The interaction-induced dipole of $\mathrm{H}_{2}-\mathrm{H}$: New ab initio results and spherical tensor analysis ©

Cite as: J. Chem. Phys. 150, 204307 (2019); https://doi.org/10.1063/1.5098900
Submitted: 04 April 2019 . Accepted: 25 April 2019 . Published Online: 31 May 2019
Hua-Kuang Lee, Xiaoping Li, Evangelos Miliordos (i), and Katharine L. C. Hunt (iD

COLLECTIONS

Paper published as part of the special topic on JCP Editors' Choice 2019This paper was selected as Featured

View Online

Export Citation

CrossMark

ARTICLES YOU MAY BE INTERESTED IN

New calculations reveal van der Waals dispersion contributions of $\mathrm{H}_{2}-\mathrm{H}$ system Scilight 2019, 220002 (2019); https://doi.org/10.1063/1.5110307

Molecular oxygen generation from the reaction of water cations with oxygen atoms The Journal of Chemical Physics 150, 201103 (2019); https://doi.org/10.1063/1.5102073

Symmetry effects in rotationally resolved spectra of bi-deuterated ethylene: Theoretical line intensities of cis, trans, and as $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$ isotopomers
The Journal of Chemical Physics 150, 194303 (2019); https://doi.org/10.1063/1.5096883

The interaction-induced dipole of $\mathrm{H}_{2}-\mathrm{H}$: New ab initio results and spherical tensor analysis

Cite as: J. Chem. Phys. 150, 204307 (2019); doi: 10.1063/1.5098900
Submitted: 4 April 2019 • Accepted: 25 April 2019 •

CrossMar
Published Online: 31 May 2019
Hua-Kuang Lee, ${ }^{1}$ Xiaoping Li, ${ }^{1}$ Evangelos Miliordos, ${ }^{2}$ (D) and Katharine L. C. Hunt ${ }^{1, a)}$ (D)
AFFILIATIONS
${ }^{1}$ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36489, USA
a)huntk@msu.edu

Abstract

We present numerical results for the dipole induced by interactions between a hydrogen molecule and a hydrogen atom, obtained from finite-field calculations in an aug-cc-pV5Z basis at the unrestricted coupled-cluster level including all single and double excitations in the exponential operator applied to a restricted Hartree-Fock reference state, with the triple excitations treated perturbatively, i.e., UCCSD(T) level. The Cartesian components of the dipole have been computed for nine different bond lengths r of H_{2} ranging from 0.942 a.u. to 2.801 a.u., for 16 different separations R between the centers of mass of H_{2} and H between 3.0 a.u. and 10.0 a.u., and for 19 angles θ between the H_{2} bond vector \mathbf{r} and the vector \mathbf{R} from the H_{2} center of mass to the nucleus of the H atom, ranging from 0° to 90° in intervals of 5°. We have expanded the interaction-induced dipole as a series in the spherical harmonics of the orientation angles of the H_{2} bond axis and of the intermolecular vector, with coefficients $\mathrm{D}_{\lambda \mathrm{L}}(\mathrm{r}, \mathrm{R})$. For the geometrical configurations that we have studied in this work, the most important coefficients $D_{\lambda L}(r, R)$ in the series expansion are $D_{01}(r, R), D_{21}(r, R), D_{23}(r, R), D_{43}(r, R)$, and $D_{45}(r, R)$. We show that the ab initio results for $D_{23}(r, R)$ and $D_{45}(r, R)$ converge to the classical induction forms at large R. The convergence of $D_{45}(r, R)$ to the hexadecapolar induction form is demonstrated for the first time. Close agreement between the long-range ab initio values of $\mathrm{D}_{01}\left(\mathrm{r}_{0}=1.449\right.$ a.u., R) and the known analytical values due to van der Waals dispersion and back induction is also demonstrated for the first time. At shorter range, $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ characterizes isotropic overlap and exchange effects, as well as dispersion. The coefficients $D_{21}(r, R)$ and $D_{43}(r, R)$ represent anisotropic overlap effects. Our results for the $\mathrm{D}_{\lambda \mathrm{L}}(\mathrm{r}, \mathrm{R})$ coefficients are useful for calculations of the line shapes for collision-induced absorption and collision-induced emission in the infrared and far-infrared by gas mixtures containing both H_{2} molecules and H atoms.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098900

I. INTRODUCTION

When a hydrogen molecule and a hydrogen atom collide, their interactions distort the charge distributions of both H_{2} and H , producing a transient dipole during the collision. ${ }^{1-5}$ We have investigated the dependence of the interaction-induced dipole of the $\mathrm{H}_{2}-\mathrm{H}$ system on the bond length r of H_{2}, the separation R between the centers of mass of H_{2} and H , and the angle θ between the H_{2} bond axis \mathbf{r} and the vector \mathbf{R} connecting the center of mass of H_{2} to the nucleus of the H atom.

The interaction energy of a hydrogen molecule with a hydrogen atom has been evaluated in multiple $a b$ initio calculations of high accuracy, ${ }^{6-15}$ with nonadiabatic corrections included; ${ }^{16-18}$ however, we have found only two previous $a b$ initio calculations of the dipole moment of $\mathrm{H}_{2}-\mathrm{H}$. In 1973, Patch obtained the $\mathrm{H}_{2}-\mathrm{H}$
dipole at a full configuration-interaction (CI) level but in a minimal basis of three 1 s functions. ${ }^{19}$ Patch determined the dipole for six relative orientations of $\mathrm{H}_{2}-\mathrm{H}$ and four separations between the H atom and the H_{2} center of mass, ranging from 1.0 a.u. to 4.0. a.u. ${ }^{19}$ All of these calculations were carried out with an H_{2} bond length r of 1.401446 a.u. ${ }^{19}$ In 2003, Gustafsson, Frommhold, and Meyer (GFM) carried out a substantially more extensive study using a larger basis, variable bond lengths, and a wider range of H_{2} to H separations. ${ }^{20}$

Our work is larger in scale than either previous study. We have calculated the interaction-induced dipole for 19 different angles θ from 0° to 90° in intervals of 5° vs four angles ($0^{\circ}, 30^{\circ}, 60^{\circ}$, and 90°) used by GFM. ${ }^{20}$ Symmetry arguments make it possible to determine the dipole over the full range of angles out to 360°, based on the results from 0° to 90°. Our calculations cover nine different bond
lengths of H_{2} from 0.942 a.u. to 2.801 a.u., while the GFM study covered five bond lengths from 1.111 a.u. to 1.787 a.u. ${ }^{20}$ We have also carried out calculations for a total of 16 different separations between H_{2} and H , from 3.0 a.u. to 10.0 a.u. vs 11 separations in the GFM work. Our calculations cover a total of 2736 geometrical configurations of $\mathrm{H}_{2}-\mathrm{H}$. We have determined the dipole by finite-field methods with Molpro; ${ }^{21}$ the dipoles reported in the current work have been obtained from more than $43000 a b$ initio calculations all together.

We have converted the interaction-induced Cartesian dipoles to a spherical-tensor form. Then, we have fit the results to a series in the spherical harmonics $\mathrm{Y}_{\lambda}{ }^{\mu}\left(\Omega_{\mathrm{r}}\right)$ of the orientation angles Ω_{r} of the H_{2} bond axis \mathbf{r} and the spherical harmonics $\mathrm{Y}_{\mathrm{L}}{ }^{m}\left(\Omega_{\mathrm{R}}\right)$ of the orientation angles of the intermolecular vector \mathbf{R}. ${ }^{22-25}$ The coefficients $D_{\lambda L}(r, R)$ in this series depend only on λ, L, and the magnitudes of the bond length r and the $\mathrm{H}_{2}-\mathrm{H}$ separation R. The contributions to the dipole from various polarization mechanisms are separated out in the coefficients $D_{\lambda L}(r, R) .{ }^{22-25}$ From the angle dependence of the interaction-induced dipole, we have determined the $\mathrm{D}_{\lambda \mathrm{L}}$ coefficients $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}, \mathrm{D}_{45}, \mathrm{D}_{65}, \mathrm{D}_{67}, \mathrm{D}_{87}$, and D_{89}. The coefficient $\mathrm{D}_{01}(\mathrm{r}$, R) gives the contribution to the $\mathrm{H}_{2}-\mathrm{H}$ dipole that is isotropic in the orientation of the H_{2} molecule. At long range, $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ gives the dominant term in the van der Waals dispersion dipole. ${ }^{26-34}$ At short range, $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ characterizes exchange and overlap effects, as well as dispersion. At long range, the coefficient $\mathrm{D}_{23}(\mathrm{r}, \mathrm{R})$ is determined by quadrupolar induction, ${ }^{22-25}$ while at short range, $\mathrm{D}_{23}(\mathrm{r}, \mathrm{R})$ is affected by anisotropic induction, overlap damping, and exchange effects. The coefficient $\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})$ plays the analogous role for hexadecapolar induction. ${ }^{23-25}$ The leading long-range terms in the coefficients $\mathrm{D}_{21}(\mathrm{r}, \mathrm{R})$ and $\mathrm{D}_{43}(\mathrm{r}, \mathrm{R})$ vary as R^{-7} in the $\mathrm{H}_{2}-\mathrm{H}$ separation, ${ }^{23}$ but at short range, the relative importance of $D_{21}(r, R)$ and $D_{43}(r, R)$ increases, especially for the larger bond lengths r. These coefficients reflect anisotropic overlap and exchange effects on the total dipole moment.

The spherical harmonic series is needed to determine the line shapes for absorption and emission in the infrared and far infrared, due to the transient dipole that exists during collisions of H_{2} molecules with H atoms. ${ }^{1-5,19,20,35,36}$ Collision-induced absorption, ${ }^{1-5,37-74}$ emission, ${ }^{75-79}$ light scattering, ${ }^{80-92}$ and nonlinear Rayleigh and Raman scattering processes ${ }^{93}$ have been investigated experimentally for H_{2} interacting with helium atoms ${ }^{41-48}$ with other inert gas atoms, ${ }^{44,45,49-54}$ with H_{2} molecules, ${ }^{46-48,55-74}$ or with other species, including $\mathrm{CO},{ }^{94-98} \mathrm{CO}_{2},{ }^{99} \mathrm{CH}_{4},{ }^{100-104} \mathrm{~N}_{2},{ }^{96,104-106}$ $\mathrm{NH}_{3},{ }^{107}$ and $\mathrm{O}_{2}{ }^{54}$ The interaction effects on collision-induced spectra involving the isotopic variants HD and D_{2} have been studied experimentally, ${ }^{108-125}$ as well as interaction effects on the spectra of bound H_{2} dimers ${ }^{126-130}$ and of bound complexes of H_{2} with other molecules. ${ }^{131-138}$ Simultaneous vibrational transitions in all three molecules of an $\mathrm{H}_{2}-\mathrm{H}_{2}-\mathrm{H}_{2}$ cluster have been observed experimentally; ${ }^{140}$ these must be a consequence of irreducible three-body interactions. ${ }^{141-144}$ Interaction-induced transitions have also been studied in solid hydrogen, ${ }^{145-154}$ which shows rotational state changes with $\Delta \mathrm{J}=4$ (Ref. 153) and $\Delta \mathrm{J}=6$ (Ref. 154).

Rich and McKellar ${ }^{155}$ compiled an early bibliography of research on collision-induced absorption, starting with the first observation of the phenomenon in O_{2} gas by Crawford, Welsh, and Locke, ${ }^{37}$ followed shortly by the first observation of the
rotovibrational infrared spectrum of $\mathrm{H}_{2},{ }^{38}$ and continuing with the first detections of the collision-induced vibrational overtone in H_{2} gas^{39} and of the pure rotational absorption spectrum of $\mathrm{H}_{2} .{ }^{40}$ The bibliography was updated by Hunt and Poll in 1986. ${ }^{156}$ An overview of recent work in the field was provided by Hartmann and coworkers in 2018. ${ }^{5}$ Borysow and Frommhold compiled a bibliography of work on collision-induced light scattering through 1989. ${ }^{157}$ The literature on collision-induced absorption or emission, collisioninduced light scattering, and collision-induced hyper-Rayleigh scattering or hyper-Raman scattering is quite extensive, even if limited to spectroscopic processes involving H_{2} or one of its isotopic variants.

The interaction-induced dipoles, ${ }^{158-170}$ interaction-induced polarizabilities, ${ }^{166-168,170-174}$ and interaction-induced hyperpolarizabilities ${ }^{166,167,170,171,175-177}$ that give rise to the collision-induced spectra for these species have been calculated with high accuracy $a b$ initio, starting with work by Meyer, Frommhold, Borysow, and Birnbaum. ${ }^{158-165}$ For collision-induced absorption by $\mathrm{H}_{2}-\mathrm{He}$ and $\mathrm{H}_{2}-\mathrm{H}_{2}$, excellent agreement has been attained between experimental spectra and spectra calculated from $a b$ initio results for the interaction-induced dipoles (see Refs. 158-160, 162-165, 168, and 178-182). A high level of agreement has also been found between the experimental and calculated collision-induced spectra of other molecules, ${ }^{183,184}$ including collision-induced vibronic transitions in $\mathrm{O}_{2}-\mathrm{O}_{2}$ and $\mathrm{O}_{2}-\mathrm{N}_{2} .{ }^{185,186}$ In addition, spectra have been successfully calculated with intermolecular potentials derived from transport coefficients. ${ }^{187-190}$

Theory and experiment have converged in determining the scattering cross sections of H_{2} molecules and H atoms, based on calculations of the potential energy surface and quantum scattering theory, ${ }^{191}$ but theoretical work remains the sole source of information on the $\mathrm{H}_{2}-\mathrm{H}$ dipole to date. The $\mathrm{H}_{2}-\mathrm{H}$ complex is of interest as the smallest open-shell system where classical induction contributes to the dipole, in addition to exchange, overlap, and van der Waals dispersion effects. Comparisons of the $\mathrm{H}_{2}-\mathrm{H}$ dipole with the dipole of the small closed-shell system $\mathrm{H}_{2}-\mathrm{He}^{169}$ are included in this work.

Information on the energy of H_{2} interacting with an H atom is used to model processes in galactic gas clouds, stars, and planets with atmospheres that contain both hydrogen molecules and hydrogen atoms. ${ }^{192}$ Collision-induced absorption by $\mathrm{H}_{2}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{He}$ pairs ${ }^{193-196}$ and the absorption spectra of dimers ${ }^{197-199}$ are known to have astrophysical significance. For example, very old, very cool white dwarf stars emit less radiation in the infrared than predicted, based on the Planck radiation law and the temperatures of the stellar cores. ${ }^{194-196}$ The reduced intensity of emitted IR radiation is attributed to collision-induced absorption by $\mathrm{H}_{2}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{He}$ in the stellar atmospheres. ${ }^{194-196,200-205}$ Results for the $\mathrm{H}_{2}-$ H_{2} and $\mathrm{H}_{2}-\mathrm{He}$ spectra have been included in the HITRAN database maintained by the Harvard-Smithsonian Center for Astrophysics. ${ }^{206}$ Effects of the interactions between H_{2} molecules and H atoms have been detected in the spectra of DA white dwarf stars, ${ }^{207,208}$ with outer shells of pure hydrogen. For these stars, a previously unexplained intensity of radiation in the ultraviolet has been traced to pressurebroadening of the Lyman alpha bands of H atoms, due to collisions with $\mathrm{H}_{2} .{ }^{207,208}$ The $\mathrm{H}_{2}-\mathrm{H}$ interactions alter both the transition dipole and the transition energy between the ground and excited states
of the H atom. The current work focuses on a different property, the collision-induced dipole of $\mathrm{H}_{2}-\mathrm{H}$ in the ground electronic state. Collision-induced absorption by $\mathrm{H}_{2}-\mathrm{H}$ would occur in the same spectral region as absorption by $\mathrm{H}_{2}-\mathrm{H}_{2}$ or $\mathrm{H}_{2}-\mathrm{He}$.

