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Abstract 1 

Parasitic infection risks in domestic animals may increase as a result of outdoor activities, 2 

often leading to transmission events to and from owners, other domestic animals, and 3 
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wildlife. Furthermore, outdoor access has not been quantified in domestic animals as a 4 

risk factor with respect to latitude or parasite transmission pathway. Cats are an ideal 5 

model to test parasitic infection risk in outdoor animals because there have been many 6 

studies analyzing this risk factor in this species; and there is a useful dichotomy in cat 7 

ownership between indoor-only cats and those with outdoor access. Thus, we used meta-8 

analysis to determine whether outdoor access is a significant risk factor for parasitic 9 

infection in domestic pet cats across 19 different pathogens including many relevant to 10 

human, domestic animal and wildlife health, such as Toxoplasma gondii and Toxocara 11 

cati. Cats with outdoor access were 2.77 times more likely to be infected with parasites 12 

than indoor-only cats. Furthermore, absolute latitude trended towards significance such 13 

that each degree increase in absolute latitude increased infection likelihood by 4%. Thus, 14 

restricting outdoor access can reduce risk of parasitic infection in cats and reduce risk of 15 

zoonotic parasite transmission, spillover to sympatric wildlife, and negative impacts on 16 

feline health.   17 

 18 

Keywords: felid, latitude, pathogen, pet, transmission, zoonotic  19 

  20 



Chalkowski et al.   Page 3 

Background 21 

Domestic animals, including pets, are responsible for spreading pathogens to 22 

humans and sympatric wildlife (1-3). Notable examples include dogs transmitting rabies 23 

to humans (4) or cattle transmitting Cryptosporidium parvum to humans and sympatric 24 

wild ruminants (5,6). However, relatively few domestic animals have such stark 25 

dichotomies regarding outdoor access, where environmental contact can therefore be 26 

evaluated as a means of exposure. Understanding how outdoor access affects infection, 27 

and infection by which pathogens are most affected by this risk factor, can have 28 

important implications when mitigating parasite transmission among domestic animals, 29 

humans and wildlife.  30 

A model organism that is widespread and lives in close proximity to humans is 31 

the domestic cat (Felis catus), which has coexisted with humans globally for millennia 32 

(ca. 9,500 years; 7,8). In fact, pet cats often sit on their owner’s lap and sleep in their 33 

beds (9). Furthermore, cats are common as pets around the world with an estimated 89-90 34 

million in the United States alone (10). Given that cats are widespread and associated 35 

with humans, risk factors for parasitic infections in pet cats are important for zoonotic 36 

parasite transmission with implications for cat health as well as spillover of parasites to 37 

sympatric wildlife (11,12). 38 

 Domestic pet cats allowed outdoors can also pose health risks to cat owners (13-39 

19). For instance, Toxoplasma gondii (the causative agent of toxoplasmosis; 15) and 40 

Bartonella henslae (which causes cat-scratch disease; 17), both infect people worldwide. 41 

In addition, there are many infectious diseases that have health consequences for cats 42 

themselves. For example, FIV causes immunosuppression which can increase 43 

susceptibility to other infections (20). Finally, interactions with sympatric wildlife may 44 
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result in spillover of parasites from domestic cats (Table 1). For example, domestic cats 45 

have been responsible for the spread of FIV to mountain lions (Puma concolor) and 46 

feline panleukopenia to the Florida panther (Puma concolor coryi) (11,12).  47 

Many parasites known to infect cats have life cycles involving transmission from 48 

soil, prey, or other cats (15, 21-24). Here, we hypothesize that cats with outdoor access 49 

(free-roaming) will be more likely to be infected with parasites than indoor-only cats. To 50 

test our hypothesis, we conducted a meta-analysis of outdoor access as a risk factor for 51 

infection across 19 pathogens and 16 countries. Because differences in risk of infection 52 

may exist due to changes in pathogen diversity (i.e., richness and abundance) across 53 

transmission type and space (25-27), we considered transmission type and latitude as 54 

separate moderators. 55 

 56 

Results 57 

Overall Effects 58 

Our synthesis incorporated 21 studies with 31 sets of infection prevalence between 59 

indoor-only cats and those with outdoor access (Table 2). Among the 21 studies, 19 60 

parasites were analyzed (see Supplementary Figure 1 for odds ratios (OR) by parasite and 61 

study). According to the overall model, cats with outdoor access are 2.77 (95% 62 

confidence limits (95% CL) = 2.10-3.67; p < 0.0001) times as likely to be infected with 63 

parasites as indoor-only cats (Figure 1). Heterogeneity, or differences in outcomes 64 

between studies (28), in the overall model was high (I2 = 84.02%). The publication bias 65 

analysis estimated 6 missing studies on the left side of the funnel plot (Figures 2a, 2b). 66 

and incorporation of these randomly created studies using the trim and fill technique still 67 

resulted in the effect of outdoor access as a significant risk factor (2.39 OR; p < 0.0001). 68 
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 69 

