
[H0, θνj]e−

∗T
∣HF⟩ 0

0 A
⟨µi∣e

∗T
[f , θνj]e−

∗T
∣HF⟩

⎞

⎟

⎠

=

⎛

⎝

JP 0

0 εA

⎞

⎠

, (46)
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where εA is a diagonal matrix containing orbital energy differ-
ences [see Eq. (28)] in the auxiliary space and JP is the parent-state
Jacobian of Eq. (36).

Consider now the parent-space subset of the bi-orthonormal
basis in Eqs. (45),

∣B∗TP ⟩ = {e
∗T

∣HF⟩, e
∗T

∣µi⟩P}, (47a)

⟨B∗TP ∣ = {⟨HF∣e−
∗T , P⟨µi∣e−

∗T
}. (47b)

The Hamiltonian eigenvalue equation in this basis may be written as

H
∗T
0 CR

= CR ∗E, (48a)

CL H
∗T
0 =

∗E CL, (48b)

CL CR
= I, (48c)

where the Hamiltonian matrix has the block structure

H
∗T
0 =

⎛

⎜

⎝

∗E0
Pη

0 (H
∗T
0 )

⊥

⎞

⎟

⎠

, (49)

with

(H
∗T
0 )

HF HF
= ⟨HF∣e−

∗TH0e
∗T

∣HF⟩ = ∗E0, (50)

(H
∗T
0 )

µi HF
=

P
⟨µi∣e−

∗TH0e
∗T

∣HF⟩ = 0, (51)

(H
∗T
0 )

HF µi
= ⟨HF∣e−

∗TH0e
∗T

∣µi⟩P =
Pηµi , (52)

(H
∗T
0 )

µiνj
= (H

∗T
0 )

⊥

µiνj
=

P
⟨µi∣e−

∗TH0e
∗T

∣νj⟩P. (53)

The matrix ∗E is diagonal and contains the energies of the Hamilto-
nian matrix H

∗T
0 ,

∗E =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

∗E0
∗E1

∗E2

⋱

⎞

⎟
⎟
⎟
⎟
⎟

⎠

. (54)

The left and right eigenvectors may be written as

CR
0 = (

1
0
), (55)

CL
0 = (1 t), (56)

CR
n =

⎛

⎝

−t Rn

Rn

⎞

⎠

, (57)

CL
n = (0 Ln), (58)

where

(H
∗T
0 )

⊥

R = R ∗E⊥, (59a)

L (H
∗T
0 )

⊥

=
∗E⊥ L, (59b)

L R = I, (59c)

and ∗E⊥ is the parent-space orthogonal complement sub-block of ∗E
[Eq. (54)], and

t((H
∗T
0 )

⊥

−
∗E0I) = − Pη. (60)

Using Eqs. (55)–(58), the right and left eigenstates of the Hamil-
tonian H0 may in the parent space be expressed in the bra-ket
notation as

∣Bd
⟩ = {∣CC∗

⟩, ∣0∗1⟩, ∣0∗2⟩,⋯}, (61a)

⟨Bd
∣ = {⟨CC∗

∣, ⟨0∗1 ∣, ⟨0
∗
2 ∣,⋯}, (61b)

where
∣CC∗

⟩ = e
∗T

∣HF⟩, (62)

⟨CC∗
∣ = ⟨HF∣e−

∗T +∑
µi
tµi⟨µi∣e

−
∗T , (63)

and, for n ≠ 0,

∣0∗n⟩ = −
⎛

⎝
∑

µi
tµi Rµin

⎞

⎠

e
∗T

∣HF⟩ +∑
µi

e
∗T

∣µi⟩ Rµin, (64)

⟨0∗n ∣ =∑
µi

Lnµi ⟨µi∣e
−T0 . (65)

The parent-state Jacobian in Eq. (36) may be expressed as

JP = (H
∗T
0 )

⊥

−
∗E0I, (66)

where we have used Eqs. (50) and (53). Using Eq. (66), we may write
Eqs. (59a) and (59b) as

JP R = R Ω, (67a)

L JP = Ω L, (67b)

where

Ω =
∗E⊥ − ∗E0I =

⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

∗ω1

∗ω2

∗ω3

⋱

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

, (68)

with
∗ωn =

∗En − ∗E0. (69)

Equations (67)–(69) show that the eigenvalues of JP are equal to exci-
tation energies in the basis of Eqs. (47). Furthermore, the derivation
shows that solving the parent-space Jacobian eigenvalue equation
in Eqs. (67a) and (59c) is equivalent to solving the Hamiltonian
eigenvalue equation in Eq. (48).
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The zeroth-order component in the parent-state Jacobian par-
titioning scheme [i.e., A(0) of Eq. (46)] contains the parent-state
Jacobian, JP, of Eq. (36). The A(0) matrix keeps its block-diagonal
structure when a bi-orthonormal transformation satisfying Eq. (59c)
is carried out in the bi-orthonormal basis in Eqs. (45). When the
parent state Jacobian partitioning scheme is used, the energy contri-
butions at each order therefore are invariant with respect to the basis
transformation satisfying Eq. (59c).

One of the bi-orthonormal basis transformations satisfying
Eq. (59c) is described by the parent sub-space bi-orthonormal eigen-
state basis in Eqs. (61). CP perturbation theory using the parent-state
Jacobian partitioning scheme may therefore also be expressed in the
bi-orthonormal basis

∣B∗TDia⟩ = {∣CC∗
⟩, ∣0∗1⟩, ∣0∗2⟩, . . . , e

∗T
∣µi⟩A}, (70a)

⟨B∗TDia∣ = {⟨CC∗
∣, ⟨0∗1 ∣, ⟨0

∗
2 ∣, . . . , A⟨µi∣e−

∗T
}, (70b)

where the parent-parent block of A(0) in Eq. (46) is diagonal and
contains parent-space excitation energies on the diagonal. In prac-
tice, it is computationally most efficient to express the parent-state
Jacobian partitioning scheme in the elementary basis of Eqs. (45).

We have previously shown that the parent-state Jacobian par-
titioning scheme leads to a perturbation expansion for the energy
where the zeroth-order term is the parent-state energy and where
the series formally converge to the energy of the target state. For
the parent-state Jacobian partitioning, we can also determine a per-
turbation series for a molecular property where the zeroth-order
term is the parent-state molecular property and where the series for-
mally converge to the target-state molecular properties. This can be
accomplished since response function theory is used to determine
molecular properties. In particular, the response functions for the
target state can be determined by expanding the time evolution of
the target state in the bi-orthonormal basis in Eq. (70), while the
response functions for the parent state can be determined by neglect-
ing the auxiliary space components in this basis. When the parent-
state Jacobian partitioning is used, we can thus for both the target-
state energy and for the target-state molecular properties determine
the parent-state energy and the parent-state molecular properties
by neglecting the auxiliary space components in the bi-orthonormal
basis in Eq. (70). Therefore, the strategy that we have used for deter-
mining the perturbation series for the energy can also be applied to
determine perturbation series for molecular properties. When the
time evolution of the target state is exponentially parameterized,
the parent-state molecular properties become the ones of standard
coupled cluster theory,28 whereas for a linearly parameterized time
evolution, the parent-state molecular properties become EOM-CC
molecular properties.25,26

H. Notation for CP models
CP models are characterized by a CC parent state that is defined

in the parent excitation space and by an auxiliary excitation space.
This may be expressed using a notation where the parent excita-
tion space is followed by the auxiliary excitation space in paren-
theses. For example, CPSD(T) denotes a CP model with a CCSD
parent state and a triples auxiliary space. Furthermore, we let the
notation CPSD(T) imply that the CP target state is exponentially
parameterized and that molecular properties are determined from

a time-evolving target state, which is also exponentially parame-
terized. If the time evolution is linearly parameterized, EOM-CC
molecular properties are obtained and the CP model will be labeled
with an overline. For example, CPSD(T) denotes that energy cor-
rections are determined using an exponential parameterization of
the target state, while molecular properties are determined using a
linear parameterization to describe the time evolution of the tar-
get state. If the auxiliary excitation space is followed by a number,
as for example in CPSD(T-3), the number denotes that pertur-
bation corrections are determined through that order. The nota-
tion we have introduced for CP series for the energy and molec-
ular properties describes a generalization of the notation that has
previously been used to characterize energy series of CCPT the-
ory. For example, E-CCSD(T-n) and L-CCSD(T-n) have been used
to label the CCPT energy series11 and CCPT Lagrangian series,9
respectively, where the parent state contains the singles-and-doubles
excitation space and the target state in addition contains triples
excitations.