While the transition from atomic to molecular hydrogen is rather sharp under equilibrium conditions of astrophysical relevance, ${ }^{209}$ under nonequilibrium conditions, H_{2} and H may be present together in appreciable quantities. ${ }^{210-212}$ For example, star formation is driven by processes involving molecular hydrogen in cool galactic gas clouds; ${ }^{213}$ yet recent observations suggest that "atomic hydrogen has been dominating the cold-gas mass budget of star forming galaxies for at least the past three billion years." ${ }^{214}$ Large gas reservoirs of atomic hydrogen have been detected in galaxies at red-shifts between 0.01 and 0.05 (Ref. 215) and between 0.17 and 0.25 (Ref. 216). Atomic hydrogen fractions are correlated with galactic dynamics, including recent mergers ${ }^{217}$ and disk-specific values of the angular momentum. ${ }^{218}$

Molecular and atomic hydrogen are both found in the atmospheres of Jupiter, ${ }^{219}$ Saturn, and Saturn's rings. ${ }^{220}$ Atomic hydrogen coronas have been detected around Ganymede, ${ }^{221,222}$ Callisto, ${ }^{223}$ Europa, ${ }^{224}$ Io, ${ }^{225}$ and Titan. ${ }^{226}$ Atomic hydrogen has also been detected at distances of $\sim 250 \mathrm{~km}$ from the surface of the Earth, closer than previously anticipated. ${ }^{227}$ Extrasolar "hot Jupiters" such as HD 209458b, ${ }^{228-231}$ HD 17156b, ${ }^{232}$ and HD $189733 b^{233}$ show high concentrations of H atoms along with H_{2}; for example, the concentration of H atoms in the atmosphere of HD 209458b is reported to be three orders of magnitude higher than in Jupiter's atmosphere. ${ }^{228-231}$ The loss of H atoms from these exoplanets into space is a primary atmospheric escape mechanism ${ }^{234,235}$ leading to mass loss by the planets. "Warm Neptunes" ${ }^{236,237}$ have also been observed; GJ 436b exhibits a "giant comet-like cloud of hydrogen" escaping from the planet, and GJ 3470b shows detectable Rayleigh scattering that suggests a hydrogen/helium composition of the atmosphere. Collectively, these observations suggest that our results for the interaction-induced dipole of $\mathrm{H}_{2}-\mathrm{H}$ may find applications in astrophysical models.

In Sec. II of this paper, we describe our computational method and provide results for the Cartesian components of the dipole moment. Full results for the set of geometrical configurations in this work are included in the supplementary material deposited online. In Sec. III, we provide and analyze the results for the spherical-tensor coefficients $\mathrm{D}_{\lambda \mathrm{L}}(\mathrm{r}, \mathrm{R})$, again with full results in the supplementary material. Also in Sec. III, we check for convergence of $\mathrm{D}_{23}, \mathrm{D}_{45}$, and D_{01} to their known long-range forms. In both Secs. II and III, we compare our results with the earlier GFM calculations of the $\mathrm{H}_{2}-\mathrm{H}$ dipole. Section IV contains a brief summary, comparisons with the collision-induced dipole of $\mathrm{H}_{2}-\mathrm{He}$, and conclusions.

II. COMPUTATIONAL METHOD AND RESULTS FOR CARTESIAN COMPONENTS OF THE $\mathrm{H}_{2}-\mathrm{H}$ DIPOLE

We used an aug-cc-pV5Z basis ${ }^{238,239}$ and Molpro 2006^{21} for our first set of production runs. We generated a wave function for the ground doublet state at the restricted Hartree-Fock (RHF) level and then constructed the unrestricted coupled-cluster wave function from that reference function ${ }^{240}$ by including all single and double excitations in the exponential operator applied to the reference wave function, plus triple excitations treated perturbatively, defining
the RHF/UCCSD(T) level. ${ }^{241-243}$ From the RHF/UCCSD(T) energies, we obtained the dipole by finite-field methods, as opposed to direct calculation of the expectation value of the dipole moment.

For open-shell systems, spin-unrestricted calculations typically yield more accurate energies than restricted calculations (where the orbitals for α and β spins are identical), especially when bonds are stretched or broken, but the wave functions in the spin-unrestricted case are not eigenfunctions of \mathbf{S}^{2}. They may be contaminated by other spin states (see Ref. 244). Spin contamination of the doublet state by the quartet does not pose a problem in our calculations of the collision-induced dipole. Energies obtained from RHF/UCCSD(T) calculations with a spin-unprojected wave function are identical to the energies obtained from a spin-projected wave function, as shown by Rittby and Bartlett ${ }^{245}$ and by Scuseria. ${ }^{246}$ The wave functions are spin-contaminated, but the energies are correct for the spin state of interest. Therefore, our finite-field results for the dipole should be unaffected by spin-contamination. Schlegel ${ }^{247}$ had shown that in a coupled-cluster calculation that starts from an unrestricted Hartree-Fock (UHF) reference state, the contamination of the wave function for one spin value by the next higher spin value S does not affect the energies. Since the $\mathrm{H}_{2}-\mathrm{H}$ system has a doublet ground state, and no spin states of $\mathrm{H}_{2}-\mathrm{H}$ with $S>3 / 2$ are possible, a spin-unrestricted UHF reference state could have been used in the calculations, without causing spin contamination. In practice, we used the RHF/UCCSD(T) method implemented in Molpro. ${ }^{21}$ The Molpro code uses the perturbative triples defined by Watts, Gauss, and Bartlett ${ }^{242}$ although triples corrections of the type defined by Deegan and Knowles ${ }^{243}$ are also generated automatically.

Our first calculations were carried out with the default convergence criteria: 10^{-6} for the energy, 10^{-12} for the two-electron integrals, 10^{-12} for numerical zero, 10^{-12} for neglect of small twoelectron integrals, and 10^{-4} for the coefficients in the $\operatorname{UCCSD}(\mathrm{T})$ wave function. ${ }^{248}$ The calculations were run for H_{2} to H separations of $3.4-4.0 \mathrm{a} . \mathrm{u}$. in steps of 0.1 a.u., at 4.2 a.u. and $4.5 \mathrm{a} . \mathrm{u}$., and then for 5.0 a.u. -10.0 a.u. in steps of 1.0 a.u. We set the bond lengths for the H_{2} molecule to $0.942,1.111,1.280,1.449,1.787,2.125,2.463$, or 2.801 a.u. to facilitate the comparison with earlier calculations. ${ }^{20}$ The averaged bond length in the ground rovibrational state of H_{2} is 1.449 a.u.

We calculated the energies for six different values of a uniform field applied in the z direction (along \mathbf{R}) and in the direction orthogonal to \mathbf{z} in the plane containing $\mathrm{H}_{2}-\mathrm{H}$. The field strengths were obtained from a reference electric-field value f by taking f, $-\mathrm{f}, 2^{1 / 2} \mathrm{f},-2^{1 / 2} \mathrm{f}, 3^{1 / 2} \mathrm{f}$, and $-3^{1 / 2} \mathrm{f}$. ${ }^{249}$ In the initial study, we set $\mathrm{f}=0.002$ a.u. The combinations $\pm \mathrm{f}, \pm 2^{1 / 2} \mathrm{f}$, and $\pm 3^{1 / 2} \mathrm{f}$ make it possible to eliminate terms of even order in f from the calculated dipole. With results for six field strengths, we removed the odd-order hyperpolarization terms of orders f^{3} and f^{5}, so the leading-order hyperpolarization effect that remains is $\mathrm{O}\left(\mathrm{f}^{7}\right)$. The RHF/UCCSD(T) results were obtained first for zero field and then for each of the fields listed above in sequence, using the converged orbitals from the previous calculation as the starting point for the next. Generally, this approach works quite well, but this sequence of calculations does not ensure precise equality between the energies calculated in fields f and - f perpendicular to \mathbf{R}, for the linear and T-shaped configurations. In the first set of calculations, we obtained small, but
nonzero dipole components perpendicular to \mathbf{R} for \mathbf{T}-shaped configurations when the bond length and the $\mathrm{H}_{2}-\mathrm{H}$ separations were both large.

We therefore undertook a second set of calculations with the aug-cc-pV5Z basis, ${ }^{238,239}$ using Molpro 2012 and tighter convergence criteria: 10^{-12} for the energy, 10^{-12} for the two-electron integrals (the default value), 10^{-14} for numerical zero, 10^{-5} for the coefficients in the $\operatorname{UCCSD}(\mathrm{T})$ wave function, and 10^{-10} for the density matrix. Results of these calculations are denoted by A5Z ${ }^{\dagger}$. With the tighter convergence thresholds, the symmetry requirements were met to at least six decimal places in the calculated dipoles. These calculations were run for nine H_{2} bond lengths (adding $\mathrm{r}=1.618$ a.u. to our previous set), eight $\mathrm{H}_{2}-\mathrm{H}$ separations R (from 3.0 to 10.0 a.u. in steps of 1.0 a.u.), and 19 angles θ. The base field strength f for these calculations was 0.002 a.u., as above. As a check on the results, calculations were run at $\mathrm{r}=1.449$ a.u. with the larger basis sets aug-cc-pV6Z and d-aug-cc-pV5Z. ${ }^{238,239}$ As an additional check, calculations were run for two geometrical configurations using Molpro 2015, the aug-cc-pV6Z basis, the tighter convergence criteria, and base field strengths f of 0.001 a.u. and 0.01 a.u.

The aug-cc-pV5Z basis has $8 \mathrm{~s}, 4 \mathrm{p}, 3 \mathrm{~d}, 2 \mathrm{f}$, and 1 g functions contracted to $5 \mathrm{~s}, 4 \mathrm{p}, 3 \mathrm{~d}, 2 \mathrm{f}$, and 1 g functions on each H center, for a total of 165 contracted functions for the $\mathrm{H}_{2}-\mathrm{H}$ system. In addition to accounting for the interaction-induced polarization along the vector \mathbf{R} from the center of mass of H_{2} to the nucleus of the H atom, this basis should be flexible in representing the polarization perpendicular to \mathbf{R}, which is nonzero when θ is different from 0° or 90°.

Our full results from the first and second sets of calculations are listed in Tables S1-S9 in the supplementary material. Results from calculations with the tighter convergence criteria are indicated by a superscript ${ }^{\dagger}$. Tables S1-S9 are organized in order by bond length, from Table S1 for $\mathrm{r}=0.942$ a.u. through Table S9 for $\mathrm{r}=2.801$ a.u. The results in each table are grouped by angle; then, for each angle, results are listed for a total of 16 separations R between the centers of mass of H_{2} and H . The vector from the center of mass of H_{2} to the nucleus of the H atom points vertically up along z . For the calculations in these tables, the $\mathrm{H}_{2}-\mathrm{H}$ complex lies in the yz plane, and the positive y axis points to the right, as shown in Fig. 1.

When the distance r between the nuclei in H_{2} is greater than or equal to 2.125 a.u. and R and θ are both small, the correct nuclear coordinates are still given by the nominal label $\mathrm{H}_{2}-\mathrm{H}$, but the system should be identified as $\mathrm{H}_{3}, \mathrm{H}-\mathrm{H}_{2}$ (pairing different H nuclei into H_{2}), or $\mathrm{H}-\mathrm{H}-\mathrm{H}$. The dipoles μ_{y} and μ_{z} are tabulated in these cases, but to indicate that they do not refer to $\mathrm{H}_{2}-\mathrm{H}$, the results are printed in red in Tables S1-S9. In a small number of cases, no value is listed because the calculations did not converge.

To exemplify the results, values obtained from the first and second sets of calculations for a bond length r of 1.449 a.u. (the average bond length in the ground rovibrational state) are listed in Table I for R from 4.0 a.u. to 10.0 a.u. and for angles θ from 0° to 90° in steps of 15°. This table contains 84 nonzero values of μ_{y} and μ_{z} from the two main sets of calculations. The corresponding results agree to 10^{-6} a.u. in 51 of the 84 cases, differ by $\pm 1 \times 10^{-6}$ a.u. in 18 additional cases, and differ by more than $\pm 1 \times 10^{-6}$ a.u. but agree to 10^{-5} a.u. in the remaining 15 cases. In two cases of the last set, the

FIG. 1. Geometrical configuration of the $\mathrm{H}_{2}-\mathrm{H}$ complex in the yz plane. The H_{2} bond length is r, the separation between the centers of mass of H_{2} and H is R, and the angle between the z axis along \mathbf{R} and the H_{2} bond axis is θ.
difference between the two calculations is just $\pm 2 \times 10^{-6}$ a.u. The largest differences are found for the dipole when $\mathrm{R}=9.0 \mathrm{a} . \mathrm{u}$. or 10.0 a.u., where the results from the calculations with the tighter convergence criteria (identified by the superscript ${ }^{\dagger}$ in the column headers) are preferable.

Significant features of the results for the Cartesian components of the collision-induced dipole are described next. Details on the dependence of the dipole components on r, R, and θ are presented in the supplementary material. The y component of the dipole is negative for all angles θ from 5° to 85°, when 3.0 a.u. $\leq \mathrm{R} \leq 10.0$ a.u. and r ≤ 1.787 a.u., but in some cases, μ_{y} is positive at short range for larger bond lengths. The absolute value $\left|\mu_{y}\right|$ of the dipole in the y direction tends to decrease with increasing $\mathrm{H}_{2}-\mathrm{H}$ separation R at constant r and θ; this is true for all $\mathrm{r} \leq 1.618$ a.u. and any angle θ. From $\theta=0^{\circ}$ to $\theta=90^{\circ}$ at constant R and r, the absolute value of μ_{y} increases monotonically with increasing θ to a maximum between $\theta=30^{\circ}$ and $\theta=45^{\circ}$ and then decreases monotonically with further increases in θ. Figure 2 shows $\left|\mu_{y}\right|$ as a function of θ and R when $r=2.125$ a.u. For $\mathrm{R} \geq 6.0$ a.u., the absolute value of μ_{y} increases monotonically with bond length r over the full range from 0.942 a.u. to 2.801 a.u. at constant θ.

The dipole component μ_{y} shows the expected behavior for a quadrupole-induced dipole at long range. Exceptions with positive values of μ_{y} have been found at short range, for large bond lengths r and moderate to large angles θ. The exceptions at short range are consistent with substantial positive contributions to μ_{y} from exchange and overlap. These contributions become increasingly important as r increases and as the H_{2} molecule rotates toward the y axis (while $0^{\circ}<\theta<90^{\circ}$), causing the H nucleus in H_{2} that has a positive z coordinate to move further out in the +y direction.

TABLE I. Cartesian dipole components of $\mathrm{H}_{2}-\mathrm{H}$ for H_{2} bond length $\mathrm{r}=1.449$ a.u.; R denotes the separation between the centers of mass of H_{2} and H along the z axis, and θ is the angle between the H_{2} bond axis r and the z axis pointing along R. Results labeled ${ }^{\dagger}$ have been obtained with an aug-cc-pV5Z basis set using Molpro 2012 and convergence criteria tighter than the default criteria (see text).

