Comment on "Are polynuclear superhalogens without halogen atoms probable? A high-level *ab initio* case study on triple-bridged binuclear anions with cyanide ligands" [J. Chem. Phys. 140, 094301 (2014)]

Cite as: J. Chem. Phys. **145**, 147101 (2016); https://doi.org/10.1063/1.4964502 Submitted: 07 August 2016 . Accepted: 27 September 2016 . Published Online: 11 October 2016

Manuel Díaz-Tinoco ២, and J. V. Ortiz ២

Composite electron propagator methods for calculating ionization energies The Journal of Chemical Physics 144, 224110 (2016); https://doi.org/10.1063/1.4953666

Are polynuclear superhalogens without halogen atoms probable? A high-level ab initio case study on triple-bridged binuclear anions with cyanide ligands The Journal of Chemical Physics **140**, 094301 (2014); https://doi.org/10.1063/1.4867009

Vertical and adiabatic ionization energies of NH⁻₄ isomers via electron propagator theory and many body perturbation theory calculations with large basis sets The Journal of Chemical Physics **87**, 3557 (1987); https://doi.org/10.1063/1.453000

J. Chem. Phys. **145**, 147101 (2016); https://doi.org/10.1063/1.4964502 © 2016 Author(s).

Comment on "Are polynuclear superhalogens without halogen atoms probable? A high-level *ab initio* case study on triple-bridged binuclear anions with cyanide ligands" [J. Chem. Phys. 140, 094301 (2014)]

Manuel Díaz-Tinoco^{a)} and J. V. Ortiz^{b)}

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA

(Received 7 August 2016; accepted 27 September 2016; published online 11 October 2016)

[http://dx.doi.org/10.1063/1.4964502]

Yin *et al.* have asserted¹ that calculations on the vertical electron detachment energies (VDEs) of triply-bridged $Mg_2(CN)_5^-$ superhalides performed with the Outer Valence Green Function^{2–5} (OVGF) fail, with discrepancies over 1 eV, for isomers D, E, and F (see Fig. 1) when compared with results obtained with the coupled-cluster singles and doubles plus approximate triples (CCSD(T)) method.⁶ They also report a difference of 0.16 eV between the OVGF VDEs of isomers A and B, whereas their CCSD(T) difference equals -0.04 eV. In their attempts to perform CCSD(T) calculations on groundstate doublets, these authors have chosen the wrong irreducible representation for isomers B, D, E, and F, have employed excited self-consistent-field (SCF) solutions for isomers G and H, and for isomer A have employed a SCF solution whose canonical orbitals do not transform according to the irreducible representations of the C_{3v} point group. When OVGF and CCSD(T) calculations on the structures obtained by Yin et al. are performed with Gaussian 097 on the same states with their TZ3 basis set (see Table I), excellent agreement, summarized in Fig. 2 and Table II, is evident. OVGF's average signed error, mean unsigned error, standard deviation, and maximum error with respect to CCSD(T) are 0.09, 0.09, 0.05, and 0.19 eV,

FIG. 1. MP2/TZ1 structures of $Mg_2(CN)_5^-$ triply-bridged superhalides. Mg: white, C: red, and N: blue.

^{a)}Electronic address: mad0031@auburn.edu

TABLE I.	Basis-set	abbreviations
11 10 00 1.	Dubib bet	aboreriation

Basis	C and N	Mg		
TZ1	6-311+G* ^{14,15}	TZVP ^{16,17}		
TZ2	$6-311+G(3df)^{18}$	TZVP		
TZ3	TZVP+ ^a	Def2-TZVP ¹⁹		

^aDiffuse basis from 6-311+G.

respectively. Only for isomer C, Yin et al. have compared OVGF and CCSD(T) results for the same state. For isomers D, E, and F, they have assumed that the OVGF prediction for the highest occupied molecular orbital (HOMO) corresponds to the lowest VDE. (Results in bold type correspond to states that were ignored by Yin et al.; those in regular type agree closely with their OVGF/TZ2 and CCSD(T)/TZ3 results.) OVGF, with its fifth-power arithmetic scaling factor, has been a reliable predictor of defects in the Koopmans ordering of final states for decades. Fig. 3 shows the close spatial correspondence between unrestricted Hartree-Fock (UHF) spin densities for doublets and amplitudes of canonical Hartree-Fock (HF) orbitals of the anions. OVGF Dyson orbitals (i.e., canonical HF orbitals multiplied by square roots of pole strengths) provide reliable guides for initiating UHF calculations and subsequent CCSD(T) estimates of correlation energies. Fig. 2 and Table II indicate that isomer A, not B as predicted by Yin et al., has the highest first VDE by 0.1 eV.

FIG. 2. Comparison between first VDEs predicted with OVGF and CCSD(T).