III. ENERGY CORRECTIONS FOR CP MODELS
A. Lowest-order energy corrections
for the CPSD(T-n) model

As an illustration of the series of energy corrections obtained
in CP theory, we consider the lowest-order energy and amplitude
corrections for the CPSD(T-n) model, in which corrections to the
CCSD energy are evaluated and formally converge to the CCSDT
energy. We determine the amplitude corrections that are needed
to evaluate the energy corrections through fifth order. The parent-
state Jacobian JPµiνj of Eq. (36) becomes the standard CCSD Jacobian,
JCCSD
µiνj . Using Eqs. (35), we obtain the wave-function corrections,

δt(1)µi = 0, i = 1, 2, (71a)

εµ3δt
(1)
µ3 = −⟨µ3∣Φ∗T

∣HF⟩, (71b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(2)νj = −∑

ν3

A(1)µiν3δt
(1)
ν3

= −∑

ν3

⟨µi∣[Φ∗T , θν3]∣HF⟩δt(1)ν3 , i = 1, 2, (72a)

εµ3δt
(2)
µ3 = −∑

ν3

⟨µ3∣[Φ∗T , θν3]∣HF⟩δt(1)ν3 , (72b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(3)νj = −

3
∑

j=1
∑

νj
A(1)µiνjδt

(2)
νj

= −∑

ν3

⟨µi∣[Φ∗T , θν3]∣HF⟩δt(2)ν3 , i = 1, 2, (73a)

εµ3δt
(3)
µ3 = −

3
∑

j=1
∑

νj
⟨µ3∣[Φ∗T , θνj]∣HF⟩δt(2)νj , (73b)

2
∑

j=1
∑

νj
JCCSD
µiνj δt(4)νj = −∑

ν3

⟨µi∣[Φ∗T , θν3]∣HF⟩δt(3)ν3

−⟨µi∣[[Φ∗T ,δT(2)1 ],δT(1)3 ]∣HF⟩δi2, i = 1, 2. (74)
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The energy corrections through the fifth order may be obtained from
Eqs. (41)–(44) and become

E(0)0 =
∗E0 = ⟨HF∣H∗T

0 ∣HF⟩, (75)

E(1)0 = 0, (76)

E(2)0 = 0, (77)

E(3)0 = ⟨HF∣[Φ∗T ,δT(2)1 + δT(2)2 ]∣HF⟩, (78)

E(4)0 = ⟨HF∣[Φ∗T ,δT(3)1 + δT(3)2 ]∣HF⟩, (79)

E(5)0 = ⟨HF∣[Φ∗T ,δT(4)1 + δT(4)2 ]∣HF⟩

+
1
2
⟨HF∣[[Φ∗T ,δT(2)1 ],δT(2)1 ]∣HF⟩. (80)

Let us examine the lowest-order energy contributions in more
detail. To do this, we use Eqs. (72a), (73a), and (74) to rewrite E(3)0 ,
E(4)0 , and E(5)0 as

E(3)0 = −

2
∑

i,j=1
∑

µiνjλ3

⟨HF∣[Φ∗T , θµi]∣HF⟩(JCCSD
)

−1

µiνj

× ⟨νj∣[Φ∗T , θλ3]∣HF⟩δt(1)λ3
, (81)

E(4)0 = −

2
∑

i,j=1
∑

µiνjλ3

⟨HF∣[Φ∗T , θµi]∣HF⟩(JCCSD
)

−1

µiνj

× ⟨νj∣[Φ∗T , θλ3]∣HF⟩δt(2)λ3
, (82)

E(5)0 = −

2
∑

i,j=1
∑

µiνjλ3

⟨HF∣[Φ∗T , θµi]∣HF⟩(JCCSD
)

−1

µiνj

× ⟨νj∣[Φ∗T , θλ3]∣HF⟩δt(3)λ3

−

2
∑

i,j=1
∑

µiνj
⟨HF∣[Φ∗T , θµi]∣HF⟩(JCCSD

)

−1

µiνj

× ⟨νj∣[[Φ∗T ,δT(2)1 ],δT(1)3 ]∣HF⟩

+
1
2
⟨HF∣[[Φ∗T ,δT(2)1 ],δT(2)1 ]∣HF⟩. (83)

E(3)0 in Eq. (81) shows how the effect of triples, as expressed by δt(1)λ3
,

is projected into the singles-and-doubles space to obtain the leading-
order triples energy contribution. Similarly, E(4)0 in Eq. (82) shows
how the effect of relaxed triples, as expressed by δt(2)λ3

, is projected
into the singles-and-doubles space to obtain the energy contribution
originating from the relaxed triples. The first term of E(5)0 in Eq. (83)
describes, in a similar way, how triples amplitudes that are further
relaxed, as expressed by δt(3)λ3

, are projected into the singles-and-
doubles space to obtain the corresponding triples-relaxed energy
contribution. Note that while the δt(2)λ3

triples relaxation contribu-
tion is due to an internal relaxation in the triples space [the sum in

Eq. (72b) runs only through the triples space], the relaxation in the
δt(3)λ3

triples contribution is referencing also the singles-and-doubles
space [the sum in Eq. (73b) runs through the singles-and-doubles
and triples spaces]. The last two terms of E(5)0 contain connected
energy contributions.

B. Comparison of the CPSD(T-n) and the L-CCSD(T-n)
energy series

In CCPT theory, two energy series—the CCPT energy series11

and the CCPT Lagrangian series9—have previously been developed,
where energy corrections are determined in orders of Φ∗T , the
zeroth-order term is the energy of the CC parent state, and the
series converge to the energy of the CC target state. The CCPT
energy series11 may be obtained as described in Sec. II in Eqs. (31)–
(33). The CCPT Lagrangian series9 may be determined by param-
eterizing the energy Lagrangian for the CC target state with the
CC parent state and its bi-orthonormal parent multiplier state as
the expansion point. For the CCPT energy and CCPT Lagrangian
series, we use a notation similar to the one we have used for the
CP models, where the label CP is replaced by the label E-CC for
the CCPT energy series and with the label L-CC for the CCPT
Lagrangian series. For example, CPSD(T-n), E-CCSD(T-n), and
L-CCSD(T-n) denote CP, CCPT energy, and CCPT Lagrangian
series, respectively, with a CCSD parent state targeting the energy
of a CCSDT state. We will in this section compare the energy
corrections for the CPSD(T-n) and L-CCSD(T-n) series. The
L-CCSD(T-n) series is given in Ref. 9. In order to compare the
energy contributions of the L-CCSD(T-n) with the CPSD(T-n)
series, we rewrite E(3)0 , E(4)0 , and E(5)0 in Eqs. (81)–(83) using the
CCSD multiplier equation,

2
∑

i=1
∑

µi

∗tµi J
CCSD
µiνj = −⟨HF∣[Φ∗T , θνj]∣HF⟩, j = 1, 2, (84)

where ∗tµi , i = 1, 2, denotes CCSD multipliers. Substituting Eq. (84)
in Eqs. (81)–(83) gives

E(3)0 =

2
∑

i=1
∑

µiν3

∗tµi⟨µi∣[Φ
∗T , θν3]∣HF⟩δt(1)ν3 , (85)

E(4)0 =

2
∑

i=1
∑

µiν3

∗tµi⟨µi∣[Φ
∗T , θν3]∣HF⟩δt(2)ν3 , (86)

E(5)0 = E(5)0 (T) + E(5)0 (ST) + E(5)0 (SS), (87)

where

E(5)0 (T) =

2
∑

i=1
∑

µiν3

∗tµi⟨µi∣[Φ
∗T , θν3]∣HF⟩δt(3)ν3 , (88)

E(5)0 (ST) =

2
∑

j=1
∑

νj

∗tνj⟨νj∣[[Φ
∗T ,δT(2)1 ],δT(1)3 ]∣HF⟩, (89)

E(5)0 (SS) =
1
2
⟨HF∣[[Φ∗T ,δT(2)1 ],δT(2)1 ]∣HF⟩. (90)

Substituting Eq. (73b) in Eq. (88) gives
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E(5)0 (T) = −

2
∑

i=1

3
∑

j=1
∑

µiλjν3

∗tµi⟨µi∣[Φ
∗T , θν3]∣HF⟩ε−1

ν3

× ⟨ν3∣[Φ∗T , θλj]∣HF⟩δt(2)λj . (91)