R	$\mu_{y}{ }^{\dagger}$	μ_{y}	$\mu_{z}{ }^{\dagger}$	μ_{z}
$\theta=0^{\circ}$				
4.0	0	0	-0.011906	-0.011907
5.0	0	0	0.002905	0.002904
6.0	0	0	0.003829	0.003829
7.0	0	0	0.002683	0.002683
8.0	0	0	0.001689	0.001690
9.0	0	0	0.001064	0.001069
10.0	0	0	0.000693	0.000696
$\theta=15^{\circ}$				
4.0	-0.004 294	-0.004 294	-0.014923	-0.014923
5.0	-0.002 243	-0.002 243	0.001540	0.001539
6.0	-0.001 234	-0.001 234	0.003205	0.003205
7.0	-0.000 702	-0.000702	0.002368	0.002369
8.0	-0.000416	-0.000 416	0.001513	0.001515
9.0	-0.000260	-0.000260	0.000957	0.000963
10.0	-0.000 170	-0.000 171	0.000625	0.000614
$\theta=30^{\circ}$				
4.0	-0.007211	-0.007211	-0.022 959	-0.022960
5.0	-0.003811	-0.003 811	-0.002 064	-0.002 065
6.0	-0.002101	-0.002 101	0.001544	0.001544
7.0	-0.001194	-0.001194	0.001524	0.001524
8.0	-0.000708	-0.000708	0.001038	0.001038
9.0	-0.000442	-0.000442	0.000669	0.000662
10.0	-0.000 290	-0.000 291	0.000438	0.000428
$\theta=45^{\circ}$				
4.0	-0.008003	-0.008 003	-0.033411	-0.033412
5.0	-0.004298	-0.004 298	-0.006694	-0.006694
6.0	-0.002381	-0.002381	-0.000614	-0.000 614
7.0	-0.001355	-0.001355	0.000409	0.000409
8.0	-0.000805	-0.000 805	0.000404	0.000404
9.0	-0.000503	-0.000 503	0.000280	0.000273
10.0	-0.000330	-0.000 331	0.000186	0.000176
$\theta=60^{\circ}$				
4.0	-0.006677	-0.006677	-0.043229	-0.043 229
5.0	-0.003638	-0.003 638	-0.011002	-0.011 002
6.0	-0.002 025	-0.002 025	-0.002 654	-0.002654
7.0	-0.001156	-0.001 156	-0.000662	-0.000662
8.0	-0.000689	-0.000688	-0.000210	-0.000 210
9.0	-0.000430	-0.000430	-0.000101	-0.000108
10.0	-0.000 282	-0.000 283	-0.000063	-0.000 072

TABLE I. (Continued.)

R	$\mu_{\mathrm{y}}{ }^{\dagger}$	μ_{y}	$\mu_{\mathrm{z}}{ }^{\dagger}$	μ_{z}
$\theta=75^{\circ}$				
4.0	-0.003755	-0.003754	-0.050009	-0.050007
5.0	-0.002065	-0.002065	-0.013964	-0.013964
6.0	-0.001154	-0.001153	-0.004075	-0.004075
7.0	-0.000661	-0.000661	-0.001419	-0.001419
8.0	-0.000394	-0.000394	-0.000647	-0.000647
9.0	-0.000247	-0.000247	-0.000374	-0.000381
10.0	-0.000162	-0.000163	-0.000243	-0.000252
$\theta=90^{\circ}$				
4.0	0	0	-0.052405	-0.052404
5.0	0	0	-0.015011	-0.015010
6.0	0	0	-0.004580	-0.004580
7.0	0	0	-0.001690	-0.001690
8.0	0	0	-0.000805	-0.000805
9.0	0	0	-0.000473	-0.000480
10.0	0	0	-0.000308	-0.000317

The dipole component in the z direction (along \mathbf{R}) typically changes sign from negative to positive as R increases, for $\theta<50^{\circ}$ and $\mathrm{r} \leq 2.125 \mathrm{a} . \mathrm{u}$. Exceptions are found for several of the values of μ_{z} listed in red in Tables S1-S9. Figure 3 shows μ_{z} as a function of θ and R, at $r=1.449$ a.u. When $\theta \geq 60^{\circ},\left|\mu_{z}\right|$ decreases monotonically with increasing R , for r from 0.942 to 2.125 a.u. When θ $\leq 55^{\circ},\left|\mu_{z}\right|$ typically decreases with increasing R, then increases, and finally decreases again, a pattern that holds in a little over 90% of the cases. The sign changes in μ_{z} in this case lead to a complex pattern of variations with r at fixed R and θ.

If μ_{z} were determined by quadrupolar induction effects alone, then we would find $\mu_{z}>0$ when $\theta<\theta_{\mathrm{m}}$, and $\mu_{z}<0$ when $\theta>\theta_{\mathrm{m}}$. Here, θ_{m} denotes the quadrupole "magic angle," where the quadrupole field in the z direction vanishes $\left[3 \cos ^{2}\left(\theta_{\mathrm{m}}\right)-1=0, \theta_{\mathrm{m}} \approx 54.7356^{\circ}\right]$. This pattern of signs is generally followed at long range. For

FIG. 2. Absolute value of μ_{y} for $\mathrm{H}_{2}-\mathrm{H}$ multiplied by 10^{3} (in a.u.), for R between 3.4 a.u. and 10.0 a.u. and θ between 0° and 90°, at bond length $r=2.125$ a.u.

FIG. 3. Dipole component μ_{z} for $\mathrm{H}_{2}-\mathrm{H}$ multiplied by 10^{3} (in a.u.) for R from 3.4 to 10.0 a.u. and θ decreasing from 90° to 0°, at $r=1.449$ a.u. Each point on this surface has a potential energy ΔE above the minimum for $\mathrm{H}_{2}-\mathrm{H}$ that satisfies $\Delta \mathrm{E} \leq \mathrm{k}_{\mathrm{B}} \mathrm{T}$ at $\mathrm{T}=2600 \mathrm{~K}$.
example, Fig. 4 shows μ_{y} and μ_{z} as functions of θ at $R=10.0$ a.u. and $\mathrm{r}=1.449$ a.u. The results from $\theta=0^{\circ}$ to $\theta=90^{\circ}$ have been calculated directly $a b$ initio, and results for larger θ have been deduced by symmetry. The oscillatory pattern characteristic of quadrupolar induction is evident in this figure.

At short range (small R), the observed sign pattern of μ_{z} is somewhat different, for $\theta<\theta_{\mathrm{m}}$ and r from 0.942 to 1.787 a.u. We find $\mu_{\mathrm{z}}<0$ in cases where the quadrupolar induction model would predict positive values of μ_{z}. In this range, there must be negative overlap and exchange contributions to μ_{z} that exceed the damped quadrupolar induction effects. But as R increases, μ_{z} converts to positive values for $\theta<\theta_{\mathrm{m}}$, consistent with quadrupolar induction. The value of R where μ_{z} first becomes positive ranges from 3.9 a.u. to 9.0 a.u. for the bond lengths listed above.

For $\theta>\theta_{\mathrm{m}}$, the quadrupole induction mechanism gives $\mu_{z}<0$. From the calculations, we have found $\mu_{z}<0$ for all $\theta \geq 60^{\circ}$ when the bond length r is between 0.942 and 1.787 a.u. inclusive, and μ_{z} <0 for all $\theta \geq 55^{\circ}$ when $r=2.125,2.463$, or 2.801 a.u. (except when $\mathrm{R}=3.0$ a.u. and $\mathrm{r}=2.801$ a.u.). The overlap and exchange contributions to μ_{z} when $\theta \geq 60^{\circ}$ cannot be deduced on the basis of sign arguments alone, but the opposite signs of the short-range exchange and overlap effects for μ_{y} and μ_{z} in cases with $\theta<\theta_{\mathrm{m}}$ suggest that the H atom gains a partial negative charge at short range, while the

FIG. 4. Dipole components μ_{y} and μ_{z} for $H_{2}-H$ vs θ for $R=10.0$ a.u. and $r=1.449$ a.u.

TABLE II. Comparison of Cartesian components of the dipole moment of $\mathrm{H}_{2}-\mathrm{H}$ in this work with the results of Gustafsson, Frommhold, and Meyer (GFM). ${ }^{20}$ We have reoriented the $\mathrm{H}_{2}-\mathrm{H}$ complex in our work to correspond to the orientation used by GFM. Results are listed from our calculations with the aug-cc-pV5Z basis set, Molpro 2012, and the tighter convergence criteria, except for $R=3.5$ and 4.5 a.u.; those results were obtained with Molpro 2006 and the default convergence criteria. The $H-H$ bond length is $r=1.449$ a.u., the angle between the H_{2} bond axis r and the pair-fixed z axis (along R) is θ, and the distance between the centers of mass of H_{2} and H is R.

R	μ_{x}	$\mu_{\mathrm{x}}(\mathrm{GMF})$	μ_{z}	$\mu_{\mathrm{z}}(\mathrm{GMF})$
$\theta=0^{\circ}$				
3.0	0	0	-0.068855	-0.069411
3.5	0	0	-0.034992	-0.035530
4.0	0	0	-0.011906	-0.012267
4.5	0	0	-0.001161	-0.001367
5.0	0	0	0.002905	0.002792
6.0	0	0	0.003829	0.003781
7.0	0	0	0.002683	0.002662
8.0	0	0	0.001689	0.001684
9.0	0	0	0.001064	0.001061
10.0	0		0.000693	0.000688
$\theta=30^{\circ}$				
3.0	-0.014908	-0.013912	-0.092080	-0.092580
3.5	-0.010327	-0.009463	-0.050876	-0.049865
4.0	-0.007211	-0.006546	-0.022959	-0.020867
4.5	-0.005195	-0.004811	-0.008620	-0.006361
5.0	-0.003811	-0.003491	-0.002064	-0.000860
6.0	-0.002101	-0.001746	0.001544	0.001708
7.0	-0.001194	-0.001065	0.001524	0.001506
8.0	-0.000708	-0.000654	0.001038	0.001013
9.0	-0.000442	-0.000414	0.000669	0.000649
10.0	-0.000290	-0.000274	0.000438	0.000421
$\theta=60^{\circ}$				
3.0	-0.012731	-0.011852	-0.143668	-0.142866
3.5	-0.009222	-0.008541	-0.081857	-0.080270
4.0	-0.006677	-0.006297	-0.043229	-0.040993
4.5	-0.004907	-0.004666	-0.022026	-0.019664
5.0	-0.003638	-0.003073	-0.011002	-0.009779
6.0	-0.002025	-0.001575	-0.002654	-0.002450
7.0	-0.001156	-0.001016	-0.000662	-0.000638
8.0	-0.000689	-0.000633	-0.000210	-0.000210
9.0	-0.000430	-0.000405	-0.000101	-0.000100
10.0	-0.000282	-0.000269	-0.000063	-0.000065
$\theta=90^{\circ}$				
3.0	0	0	-0.000308	-0.000308
3.5	0	0		
4.0	0	0	-0.170623	-0.171036
4.5	0	0	-0.096544	-0.096864
5.0	0	0.052405	-0.052610	
6.0	0	0	-0.028028	-0.028156
7.0	0	0	-0.015011	-0.015089
9.0	0	0.004580	-0.004606	
10.0	0	0	-000805	-0.000808
		0	-0.000472	
		0		

region around the nucleus in H_{2} that is closer to the H atom gains a partial positive charge.

In Table II, we compare our results for the $\mathrm{H}_{2}-\mathrm{H}$ dipole with $a b$ initio results obtained previously by GFM, ${ }^{20}$ with our results converted to the xz plane. The full comparison of the 288 values of μ_{x} or μ_{z} obtained in the calculations is provided in Tables S10-S14 of the supplementary material. The overall patterns of the dipole components are quite similar, but the several of the specific values differ. Comparing all 288 values from our work with the results of GFM, ${ }^{20}$ we find an average difference of 27.5% between the two calculations. However, nine of the μ_{z} values are distinct outliers in terms of the magnitudes of the differences. In each of these cases, the geometrical configuration is close to the point where μ_{z} changes sign as R increases, at fixed θ. A slight displacement in the location of the R value where μ_{z} crosses zero leads to large percent differences. Excluding these nine points from the comparison set reduces the average absolute value of the discrepancy between our results and the earlier results ${ }^{20}$ to 6.45%, a more realistic representation of the differences. The magnitude of the differences varies noticeably with the angle θ and the dipole component μ_{x} or μ_{z}. The closest agreement is found for μ_{z} with $\theta=90^{\circ}$, where the percent difference is only 0.40%. In general, the differences in μ_{z} values are smaller than the differences in μ_{x} values. The averages of the absolute values of the percent differences in μ_{z} are 2.02% at 0° (excluding one outlier), 4.92% at 30° (excluding eight outliers), and 6.17% at 60°. The differences in the μ_{x} values are 8.91% at 30° and 10.2% at 60°.

As mentioned above, we have carried out two sets of calculations with larger basis sets, one with an aug-cc-pV6Z basis (A6Z) and the other with a d-aug-cc-pV5Z basis (D5Z). Results from these calculations for $\mathrm{r}=1.449$ a.u., eight R values, and 19 angles θ are listed in Table S15 in the supplementary material. The results from these larger basis sets agree well with the results from the aug-ccpV 5 Z basis-the only exceptions are found very near to the points where μ_{z} changes sign. Yet even including those points, the absolute values of the results from the A6Z basis agree with the $\mathrm{A} 5 \mathrm{Z}^{\dagger}$ results
to $\sim 0.25 \%$, and the results from the D5Z basis agree with the $\mathrm{A} 5 \mathrm{Z}^{\dagger}$ results to $\sim 0.23 \%$.

In two of the cases where the GFM results ${ }^{20}$ and ours differ significantly, $\mathrm{r}=1.449$ a.u. and $\mathrm{R}=5.0$ a.u., with $\theta=30^{\circ}$ or $\theta=60^{\circ}$, several additional independent calculations were run with Molpro 2015, the aug-cc-pV5Z basis, the tighter convergence criteria, and the base field strength $f=0.001$ a.u. The results from RHF/RCCSD(T) and RHF/UCCSD(T) calculations are listed in Table III. Increasing f to 0.01 a.u. changed only the final digit in the values listed. The new calculations showed the same differences from GFM's results ${ }^{20}$ as our previous work had shown.

Differences with the earlier results may be due to the choice of basis set and/or the computational method. The GFM calculations ${ }^{20}$ were carried out in a Gaussian basis derived from the Huzinaga 10s basis, ${ }^{250}$ augmented by p and d functions. The s functions with the three smallest exponents in the Huzinaga set ${ }^{250}$ were placed at the center of the H_{2} bond. The remaining seven s functions from the 10 s basis were associated with each H nucleus individually, but the five with the largest exponents were contracted and then allowed to float off the protons. A set of p functions with exponent 1.2 was assigned to each H center, and p sets with exponents 0.3 and 0.1 were located at the bond center. Additionally, two sets of d functions with exponents 0.4 and 0.13 were located at the bond center. The basis used for the separate H atom itself is not explicitly specified in Ref. 20; however, if 3 s , 2 p , and 2 d functions were placed at the midpoint of each $\mathrm{H}-\mathrm{H}$ segment, and 3 s and one set of p functions were assigned to each H center, this would give a total of 75 contracted functions in the basis, vs 165 in our work.

The earlier calculations were run in a multistep process, starting with self-consistent field (SCF) calculations, then generating localized orbitals from the molecular orbitals, in order to make it possible to separate intramolecular and intermolecular correlation. ${ }^{251}$ Double excitations, from the $1 \sigma_{\mathrm{g}}{ }^{2}$ configuration of H_{2} obtained at the SCF level to $1 \sigma_{\mathrm{u}}{ }^{2}, 1 \pi_{\mathrm{u}}{ }^{2}$, and $2 \sigma_{\mathrm{g}}{ }^{2}$ configurations, were included to produce a multiconfigurational SCF (MCSCF) wave function. Then,

TABLE III. Calculated Cartesian dipole components (in a.u.) for two geometrical configurations of $\mathrm{H}_{2}-\mathrm{H}$. The bond length of H_{2} is $r=1.449$ a.u., and the separation between the centers of mass of H_{2} and H is $R=5.0$ a.u. along the z axis in both cases. The angle between the H_{2} bond axis and the z axis is θ. Results from different ab initio methods and implementations are listed. The base field f is described in the text.