Moderators 70 

Transmission type was not a significant moderator (p = 0.62; Figure 1), but infection risk 71 

in indoor-only pet cats versus those with outdoor access trended towards significance 72 

with latitude (Figure 2). Specifically, for every degree increase in absolute latitude, cats 73 

with outdoor access were 4% more likely to be infected with parasites (95% CL = 1.0%-74 

7.0%; p = 0.081; Figure 2a). Heterogeneity decreased considerably with the inclusion of 75 

this moderator to I2 = 55.7% (from 84.0%) suggesting differences in latitude may account 76 

for a significant portion of the variation among studies. 77 

To determine the true effect of increasing latitude (since OR is only a relative 78 

comparison of indoor-only and outdoor cats), we also conducted a meta-regression using 79 

a raw proportion of the total number of infected cats, with absolute latitude as a 80 

moderator. In this model, the overall proportion of infected cats significantly increased 81 

0.7% (95% C.L. = 0.17%-1.3%; Odds Ratio 95% C.L. = 1.01-1.07; p = 0.010) for each 82 

degree latitude increase (see Figure 2b), indicating that increasing risk of infection in cats 83 

with outdoor access with increasing latitude is an important interaction. 84 

 85 

Discussion 86 

Outdoor access is a significant risk factor for parasitic infection in pet cats, where 87 

cats with outdoor access were 2.77 times more likely to be infected with parasites than 88 

indoor-only cats, demonstrating support for our hypothesis. Of the 21 studies we 89 

included, only three suggested non-significantly higher risk of infection in indoor-only 90 

cats. Furthermore, latitude had a marginally significant effect on the likelihood of 91 

infection. While there was publication bias indicating positive results for outdoor access 92 
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as a risk factor, following the trim and fill method, the effects were similar and still 93 

significant, suggesting publication bias did not influence the significance of the meta-94 

analysis results. 95 

The parasites we analyzed have relevance to zoonotic parasite transmission, feline 96 

health, and wildlife conservation. Given the association between humans and domestic 97 

cats (9), habitat and lifestyle risk factors ought to be investigated with respect to zoonotic 98 

parasite infection. Furthermore, despite ubiquity of domestic cats, cat-human 99 

transmission is likely under-reported (29).  100 

Not only are parasitic infections impactful to feline health, they are also relevant 101 

to wildlife. Parasites of domestic cats have already been reported in sympatric wild 102 

congeners, such as FIV in cougars (Felis concolor) and Candidatus Mycoplasma 103 

haemominutum in wild felids deriving from domestic cats (11,12, 30). Positive 104 

associations between FHV-1 and Bartonella in cougars and urban land-use have also 105 

been reported, suggesting interactions with domestic cats (31). However, further 106 

investigation into infection prevalence in wild populations and risk factors for 107 

transmission between domestic cats and these species is warranted (12).  108 

Among the transmission types analyzed (i.e., direct, vector-borne, and 109 

environmental), none differed significantly from each other with respect to effect of 110 

outdoor access on parasitic infection. One explanation is the small sample size between 111 

groups or within studies, or high variability across studies. Additionally, a Bayesian 112 

approach using a Markov Chain Monte Carlo method may have better accounted for this 113 

uncertainty (32). Directly-transmitted parasites (i.e., cat-cat transmission), such as FIV, 114 

was not significantly different from other transmission types with respect to outdoor 115 

access, which suggests these parasites may be more frequently encountered through 116 
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contact with feral populations or other pet cats allowed outdoor access rather than from 117 

cats in shelters or the household.  118 

Latitude as a moderator on infection risk in cats with outdoor access trended 119 

towards a significant positive effect. The trend identified ran contrary to what has been 120 

demonstrated for parasite richness and diversity, which typically decreases with 121 

increasing latitude (25-27). Although one might assume that higher parasite diversity 122 

results in higher infection risk in hosts, there have been multiple findings demonstrating 123 

the opposite - that infection rates decrease with higher parasite diversity (33, 34) - which 124 

is consistent with our findings that cats with outdoor access in northern regions are at 125 

greater risk of infection. Interestingly, these results were also consistent with global 126 

patterns of zoonoses in rodents, a common prey of domestic cats, where higher latitudes 127 

saw greater numbers of species carrying zoonoses (35). Higher latitudes also predicted 128 

greater risk of helminth parasites from wildlife found in domestic animals (2). 129 

Organizations, including American Bird Conservancy (ABC) and People for the 130 

Ethical Treatment of Animals (PETA) have created campaigns that raise awareness about 131 

the detrimental impacts of cats with outdoor access in relation to feline health and 132 

impacts on wildlife (36,37), though allowing pet cats outdoors is still common occurrence 133 