Introducing the first-order multipliers of Eq. (2.29a) in Ref. 9 as

δt(1)ν3 = −ε−1
ν3

2
∑

i=1
∑

µi

∗tµi⟨µi∣[Φ
∗T , θν3]∣HF⟩, (92)

we may write Eq. (91) as

E(5)0 (T) =

3
∑

j=1
∑

λjν3

δt(1)ν3 ⟨ν3∣[Φ∗T , θλj]∣HF⟩δt(2)λj = E(5)0 (T-S)

+ E(5)0 (T-D) + E(5)0 (T-T), (93)

where

E(5)0 (T-S) =∑
ν3

δt(1)ν3 ⟨ν3∣[Φ∗T ,δT(2)1 ]∣HF⟩, (94)

E(5)0 (T-D) =∑

ν3

δt(1)ν3 ⟨ν3∣[Φ∗T ,δT(2)2 ]∣HF⟩, (95)

E(5)0 (T-T) =∑

ν3

δt(1)ν3 ⟨ν3∣[Φ∗T ,δT(2)3 ]∣HF⟩. (96)

The lowest non-vanishing contribution in the L-CCSD(T-n)
series enters in second-order and is given in Eq. (3.1a) of Ref. 10.
The L-CCSD(T-2) energy correction is in Ref. 10 denoted by E(2)T-2 ,
and a comparison with E(3)0 of Eq. (85) shows

E(2)T-2 = E(3)0 . (97)

The L-CCSD(T-3) energy contribution is given in Eq. (3.1b) of
Ref. 10 and is denoted by E(3)T-3 . A comparison with E(4)0 of Eq. (86)
shows

E(3)T-3 = E(4)0 . (98)

The L-CCSD(T-4) energy contribution is given in Eq. (2.33) of Ref. 9
as

E(4)T-4 =∑
µ2

∗tµ2⟨µ2∣[[Φ,δT(1)3 ],δT̃
(2)
1 ]∣HF⟩

+∑
ν3

δt(1)ν3 ⟨ν3∣[Φ∗T ,δT̃
(2)
1 + δT̃

(2)
2 + δT(2)3 ]∣HF⟩, (99)

where the notation of the present article is used and where the singles
and doubles second-order cluster operators are given as

δT̃
(2)
i =∑

µi
δ̃t(2)µi θµi , i = 1, 2, (100)

with the amplitudes

δ̃t(2)µi = −ε−1
µi ⟨µi∣[Φ

∗T ,δT(1)3 ]∣HF⟩, i = 1, 2. (101)

The δ̃t(2)µ1 and δ̃t(2)µ2 amplitudes of Eq. (101) may be obtained from
the ones in Eq. (72a) by replacing the CCSD Jacobian in Eq. (72a)
with a diagonal matrix containing orbital energy differences. Com-
paring E(4)T-4 of Eq. (99) with E(5)0 of Eqs. (87)–(90) and (93)–(96),

we identify the triples amplitudes contribution to the second term of
Eq. (99) with the triples-triples term in Eq. (93),

E(5)0 (T-T) =∑

ν3

δt(1)ν3 ⟨ν3∣[Φ∗T ,δT(2)3 ]∣HF⟩, (102)

while the remaining terms in E(4)T-4 can be obtained from the
E(5)0 (T-S), E(5)0 (T-D), and E(5)0 (ST) contributions to E(5)0 by replac-
ing the δt(2)µ1 and δt(2)µ2 amplitudes of Eq. (72a) with the amplitudes
of Eq. (101). In addition, E(5)0 contains the E(5)0 (SS) contribution
which has no counterpart in E(4)T-4 .

The two lowest non-vanishing order contributions in the
L-CCSD(T-n) and CPSD(T-n) series are thus identical. However,
the L-CCSD(T-n) series starts at second order, whereas the CPSD(T-
n) series starts at third order. This difference in counting orders
is due to the fact that the multipliers for the CCSD reference state
are assigned no order in the L-CCSD(T-n) series,9 whereas for the
CPSD(T-n) series, they are assigned one order in Φ∗T as the right-
hand side of the multiplier equations contains a Φ∗T perturbation
operator; see Eq. (84). All the E(4)T-4 terms in Eq. (99) have coun-
terparts in the E(5)0 in Eq. (87), where the E(4)T-4 terms are obtained
from the E(5)0 terms by replacing the internally relaxed second-order
singles and doubles amplitudes in Eq. (72a) with the internally unre-
laxed second-order singles and doubles amplitudes of Eq. (101). In
addition, the energy contribution in Eq. (87) contains the E(5)0 (SS)
term. As the E(5)0 (SS) term does not contain the CCSD multipliers,
this term will appear as a fifth-order term in the L-CCSD(T-n) series.

For the CPSD(T-n) series, the two lowest energy corrections are
identical to the two lowest energy corrections in the L-CCSD(T-n)
series, with the order increased by one in the CPSD(T-n) series. In
general, for a fixed parent and target excitation space, the two low-
est energy corrections are equal in the CP and CCPT Lagrangian
series, with the CP corrections formally being one order higher than
in the CCPT Lagrangian series. In the numerical section, Sec. V, to
facilitate a direct comparison of the convergence of the CP and the
CCPT Lagrangian series, we have adjusted the order of the CCPT
Lagrangian series by one to have identical energy contributions in
the two series in the first two orders.

IV. MATHEMATICAL CONSIDERATIONS
ON THE CONVERGENCE OF PERTURBATION THEORY

Before discussing the convergence of CP ground-state energy
series for various choices of parent and target states, we briefly
review the general theory of convergence for perturbation theory in
finite-dimensional spaces. A comprehensive discussion of the gen-
eral theory of the convergence for the CP series for the ground-state
energy and for molecular properties, including excitation energies,
can be found in Paper IV.15 We first introduce the mathematical for-
malism that is needed to establish whether a perturbation expansion
is convergent and then apply this formalism to a simple two-state
model, which may be used for analyzing the convergence behavior
of finite-dimensional perturbation expansions. The premises for set-
ting up the two-state model and for using it to examine the conver-
gence of perturbation series have been studied in Paper IV15 and in
Ref. 16. In the latter article, the two-state model has been examined
in detail and the convergence rate and the convergence patterns that
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may arise for a two-state problem have been determined. In Subsec-
tion IV C, we introduce the five archetypes that cover the conver-
gence patterns, which can be encountered for ground-state energy
perturbation series that effectively become a two-state problem at
high orders.

A. General considerations
Consider a general perturbation partitioning of a Hamiltonian

matrix H into a zeroth-order matrix H0 and a perturbation V,

H(z) = H0 + zV, (103)

where z is the perturbation parameter, which may be complex. The
eigenvalues and eigenvectors of H(z) are functions of z, so we may
write the eigenvalue equation for H(z) as

H(z)X(z) = E(z)X(z), (104)

where E(z) and X(z) are the z-dependent eigenvalue and eigenvec-
tor, respectively. Assuming that the unperturbed eigenvalue of H0 is
non-degenerate, the function E(z) is analytic in the region around
z = 0 where E(z) is non-degenerate. The perturbation expansion
for the eigenvalue of interest, E = E(1), is thus convergent if E(z)
is analytic within the complex unit circle, |z| ≤ 1. The question of
convergence or divergence of a perturbation expansion may there-
fore be settled by examining the eigenvalue E(z) as a function of z
and determining the lowest value of |z| for which E(z) is degener-
ate. We will call this point of degeneracy the primary critical point,
so the perturbation expansion is divergent if the primary critical
point is inside the complex unit circle and convergent if the point is
outside.

An eigenstate Y(z) that becomes degenerate with X(z) for |z|
< 1 is called an intruder state. If the degeneracy occurs for a nega-
tive value of the real part of z, then the intruder state is a back-door
intruder, whereas the occurrence of the degeneracy for a positive
value corresponds to a front-door intruder. We will see below that
the location of the primary stationary point in the positive or neg-
ative half plane is directly related to the signs of the higher-order
corrections.

The above discussion relates to the standard perturbation
expansion of an eigenvalue problem. However, CP perturbation
theory is connected to an expansion of a set of non-linear equa-
tions and it is therefore not evident that the standard mathemat-
ical theory of perturbation expansion applies to the present case.
In connection to the development of CCPT perturbation theory,
we have discussed the formal requirements for convergence of
such perturbation expansions and have shown that the intruder
states occur as excitation operators that give singularities of the
perturbation-dependent Jacobian within the unit circle.14 For CP
theory, we have in Paper IV15 examined the theoretical founda-
tion for having convergent CP perturbation series both for the
ground-state energy and for molecular properties, including exci-
tation energies. With the modification that the determination of
degeneracies for the energy is replaced by a determination of sin-
gularities of the perturbation-dependent Jacobian, we will use the
standard terms, such as back- and front-door intruders, also for
perturbation expansions that are obtained using CCPT and CP
theories.