$\theta=30^{\circ}$	Wave function	Base field	μ_{x}	μ_{z}
GFM			-0.003491	-0.000860
Molpro 2006	RHF/UCCSD(T)	$\mathrm{f}=0.002$	-0.003811	-0.002065
Molpro 2012	RHF/UCCSD(T)	$\mathrm{f}=0.002$	-0.003811	-0.002064
Molpro 2015	RHF/RCCSD(T)	$\mathrm{f}=0.001$	-0.003810	-0.002022
	RHF/UCCSD(T)	$\mathrm{f}=0.001$	-0.003811	-0.002064
$\theta=60^{\circ}$	Wave function	Base field	$\mu \mathrm{x}$	$\mu \mathrm{z}$
GFM			-0.003073	-0.009779
Molpro 2006	RHF/UCCSD(T)	$\mathrm{f}=0.002$	-0.003638	-0.011002
Molpro 2012	RHF/UCCSD(T)	$\mathrm{f}=0.002$	-0.003638	-0.011002
Molpro 2015	RHF/RCCSD(T)	$\mathrm{f}=0.001$	-0.003637	-0.010969
	RHF/UCCSD(T)	$\mathrm{f}=0.001$	-0.003638	-0.011002

all single and double excitations from the MCSCF function were included in the coupled-electron pair approximation (CEPA), which is size consistent. ${ }^{20,251}$ To minimize basis-set superposition errors, in previous calculations for H_{2} interacting with an inert gas atom, intra- H_{2} correlation had been treated separately from the correlations between electrons in orbitals localized to H_{2} and electrons in orbitals localized on the inert gas atom. The separation of correlation effects was implemented via the self-consistent coupled electron pair (SCEP) technique. ${ }^{20,251}$ This approach has yielded highly accurate results for the interaction-induced dipoles of $\mathrm{H}_{2}-\mathrm{He}^{158,159,161}$ and $\mathrm{H}_{2}-\mathrm{H}_{2}{ }^{251}$ Our previous work on the collision-induced dipole of $\mathrm{H}_{2}-\mathrm{He}$ at the $\operatorname{CCSD}(\mathrm{T})$ level ${ }^{169}$ gave results for the Cartesian dipole components that agreed very well with those of Borysow, Frommhold, and Meyer. ${ }^{164}$ It is possible that differences between the wave function obtained in Ref. 20 and our RHF/UCCSD(T) function contribute to the observed differences in the dipole components for the open-shell system $\mathrm{H}_{2}-\mathrm{H}$.

The breakdown of the Hellmann-Feynman theorem ${ }^{26,252-254}$ for various approximate wave functions ${ }^{255}$ means that the dipole obtained as an expectation value need not agree exactly with the dipole obtained from finite-field calculations. In general, the error in the expectation value of the dipole moment is of first-order in the error in the wave function, while the error in the energy is of second-order in the error in the wave function. This may make the finite-field results preferable. ${ }^{256}$

III. SPHERICAL TENSOR ANALYSIS

For applications in computing line shapes for collision-induced spectra, the calculated dipole needs to be represented as a series in the spherical harmonics of the orientation angles Ω_{r} and Ω_{R} for the bond axis \mathbf{r} and the intermolecular vector \mathbf{R}, respectively, ${ }^{22-25}$
$\mu^{\mathrm{M}}=4 \pi / 3^{1 / 2} \sum_{\lambda, L, m} \mathrm{D}_{\lambda L}(\mathrm{r}, \mathrm{R}) \mathrm{Y}_{\lambda}{ }^{\mathrm{m}}\left(\Omega_{\mathrm{r}}\right) \mathrm{Y}_{\mathrm{L}}{ }^{\mathrm{M}-\mathrm{m}}\left(\Omega_{\mathrm{R}}\right)\langle\lambda \mathrm{mLM}-\mathrm{m} \mid 1 \mathrm{M}\rangle$.

In this equation, M designates the spherical-tensor component of the dipole. The $\mathrm{M}=0$ component is identical to $\mu_{\mathrm{z}}, \mu^{+1}=-(1 / 2)^{1 / 2}\left(\mu_{\mathrm{x}}\right.$ $\left.+i \mu_{y}\right)$, and $\mu^{-1}=(1 / 2)^{1 / 2}\left(\mu_{x}-i \mu_{y}\right)$. The values of $D_{\lambda L}(r, R)$ depend only on λ, L, and the magnitudes of r and R. The quantity $\langle\lambda \mathrm{mL}$ $\mathrm{M}-\mathrm{m}|1 \mathrm{M}\rangle$ is a Clebsch-Gordan coefficient. Due to the symmetry of the H_{2} molecule, λ is always even, and for the Clebsch-Gordan coefficient to be nonzero, $\mathrm{L}=\lambda \pm 1$. Also, because \mathbf{R} is oriented along the z axis, $\mathrm{M}-\mathrm{m}=0$.

The coefficients $\mathrm{D}_{\lambda \mathrm{L}}(\mathrm{r}, \mathrm{R})$ have been determined by leastsquares fits to the Cartesian components of the dipole moment as functions of the orientation angle θ of H_{2}, at fixed r and R . We fit the 17 nonzero values of μ_{y} for the various angles θ, together with all 19 values of μ_{z}. In the first study, dipole coefficients through $\lambda=24$ and $\mathrm{L}=25$ were determined from the Cartesian dipole components. The coefficients beyond $\mathrm{D}_{89}(\mathrm{r}, \mathrm{R})$ are virtually negligible for $r \leq 1.787$ a.u. For $r=2.125$ a.u. -2.801 a.u., the higher coefficients start to grow at small R values, but they are still substantially smaller than the leading coefficients. Also, the higher coefficients tend to be erratic as functions of R, suggesting that while they do help to determine a least-squares fit to the data, they are not physically meaningful. In the second set of calculations, we fit the coefficients
$D_{\lambda L}(r, R)$ only through $D_{89}(r, R)$. In Table IV, we list the coefficients $D_{01}(r, R), D_{21}(r, R), D_{23}(r, R), D_{43}(r, R), D_{45}(r, R), D_{65}(r, R)$, $D_{67}(r, R), D_{87}(r, R)$, and $D_{89}(r, R)$ for $r=1.449$ a.u. as obtained from fits to both sets of results with the A5Z basis, from a fit through D_{89} to the results from the A6Z basis and from a fit through D_{89} to the results from the D5Z basis. The A5Z results for the coefficients $D_{\lambda L}(r, R)$ over the full range of r values from $r=0.942$ a.u. to $r=2.801$ a.u. are listed in Tables S16-S24 of the supplementary material. The dipole coefficients from the second set of A5Z calculations (with tighter convergence criteria) are indicated by a superscript ${ }^{\dagger}$. Generally, the values of the coefficients from D_{01} to D_{89} from all four sets of calculations at $r=1.449$ a.u. and from the two sets of calculations at the other r values agree well. This is noteworthy, considering that the first set of results comes from fits up to $\lambda=24$ and $\mathrm{L}=25$, while in the second, third, and fourth sets, no dipole coefficients beyond D_{89} were included. The differences indicate the level of uncertainty in the results. The coefficient D_{23} appears to be best determined overall; relative to the $\mathrm{A} 5 \mathrm{Z}^{\dagger}$ results, the average absolute value of the difference in the A 5 Z results is 0.064%; for the A 6 Z results, 0.11%; and for the D5Z results, 0.14%. Excluding the range from $\mathrm{R}=8.0$ a.u. to $\mathrm{R}=10.0$ a.u. (where D_{01} is typically singledigit), the average absolute value of the difference in D_{01} relative to $\mathrm{A}^{2} \mathrm{Z}^{\dagger}$ is 0.011% for $\mathrm{A} 5 \mathrm{Z}, 0.16 \%$ for A 6 Z , and 1.57% for D6Z. Differences in D_{21} among the results with different basis sets are less than 1%; differences in D_{45} are less than 2%, and differences in D_{43} are less than 3% (again, excluding R values where the coefficients are single-digit).

Results for the dipole coefficients $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} based on the work of GFM^{20} are also listed in Table IV and in Tables S16-S24. These values were obtained from a least-squares fit of the dipole coefficients $D_{\lambda L}$ to the Cartesian dipole components reported in Ref. 20. The ab initio calculations in Ref. 20 gave a total of 6 nonzero Cartesian dipole components, from which we have derived the coefficients up to D_{45}. From the tables, the dipole coefficients obtained from Ref. 20 agree reasonably well with our results in terms of the overall pattern of the coefficients, but in terms of the numerical values, discrepancies with Ref. 20 are evident in cases where the results from our four basis sets (A5Z, A5Z ${ }^{\dagger}, \mathrm{A} 6 \mathrm{Z}$, and D5Z) agree well. We have carried out further calculations to separate effects on the dipole coefficients $D_{\lambda L}(r, R)$ that are due to differences in the Cartesian components of the dipoles vs the effects of working with four angles in Ref. 20 and 19 angles in the current study. We determined the dipole coefficients $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} from the Cartesian dipole components in the $\mathrm{A}_{5} \mathrm{Z}^{\dagger}$ calculations but restricted to the angles $0^{\circ}, 30^{\circ}, 60^{\circ}$, and 90°. These results are listed on the lines labeled (45) in Tables IV and S16-S24. The results from the (45) fits are generally quite close to the results from the full 19 -angle fits, and they are closer to those results than to the earlier results from Ref. 20. Our results suggest that the leading dipole coefficients can usually be determined quite well from calculations at a smaller number of angles.

In Fig. 5, we plot $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} vs the $\mathrm{H}_{2}-\mathrm{H}$ separation R, for bond length $\mathrm{r}=1.449 \mathrm{a} . \mathrm{u}$., to show how the magnitudes of the coefficients compare. For small R, the isotropic overlap and exchange coefficient D_{01} is larger in magnitude than all of the other coefficients, and it is negative. The crossover of $\left|D_{01}\right|$ with D_{23} occurs between $\mathrm{R}=5.0$ a.u. and 6.0 a.u. In Fig. 6, we show $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} vs R for $r=2.125$ a.u. The coefficients are generally larger

TABLE IV. Coefficients for the spherical harmonic expansion of the dipole of $\mathrm{H}_{2}-\mathrm{H}$ in Eq. (1). Results in a.u. multiplied by 10^{6} are listed as obtained with the A5Z basis and the default convergence criteria, with the A5Z basis and tighter convergence criteria (indicated by a superscript ${ }^{\dagger}$), with the A6Z basis, and with the D5Z basis. Results from a fit limited to $\theta=0^{\circ}, 30^{\circ}$, 60°, and 90° are listed in the rows labeled (45), for the most direct comparison with the results of GFM. ${ }^{20}$ The H_{2} bond length is $1.449 \mathrm{a} . \mathrm{u}$.

R (a.u.)	D_{01}	D_{21}	D_{23}	D_{43}	D_{45}	D_{65}	D_{67}	D_{87}	D_{89}
3.0^{\dagger}	-135447	-10736	31156	1079	59	121	-80	2	-2
A6Z	-135448	-10740	31150	1079	56	119	-79	2	-2
D5Z	-135455	-10733	31150	1082	57	118	-80	2	-4
(45)	-135421	-10687	31100	1144	6				
GFM	-135348	-11260	30574	1281	-217				
3.4	-86532	-5943	21022	248	466	56	-22	3	-2
3.5	-76474	-5 269	19272	138	486	44	-14	3	-2
(45)	-76466	-5 254	19257	162	471				
GFM	-75 599	-5914	19070	576	-100				
3.6	-67 364	-4 697	17716	55	490	34	-8	2	-1
3.7	-59 173	-4 201	16319	-8	483	25	-3	2	-1
3.8	-51853	-3764	15055	-51	467	20	-1	1	-1
3.9	-45 342	-3 372	13905	-84	449	13	3	2	-1
4.0	-39 575	-3 019	12853	-103	425	10	4	2	0
$4.0{ }^{\dagger}$	-39 575	-3 019	12853	-102	425	10	4	2	0
A6Z	-39 581	-3026	12848	-104	422	8	3	0	0
D5Z	-39 584	-3021	12849	-104	425	7	2	1	2
(45)	-39 574	-3017	12852	-98	424				
GFM	-38087	-3649	12984	482	-392				
4.5	-19590	-1686	8744	-113	295	1	7	2	0
(45)	-19588	-1687	8746	-113	296				
GFM	-17976	-2 214	9002	516	-492				
5.0	-9378	-890	6022	-78	190	-2	4	1	1
5.0^{\dagger}	-9378	-890	6023	-78	189	-2	4	1	1
A6Z	-9381	-894	6020	-77	189	-2	4	0	0
D5Z	-9378	-890	6018	-78	190	0	4	1	0
(45)	-9379	-891	6024	-79	191				
GFM	-8538	-1384	5992	347	-141				
6.0	-1903	-219	3004	-25	74	0	1	0	1
6.0^{\dagger}	-1904	-219	3004	-26	74	0	2	1	1
A6Z	-1903	-221	3002	-25	74	-1	1	0	0
D5Z	-1892	-217	2999	-25	73	0	2	1	0
(45)	-1904	-219	3004	-26	74				
GFM	-1778	-516	2813	61	32				
7.0	-279	-51	1622	-7	30	1	1	0	0
7.0^{\dagger}	-279	-51	1622	-7	30	1	1	1	0
A6Z	-277	-51	1620	-8	30	0	1	0	0
D5Z	-259	-49	1621	-5	30	1	0	0	0
(45)	-279	-51	1622	-7	30				
GFM	-276	-137	1546	1	28				
8.0	6	-12	942	-2	14	1	1	0	0
8.0^{\dagger}	6	-12	942	-2	14	1	1	0	0
A6Z	9	-12	942	-2	13	0	0	0	0
D5Z	27	-12	945	-1	13	0	0	0	0
(45)	6	-12	942	-2	13				
GFM	-2	-45	909	-4	17				

TABLE IV. (Continued.)

R (a.u.)	D_{01}	D_{21}	D_{23}	D_{43}	D_{45}	D_{65}	D_{67}	D_{87}	D_{89}
9.0	25	-5	586	-1	8	0	1	0	1
9.0^{\dagger}	31	-4	585	0	7	1	0	0	0
A6Z	32	-4	583	-1	7	0	0	0	0
D5Z	46	-5	586	0	7	1	0	0	0
(45)	31	-5	585	0	7				
GFM	26	-18	567	-3	8				
10.0	13	-1	383	0	4	0	1	-1	1
10.0^{\dagger}	22	-2	382	1	3	0	0	0	0
A6Z	21	-1	381	0	3	0	0	0	0
D5Z	32	-4	383	1	3	0	0	0	0
(45)	22	-2	382	1	4				
GFM	16	-8	371	-2	5				

at 2.125 a.u., and D_{43} and D_{45} become noticeably different from zero on the same plot with the other coefficients.

Long-range classical induction effects are reflected in D_{23} for quadrupolar induction and D_{45} for hexadecapolar induction. ${ }^{22-25}$ Through order $\mathrm{R}^{-7}, \mathrm{D}_{23}$ is the sum of a direct quadrupolar induction term that varies as R^{-4} and an R^{-7} back-induction term. From Ref. 23, for an atom A and molecule B, through order R^{-7} at long range,

$$
\begin{align*}
\mathrm{D}_{23}(\mathrm{r}, \mathrm{R})= & 3^{1 / 2} \alpha_{A} \Theta_{\mathrm{B}}(\mathrm{r}) \mathrm{R}^{-4}+3^{1 / 2}(4 / 35)\left[3 \alpha_{\mathrm{B}, z z}(\mathrm{r})\right. \\
& \left.+4 \alpha_{\mathrm{B}, \mathrm{xx}}(\mathrm{r})\right] \alpha_{A} \Theta_{\mathrm{B}}(\mathrm{r}) \mathrm{R}^{-7}, \tag{2}
\end{align*}
$$

where α_{A} is the polarizability of the atom, $\Theta_{B}(r)$ is the quadrupole of the molecule as a function of bond length $\mathrm{r}, \alpha_{\mathrm{B}, z z}(\mathrm{r})$ is the molecular polarizability parallel to the bond axis as a function of r , and $\alpha_{\mathrm{B}, \mathrm{xx}}(\mathrm{r})$ is the polarizability perpendicular to the bond axis. The quadrupole of H_{2} and the components of the polarizability of H_{2} are known accurately at the specific r values used here, from the work of Miliordos and Hunt. ${ }^{257}$ The polarizability of the H atom is $\alpha_{\mathrm{H}}=4.5 \mathrm{a} . \mathrm{u}$. In Fig. 7, we show that $\mathrm{D}_{23}(\mathrm{r}, \mathrm{R})$ converges to the quadrupolar induction form as R increases, for bond lengths $\mathrm{r}=1.111$ a.u., $\mathrm{r}=1.449$ a.u., and $r=1.787$ a.u. Results for other bond lengths are similar. In Table V, we list the values of the quadrupole that would be deduced

FIG. 5. Dipole coefficients $D_{01}, D_{21}, D_{23}, D_{43}$, and D_{45} for $H_{2}-H$ as functions of R for $r=1.449$ a.u.
from $\mathrm{D}_{23}(\mathrm{r}, \mathrm{R})$ at $\mathrm{R}=8.0,9.0$, and 10.0 a.u. for each bond length r, if the coefficient were entirely due to quadrupolar induction. At shorter range, the values of $D_{23}(r, R)$ reflect overlap damping of the classical induction effects, as well as exchange and orbital distortion, which tend to reduce $\mathrm{D}_{23}(\mathrm{r}, \mathrm{R})$ from its long-range limiting form. Two estimates of the quadrupole are shown for each r value, the first (a) obtained with the R^{-4} term in Eq. (2) alone and the second (b) from the full version of Eq. (2), with ab initio values used for the polarizability components. ${ }^{257}$ Agreement with the quadrupole values that have been calculated $a b$ initio ${ }^{257}$ is very good, and the agreement improves as R increases, as shown in Fig. S 2 in the supplementary material. The average error in the value of Θ derived from $D_{23}(r, R)$ at $R=10.0$ a.u. is 1.20%, when the R^{-7} back-induction term is included in the analysis. The estimated quadrupole is always larger than the ab initio quadrupole.