^{b)}Electronic address: ortiz@auburn.edu

Isomer	State ^b	Orbital ^c	OVGF ^d	CCSD(T)	Isomer	State ^b	Orbital ^c	OVGF ^d	CCSD(T)
A	$^{2}A^{\prime\prime}$	НОМО	8.49	8.41	F	² A″	НОМО	8.50	8.42
А	$^{2}A'$	HOMO-1	8.49	8.41	F	$^{2}A'$	HOMO-1	8.49	8.42
А	$^{2}A^{\prime\prime}$	HOMO-2	8.57	8.49	F ^e	$^{2}A'$	HOMO-2	7.31	7.23
А	$^{2}A'$	HOMO-3	8.57	8.50	F	$^{2}A''$	HOMO-3	8.72	8.65
В	^{2}E	HOMO	8.42	8.32	G ^e	${}^{2}A_{1}$	HOMO	7.20	7.07
В	$^{2}A_{2}$	HOMO-4	9.08	9.13	G	^{2}E	HOMO-1	8.69	8.50
C ^e	${}^{2}A_{1}$	HOMO	7.20	7.06	G ^e	${}^{2}A_{1}$	HOMO-3	7.37	7.32
С	^{2}E	HOMO-1	8.67	8.49	G	^{2}E	HOMO-4	8.77	8.74
D	^{2}E	HOMO	8.42	8.33	H ^e	$^{2}A'$	HOMO	7.26	7.15
D ^e	${}^{2}A_{1}$	HOMO-2	7.36	7.31	Н	$^{2}A''$	HOMO-1	8.71	8.59
Е	$^{2}A^{\prime\prime}$	HOMO	8.57	8.51	He	$^{2}A'$	HOMO-2	7.41	7.24
Е	$^{2}A'$	HOMO-1	8.58	8.51	Н	$^{2}A'$	HOMO-3	8.61	8.59
E ^e	$^{2}A'$	HOMO-2	7.25	7.14	Н	$^{2}A''$	HOMO-4	8.74	8.71
E	$^{2}A^{\prime\prime}$	HOMO-3	8.70	8.58					

^aBold type: doublets ignored in Ref. 1.

^bElectronic state of Mg₂(CN)₅.

 $^{c}Canonical \ Hartree-Fock \ orbital \ of \ Mg_{2}(CN)_{5}^{-}.$

^dAll pole strengths exceed 0.85.

^eStates with $\langle S^2 \rangle_{UHF} = 1.24 - 1.25$ and T₁ diagnostic¹³ = 0.037 - 0.038.

FIG. 3. UHF spin densities for $Mg_2(CN)_5$ and canonical molecular orbitals (isovalue = 0.02 a.u.) for $Mg_2(CN)_5^-$.

Yin *et al.* have published similar criticisms of OVGF for other superhalogens with Mg atoms^{8,9} that have been refuted on the basis of symmetry criteria^{10,11} and have repeated them recently in this journal.¹² Despite these critiques, OVGF remains an efficient, accurate predictor of VDEs and Koopmans defects and, through the interpretation of Dyson orbitals, a reliable guide to the performance of more computationally demanding

total-energy calculations on ground and excited states of doublet superhalogens.

The National Science Foundation supported this work through Grant No. CHE–1565760 to Auburn University. The Alabama Supercomputer Center is acknowledged for a generous allocation of computer time.

- ¹B. Yin, T. Li, J.-F. Li, Y. Yu, J.-L. Li, Z.-Y. Wen, and Z.-Y. Jiang, J. Chem. Phys. **140**, 094301 (2014).
- ²L. S. Cederbaum, J. Phys. B. 8, 290 (1975).
- ³W. von Niessen, J. Schirmer, and L. Cederbaum, Comput. Phys. Rep. 1, 57 (1984).
- ⁴V. G. Zakrzewski, J. V. Ortiz, J. A. Nichols, D. Heryadi, D. L. Yeager, and J. T. Golab, Int. J. Quantum Chem. **60**, 29 (1996).
- ⁵J. V. Ortiz, in *Computational Chemistry*, edited by J. Leszczynski (World Scientific, Singapore, 1997), Vol. 2, pp. 1–61.
- ⁶K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. **157**, 479 (1989).
- ⁷M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson *et al.*, GAUSSIAN 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
- ⁸M.-M. Li, J.-F. Li, H. Bai, Y.-Y. Sun, J.-L. Li, and B. Yin, Phys. Chem. Chem. Phys. **17**, 20338 (2015).
- ⁹J.-F. Li, M.-M. Li, H. Bai, Y.-Y. Sun, J.-L. Li, and B. Yin, ChemPhysChem **16**, 3652 (2015).
- ¹⁰M. Diaz-Tinoco and J. V. Ortiz, Phys. Chem. Chem. Phys. **18**, 15456 (2016).
- ¹¹M. Daz-Tinoco and J. V. Ortiz, ChemPhysChem 17, 2945 (2016).
- ¹²Y.-Y. Sun, J.-F. Li, M.-M. Li, F.-Q. Zhou, J.-L. Li, and B. Yin, J. Chem. Phys. 144, 054303 (2016).
- ¹³T. J. Lee and P. R. Taylor, Int. J. Quantum Chem. **36**, 199 (1989).
- ¹⁴K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. **72**, 650 (1980).
- ¹⁵T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, J. Comput. Chem. 4, 294 (1983).
- ¹⁶A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. **97**, 2571 (1992).
- ¹⁷A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys. **100**, 5829 (1994).
 ¹⁸M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. **80**, 3265 (1984).
- ¹⁹F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).