B. The two-state model
When the high-order MPPT corrections to the wave function

are examined, it is found that these corrections become nearly lin-
early dependent29,30 and may therefore be written in terms of a
single vector. Furthermore, for MPPT, this vector has been found
to be identical to the eigenvector that leads to the primary criti-
cal point. The higher-order corrections in MPPT may therefore be
understood in terms of a two-dimensional space containing the two
degenerate states of the primary critical point. For the CP and CCPT
expansions, the overlaps between the various corrections to the exci-
tation operator have also been analyzed,16 and it has been found
that these corrections also approach a one-dimensional ray and may
therefore also be studied using a two-dimensional model containing
two degenerate states of the primary critical point.

To set up the two-dimensional model, we will use for the two-
dimensional space the same notation as for the full dimensional
space and assume that the basis vectors of the two-dimensional space
are orthonormal and diagonalize the zeroth-order Hamiltonian. The
zeroth-order Hamiltonian and the perturbation may then be written
as16,30

H 0 =
⎛

⎝

α 0

0 β + γ
⎞

⎠

, (105)

V =

⎛

⎝

0 δ1

δ2 −γ
⎞

⎠

, (106)

where α and β + γ are the two zeroth-order energies, and γ and δ1, δ2
are the gap shift and the coupling terms, respectively. We will in the
following assume that the β > α and β + γ > α, so the numerical order
of the diagonal terms is the same in H0 and H0 + V. Notice also that
the perturbation is not necessarily Hermitian, as the coupling terms,
δ1 and δ2, may differ. The general form of the perturbation allows
the model to describe general perturbation expansions as occurring
in, for example, coupled cluster theory and multi-state perturbation
expansions.

The two eigenvalues of the matrix H0 + zV are determined
as16,30

E±(z) =
α + β + (1 − z)γ

2
±

√

(α − β − (1 − z)γ)2 + 4δ1δ2z2

2
. (107)

Equation (107) shows that the eigenvalues, as functions of z, depend
on the product δ1δ2 and not on the individual coupling elements.
We may therefore replace the individual coupling coefficients with a
positive geometric average of these, δ, and a symmetry factor, σ,

δ =
√

∣δ1δ2∣ (108)

σ =
⎧
⎪⎪
⎨
⎪⎪
⎩

+1, if δ1δ2 ≥ 0

−1, if δ1δ2 < 0,
(109)

so
δ1δ2 = σδ2. (110)

The eigenvalues of Eq. (107) may therefore be written in terms of σ
and δ as

E±(z) =
α + β + (1 − z)γ

2
±

√

(α − β − (1 − z)γ)2 + 4σδ2z2

2
. (111)
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The relation between the diagonal elements of H0 + V, i.e., α and β,
and the eigenvalues E± depends on the symmetry factor. Since the
square root is a monotonically increasing function, it is first noted
that

√

(α − β)2 + 4σδ2 is larger than |β − α| for σ = 1 and smaller
than |β − α| for σ = −1. The symmetric perturbation, σ = 1, leads
thus to a lowest eigenvalue, E−, that is below α and a largest eigen-
value, E+, that is above β. For an asymmetric perturbation, σ = −1,
and for ∣γ∣ ≤ ∣β−α∣2 , one obtains a real lowest eigenvalue that is larger
than α and a real largest eigenvalue that is lower than β, whereas
for ∣γ∣ > ∣β−α∣

2 , one obtains a pair of complex eigenvalues. In the
present context, where we consider perturbation expansions of the
ground-state energy, we have in general that the eigenvalue of inter-
est is the lowest and that the perturbation expansion reduces the total
energy. We will therefore restrict our considerations to the symmet-
ric case, σ = + 1, and use Eq. (111) with this choice of σ as the point
of departure.

The primary critical points are defined by E−(z) = E+(z), corre-
sponding to the complex pair of parameters,

zc± =
β + γ − α
4δ2 + γ2 (γ ± 2δi). (112)

The norm of the critical points is given by

∣zc±∣ =
β − α + γ
√

4δ2 + γ2
, (113)

so the perturbation expansion is divergent if

(β − α + γ)2

4δ2 + γ2 < 1. (114)

In Ref. 16, it is shown that the asymptotic rate of convergence,
r, and the norm of the critical point are inverses of each other,

r =
1
∣zc∣

, (115)

so the location of the critical point does not only define whether the
expansion is convergent or divergent, but it also defines the rate of
convergence for a convergent expansion.

Since β + γ − α is positive by assumption, it is seen from
Eq. (112) that the sign of the gap shift defines the position of the
critical points in the complex plane: a positive gap shift leads to a
critical point being located in the half plane with positive real values,

TABLE I. Archetypes of convergence patterns for two-state perturbation expansions (see text for details).

Archetype Geometric Ripples

Identification |γ| ≫ |δ| |γ| > |δ|

Typical absolute corrections and deviations

Sign pattern γ < 0 : (1+, 1−) γ < 0 : (1+, 1−)
of corrections γ > 0 : (−) γ > 0 : (n∗−, n∗+)

Period n∗ . . . 2.5 +
√

2∣ γδ ∣
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whereas a negative gap shift leads to a critical point in the nega-
tive half plane. Similarly, an intruder state for a Hamiltonian with
a positive gap shift is necessarily a front-door intruder, whereas an
intruder state for a negative gap shift is a back-door intruder.

C. Archetypes of convergence
In Ref. 16, we have analyzed the form of the energy correc-

tions for the two-state perturbation expansion for general choices
of γ, δ, and σ and have shown that there are five archetypes of con-
vergence patterns for the considered symmetric perturbations. Of
the five archetypes—zigzag, interspersed zigzag, triadic, geometric,
and ripples—all but the zigzag have been observed.16 In the present
context, we are studying perturbation expansions of ground-state
energies and only two of these archetypes will be encountered: geo-
metric and ripples. The properties and typical patterns of these two
archetypes are given in Table I. For both archetypes, corrections
and deviations are plotted for both negative and positive gap shifts.
The plots are logarithmic and a simple color code is used to differ-
entiate between positive (blue) and negative (red) corrections and
deviations. To avoid unnecessary cluttering of the plots, the color
codes are defined only on the first plot. The geometric and rip-
ples archetypes arise when the absolute value of the gap shift γ is
larger than the absolute value of the coupling element δ. If the gap
shift is much larger than the coupling, the archetype is geometric,
where the convergence exhibits a simple geometric form. For this
archetype, a positive value of the gap shift implies that all corrections
are negative, which in the table is denoted by (−), whereas a neg-
ative value of the gap shift leads to corrections of alternating sign,
which is denoted by (1+, 1−). The sign of the gap shift may there-
fore be directly deduced from the signs of the corrections. When the
size of the gap shift increases toward the coupling or when larger
orders are considered, the ripples pattern occurs. In the ripples pat-
tern, there are recurring ripples that are delineated by marked local
minima in the size of the corrections and deviations. The number
of orders spanned by a ripple, n∗, is proportional to the ratio ∣

γ
δ ∣,

which explains why the ripples are not observed in actual calcula-
tions when the coupling is much smaller than the gap shift. The signs
of the corrections depend on the sign of the gap shift. If the gap shift
is negative, the corrections and deviations have in general alternat-
ing signs, with exceptions occurring at the boundary between two
ripples, where typically two corrections and two deviations have the
same sign. If the gap shift is positive, all corrections have the same
sign in a given ripple and the sign changes, when going from one
ripple to the next. The deviations for a single ripple have similarly
a common sign, which is opposite to that of the corrections for this
ripple.