The coefficient $\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})$ is determined by hexadecapolar induction at long range. For an atom A and molecule B, to leading order, ${ }^{22-25}$

$$
\begin{equation*}
\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})=5^{1 / 2}{ }^{\mathrm{A}} \Phi_{\mathrm{B}}(\mathrm{r}) \mathrm{R}^{-6}, \tag{3}
\end{equation*}
$$

where $\Phi_{\mathrm{B}}(\mathrm{r})$ denotes the hexadecapole of the molecule as a function of bond length. In Fig. 8, we show that $\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})$ from our calculations converges to the known hexadecapolar induction form for

FIG. 6. Dipole coefficients $D_{01}, D_{21}, D_{23}, D_{43}$, and D_{45} for $H_{2}-H$ as functions of R for $r=2.125$ a.u.

FIG. 7. Dipole coefficients D_{23} as functions of R, showing convergence of the ab initio values to the quadrupolar induction form at long range, for bond lengths $r=1.111,1.449$, and 1.787 a.u.
$\mathrm{r}=1.111$ a.u., $\mathrm{r}=1.449$ a.u., and $\mathrm{r}=1.787$ a.u. Results for other r values are similar, except for $r=0.942$, where the hexadecapole is quite small. Hexadecapolar induction effects were not detectable in the study of the interaction-induced dipole of $\mathrm{H}_{2}-\mathrm{H}$ in Ref. 20. In Table VI, we compare the values of the hexadecapole as a function of bond length deduced from $\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})$ at $\mathrm{R}=8.0,9.0$, and 10.0 a.u. with the values that have been computed directly $a b$ initio. Figure S3 in the supplementary material shows that the agreement increases with increasing R. The difference between the ab initio values of Φ^{257} and the estimates of Φ based on $\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})$ at $\mathrm{R}=10.0$ a.u. is 40% for $\mathrm{r}=0.942$ a.u. and 9.5% for 1.111 a.u.; for the other bond lengths, the percent error in the hexadecapole estimated from $\mathrm{D}_{45}(\mathrm{r}, \mathrm{R})$ at $\mathrm{R}=10.0$ a.u. ranges from 4.7% to 7.2%. The estimated hexadecapole is always larger than the $a b$ initio hexadecapole for $r \geq 1.280$ a.u.

At long range, the coefficient $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ is determined by van der Waals dispersion and back-induction; ${ }^{23}$ it varies as R^{-7} to leading order. The polarization of the electronic charge distribution on each center $\left(\mathrm{H}_{2}\right.$ or H$)$ due to the $\mathrm{H}_{2}-\mathrm{H}$ interaction attracts the nuclei on the same center. ${ }^{26}$ The van der Waals dispersion force between

FIG. 8. Dipole coefficients D_{45} as functions of R, showing convergence of the ab initio values to the hexadecapolar induction form at long range, for bond lengths $r=1.111,1.449$, and 1.787 a.u.
two atoms in S states was explained by Feynman as a result of this electrostatic attraction. ${ }^{26}$ Hunt later proved Feynman's "conjecture" analytically and proved that it also holds for molecules of arbitrary symmetry. ${ }^{32}$ Electron correlation allows electronic charge to accumulate between the nuclei, but the dispersion forces on the nuclei themselves are classical electrostatic forces. ${ }^{26,32}$

The dispersion dipole is derived from the change in dispersion energy for interacting molecules in a uniform applied electric field. The electric field alters the interaction energy in two ways: Each molecule is hyperpolarized by the concerted effects of the applied field and the fluctuating field from the neighboring molecule. ${ }^{31}$ Additionally, the applied field alters the correlations of the spontaneously fluctuating charge densities on each center. ${ }^{31}$

Perturbation analyses of the dispersion dipole have been presented by Byers Brown and Whisnant ${ }^{27}$ and by Craig and Thirunamachandran. ${ }^{30}$ Hunt developed an approximation for the dispersion dipole in terms of static polarizabilities a and dipole-dipole quadrupole polarizabilities B of the interacting molecules, along with the C_{6} van der Waals coefficient for the pair. ${ }^{28}$ Subsequently, Galatry

TABLE V. Quadrupole moments (in a.u.) estimated from $D_{23}(r, R)$ compared with quadrupole moments $\Theta^{\text {calc }}$ calculated ab initio. ${ }^{257}$ The tabulated D_{23} values have been multiplied by 10^{6}. The estimate $\Theta^{\text {est }}(a)$ is obtained by considering only the direct quadrupolar induction contribution to $D_{23}(r, R)$ of order R^{-4}, while $\Theta^{\text {est }}(b)$ also includes back-induction effects of order R^{-7}. The calculated quadrupole at $\mathrm{r}=1.618$ a.u. has been obtained by interpolation of the results in Ref. 257, as have the polarizability tensor components at $\mathrm{r}=1.618$ a.u. needed to obtain $\Theta^{\text {est }}(\mathrm{b})$.

r (a.u.)	$\mathrm{R}=8.0$ (a.u.)			$\mathrm{R}=9.0$ (a.u.)			$\mathrm{R}=10.0$ (a.u.)			$\Theta^{\text {calc }}$
	D_{23}	$\Theta^{\text {est }}(\mathrm{a})$	$\Theta^{\text {est }}(\mathrm{b})$	D_{23}	$\Theta^{\text {est }}(\mathrm{a})$	$\Theta^{\text {est }}(\mathrm{b})$	D_{23}	$\Theta^{\text {est }}(\mathrm{a})$	$\Theta^{\text {est }}$ (b)	
0.942	446.1	0.2344	0.2332	277.6	0.2337	0.2328	182.2	0.2338	0.2331	0.2302
1.111	599.5	0.3150	0.3130	373.1	0.3140	0.3126	244.6	0.3137	0.3127	0.3086
1.280	766.2	0.4027	0.3997	476.4	0.4011	0.3990	312.0	0.4004	0.3989	0.3934
1.449	942.2	0.4951	0.4909	584.8	0.4923	0.4893	382.4	0.4907	0.4885	0.4823
1.618	1123.0	0.5902	0.5843	695.3	0.5853	0.5812	454.1	0.5825	0.5795	0.5729
1.787	1303.8	0.6852	0.6774	805.0	0.6776	0.6723	525.0	0.6735	0.6696	0.6624
2.125	1642.9	0.8634	0.8513	1008.3	0.8488	0.8404	655.7	0.8412	0.8351	0.8266
2.463	1911.7	1.0047	0.9880	1165.5	0.9811	0.9696	755.6	0.9694	0.9611	0.9507
2.801	2063.7	1.0845	1.0643	1248.0	1.0506	1.0368	806.3	1.0344	1.0244	1.0126

TABLE VI. Hexadecapole moments (in a.u.) estimated from $D_{45}(r, R)$ compared with hexadecapole moments $\Phi^{\text {calc }}$ calculated ab initio. ${ }^{257}$ The tabulated D_{45} values have been multiplied by 10^{6}. The estimate $\Phi^{\text {est }}$ is obtained from the direct hexadecapolar induction contribution to $D_{45}(r, R)$ of order R^{-6}. The calculated hexadecapole at $r=1.618$ a.u. has been obtained by interpolation of the results in Ref. 257.

r (a.u.)	$\mathrm{R}=8.0$ (a.u.)		$\mathrm{R}=9.0$ (a.u.)		$\mathrm{R}=10.0$ (a.u.)		$\Phi^{\text {calc }}$
	D_{45}	$\Phi^{\text {est }}$	D_{45}	$\Phi^{\text {est }}$	D_{45}	$\Phi^{\text {est }}$	
0.942	1.83	0.05	0.99	0.05	0.38	0.04	0.0628
1.111	4.39	0.11	2.31	0.12	1.07	0.11	0.1175
1.280	8.52	0.22	4.34	0.23	2.10	0.21	0.1993
1.449	13.77	0.36	6.81	0.36	3.36	0.33	0.3139
1.618	20.50	0.53	9.91	0.52	4.97	0.49	0.4664
1.787	29.13	0.76	13.89	0.73	7.00	0.70	0.6582
2.125	52.15	1.36	24.65	1.30	12.42	1.23	1.1649
2.463	83.19	2.17	38.58	2.04	19.36	1.92	1.8052
2.801	117.46	3.06	53.74	2.84	26.88	2.67	2.4912

and Gharbi ${ }^{29}$ derived an exact expression for the dispersion dipole of a pair of atoms A and B in terms of the integrals of $\alpha^{A}(i \omega)$ $B^{B}(0, i \omega)$ and $\alpha^{B}(i \omega) B^{A}(0, i \omega)$ over imaginary frequencies. Bohr and Hunt carried out a symmetry analysis to find the dispersion contributions to $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}$, and D_{43} for an atom A interacting with molecule B ; ${ }^{23}$ the dispersion contribution to D_{45} vanishes. ${ }^{23}$ Combining the dispersion term in D_{01} with the back-induction effect ${ }^{23}$ gives

$$
\begin{align*}
D_{01}(r, R)= & (9 \hbar / \pi) R^{-7} \int_{0}^{\infty}\left[\alpha^{A}(i \omega) \bar{B}^{B}(0, i \omega)-\bar{\alpha}^{B}(i \omega) B^{A}(0, i \omega)\right] d \omega \\
& +(6 / 5)\left[\alpha_{B, z z}(r)-\alpha_{B, x x}(r)\right] \alpha_{A} \Theta_{B}(r) R^{-7}, \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
\overline{\mathrm{B}}^{\mathrm{B}}(0, \mathrm{i} \omega)= & (2 / 15)\left[\mathrm{B}^{\mathrm{B}}{ }_{\mathrm{zz}, \mathrm{zz}}(0, \mathrm{i} \omega)+2 \mathrm{~B}_{\mathrm{xz}, \mathrm{xz}}^{\mathrm{B}}(0, \mathrm{i} \omega)+2 \mathrm{~B}_{{ }_{\mathrm{zx}, \mathrm{xz}}(0, \mathrm{i} \omega)}\right. \\
& \left.+\mathrm{B}_{\mathrm{xx},, z \mathrm{z}}^{\mathrm{B}}(0, \mathrm{i} \omega)+4 \mathrm{~B}_{\mathrm{xx}, \mathrm{xx}}^{\mathrm{B}}(0, \mathrm{i} \omega)\right] \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\alpha}^{\mathrm{B}}(i \omega)=(1 / 3)\left[\alpha^{\mathrm{B}}{ }_{z z}(i \omega)+2 \alpha^{\mathrm{B}}{ }_{\mathrm{xx}}(\mathrm{i} \omega)\right] . \tag{6}
\end{equation*}
$$

The integrals in Eq. (4) have been evaluated very accurately for $\mathrm{H}_{2}-\mathrm{H}$ by Bishop and Pipin, using explicitly correlated wave functions for H_{2} and an H_{2} bond length r of 1.449 a.u. ${ }^{34}$

The coefficient $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ typically changes sign with increasing $\mathrm{H}_{2}-\mathrm{H}$ separation near $\mathrm{R}=8.0$ a.u., where there are still substantial exchange/overlap contributions to $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$. Therefore, in order to make comparisons with the known long-range analytical form of $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ as a function of R for $\mathrm{r}=\mathrm{r}_{0}=1.449$ a.u., we have determined $\mathrm{D}_{01}\left(\mathrm{r}_{0}, \mathrm{R}\right)$ for $\mathrm{R}=10.0-15.0$ a.u. in intervals of 1.0 a.u. Placing $\mathrm{H}_{2}-\mathrm{H}$ in the yz plane, we calculated the dipole in the y and z directions at angles $\theta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$, and 90° using a base field strength $f=0.01$ a.u. and the A5Z basis and then determined the coefficients $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} from the results. We have found that corrections for the basis set superposition error
(BSSE) $)^{258}$ are small with basis sets of the size used here, in previous work on interaction effects on the polarizability of $\mathrm{H}_{2}-\mathrm{H}_{2}$. ${ }^{172}$ At very long range, however, the collision-induced dipole is quite small, and the BSSE corrections become appreciable relative to the values of the dipole. Values of $\mathrm{D}_{01}\left(\mathrm{r}_{0}, \mathrm{R}\right)$ obtained with and without BSSE corrections are given in Table S25. A log-log plot of D_{01} vs R in the range from 10.0 to 15.0 a.u. has a slope of -6.06 , based on values without BSSE corrections. When the BSSE corrections are added, the slope is -7.31 , vs the expected value -7 at very long range. The dispersion contribution to D_{01} for $\mathrm{H}_{2}-\mathrm{H}$ at $\mathrm{r}=1.449$ a.u. is $186.39 \mathrm{R}^{-7}$ from the work of Bishop and Pipin. ${ }^{34}$ The backinduction contribution is appreciably smaller at $5.17 \mathrm{R}^{-7}$, based on $\alpha_{z z}=6.7179$ a.u., $\alpha_{x x}=4.7319$ a.u., $\Theta=0.4823$ a.u. (from Ref. 257), and $\alpha^{H}=4.5$ a.u. Figure 9 shows the $a b$ initio results for D_{01} with BSSE corrections vs R for $\mathrm{r}=1.449$ a.u. compared with the analytical long-range form. The level of agreement is striking, given the challenges in obtaining accurate values for this numerically sensitive property.

FIG. 9. Dipole coefficient $D_{01}\left(r_{0}, R\right)$ as a function of R, for bond length $r_{0}=1.449$ a.u. Points plotted in blue are the ab initio results with BSSE corrections. The red curve shows the accurate R^{-7} term in D_{01} due to van der Waals dispersion and back-induction.

IV. DISCUSSION AND COMPARISON WITH THE DIPOLE OF $\mathrm{H}_{2}-\mathrm{He}$

The results from both full sets of calculations for the Cartesian components of the dipole moment with an aug-cc-pV5Z basis set are given in Tables S1-S9 of the supplementary material, for H_{2} bond lengths of 0.942 through 2.801 a.u., for separations R between the centers of mass of H_{2} and H from 3.0 a.u. to 10.0 a.u., and for the angle θ between the H_{2} bond vector \mathbf{r} and the vector \mathbf{R} from the center of mass of H_{2} to the nucleus of the H atom ranging from 0° to 90° in intervals of 5°. The $\mathrm{H}_{2}-\mathrm{H}$ system lies in the yz plane and R points along z , with y to the right. In general, the results obtained with the default convergence criteria agree very well with the results obtained with tighter convergence criteria, marked with a superscript ${ }^{\dagger}$. Differences are observed in some cases where the dipole is small, either where R is large or where the dipole function crosses zero as R increases. In those cases, the results obtained with the tighter convergence criteria are to be preferred. Cartesian components of the dipole are compared in detail with the results from Ref. 20 in Tables S10-S14. Table S15 compares components of the dipole obtained with the aug-cc-pV5Z, aug-cc-pV6Z, and d-aug-cc-pV5Z basis sets, for $r=1.449$ a.u.