V. NUMERICAL RESULTS
In this section, we report calculations using the CP energy

series, as well as the CCPT energy and CCPT Lagrangian series, for
various CC parent and CC target states. We also report the MPPT
series calculations with the FCI state as the target state. Our test
examples consist of hydrogen fluoride, HF, in aug-cc-pVDZ basis at
three geometries, Re, 1.5Re, and 2.0Re, methylene, CH2, in cc-pVTZ
basis, and the fluorine anion, F−, in aug-cc-pVTZ basis. The equilib-
rium geometries are those used in Ref. 14, and the 1s core orbitals

are frozen for all atoms but hydrogen. The test examples have been
chosen to study the convergence of CP energy series for electron-
rich and electron-poor molecular systems and for various degrees
of multi-configurational character of the wave function. The use of
hydrogen fluoride at the three bond-distances thus allows us to study
a molecule containing an electron-rich atom with various degrees
of multi-configurational wave functions. At Re, the HF molecule
is strongly dominated by the Hartree-Fock configuration, at 1.5Re,
the wave function has a minor multi-configurational component,
whereas at 2.0Re, there is a large multi-configurational component.
More quantitatively, the occupations of the anti-bonding sigma
orbitals are 0.03, 0.09, and 0.26 for Re, 1.5Re, and 2.0Re, respec-
tively. For the methylene molecule, we are using the lowest lying
closed-shell state as the reference state. The methylene molecule
has a low-lying doubly excited singlet state, and because the car-
bon atom is not electron-rich, the high-order convergence becomes
defined by a primary critical point in the positive complex half
plane. Finally, the fluorine anion is electron-rich and has a low-lying
excited singlet state, so the anion has either a back-door intruder
or a curve-crossing slightly outside the negative part of the unit cir-
cle. As we will see below, the MPPT expansions are only convergent
for one of these test cases, the methylene molecule, so this choice
of test cases allows us to study the performance of CP and CCPT
perturbation series for molecules for which higher-order MPPT
fails.

The CP, CCPT energy, CCPT Lagrangian, and MPPT energy
series calculations have been carried using the general coupled clus-
ter codes31 of LUCIA.32 LUCIA has thus been extended to use
the zeroth-order target-space Jacobian for both the Fock operator
partitioning [Eq. (31)] and the parent-state Jacobian partitioning
[Eq. (39)]. The codes developed in LUCIA allow for calculations
through arbitrary order with arbitrary excitation spaces for the par-
ent and target states. The price for this generality is that the codes
are rather inefficient, making in particular high-order calculations
time consuming. The atomic-orbital integrals were obtained from
the standard version of DALTON.33,34

We have performed calculations for the CPS(D-n), CPSD(T-n),
and CPSDT(Q-n) energy series, where the parent and target excita-
tion spaces differ by a single excitation level. These calculations will
be discussed in the following. In addition, we have also performed
calculations using the CPS(DT-n) and CPSD(TQ-n) series, where
the parent and target excitation spaces differ by two excitation levels.
The latter two series will only be used to examine general conver-
gence trends as functions of the parent and target spaces, but the
performance of the individual orders for these two expansions will
not be discussed. For comparison, calculations have also been per-
formed for the standard MPPT energy series and the CCPT energy
and CCPT Lagrangian series using the above parent and target exci-
tation spaces. The calculations were in general carried out through
order 40, but for the most computationally demanding calculations
containing the CCSDTQ target state, the largest order was reduced
to 20 or less. Calculations were terminated if the energy corrections
became smaller than 10−6 or larger than 1. For convergent expan-
sions, we also determine the rate of convergence, which is defined as
the ratio of the absolute energy deviations of two consecutive orders.
A rate of convergence close to one thus indicates a slowly conver-
gent series, whereas a convergence rate significantly smaller than one
indicates a fast convergent series. In practice, the rate of convergence
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TABLE II. Summary of the convergence behavior of the MPPT calculations.

HF at Re HF at 1.5 Re HF at 2 Re CH2 F−

Low-order results: Fraction of full correlation energy recovered

Order 2 (%) 96.4 96.0 93.4 81.5 98.7
Order 3 (%) 96.7 94.3 90.3 93.3 94.7
Order 4 (%) 100.4 100.7 100.6 97.1 102.1
Order 5 (%) 99.3 98.1 95.6 98.3 97.4
Order 6 (%) 100.4 101.3 103.1 98.9 102.8

High-order convergence

Convergent? No No No Yes No
Rate of convergence . . . . . . . . . 0.79 . . .
Archetype Geo. Geo. Geo. Geo. Geo.
Signs (1+, 1−) (1+, 1−) (1+, 1−) (−) (1+, 1−)

was obtained from a linear least square fit of the logarithmic absolute
errors for orders larger than or equal to 10.

We will examine several features of the performed calculations.
First of all, we will examine the amount of differential correlation
energy that the various series recover at lower order, for example,
how large part of the triples correlation energy is recovered in the
first five non-vanishing orders of CPSD(T-n). This aspect deter-
mines obviously the potential practical use of the new hierarchies.
A more fundamental question is whether the CP series are converg-
ing in high orders and which archetype the high-order corrections
correspond to. The latter provides information about the gap shift
and coupling term of the perturbation and may therefore be used

to design better forms of the parent space or improved perturba-
tion methods. It is also of interest to investigate to what extent
the CP hierarchy removes the divergences of MPPT that arise due
to back-door intruders as these divergences drastically reduce the
applicability of MPPT beyond the second order.

A. The MPPT series
Before embarking on the CP calculations, it is useful to review

the calculations for the standard MPPT energy series. The MPPT
series for the five test cases are summarized in Table II and Fig. 1.
The figure displays logarithmic plots of the absolute deviations

FIG. 1. Logarithmic plot of the absolute
errors of the energies obtained for the
MPPT series for the five test examples.
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from the FCI energies as a function of the perturbation order.
The table contains information about the recovered fractions of the
full correlation energies for orders up to 6, whether a series con-
verges or diverges, and the archetype as well as sign pattern of
the corrections. For convergent series, the rate of convergence is
also reported. This template for the figures and tables will also be
used in our later discussions of the convergence of the CP energy
series.

With respect to the lower-order behavior of the MPPT series,
Table II shows that the second-order correlation energy gives more
than 93% of the full correlation energy for all examples except for the
methylene molecule, where the second-order correlation energy is
only about 80% of the full correlation energy. Addition of the third-
order correction improves the accuracy of the correlation for the
methylene molecule but leads to reduced or only minor improve-
ments for the remaining cases. The inclusion of the fourth-order
corrections leads to significant improvements in the accuracy for all
cases except the fluorine anion, whereas corrections beyond fourth
order do not lead to improvements of the correlation energies,
except for the methylene molecule.

Although the two-state model, summarized in Sec. IV B and
developed in Ref. 16, is intended to describe the behavior for the
higher-order corrections, it may also be used to understand the rel-
ative size of the second- and third-order corrections as these cor-
rections may be obtained from a two-state model with the unper-
turbed reference state and the normalized first-order wave function
corrections as the two states. However, the positive second- and
third-order MPPT deviations given in Table II do not seem to fol-
low any of the archetypes of the two-state model. To understand
why this happens, let us consider the calculation for HF molecule
at 1.5 Re. From the zeroth-order Hamiltonian and the perturba-
tion in the considered two-dimensional space, one obtains a ratio
∣
δ
γ ∣ = 0.02, which clearly shows that the archetype is geometric. Fur-

thermore, the sign of γ is negative. However, the observed second-
and third-order deviations are both positive, in contrast to the alter-
nating sign pattern of the geometric archetype that is predicted for
negative gap shifts in accordance with Table I, as discussed in more
detail in Ref. 16.

To understand this behavior, it is noted that the converged
energy defining the deviation in the two-state model is the lowest
eigenvalue of the two-state problem, rather than the FCI energy
which is used to define the deviations for the MPPT energies in
Table II and Fig. 1. The FCI energy is lower than the two-state
eigenvalue. When the FCI energy is used to define the deviations
instead of the two-state eigenvalue, this leads to differences between
even and odd order deviations. The second-order energy is below
the two-state eigenvalue but above the FCI energy, so using a lower
FCI energy as the converged energy leads to a positive value for the
second-order deviations. The third-order correction is positive in
the standard two-state model, so a lowering of the converged energy
increases the size of this deviation, which leads to the observed
two positive deviations for second- and third-order MPPT and to
a third-order deviation that often is larger than the second-order
deviation.

The convergence behavior of the third-order MPPT energy that
is marginally better or just slightly worse than the second-order
MPPT energy is observed in four of the MPPT calculations reported
in Fig. 1 and is a well-known feature of MPPT. The failure to obtain

an improved description for MP3 compared to MP2 has the same
origin as the failure of MP2 and MP3 to give deviations that are
in accordance with the two-state model, as outlined above for HF
molecule at 1.5 Re. An exception, where the third-order MPPT leads
to an improvement, is CH2. However, the gap shift for this molecule
is positive so corrections are negative and all deviations are posi-
tive, so the change in the value of the converged energy does not
modify the behavior of the deviations for this case. The observed
higher accuracy of the fourth-order energies compared to the fifth-
order energies cannot be described using the two-state model as
these energies cannot be obtained from the two-state model.

From Table II, it is seen that the MPPT series is convergent
only for the methylene molecule, whereas the series diverges for the
remaining four molecules. The convergence archetype is geometric
(cf. Fig. 1) for all five cases, and the corrections have alternating signs
for HF and F−, whereas all corrections are negative for the methylene
molecule. These findings are in agreement with previous results.7

As an example of the asymptotic convergence of a convergent
MPPT series, we plot in Fig. 2 the logarithm of the absolute devi-
ations of the MPPT energies for CH2 as a function of the order
together with the linear interpolation defined by the rate of conver-
gence. It is noted that, starting from order 6, the asymptotic rate
of convergence gives a curve that is well aligned with the actual
deviations. For orders lower than 6, the corrections are reduced
significantly faster than predicted by the convergence rate. Accord-
ing to Table II, the rate of convergence for the methylene molecule
is 0.79, indicating that it takes three orders in the perturbation to
reduce the error by a factor of 2 and thereby about 9 orders to
reduce the error by an order of magnitude. This is also supported by
Fig. 2.

B. Convergence of the S(D-n) series
In Table III and Fig. 3, we give the absolute deviations from

the CCSD energies for the various orders of the CPS(D-n) and
E-CCS(D-n) expansions for the considered test examples. To avoid
cluttering of the curves, the legends of the various graphs are only
given for the upper left panel. When the parent state is the CCS

FIG. 2. Logarithmic plot of the absolute errors of the energies obtained for the
MPPT calculations on CH2. The linear least square fit to the points is also given.
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TABLE III. Summary of the convergence of the CPS(D-n) calculations.

HF at Re HF at 1.5 Re HF at 2 Re CH2 F−

Low-order results: Fraction of CCSD correlation energy recovered

Order 2 (%) 98.4 99.0 97.9 84.4 102.3
Order 3 (%) 98.7 97.2 94.6 96.6 98.2
Order 4 (%) 100.5 100.9 101.4 98.7 101.6
Order 5 (%) 99.7 99.3 98.5 99.2 99.0
Order 6 (%) 100.1 100.4 101.1 99.5 100.8

High-order convergence

Convergent? Yes Yes No Yes No
Rate of convergence 0.67 0.83 . . . 0.68 . . .
Archetype Geo. Geo. Geo. Geo. Geo.
Signs (1+, 1−) (1+, 1−) (1+, 1−) (−) (1+, 1−)
Energy/Lagrangian series convergent? Yes Yes No Yes Yes

wave function, the reference state is the Hartree-Fock state as the sin-
gle excitation amplitudes vanish due to the Brillouin theorem. The
E-CCS(D-n) and L-CCS(D-n) energy series are therefore identical
and equal to the MPPT series with the CCSD wave function as the
target state. Figure 3 therefore does not contain an explicit graph for
the L-CPS(D-n) series.

From Table III, it is noticed that the second-order energies
match the CCSD correlation energies with an error of about 2% or
less. An exception is the methylene molecule, where only about 84%
of the CCSD correlation energy is recovered at second order. When

the third-order corrections are added, it is only for the methylene
molecule that a noticeable improvement is observed. The fourth-
order corrections give a significant reduction in the deviation, and
the CCSD correlation energy is recovered with an error of 0.5% for
HF at the equilibrium distance, whereas the deviations are 2% or
less for the remaining cases. The next general improvement is now
observed at sixth order, where the CCSD correlation energy for all
the considered cases is reproduced with an error of 1% or less.

With respect to the convergence behavior for higher-order
corrections of the CCS(D-n) series, it is only HF at 2Re and F−

FIG. 3. Logarithmic plot of the absolute
errors of the energies obtained in the
CPS(D-n) and E-CCS(D-n) series for the
five test examples.
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that are diverging. The archetype of the convergence is geometric,
and the corrections have alternating signs except for the methylene
molecule, where all corrections are negative. The archetype patterns
in Table I for absolute corrections show that |γ| >> |δ| for all the
systems and that γ > 0 for CH2, whereas for all other systems γ < 0.
The convergence rates of 0.67 and 0.68 for HF at Re and CH2, respec-
tively, indicate fast convergence for these cases, which is also evident
from Fig. 3. When HF is stretched to 1.5 Re, the convergence rate
increases to 0.83. When the bond length is stretched to 2Re, the series
becomes divergent, as already mentioned.

Comparing the results in Table III and Fig. 3 for the CPS(D-n)
expansion and the E-CCS(D-n) series, it is seen that both series con-
verge except for HF at 2Re and the fluorine anion. Both series diverge
for HF at 2Re, whereas only the CPS(D-n) series diverges for the flu-
orine anion. The divergence of the CPS(D-n) series for the fluorine
anion may seem surprising. However, it is noted from Fig. 3 that
the E-CCS(D-n) series has a very slow asymptotic convergence, so a
small change in the zeroth-order Hamiltonian may change this series
to a divergent series. With respect to the convergence rates for the
convergent series, it is seen that the convergence of the two series
is practically identical for the methylene molecule, whereas the E-
CCS(D-n) series converges slightly faster than the CPS(D-n) series
for HF at Re and 1.5Re.

C. Convergence of the SD(T-n) series
In the CPSD(T-n) energy series, the zeroth-order parent-space

Jacobian contains double excitations and thereby ensures that the
largest corrections to the Hartree-Fock state are properly described.
The CPSD(T-n) expansion is thus the first CP expansion, where we
expect significant improvements in the convergence rates compared
to the CCPT energy and CCPT Lagrangian series. Furthermore, in
the MPPT, CCPT energy and Lagrangian series front-door intrud-
ers are typically dominated by double excitations. By using the full
Jacobian in the singles-and-doubles space as the zeroth-order Jaco-
bian, the CPSD(T-n) series can become free of divergences caused
by low-lying doubly excited states.

In Table IV, the convergence for the various test cases is sum-
marized in the same form as in Table III for the CPS(D-n) energy
series. The table is supplemented by Fig. 4, which gives the absolute
errors of the SD(T-n) energies compared to the CCSDT energy. The
orders of the L-CCSD(T-n) expansion have been adjusted by adding
one order, so their third- and fourth-order corrections equal the
third- and fourth-order CPSD(T-n) corrections (see last paragraph
of Sec. III).

The third-order corrections are the first non-vanishing cor-
rections, and they give about 90% of the triples correlation energy
except for the methylene molecule, where only about 80% of the
triples correlation energy is recovered. The fourth-order corrections
lead to an improvement only for the methylene molecule. The fifth-
order corrections lead to significant improvements of the accuracy,
and the triples correlation energies are now recovered for all dis-
tances of HF with an error of 0.3% or less, whereas the two remaining
test cases exhibit deviations of up to 4%. The sixth-order correction
leads to improved accuracy for the methylene molecule only, and
the seventh-order terms do not provide a general improvement of
the accuracy compared to the fifth-order energies. In the CPSD(T-n)
series, we thus again see a pattern, where the first and third non-
trivial corrections lead to significant reductions in the deviations,
whereas the second and fourth corrections do not provide general
improvements.

The third- and fourth-order deviations for all cases, except HF
at Re and methylene, thus show the same behavior as observed for
the second- and third-order MPPT deviations. We expect that the
reason for the zigzag pattern for these corrections has the same ori-
gin as for MPPT. The first non-vanishing correction to the energy
is negative and leads to an energy that is lower than that of the cor-
responding two-state problem. However, the converged CPSD(T-n)
energy is below that of the two-state problem and also below that of
third order. The use of the CPSDT energy as the reference energy
therefore leads to a positive deviation at third order. However, the
fourth-order correction is positive and the use of a smaller reference
energy leads to an increase in the size of the fourth-order deviation
and to the zigzag pattern for low orders.

TABLE IV. Summary of the convergence of the CPSD(T-n) calculations.