In Tables S16-S24, the results from multiple sets of calculations for the spherical-tensor dipole coefficients $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, $\mathrm{D}_{45}, \mathrm{D}_{65}, \mathrm{D}_{67}, \mathrm{D}_{87}$, and D_{89} are listed. Again, the results obtained with the tighter convergence criteria (marked by ${ }^{\dagger}$) should be considered more accurate when the results differ. The results obtained by truncating the series in Eq. (1) at the D_{89} term (in the calculations marked by ${ }^{\dagger}$) generally agree quite well with the results obtained by continuing the series to $\mathrm{D}_{\lambda \mathrm{L}}$ with $\lambda=24$ and $\mathrm{L}=25$, in the original calculations where the default convergence criteria were used. Differences are apparent between the $\mathrm{D}_{\lambda \mathrm{L}}$ coefficients derived from the values of the Cartesian components of the dipole in Ref. 20 vs our values. By contrast, the results for $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} obtained from our Cartesian dipole components at angles $\theta=0^{\circ}$, $30^{\circ}, 60^{\circ}$, and 90° agree rather well with the results from the full set of angles in this work. The results from the four-angle fits are listed in Tables S16-S24 in the rows labeled (45).

Recent work by Miliordos and Hunt ${ }^{257}$ has given the polarizability tensor components, the quadrupole moment, and the hexadecapole moment of H_{2} at the specific bond lengths used in this work, except for $r=1.618$ a.u. The values of $\alpha_{z z}$ and $\alpha_{x x}$ in Ref. 257 agree well earlier calculations of the polarizability of $\mathrm{H}_{2}{ }^{259-262}$ and show quite close agreement with interpolated values based on the work of Rychlewski ${ }^{261}$ and of Raj, Hamaguchi, and Witek. ${ }^{262}$ The quadrupoles agree well with interpolated values based on earlier accurate work, ${ }^{263-265}$ and similarly the hexadecapoles agree well with interpolated values based on accurate calculations completed earlier. ${ }^{263-265}$ With the values from Ref. 257, we have confirmed the convergence of D_{23} and D_{45} from our calculations to the known long-range forms, the first time this has been observed for the hexadecapolar induction term D_{45}. Convergence of D_{23} and D_{45} to the long-range forms has been found for each of the bond lengths in this work, except for D_{45} at $\mathrm{r}=0.942$ or 1.111 a.u. where the hexadecapole is quite small.

The coefficient D_{01} gives the contribution to the dipole that is isotropic in the orientation of H_{2}. At short range where D_{01} reflects overlap and exchange effects as well as dispersion, D_{01} is negative. At
long range, both the long-range dispersion contribution to D_{01} and the much smaller back-induction contribution are positive. After correcting for basis set superposition error, we have obtained good agreement with the leading term in the long-range series for D_{01}, as shown in Fig. 9.

A comparison of the results for $\mathrm{H}_{2}-\mathrm{H}$ with those for $\mathrm{H}_{2}-\mathrm{He}$ shows that D_{23} and D_{45} are positive in both cases, as expected. For bond lengths $\mathrm{r}=1.111,1.449$, and $1.787 \mathrm{a} . \mathrm{u}$., we have confirmed that the ratio of D_{23} for $\mathrm{H}_{2}-\mathrm{H}$ to D_{23} for $\mathrm{H}_{2}-\mathrm{He}$ converges at large R values to the ratio of the polarizabilities of H and $\mathrm{He}, 4.5 / 1.383$, as expected. The convergence is illustrated in Fig. S4 in the supplementary material. Figure S5 in the supplementary material shows that the ratio of D_{45} for $\mathrm{H}_{2}-\mathrm{H}$ to D_{45} for $\mathrm{H}_{2}-\mathrm{He}$ converges to the ratio of H and He polarizabilities for $\mathrm{r}=1.449,1.787$, and 2.125 a.u. For $\mathrm{R}<7.0$ a.u., both ratios drop below the long-range limits and both become smaller as R decreases, showing that overlap effects on D_{23} and D_{45} are greater for $\mathrm{H}_{2}-\mathrm{H}$ than for $\mathrm{H}_{2}-\mathrm{He}$.

The most striking difference between the dipoles of $\mathrm{H}_{2}-\mathrm{H}$ and $\mathrm{H}_{2}-\mathrm{He}$ is found for the coefficient D_{01}. As noted above, D_{01} is negative at short range for $\mathrm{H}_{2}-\mathrm{H}$ and positive at long range, indicating that the polarity averaged over H_{2} orientations corresponds to $\mathrm{H}_{2}{ }^{\delta+} \mathrm{H}^{\delta-}$ at short range-where overlap and exchange effects predominate-and to $\mathrm{H}_{2}{ }^{\delta-} \mathrm{H}^{\delta+}$ at long range-where the van der Waals dispersion term is most significant. By contrast, for $\mathrm{H}_{2}-\mathrm{He}$, D_{01} is positive at short range and negative at long range, so after averaging over the orientations of H_{2}, the polarity is $\mathrm{H}_{2}{ }^{\delta-} \mathrm{He}^{\delta+}$ at short range and $\mathrm{H}_{2}{ }^{\delta+} \mathrm{He}^{\delta-}$ at long range. The signs of D_{01} at long range obtained from the $a b$ initio results in this work and earlier work on the $\mathrm{H}_{2}-\mathrm{He}$ dipole agree with the signs of the dispersion dipole calculated directly by Bishop and Pipin ${ }^{34}$ for $\mathrm{H}_{2}-\mathrm{H}$ and $\mathrm{H}_{2}-$ He. In both cases, $\mathrm{D}_{23}>\mathrm{D}_{01}$ at long range, but $\left|\mathrm{D}_{01}\right|>\mathrm{D}_{23}$ at short range. The crossover of $\left|D_{01}\right|$ and D_{23} occurs for R values somewhat smaller than R_{e}, the location of the potential minima. The coefficients D_{21} and D_{43}, which carry information about the anisotropic overlap effects on the dipole, have the same signs for $\mathrm{H}_{2}-\mathrm{H}$ and $\mathrm{H}_{2}-\mathrm{He}$.

Our earlier results for the interaction-induced dipoles of $\mathrm{H}_{2}-$ H_{2} and $\mathrm{H}_{2}-\mathrm{He}^{169}$ at the $\operatorname{CCSD}(\mathrm{T})$ level in an aug-cc-pV5Z basis have been used to calculate the binary collision-induced absorption spectra for H_{2} gas and to determine infrared and far infrared absorption during $\mathrm{H}_{2}-\mathrm{He}$ collisions in an $\mathrm{H}_{2} / \mathrm{He}$ mixture, over a range of temperatures. ${ }^{180,181}$ Excellent agreement with experimental measurements from 77 K to 300 K has been found in both cases. ${ }^{169,180,181}$ The calculations in this work on $\mathrm{H}_{2}-\mathrm{H}$ have been carried out with basis sets of similar size, at the $\operatorname{UCCSD}(\mathrm{T})$ level for the wave function. While the open-shell character of $\mathrm{H}_{2}-\mathrm{H}$ causes differences from the earlier work, we expect the values of the dipole moment presented here to be comparable in accuracy to our results for the $\mathrm{H}_{2}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{He}$ dipoles. ${ }^{169,180,181}$

SUPPLEMENTARY MATERIAL

Tables S1-S9 give the interaction-induced dipole moments μ_{y} and μ_{z} from the first and second set of calculations for H_{2} bond lengths r of $0.942,1.111,1.280,1.449,1.618$ (second set only), 1.787, $2.125,2.463$, and 2.801 a.u., for angles θ from 0° to 90°, and for separations R between the centers of mass of H_{2} and H from 3.0 a.u.
to 10.0 a.u. Default convergence criteria were used in the first set of calculations, and tighter convergence criteria were used in the second set (marked by ${ }^{\dagger}$). In Tables S10-S14, our Cartesian dipole components are compared with the results obtained in Ref. 20, and in Table S15, Cartesian dipole components obtained with aug-ccpV5Z, aug-cc-pV6Z, and d-aug-cc-pV5Z basis sets are compared for $\mathrm{r}=1.449$ a.u., the averaged internuclear distance in the ground rovibrational state of H_{2}. Tables $\mathrm{S} 16-\mathrm{S} 24$ list the spherical tensor expansion coefficients $D_{01}, D_{21}, D_{23}, D_{43}, D_{45}, D_{65}, D_{67}, D_{87}$, and D_{89} from our two full calculations, along with $\mathrm{D}_{01}, \mathrm{D}_{21}, \mathrm{D}_{23}, \mathrm{D}_{43}$, and D_{45} from the work of GFM^{20} and from our calculations at $\theta=0^{\circ}$, $30^{\circ}, 60^{\circ}$, and 90°. Table S25 lists the values of $\mathrm{D}_{01}(\mathrm{r}, \mathrm{R})$ for $\mathrm{r}=1.449$ a.u. and R from 10.0 to 15.0 a.u. as obtained from calculations with and without corrections for basis set superposition error. The dependence of the Cartesian components of the dipole on r, R, and θ is discussed in detail in a section of the supplementary material. In Fig. S1, the dipole component μ_{z} is plotted vs θ and R at $\mathrm{r}=1.449$ a.u., for $\Delta \mathrm{E} / \mathrm{k}_{\mathrm{B}}$ less than or equal to $30 \mathrm{~K}, 300 \mathrm{~K}, 750 \mathrm{~K}, 1050 \mathrm{~K}$, and 2600 K , where $\Delta \mathrm{E}$ is the difference between the energy of a specific configuration and the minimum on the potential energy surface. In Figs. S2 and S3, we show that the quadrupoles and hexadecapoles derived from $D_{23}(r, R)$ and $D_{45}(r, R)$, respectively, converge to the $a b$ initio values with increasing R , for the various bond lengths in this work. A plot of the ratios of D_{23} for $\mathrm{H}_{2}-\mathrm{H}$ to D_{23} for $\mathrm{H}_{2}-\mathrm{He}$ vs R for $\mathrm{r}=1.111,1.449$, and 1.787 a.u. is included, along with a plot of the ratios of D_{45} for $\mathrm{H}_{2}-\mathrm{H}$ to D_{45} for $\mathrm{H}_{2}-\mathrm{He}$, for $\mathrm{r}=1.449,1.787$, and 2.125 a.u.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant No. 1300063 from the program in Chemical Theory, Models, and Computational Methods. E.M. is indebted to Auburn University for financial support of this research. Part of the calculations reported here were completed with resources provided by the Auburn University Hopper Cluster.

REFERENCES

${ }^{1}$ Phenomena Induced by Intermolecular Interactions, NATO ASI Series B, edited by G. Birnbaum (Plenum, New York, 1985), Vol. 127.
${ }^{2}$ Collision-and Interaction-Induced Spectroscopy, NATO ASI Series C, edited by G. C. Tabisz and M. N. Neuman (Kluwer, Dordrecht, 1995), Vol. 452.
${ }^{3}$ L. Frommhold, Collision-Induced Absorption in Gases (Cambridge University Press, Cambridge, England, 2006).
${ }^{4}$ J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier, Amsterdam, 2008).
${ }^{5}$ J.-M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, J. Quant. Spectrosc. Radiat. Transfer 213, 178 (2018).
${ }^{6}$ P. Siegbahn and B. Liu, J. Chem. Phys. 68, 2457 (1978).
${ }^{7}$ W. Cencek and J. Rychlewski, J. Chem. Phys. 98, 1252 (1993).
${ }^{8}$ H. Partridge, C. W. Bauschlicher, Jr., and J. R. Stallcop, J. Chem. Phys. 99, 5951 (1993).
${ }^{9}$ A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 104, 7139 (1996).
${ }^{10}$ J. Komasa, W. Cencek, and J. Rychlewski, Comput. Methods Sci. Technol. 2, 87 (1996).
${ }^{11}$ Y.-S. M. Wu, A. Kuppermann, and J. B. Anderson, Phys. Chem. Chem. Phys. 1, 929 (1999).
${ }^{12}$ J. S. Lee, Chem. Phys. Lett. 339, 133 (2001).
${ }^{13}$ S. L. Mielke, B. C. Garrett, and K. A. Peterson, J. Chem. Phys. 116, 4142 (2002).
${ }^{14}$ W. A. Al-Saidi, H. Krakauer, and S. W. Zhang, J. Chem. Phys. 126, 194105 (2007).
${ }^{15}$ J. B. Anderson, J. Chem. Phys. 144, 166101 (2016).
${ }^{16}$ G. Halasz, A. Vibok, A. M. Mebel, and M. Baer, J. Chem. Phys. 118, 3052 (2003).
${ }^{17}$ T. Vertesi, A. Vibok, G. J. Halasz, and M. Baer, J. Chem. Phys. 120, 8420 (2004).
${ }^{18}$ S. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009).
${ }^{19}$ R. W. Patch, J. Chem. Phys. 59, 6468 (1973).
${ }^{20}$ M. Gustafsson, L. Frommhold, and W. Meyer, J. Chem. Phys. 118, 1667 (2003).
${ }^{21}$ H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and M. Welborn, molpro, version 2015.1, a package of ab initio programs, 2015, see http://www.molpro.net.
${ }^{22}$ J. D. Poll and J. Van Kranendonk, Can. J. Phys. 39, 189 (1961).
${ }^{23}$ J. E. Bohr and K. L. C. Hunt, J. Chem. Phys. 86, 5441 (1987).
${ }^{24}$ T. Bancewicz, Chem. Phys. Lett. 244, 305 (1995).
${ }^{25}$ T. Bancewicz, J. Chem. Phys. 134, 104309 (2011).
${ }^{26}$ R. P. Feynman, Phys. Rev. 56, 340 (1939).
${ }^{27}$ W. Byers Brown and D. M. Whisnant, Mol. Phys. 25, 1385 (1973).
${ }^{28}$ K. L. C. Hunt, Chem. Phys. Lett. 70, 336 (1980).
${ }^{29}$ L. Galatry and T. Gharbi, Chem. Phys. Lett. 75, 427 (1980).
${ }^{30}$ D. P. Craig and T. Thirunamachandran, Chem. Phys. Lett. 80, 14 (1981).
${ }^{31}$ K. L. C. Hunt and J. E. Bohr, J. Chem. Phys. 83, 5198 (1985).
${ }^{32}$ K. L. C. Hunt, J. Chem. Phys. 92, 1180 (1990).
${ }^{33}$ P. W. Fowler, Chem. Phys. 143, 447 (1990).
${ }^{34}$ D. M. Bishop and J. Pipin, J. Chem. Phys. 98, 4003 (1993).
${ }^{35}$ R. W. Patch, J. Quant. Spectrosc. Radiat. Transfer 14, 49 (1974).
${ }^{36}$ M. Gustafsson and L. Frommhold, Astron. Astrophys. 400, 1161 (2003).
${ }^{37}$ M. F. Crawford, H. L. Welsh, and J. L. Locke, Phys. Rev. 75, 1607 (1949).
${ }^{38}$ H. L. Welsh, M. F. Crawford, and J. L. Locke, Phys. Rev. 76, 580 (1949).
${ }^{39}$ H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, and D. A. Chisholm, Phys. Rev. 83, 1264 (1951).
${ }^{40}$ J. A. A. Ketelaar, J. P. Colpa, and F. N. Hooge, J. Chem. Phys. 23, 413 (1955).
${ }^{41}$ A. R. W. McKellar, J. W. McTaggart, and H. L. Welsh, Can. J. Phys. 53, 2060 (1975).
${ }^{42}$ G. Birnbaum, G. Bachet, and L. Frommhold, Phys. Rev. A 36, 3729 (1987).
${ }^{43}$ C. Brodbeck, N. van-Thanh, J.-P. Bouanich, and L. Frommhold, Phys. Rev. A 51, 1209 (1995).
${ }^{44}$ M. F. Crawford, H. L. Welsh, J. C. F. MacDonald, and J. L. Locke, Phys. Rev. 80, 469 (1950).
${ }^{45}$ S. P. Reddy and K. S. Chang, J. Mol. Spectrosc. 47, 22 (1973).
${ }^{46}$ G. Birnbaum, J. Quant. Spectrosc. Radiat. Transfer 19, 51 (1978).
${ }^{47}$ J. P. Bouanich, C. Brodbeck, P. Drossart, and E. Lellouch, J. Quant. Spectrosc. Radiat. Transfer 42, 141 (1989).
${ }^{48}$ J.-P. Bouanich, C. Brodbeck, N. van-Thanh, and P. Drossart, J. Quant. Spectrosc. Radiat. Transfer 44, 393 (1990).
${ }^{49}$ S. P. Reddy and W. F. Lee, Can. J. Phys. 46, 1373 (1968).
${ }^{50}$ U. Buontempo, P. Codastefano, S. Cunsolo, P. Dore, and P. Maselli, Can. J. Phys. 61, 156 (1983).
${ }^{51}$ P. Dore, A. Filabozzi, and G. Birnbaum, Can. J. Phys. 66, 803 (1988).
${ }^{52}$ P. Dore, A. Filabozzi, and G. Birnbaum, Can. J. Phys. 67, 599 (1989).
${ }^{53}$ R. D. G. Prasad, P. G. Gillard, and S. P. Reddy, J. Chem. Phys. 107, 4906 (1997).
${ }^{54}$ G. Varghese and S. P. Reddy, Can. J. Phys. 47, 2745 (1969).
${ }^{55}$ H. P. Gush, W. F. J. Hare, E. J. Allin, and H. L. Welsh, Can. J. Phys. 38, 176 (1960).
${ }^{56}$ D. H. Rank, T. A. Wiggins, P. Sitaram, A. F. Slomba, and B. S. Rao, J. Opt. Soc. Am. 52, 1004 (1962).
${ }^{57}$ J. L. Hunt and H. L. Welsh, Can. J. Phys. 42, 873 (1964).
${ }^{58}$ D. R. Bosomworth and H. P. Gush, Can. J. Phys. 43, 751 (1965).
${ }^{59}$ A. Watanabe and H. L. Welsh, Can. J. Phys. 43, 818 (1965).
${ }^{60}$ A. Watanabe and H. L. Welsh, Can. J. Phys. 45, 2859 (1967).
${ }^{61}$ A. Watanabe, J. L. Hunt, and H. L. Welsh, Can. J. Phys. 49, 860 (1971).
${ }^{62}$ A. Watanabe, Can. J. Phys. 49, 1320 (1971).
${ }^{63}$ P. W. Gibbs, C. G. Gray, J. L. Hunt, S. P. Reddy, R. H. Tipping, and K. S. Chang, Phys. Rev. Lett. 33, 256 (1974).
${ }^{64}$ S. P. Reddy, G. Varghese, and R. D. G. Prasad, Phys. Rev. A 15, 975 (1977).
${ }^{65}$ A. Sen, R. D. G. Prasad, and S. P. Reddy, J. Chem. Phys. 72, 1716 (1980).
${ }^{66}$ S. P. Reddy, A. Sen, and R. D. G. Prasad, J. Chem. Phys. 72, 6102 (1980).
${ }^{67}$ P. M. Silvaggio, D. Goorvitch, and R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 26, 103 (1981).
${ }^{68}$ G. Bachet, E. R. Cohen, P. Dore, and G. Birnbaum, Can. J. Phys. 61, 591 (1983).
${ }^{69}$ P. Dore, L. Nencini, and G. Birnbaum, J. Quant. Spectrosc. Radiat. Transfer 30, 245 (1983).
${ }^{70}$ A. R. W. McKellar, Can. J. Phys. 66, 155 (1988).
${ }^{71}$ J. Schaefer and A. R. W. McKellar, Z. Phys. D: At., Mol. Clusters 15, 51 (1990); 17, 231 (1990).
${ }^{72}$ C. Brodbeck, N. van-Thanh, A. Jean-Louis, J.-P. Bouanich, and L. Frommhold, Phys. Rev. A 50, 484 (1994).
${ }^{73}$ C. Brodbeck, J.-P. Bouanich, N. van-Thanh, Y. Fu, and A. Borysow, J. Chem. Phys. 110, 4750 (1999).
${ }^{74}$ M. Gustafsson, L. Frommhold, D. Bailly, J.-P. Bouanich, and C. Brodbeck, J. Chem. Phys. 119, 12264 (2003).
${ }^{75}$ R. Krech, G. Caledonia, S. Schertzer, K. Ritter, T. Wilkerson, L. Cotnoir, R. Taylor, and G. Birnbaum, Phys. Rev. Lett. 49, 1913 (1982).
${ }^{76}$ G. E. Caledonia, R. H. Krech, T. D. Wilkerson, R. L. Taylor, and G. Birnbaum, Phys. Rev. A 43, 6010 (1991).
${ }^{77}$ D. Hammer, L. Frommhold, and W. Meyer, J. Chem. Phys. 111, 6283 (1999).
${ }^{78}$ D. Hammer and L. Frommhold, J. Chem. Phys. 112, 654 (2000).
${ }^{79}$ L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, Mol. Phys. 108, 2265 (2010).
${ }^{80}$ G. C. Tabisz, in Molecular Spectroscopy, Specialist Periodical Reports, edited by R. F. Barrow, D. A. Long, and J. Sheridan (Chemical Society, London, 1979), Vol. 6, p. 136.
${ }^{81}$ Y. Le Duff and R. Ouillon, J. Chem. Phys. 82, 1 (1985).
${ }^{82}$ M. S. Brown, M. H. Proffitt, and L. Frommhold, Chem. Phys. Lett. 117, 243 (1985).
${ }^{83}$ M. S. Brown and L. Frommhold, Chem. Phys. Lett. 127, 197 (1986).
${ }^{84}$ M. Moraldi, A. Borysow, and L. Frommhold, J. Chem. Phys. 88, 5344 (1988).
${ }^{85}$ A. Borysow and M. Moraldi, Phys. Rev. A 40, 1251 (1989).
${ }^{86}$ U. Bafile, M. Zoppi, F. Barocchi, M. S. Brown, and L. Frommhold, Phys. Rev. A 40, 1654 (1989).
${ }^{87}$ M. S. Brown, S. K. Wang, and L. Frommhold, Phys. Rev. A 40, 2276 (1989).
${ }^{88}$ M. S. Brown and L. Frommhold, Mol. Phys. 66, 527 (1989).
${ }^{89}$ U. Bafile, L. Ulivi, M. Zoppi, F. Barocchi, M. Moraldi, and A. Borysow, Phys. Rev. A 42, 6916 (1990).
${ }^{90}$ L. Frommhold, J. D. Poll, and R. H. Tipping, Phys. Rev. A 46, 2955 (1992).
${ }^{91}$ A. Borysow and M. Moraldi, Phys. Rev. A 48, 3036 (1993).
${ }^{92}$ M. Gustafsson, L. Frommhold, X. Li, and K. L. C. Hunt, J. Chem. Phys. 130, 164314 (2009).
${ }^{93}$ P. Kaatz and D. P. Shelton, Mol. Phys. 88, 683 (1996).
${ }^{94}$ A. R. W. McKellar, J. Chem. Phys. 93, 18 (1990).
${ }^{95}$ A. R. W. McKellar, Chem. Phys. Lett. 186, 58 (1991).
${ }^{96}$ M. Abu-Kharma, C. Stamp, G. Varghese, and S. P. Reddy, J. Quant. Spectrosc. Radiat. Transfer 97, 332 (2006).
${ }^{97}$ P. Jankowski, A. R. W. McKellar, and K. Szalewicz, Science 336, 1147 (2012).
${ }^{98}$ P. Jankowski, L. A. Surin, A. Potapov, S. Schlemmer, A. R. W. McKellar, and K. Szalewicz, J. Chem. Phys. 138, 084307 (2013).
${ }^{99}$ A. R. W. McKellar, J. Chem. Phys. 136, 094305 (2012).
${ }^{100}$ A. Borysow, L. Frommhold, and P. Dore, J. Chem. Phys. 85, 4750 (1986).
${ }^{101}$ P. Codastefano, P. Dore, and L. Nencini, J. Quant. Spectrosc. Radiat. Transfer 36, 239 (1986).
${ }^{102}$ H. Tran, P.-M. Flaud, T. Fouchet, T. Gabard, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 101, 306 (2006).
${ }^{103}$ G. Birnbaum, A. Borysow, and H. G. Sutter, J. Quant. Spectrosc. Radiat. Transfer 38, 189 (1987).
${ }^{104}$ R. E. Samuelson, N. Nath, and A. Borysow, Planet. Space Sci. 45, 959 (1997).
${ }^{105}$ P. Dore, A. Borysow, and L. Frommhold, J. Chem. Phys. 84, 5211 (1986).
${ }^{106}$ P. Codastefano and P. Dore, J. Quant. Spectrosc. Radiat. Transfer 36, 445 (1986).
${ }^{107}$ D. Bailly, G. Birnbaum, A. Buechele, P.-M. Flaud, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 83, 1 (2004).
${ }^{108}$ S. P. Reddy and C. W. Cho, Can. J. Phys. 43, 793 (1965).
${ }^{109}$ S. T. Pai, S. P. Reddy, and C. W. Cho, Can. J. Phys. 44, 2893 (1966).
${ }^{110}$ S. P. Reddy and C. Z. Kuo, J. Mol. Spectrosc. 37, 327 (1971).
${ }^{111}$ W. E. Russell, S. P. Reddy, and C. W. Cho, J. Mol. Spectrosc. 52, 72 (1974).
${ }_{112}^{12}$ A. R. W. McKellar, J. Chem. Phys. 61, 4636 (1974).
${ }^{113}$ R. D. G. Prasad and S. P. Reddy, J. Chem. Phys. 62, 3582 (1975).
${ }^{114}$ J. D. Poll, R. H. Tipping, R. D. G. Prasad, and S. P. Reddy, Phys. Rev. Lett. 36, 248 (1976).
${ }^{115}$ R. D. G. Prasad and S. P. Reddy, J. Chem. Phys. 65, 83 (1976).
${ }^{116}$ R. D. G. Prasad and S. P. Reddy, J. Chem. Phys. 66, 707 (1977).
${ }^{117}$ S. P. Reddy and R. D. G. Prasad, J. Chem. Phys. 66, 5259 (1977).
${ }^{118}$ U. Buontempo, P. Codastefano, S. Cunsolo, P. Dore, and P. Maselli, Can. J. Phys. 59, 1495 (1981).
${ }^{119}$ R. J. Penney, R. D. G. Prasad, and S. P. Reddy, J. Chem. Phys. 77, 131 (1982).
${ }^{120}$ P. G. Gillard, R. D. G. Prasad, and S. P. Reddy, J. Chem. Phys. 81, 3458 (1984).
${ }^{121}$ G. Varghese, C. Stamp, and S. P. Reddy, J. Quant. Spectrosc. Radiat. Transfer 87, 387 (2004).
${ }^{122}$ M. Abu-Kharma, G. Varghese, and S. P. Reddy, J. Mol. Spectrosc. 232, 369 (2005).
${ }^{123}$ M. Abu-Kharma and S. P. Reddy, J. Mol. Spectrosc. 233, 133 (2005).
${ }^{124}$ M. Abu-Kharma, C. Stamp, S. P. Reddy, N. Sahwagfeh, and H. Y. Omari, J. Phys. B: At., Mol. Opt. Phys. 43, 135104 (2010).
${ }^{125}$ M. Abu-Kharma, H. Y. Omari, N. Shawaqfeh, and C. Stamp, J. Mol. Spectrosc. 259, 111 (2010).
${ }^{126}$ A. Watanabe and H. L. Welsh, Phys. Rev. Lett. 13, 810 (1964).
${ }^{127}$ A. R. W. McKellar and H. L. Welsh, Proc. R. Soc. A 322, 421 (1971).
${ }^{128}$ A. R. W. McKellar and H. L. Welsh, Can. J. Phys. 52, 1082 (1974).
${ }^{129}$ A. R. W. McKellar, J. Chem. Phys. 92, 3261 (1990).
${ }^{130}$ A. R. W. McKellar and J. Schaefer, J. Chem. Phys. 95, 3081 (1991).
${ }^{131}$ A. Kudian, H. L. Welsh, and A. Watanabe, J. Chem. Phys. 43, 3397 (1965).
${ }^{132}$ A. K. Kudian and H. L. Welsh, Can. J. Phys. 49, 230 (1971).
${ }^{133}$ A. R. W. McKellar and H. L. Welsh, Can. J. Phys. 50, 1458 (1972).
${ }^{134}$ A. R. W. McKellar, Icarus 80, 361 (1989).
${ }^{135}$ A. R. W. McKellar, J. Chem. Phys. 105, 2628 (1996).
${ }^{136}$ A. R. W. McKellar, J. Chem. Phys. 122, 084320 (2005).
${ }^{137}$ A. R. W. McKellar, Can. J. Phys. 87, 411 (2009).
${ }^{138}$ A. R. W. McKellar, Can. J. Phys. 91, 957 (2013).
${ }^{139}$ A. Potapov, A. Sánchez-Monge, P. Schilke, U. U. Graf, T. Möller, and S. Schlemmer, Astron. Astrophys. 594, A117 (2016).
${ }^{140}$ S. P. Reddy, F. Xiang, and G. Varghese, Phys. Rev. Lett. 74, 367 (1995).
${ }^{141}$ M. Moraldi and L. Frommhold, Phys. Rev. A 40, 6260 (1989).
${ }^{142}$ M. Moraldi and L. Frommhold, Phys. Rev. Lett. 74, 363 (1995).