HF at Re HF at 1.5 Re HF at 2 Re CH2 F−

Low-order results: Fraction of triples correlation energy recovered

Order 3 (%) 92.2 90.5 87.6 78.3 93.8
Order 4 (%) 93.4 89.7 87.1 89.0 88.8
Order 5 (%) 99.7 99.9 100.2 95.9 101.5
Order 6 (%) 99.3 98.3 97.3 97.8 97.0
Order 7 (%) 100.1 100.3 100.9 98.9 101.4

High-order convergence

Convergent? Yes Yes Yes Yes Yes
Rate of convergence 0.48 0.57 0.76 0.60 0.74
Archetype Geo. Geo. Geo. Geo. Geo.
Signs (1+, 1−) (1+, 1−) (1+, 1−) (−) (1+, 1−)
Energy/Lagrangian series convergent? Yes Yes No Yes No
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FIG. 4. Energy errors of the three per-
turbation expansions for CCSD as the
parent state and CCSDT as the target
state.

Turning to the effect of the higher-order corrections, it is
seen from Fig. 4 that the CPSD(T-n) series is convergent for all
the considered cases. The archetype for the high-order conver-
gence is again the geometric type with alternating signs for all
cases except methylene, where all corrections are negative. The
archetype patterns in Table I for absolute corrections show that
|γ| >> |δ| for all the systems and that γ > 0 for CH2, whereas
for all other systems γ < 0. With convergence rates of 0.48
and 0.57, the CPSD(T-n) series for hydrogen fluoride molecule
at Re and 1.5Re, respectively, are well convergent and the con-
vergence rate of 0.76 for the bond stretched to 2.0Re is also
encouraging.

For the CCPT energy and Lagrangian series,9,11 convergence is
observed for HF at Re and 1.5Re and for methylene. The archetype
of these series is ripple (see Table I) for HF at the two stretched
geometries and for the fluorine anion. The energy corrections within
a ripple have alternate sign, and from Table I, we therefore know that
the gap shift is negative. From Table I, it is also seen that the period
of the ripples is proportional to the ratio between the gap shift and
the coupling constant, so the presence of these ripples indicates that
the coupling is not much smaller than the gap shift. This may be
understood by noting that the CCPT series have a rather inaccu-
rate zeroth-order Jacobian defined by the Fock operator, and there-
fore large gap shifts and coupling terms occur in these perturbation
series.

Comparing the CPSD(T-n) and L-CCSD(T-n) series, we note
from Fig. 4 that the first two orders are identical, in agreement
with the analysis in Sec. III B. For the fifth, sixth, and seventh
order, the CPSD(T-n) expansion gives significantly better results
than the CCPT Lagrangian expansion. For higher orders, it is seen
that the CPSD(T-n) deviations diminish fast in a geometric fashion,

whereas the CCSD(T-n) series exhibits ripples for three test cases
and diverges for two cases.

For a more detailed comparison of the performance of the
CPSD(T-n) expansion with the CCPT energy and CCPT Lagrangian
series, we give in Fig. 5 the signed errors for the three expansions
for HF at Re. It is noted that the E-CCSD(T-n) expansion has errors
that are significantly larger than the two other expansions, especially
at the lower orders. With the adjusted orders (see last paragraph of
Sec. III B), the CPSD(T-n) and L-CCSD(T-n) expansions are iden-
tical at third and fourth order, but already from fifth order, the
CPSD(T-n) expansion shows much smaller errors: at fifth order, the

FIG. 5. Convergence of the CCPT energy, CCPT Lagrangian, and CP series with
CCSD as the parent state and CCSDT as the target state for HF at Re.

J. Chem. Phys. 150, 134108 (2019); doi: 10.1063/1.5004037 150, 134108-19

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE V. Summary of the convergence of the CPSDT(Q-n) calculations.

HF at Re HF at 1.5 Re HF at 2 Re CH2 F−

Low-order results: Fraction of quadruples correlation energy recovered

Order 3 (%) 88.7 89.5 89.8 55.4 71.5
Order 4 (%) 102.9 103.6 103.1 86.9 111.5
Order 5 (%) 99.2 98.6 98.1 94.1 95.9
Order 6 (%) 100.7 101.5 102.3 97.6 102.0
Order 7 (%) 99.8 99.5 98.9 98.9 99.9

High-order convergence

Convergent? Yes Yes Yes Yes Yes
Rate of convergence 0.59 0.64 0.76 0.46 . . .
Convergence behavior Geo. Geo. Geo. Geo. Ripples
Signs (1+, 1−) (1+, 1−) (1+, 1−) (−) (1+, 1−)
Energy/Lagrangian series convergent? Yes No No Yes No

CPSD(T-n) expansion has an error that is less than half of that of the
L-CCSD(T-n) expansion, at sixth order both schemes give increased
errors, and from the seventh order, the CPSD(T-n) expansion is
converged on the scale of the figure, whereas the L-CCSD(T-n)
expansion oscillates around the exact energy.

D. Convergence of the SDT(Q-n) series
The results of calculations for the CPSDT(Q-n) series are given

in Table V and in Fig. 6. There are a few practical aspects that must

be noted for these calculations. Most importantly, the allowed max-
imal order was lowered to reduce the timings for these calculations.
The low maximal order implies that our identifications of whether a
given series is divergent or convergent is on less solid ground than
for the calculations presented in Subsections V A–V C. Furthermore,
the rate of convergence was obtained using orders 5-10, which makes
these rates less accurate.

The first non-trivial corrections, the third-order corrections,
recover about 90% of the quadruples correlation energies for HF at
the three inter-nuclear distances but only about 50% for methylene

FIG. 6. Energy errors of the three per-
turbation expansions with CCSDT as the
parent state and CCSDTQ as the target
state.
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and 70% for F−. The fourth-order corrections improve the accuracy
for all five cases, and the deviations are reduced to about 3% for the
three calculations on HF. Also the fifth-order corrections improve
the accuracy for all five cases, whereas the sixth-order corrections
do not give general improvements. Finally, at seventh order, the
quadruples correlation energies are recovered with an error of about
1% or less for all five cases.

With the above caveats, the CPSDT(Q-n) series is seen from
the figure to converge for all examples. The convergence for fluorine
anion is of the ripple archetype, whereas the remaining four cases
have the geometric archetype. Due to the occurrence of the ripples
for the fluorine anion, we do not give a rate of convergence in the
table for this calculation. It also noted from the figure that the CCPT
energy and CCPT Lagrangian series at the stretched geometries
are both diverging. For the methylene molecule, the CCPT energy
expansion is again significantly slower converging than the two
other expansions, whereas the L-CCSDT(Q-n) and CPSDT(Q-n)
series are very similar up to order six, from where the CCPT
Lagrangian expansion converges slowly.

E. Comparison of the convergence of the hierarchies
We will now complement the preceding discussions for par-

ticular parent and target excitation spaces with a discussion of how
the convergence of the CP series changes as a function of the par-
ent and target excitation spaces. Specifically, we will compare the
convergence of the various CP series for CH2 and HF at the equi-
librium geometry. For comparison, the MPPT energies will also be
discussed.

We start with some general considerations concerning the con-
vergence of the various CP models. When the excitation levels
of both the parent and target states are increased, say from the
CPS(D-n) to the CPSD(T-n) series, there are two features that must
be considered to understand the change in the convergence rate.
When the excitation level of the parent state is increased, the part
of the Jacobian that is calculated using the exact Hamiltonian is
increased, which in general will lead to improved convergence. On
the other hand, an increase in the target excitation space may intro-
duce low-lying excited states with a high excitation rank, thereby
impairing the convergence of the series. An increase in excitation
level for the target space therefore typically impairs the convergence
rate, and this will be especially pronounced for systems containing
electron-rich atoms.

To examine a case without intruder states in the FCI target
space, we first consider the methylene molecule. In Fig. 7, we report
the errors of the CP and MPPT series. The errors are relative to the
target energy of each expansion, so a small error does not in general
indicate a small error compared to the FCI energy.

Consider first how the convergence changes when the tar-
get excitation level is increased for a fixed parent excitation level.
There are three expansions that have the HF state as the parent
state: CPS(D-n), CPS(DT-n), and MPPT. This sequence of the three
expansions corresponds to increasing the target excitation space,
and we therefore expect that the rate of convergence will decrease
as we go from the first to the last of these expansions. This trend
is observed in Fig. 7. It is interesting to note that the CPS(DT-n)
and MPPT expansions have nearly the same rate of convergence
and errors compared to their target states. The errors in the higher

FIG. 7. Deviations from target energies for the CP series and for MPPT for the CH2
molecule.

orders of the MPPT series are therefore here connected with doubles
and triples excitations in the coupled cluster expansion. For the next
level of parent excitations, CCSD, it is noted that the rate of conver-
gence is only slightly increased when going from the CPSD(T-n) to
the CPSD(TQ-n) series, showing that quadruple excitations are of
limited importance for the convergence. When the parent excitation
level is changed without changing the maximum target excitation
level, as is the case when comparing the CPS(DT-n) with CPSD(T-n)
and CPSD(TQ-n) with CPSDT(Q-n), it is noted that both the initial
errors and the convergence rates are reduced significantly, in line
with our expectations.