${ }^{143}$ M. Moraldi and L. Frommhold, J. Chem. Phys. 103, 2377 (1995).
${ }^{144}$ X. Li and K. L. C. Hunt, J. Chem. Phys. 107, 4133 (1997).
${ }^{145}$ J. Van Kranendonk, Solid Hydrogen (Plenum, New York, 1983).
${ }^{146}$ G. Varghese, R. D. G. Prasad, and S. P. Reddy, Phys. Rev. A 35, 701 (1987).
${ }^{147}$ M. C. Chan, M. Okumura, C. M. Gabrys, L. W. Xu, B. D. Rehfuss, and T. Oka, Phys. Rev. Lett. 66, 2060 (1991).
${ }^{148}$ M. C. Chan, S. S. Lee, M. Okumura, and T. Oka, J. Chem. Phys. 95, 88 (1991).
${ }^{149}$ T. Oka, Annu. Rev. Phys. Chem. 44, 299 (1993).
${ }^{150}$ D. P. Weliky, T. J. Byers, K. E. Kerr, T. Momose, R. M. Dickson, and T. Oka, Appl. Phys. B: Lasers Opt. 59, 265 (1994).
${ }^{151}$ R. M. Dickson and T. Oka, J. Phys. Chem. 99, 2617 (1995).
${ }^{152}$ D. P. Weliky, K. E. Kerr, T. J. Byers, Y. Zhang, T. Momose, and T. Oka, J. Chem. Phys. 105, 4461 (1996).
${ }^{153}$ R. D. G. Prasad, M. J. Clouter, and S. P. Reddy, Phys. Rev. A 17, 1690 (1978).
${ }^{154}$ M. Okamura, M. C. Chan, and T. Oka, Phys. Rev. Lett. 62, 32 (1989).
${ }^{155}$ N. H. Rich and A. R. W. McKellar, Can. J. Phys. 54, 486 (1976).
${ }^{156}$ J. L. Hunt and J. D. Poll, Mol. Phys. 59, 163 (1986).
${ }^{157}$ A. Borysow and L. Frommhold, Adv. Chem. Phys. 75, 439 (1989).
${ }^{158}$ W. Meyer and L. Frommhold, Phys. Rev. A 34, 2771 (1986).
${ }^{159}$ W. Meyer and L. Frommhold, Phys. Rev. A 34, 2936 (1986).
${ }^{160}$ L. Frommhold and W. Meyer, Phys. Rev. A 35, 632 (1987).
${ }^{161}$ A. Borysow, L. Frommhold, and W. Meyer, J. Chem. Phys. 88, 4855 (1988).
${ }^{162}$ W. Meyer, L. Frommhold, and G. Birnbaum, Phys. Rev. A 39, 2434 (1989).
${ }^{163}$ W. Meyer, A. Borysow, and L. Frommhold, Phys. Rev. A 40, 6931 (1989).
${ }^{164}$ A. Borysow, L. Frommhold, and W. Meyer, Phys. Rev. A 41, 264 (1990).
${ }^{165}$ Y. Fu, C. Zheng, and A. Borysow, J. Quant. Spectrosc. Radiat. Transfer 67, 303 (2000), with ab initio results listed at www.astro.ku.dk/~aborysow/data/index.html. ${ }^{166}$ T. Bancewicz and G. Maroulis, Phys. Rev. A 79, 042704 (2009).
${ }^{167}$ A. Haskopoulos and G. Maroulis, Chem. Phys. 367, 127 (2010).
${ }^{168}$ X. Li, J. F. Harrison, M. Gustafsson, F. Wang, M. Abel, L. Frommhold, and K. L. C. Hunt, AIP Conf. Proc. 1504, 100 (2012).
${ }^{169}$ X. Li, A. Mandal, E. Miliordos, and K. L. C. Hunt, J. Chem. Phys. 136, 044320 (2012).
${ }^{170}$ A. Haskopoulos, G. Maroulis, and T. Bancewicz, J. Mol. Model. 24, 265 (2018).
${ }^{171}$ G. Maroulis, J. Phys. Chem. A 104, 4772 (2000).
${ }^{172}$ X. Li, C. Ahuja, J. F. Harrison, and K. L. C. Hunt, J. Chem. Phys. 126, 214302 (2007).
${ }^{173}$ T. Bancewicz and G. Maroulis, Chem. Phys. Lett. 471, 148 (2009).
${ }^{174}$ W. Głaz, T. Bancewicz, J.-L. Godet, M. Gustafsson, A. Haskopoulos, and G. Maroulis, J. Chem. Phys. 145, 034303 (2016).
${ }^{175}$ G. Maroulis and A. Haskopoulos, Chem. Phys. Lett. 349, 335 (2001).
${ }^{176}$ J.-L. Godet, T. Bancewicz, W. Głaz, G. Maroulis, and A. Haskopoulos, J. Chem. Phys. 131, 204305 (2009).
${ }^{177}$ T. Bancewicz and G. Maroulis, Chem. Phys. Lett. 498, 349 (2010).
${ }^{178}$ W. Meyer, A. Borysow, and L. Frommhold, Phys. Rev. A 47, 4065 (1993).
${ }^{179}$ M. Gustafsson, L. Frommhold, and W. Meyer, J. Chem. Phys. 113, 3641 (2000).
${ }^{180}$ M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, J. Phys. Chem. A 115, 6805 (2011).
${ }^{181}$ M. Abel, L. Frommhold, X. P. Li, and K. L. C. Hunt, J. Chem. Phys. 136, 044319 (2012).
${ }^{182}$ T. Karman, A. van der Avoird, and G. C. Groenenboom, J. Chem. Phys. 142, 084305 (2015).
${ }^{183}$ W. Meyer and L. Frommhold, J. Chem. Phys. 143, 114313 (2015).
${ }^{184}$ T. Karman, E. Miliordos, K. L. C. Hunt, G. C. Groenenboom, and A. van der Avoird, J. Chem. Phys. 142, 084306 (2015).
${ }^{185}$ T. Karman, A. van der Avoird, and G. C. Groenenboom, J. Chem. Phys. 147, 084306 (2017).
${ }^{186}$ T. Karman, M. A. J. Koenis, A. Banerjee, D. H. Parker, I. E. Gordon, A. van der Avoird, W. J. van der Zande, and G. C. Groenenboom, Nat. Chem. 10, 549 (2018); 10, 573 (2018).
${ }^{187}$ M. S. A. El-Kader, G. Maroulis, and E. Bich, Chem. Phys. 403, 37 (2012).
${ }^{188}$ M. S. A. El-Kader and G. Maroulis, Chem. Phys. Lett. 684, 141 (2017).
${ }^{189}$ M. S. A. El-Kader, J.-L. Godet, A. A. El-Sadek, and G. Maroulis, Mol. Phys. 115, 2614 (2017).
${ }^{190}$ M. S. A. El-Kader, J.-L. Godet, M. Gustafsson, and G. Maroulis, J. Quant. Spectrosc. Radiat. Transfer 209, 232 (2018).
${ }^{191}$ S. L. Mielke, K. A. Peterson, D. W. Schwenke, B. C. Garrett, D. G. Truhlar, J. V. Michael, M. C. Su, and J. W. Sutherland, Phys. Rev. Lett. 91, 063201 (2003).
${ }^{192}$ S. A. Wrathmall, A. Gusdorf, and D. R. Flower, Mon. Not. R. Astron. Soc. 382, 133 (2007).
${ }^{193}$ L. M. Trafton, Astrophys. J. 140, 1340 (1964).
${ }^{194}$ B. M. S. Hansen, Nature 394, 860 (1998).
${ }^{195}$ D. Saumon and S. B. Jacobson, Astrophys. J. 511, L107 (1999).
${ }^{196}$ S. T. Hodgkin, B. R. Oppenheimer, N. C. Hambly, R. F. Jameson, S. J. Smartt, and I. A. Steele, Nature 403, 57 (2000).
${ }^{197}$ G. P. Kuiper, Astrophys. J. 109, 540 (1949).
${ }^{198}$ G. Herzberg, Astrophys. J. 115, 337 (1952).
${ }^{199}$ A. R. W. McKellar, Astrophys. J. 326, L75 (1988).
${ }^{200}$ P. Bergeron, M.-T. Ruiz, S. K. Leggett, D. Saumon, and F. Wesemael, Astrophys. J. 423, 456 (1994).
${ }^{201}$ P. Bergeron, D. Saumon, and F. Wesemael, Astrophys. J. 443, 764 (1995).
${ }^{202}$ H. C. Harris, C. C. Dahn, F. J. Vrba, A. A. Henden, J. Liebert, G. D. Schmidt, and I. N. Reid, Astrophys. J. 524, 1000 (1999).
${ }^{203}$ P. Bergeron and S. K. Leggett, Astrophys. J. 580, 1070 (2002).
${ }^{204}$ J. Farihi, Astrophys. J. 610, 1013 (2004).
${ }^{205}$ D. Saumon, M. S. Marley, M. Abel, L. Frommhold, and R. S. Freedman, Astrophys. J. 750, 74 (2012).
${ }^{206}$ I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017).
${ }^{207}$ W. Kowalski and D. Saumon, Astrophys. J. 651, L137 (2006).
${ }^{208}$ R. D. Rohrmann, L. G. Althaus, and S. O. Kepler, Mon. Not. R. Astron. Soc. 411, 781 (2011).
${ }^{209}$ J. L. Linsky, Astrophys. J. 156, 989 (1969).
${ }^{210}$ C.-Y. Hu, T. Naab, S. Walch, S. C. O. Glover, and P. C. Clark, Mon. Not. R. Astron. Soc. 458, 3528 (2016).
${ }^{211}$ S. Bialy, B. Burkhart, and A. Sternberg, Astrophys. J. 843, 92 (2017).
${ }^{212}$ B. Diemer, A. R. H. Stevens, J. C. Forbes, F. Marinacci, L. Hernquist, C. D. Lagos, A. Sternberg, A. Pillepich, D. Nelson, G. Popping, F. Villaescusa-Navarro, P. Torrey, and M. Vogelsberger, Astrophys. J., Suppl. Ser. 238, 33 (2018).
${ }^{213}$ L. Z. Xie, G. De Lucia, M. Hirschmann, F. Fontanot, and A. Zoldan, Mon. Not. R. Astron. Soc. 469, 968 (2017).
${ }^{214}$ L. Cortese, B. Catinella, and S. Janowiecki, Astrophys. J. 848, L7 (2017).
${ }^{215}$ B. Catinella, A. Saintonge, S. Janowiecki, L. Cortese, R. Dave, J. J. Lemonias, A. P. Cooper, D. Schiminovich, C. B. Hummels, S. Fabello, K. Gereb, V. Kilborn, and J. Wang, Mon. Not. R. Astron. Soc. 476, 875 (2018).
${ }^{216}$ B. Catinella and L. Cortese, Mon. Not. R. Astron. Soc. 446, 3526 (2015).
${ }^{217}$ S. L. Ellison, B. Catinella, and L. Cortese, Mon. Not. R. Astron. Soc. 478, 3447 (2018).
${ }^{218}$ A. R. H. Stevens, C. D. Lagos, D. Obreschkow, and M. Sinha, Mon. Not. R. Astron. Soc. 481, 5543 (2018).
${ }^{219}$ A. L. Broadfoot, M. J. S. Belton, P. Z. Takacs, B. R. Sandel, D. E. Shemansky, J. B. Holberg, J. M. Ajello, S. K. Atreya, T. M. Donahue, H. W. Moos, J. L. Bertaux,
J. E. Blamont, D. F. Strobel, J. C. McConnell, A. Dalgarno, R. Goody, and M. B. McElroy, Science 204, 979 (1979).
${ }^{220}$ A. L. Broadfoot, B. R. Sandel, D. E. Shemansky, J. B. Holberg, G. R. Smith, D. F. Strobel, J. C. McConnell, S. Kumar, D. M. Hunten, S. K. Atreya, T. M. Donahue,
H. W. Moos, J. L. Bertaux, J. E. Blamont, R. B. Pomphrey, and S. Linick, Science 212, 206 (1981).
${ }^{221}$ C. A. Barth, C. W. Hord, A. I. F. Stewart, W. R. Pryor, K. E. Simmons, W. E. McClintock, J. M. Aiello, K. L. Naviaux, and J. J. Aiello, Geophys. Res. Lett. 24, 2147, https://doi.org/10.1029/97gl01927 (1997).
${ }^{222}$ J. Alday, L. Roth, N. Ivchenko, K. D. Retherford, T. M. Becker, P. Molyneux, and J. Saur, Planet. Space Sci. 148, 35 (2017).
${ }^{223}$ L. Roth, J. Alday, T. M. Becker, N. Ivchenko, and K. D. Retherford, J. Geophys. Res.: Planets 122, 1046, https://doi.org/10.1002/2017je005294 (2017).
${ }^{224}$ L. Roth, K. D. Retherford, N. Ivchenko, N. Schlatter, D. F. Strobel, T. M. Becker, and C. Grava, Astron. J. 153, 67 (2017).
${ }^{225}$ D. F. Strobel and B. C. Wolven, Astrophys. Space Sci. 277, 271 (2001).
${ }^{226}$ W. L. Tseng, R. E. Johnson, and W. H. Ip, Planet. Space Sci. 85, 164 (2013).
${ }^{227}$ J. Q. Qin and L. Waldrop, Nat. Commun. 7, 13655 (2016).
${ }^{228}$ M.-C. Liang, C. D. Parkinson, A. Y.-T. Lee, Y. L. Yung, and S. Seager, Astrophys. J. 596, L247 (2003).
${ }^{229}$ D. Ehrenriech, A. L. des Etangs, G. Hebrard, J.-M. Desert, A. Vidal-Madjar, J. C. McConnell, C. D. Parkinson, G. E. Ballester, and R. Ferlet, Astron. Astrophys. 483, 933 (2008).
${ }^{230}$ L. Ben-Jaffel, Astrophys. J. 688, 1352 (2008).
${ }^{231}$ A. L. des Etangs, D. Ehrenreich, A. Vidal-Madjar, G. E. Ballester, J.-M. Desert, R. Ferlet, G. Hebrard, D. K. Sing, K.-O. Tchakoumegni, and S. Udry, Astron. Astrophys. 514, A72 (2010).
${ }^{232}$ T. T. Koskinen, A. D. Aylward, and S. Miller, Astrophys. J. 693, 868 (2009).
${ }^{233}$ C. L. Huang, P. Arras, D. Christie, and Z. Y. Li, Astrophys. J. 851, 150 (2017).
${ }^{234}$ R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).
${ }^{235}$ H. Lammer, P. Odert, M. Leitzinger, M. L. Khodachenko, M. Panchenko, Y. L. Kulikov, T. L. Zhang, H. I. M. Lichtenegger, N. V. Erkaev, G. Wuchterl, G. Micela, T. Penz, H. K. Biernat, J. Weingrill, M. Steller, H. Ottacher, J. Hasiba, and A. Hanslmeier, Astron. Astrophys. 506, 399 (2009).
${ }^{236}$ D. Ehrenreich, V. Bourrier, P. J. Wheatley, A. L. des Etangs, G. Hebrard, S. Udry, X. Bonfils, X. Delfosse, J. M. Desert, D. K. Sing, and A. Vidal-Madjar, Nature 522, 459 (2015).
${ }^{237}$ D. Dragomir, B. Benneke, K. A. Pearson, I. J. M. Crossfield, J. Eastman, T. Barman, and L. I. Biddle, Astrophys. J. 814, 102 (2015).
${ }^{238}$ T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
${ }^{239}$ K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994).
${ }^{240}$ P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993); 112, 3106 (2000).
${ }^{241}$ K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
${ }^{242}$ J. D. Watts, J. Gauss, and R. D. Bartlett, J. Chem. Phys. 98, 8718 (1993).
${ }^{243}$ M. J. O. Deegan and P. J. Knowles, Chem. Phys. Lett. 227, 321 (1994).
${ }^{244}$ P. J. Knowles and N. C. Handy, J. Phys. Chem. 92, 3097 (1988).
${ }^{245}$ M. Rittby and R. J. Bartlett, J. Phys. Chem. 92, 3033 (1988).
${ }^{246}$ G. E. Scuseria, Chem. Phys. Lett. 176, 27 (1991).
${ }^{247}$ H. B. Schlegel, J. Phys. Chem. 92, 3075 (1988).
${ }^{248}$ Molpro User's Manual, 6.11 Global Thresholds (GTHRESH).
${ }^{249}$ The collision-induced dipole is calculated as $\Delta \mu=3 /(2 \mathrm{f})\{\mathrm{E}(-\mathrm{f})-\mathrm{E}(\mathrm{f})$
$\left.-2^{-1 / 2}\left[E\left(-2^{1 / 2} f\right)-E\left(2^{1 / 2} f\right)\right]+3^{-3 / 2}\left[E\left(-3^{1 / 2} f\right)-E\left(3^{1 / 2} f\right)\right]\right\}$.
${ }^{250}$ S. Huzinaga, J. Chem. Phys. 42, 1293 (1964).
${ }^{251}$ W. Meyer, in Phenomena Induced by Intermolecular Interactions, edited by G. Birnbaum (Plenum, New York, 1985), p. 29.
${ }^{252}$ P. Güttinger, Z. Phys. 73, 169 (1932).
${ }^{253}$ W. Pauli, Handbuch der Physik 24, 162 (1933).
${ }^{254}$ H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937), p. 285.
${ }^{255}$ T. U. Helgaker and J. Almlöf, Int. J. Quantum Chem. 26, 275 (1984).
${ }^{256}$ D. Tzeli and A. Mavridis, J. Chem. Phys. 118, 4984 (2003).
${ }^{257}$ E. Miliordos and K. L. C. Hunt, J. Chem. Phys. 149, 234103 (2018).
${ }^{258}$ S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
${ }^{259}$ W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967).
${ }^{260}$ R. M. Berns and P. E. S. Wormer, Mol. Phys. 44, 1215 (1981).
${ }^{261}$ J. Rychlewski, Mol. Phys. 41, 833 (1980).
${ }^{262}$ A. Raj, H. Hamaguchi, and H. A. Witek, J. Chem. Phys. 148, 104308 (2018).
${ }^{263}$ G. Karl, J. D. Poll, and L. Wolniewicz, Can. J. Phys. 53, 1781 (1975).
${ }^{264}$ J. Komasa and A. J. Thakkar, Mol. Phys. 78, 1039 (1993).
${ }^{265}$ S. A. Alexander and R. L. Coldwell, Int. J. Quantum Chem. 107, 345 (2007).