When both the parent and target excitation levels are increased,
lower initial errors and faster convergence are observed. This is evi-
dent from Fig. 7 and is supported by the convergence rates which
in Tables III–V are listed as 0.68, 0.60, and 0.48 for CPS(D-n),
CPSD(T-n), and CPSDT(Q-n) expansions, respectively.

To see how back-door intruders or near back-door intrud-
ers affect the convergence, we give in Fig. 8 the absolute errors
for the CP and MPPT series for HF at Re. Due to the presence of
a back-door intruder state that is dominated by triple and higher
excitations, we expect that the rate of convergence is very depen-
dent on the target state. Thus, the full MPPT expansion is diverg-
ing in contrast to the CPS(DT-n) expansion, which is converging
slower than the CPS(D-n) expansion. When the parent excitation
level is increased for a fixed target state, it is seen that the rate of
convergence is increased as expected, both when going from the
CPS(DT-n) to the CPSD(T-n) series and from the CPSD(TQ-n)
to the CPSDT(Q-n) series. When the excitation levels of both the
parent space and target space are increased, the effect on the con-
vergence rate depends on the maximal excitation level in the target
space. Thus, when going from the CPS(D-n) to the CPSD(T-n),
the convergence is significantly improved, but when going from the
CPSD(T-n) to the CPSDT(Q-n), it is observed that the CPSDT(Q-n)
series is slower converging. In this case, the enlargement of the
target excitation space slows the convergence more down than
the enlargement of the parent excitation space improves the
convergence.
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FIG. 8. Deviations from target energies for the CP series and for MPPT for the HF
molecule at Re.

F. Summary of the numerical results
For parent states beyond the trivial CCS state, the CP mod-

els exhibit in general superior convergence behavior compared to
the CCPT energy and CCPT Lagrangian series, both with respect
to the accuracy of the lower order results and the convergence or
divergence of the higher-order contributions. Comparing specif-
ically the CCPT Lagrangian and the CP series for parent states
beyond CCS, and using adjusted orders, the third- and fourth-order
results are identical, whereas the fifth-order CP energies are notice-
ably more accurate than their CCPT Lagrangian counterparts. For
example, at the SD(T-n) level of theory, the fifth-order energy for
hydrogen fluoride at the equilibrium geometry gives 99.7% of the
triples correlation energy for the CPSD(T-n) model and 100.6% for
the L-CCSD(T-n) model. For systems such as methylene, without
back-door intruder states dominated by triple and higher excita-
tion levels, a simultaneous increase in the excitation levels of the
parent and target state leads not only to reduced errors of the ini-
tial energies but also to faster convergence of the CP series. For
molecules such as hydrogen fluoride, containing back-door intrud-
ers dominated by high excitations levels, the change in the con-
vergence behavior depends on the balance between two effects:
the increase in the parent excitation space leads to an improve-
ment of the convergence, whereas the increase in the target exci-
tation space leads to a degradation of the convergence. With-
out a thorough investigation, it is therefore not possible to pre-
dict the change in the convergence rate when the excitation lev-
els are increased for both the parent and the target excitation
spaces. Figure 8 shows that for hydrogen fluoride at Re, the con-
vergence improves when going from CPS(D-n) to CPSD(T-n) but
deteriorates when going from CPSD(T-n) to CPSDT(Q-n). With
respect to the question of convergence or divergence, the CP mod-
els may converge for molecules where both the MPPT and CCPT
Lagrangian series diverge. For example, the CP models converge and
the MPPT expansion diverges for hydrogen fluoride at the equi-
librium geometry when basis sets containing diffuse function are
used.

VI. SUMMARY AND CONCLUSION

We have developed the cluster perturbation (CP) model, in
which perturbation theory is used to calculate the energy and molec-
ular properties of the ground and excited states and transition
molecular properties between these states, including excitation ener-
gies. In the CP models, we consider a target excitation space that is
partitioned into a parent and an auxiliary excitation space and deter-
mine perturbation series in orders of the CC parent-state similarity-
transformed fluctuation potential, where the zeroth-order contri-
bution in the series is the energy or molecular property of the CC
parent state and where the perturbation series formally converge to
the energy or molecular property of the CC target state.

In conventional Møller-Plesset perturbation theory,1 the
Hamiltonian is partitioned into a Fock operator and a fluctuation
potential and the Schrödinger equation is solved in orders of the
fluctuation potential collecting terms strictly as zeroth-order Fock
operator contributions and first-order fluctuation potential contri-
butions. The CCPT series were derived9,11 using this strategy and
therefore contain contributions that originate from internal relax-
ation in the parent excitation space. In CP theory, we have intro-
duced a generalized order concept, where the zeroth-order compo-
nent of the extended CC parent-state Jacobian contains in the parent
excitation space a fluctuation potential contribution, and we have
used this generalization of the order concept to turn internal relax-
ation in the parent excitation space into a zeroth-order effect. Since
internal relaxation in the parent excitation space in general is large,
compared to the effect of introducing an auxiliary excitation space,
the generalized order concept results in greatly improved local and
global convergence of the CP energy series compared to the CCPT
series. At the same time, the generalization of the order concept does
not increase the leading-order computational scaling compared to
the CCPT series. Most importantly, however, the generalized order
concept of CP theory also makes it possible to determine pertur-
bation expansions for molecular properties where the zeroth-order
molecular property is the molecular property of the CC parent state
and the perturbation series converge to the molecular property for
the CC target state. We have shown in this paper that CP pertur-
bation series exist for molecular properties. We have thus devel-
oped a perturbation framework where perturbation series for the
energy and for molecular properties can be determined on an equal
footing. A detailed derivation of CP perturbation series for molec-
ular properties, including excitation energies, is deferred to future
work.

In CP theory, we do not need to solve amplitude and response
equations in the target space explicitly. The perturbation series in
general show fast local convergence toward the CC target state ener-
gies and molecular properties, and it therefore becomes computa-
tionally very tractable to use low-order corrections from the per-
turbation series to obtain energies and molecular properties of CC
target-state quality.

In this paper, we have illustrated with numerical examples the
convergence of the perturbation series for the energy for various par-
ent and target excitation spaces. For the energy series CPS(D-n),
where the parent excitation space contains only singles and the
auxiliary excitation space contains doubles, the convergence of the
CPS(D-n) energy series is not improved compared to the CCPT
series9,11 since internal relaxation effects in the singles excitation
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space are of minor importance compared to introducing a doubles
auxiliary space. However, the CPS(D-n) series is important as it may
be used to determine series for molecular properties, including exci-
tation energies, as opposed to the CCPT series that can only be used
to obtain series for the energy. For the CP energy series where the
parent space contain at least a singles-and-doubles excitation space
and where the auxiliary space contains only one excitation level,
internal relaxation in the parent excitation space is large and the CP
energy series exhibit a greatly improved convergence compared to
the CCPT series.

The convergence of CP series in general improves when the
parent excitation space is increased. This is in accordance with
our physical understanding as an increase in the parent excita-
tion space leads to an improved description of the zeroth-order
state, i.e., the CC parent state, and the perturbation series there-
fore becomes less plagued by front-door intruders that are states
strongly interacting with the zeroth-order state. The convergence
of CP series also improves when decreasing the size of the auxiliary
excitation space. This is a more surprising finding. Its origin is that
by reducing the excitation level of the auxiliary space, the existence
of back-door intruders becomes less likely as back-door intruders are
highly lying excited states that are nearly independent of the physical
perturbation.

We have focused on using CP series where the auxiliary space
contains only one excitation level, both to have fast convergent per-
turbation series and because too much effort, in general, is spent
on optimizing amplitudes at the highest excitation level for ampli-
tudes that are far from converged at the lower excitation level if the
auxiliary space contains more than one excitation level.

The applicability of CP theory to both the energy and molecular
properties and numerical results for CP energy series have demon-
strated the superiority of CP theory compared to previous pertur-
bation models, and low-order corrections in the CP perturbation
series may be expected soon to become the state-of-the-art elec-
tronic structure models for determination of energies and molecular
properties including excitation energies of target-state quality for
single-configuration dominated molecular systems.
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