(38,39). Increased awareness of the risks involved in outdoor access is one facet, but 134 

legislation restricting outdoor access in cats would be an ideal outcome (40). Despite 135 

hurdles in enacting new legislation, this issue has a relatively simple solution - keep cats 136 

indoors.   137 

Domestic cats act as potent reservoirs for parasites transmissible to wildlife and 138 

humans (41-43), and are a unique model for understanding pathogen transmission 139 

dynamics given their global ubiquity and contact with humans, other animals, and the 140 
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environment. Our analysis is the first to summarize across many parasites and geographic 141 

localities that outdoor access increases odds of parasitic infection in pet cats as a model 142 

for domestic animals. Future research might investigate this risk factor across other 143 

domestic species and across factors, such as land use and presence of sympatric 144 

congeners. While we do not necessarily advocate that all domestic animals be restricted 145 

indoors, determining routes and risk factors of transmission with respect to environmental 146 

contact may be useful in mitigating parasitic infection in domestic animals. 147 

 148 

Methods 149 

Literature Search 150 

A literature search using Web of Science was conducted on 11 January 2018, 151 

following PRISMA (44) guidelines with the following keywords: “feral cat” OR “feral 152 

dog*” AND “infect*” OR “parasit*” OR “disease*” OR “virus*”, excluding reviews. 153 

This search returned 500 research articles, which were manually sorted for relevance. 154 

Final output was based on the following exclusion criteria: review articles; case studies; 155 

sample size <20 cats sampled; lack of comparison between indoor-only versus outdoor 156 

access pet domestic cats; or outdoor access group included feral or stray cats.  157 

An additional search was performed in Web of Science on 31 May 2018, using 158 

the following keywords: “domestic cat*” OR “pet cat*” OR “Felis catus” AND “outdoor 159 

access” AND TOPIC: (“infection*” OR “parasit*” OR “disease*” OR “pathogen*” OR 160 

“virus*” OR “sick*” OR “illness*”) which returned 213 additional articles. One search 161 

was conducted in Google Scholar using the keywords as follows: domestic OR pet cat 162 

OR Felis catus, outdoor access, infection* OR parasite*. This Google Scholar search 163 

returned 1,190 results. We manually sorted through the first 100 studies using the 164 
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exclusion criteria described above. After manually sorting the original output of 813 165 

studies, 21 studies fit the inclusion criteria and were used in the meta-analysis (45) (see 166 

https://figshare.com/s/3eebaf42e161c0e7e1ef to access data-set). 167 

 168 

Treatment of moderators 169 

Parasite transmission type included direct, vector-borne, and environmental pathways 170 

(see Supplementary Figure S2 for list of citations for each parasite). Latitude of each 171 

study was determined using Google Earth by selecting the middle of the smallest 172 

geographic area provided (such as country, state/province or city). Studies that included 173 

multiple countries were removed from analysis of this moderator. 174 

 175 

Statistical Analysis 176 

All analyses were completed in R version 1.1.453 using the metafor package for 177 

random effects models to account for between study heterogeneity using the odds ratio 178 

(OR) effect size (46, 47), where an OR is the probability of an outcome as related to an 179 

exposure (48). Here, the outcome is likelihood of infection as related to outdoor access as 180 

the exposure mechanism. OR = 1 means outdoor access does not affect the likelihood of 181 

infection; OR < 1 (upper 95% CI is less than 1) means outdoor access is associated with 182 

lower odds of infection; and OR > 1 (lower 95% CI is greater than 1) means outdoor 183 

access is associated with greater odds of infection. We considered p < 0.05 to indicate 184 

significance of effect size. Two moderators, transmission type and latitude, were 185 

evaluated using mixed effects models.  186 

To estimate heterogeneity across studies, we used I2, where a value of 0% 187 

indicates no heterogeneity; 25% indicates low heterogeneity; 50%, moderate; and 75% is 188 

https://figshare.com/s/3eebaf42e161c0e7e1ef
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considered high heterogeneity (49). To test for publication bias, we used a trim and fill 189 

method to estimate the number of missing studies (50). 190 
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 521 

Figure Legends 522 

Figure 1 Overall effect size and transmission type effect sizes for infection 523 

prevalence in cats with outdoor access versus indoor-only cats. Cats with outdoor 524 

access are 2.77 (95% CL = 2.10-3.67; p < 0.0001) times as likely to be infected with 525 

parasites as indoor-only cats. Transmission types include environmental (soil-borne and 526 

intermediate hosts), vector-borne, and direct. Transmission type was not significant 527 

moderator (p=0.62) for outdoor access on infection prevalence in domestic pet cats. 528 

Figure 2 a) The relationship between odds ratio for each study/parasite in domestic 529 

pet cats across a range of latitudes. For every degree increase in latitude, cats with 530 

outdoor access were 1.04 times as likely to be infected with parasites (95% CL = 1.01-531 

1.07). Latitude as a moderator to indoor/outdoor infection risk, was trending towards 532 

significance (p=0.08). 533 

b) Total proportions of infected cats for each study/parasite across a range of 534 

latitudes where overall proportion of infected cats significantly increased 0.7% (95% CL 535 

= 0.17%-1.3%; p=0.01) for each degree latitude increase.  536 

Table 1 Host ranges of pathogens analyzed in this study 537 

https://doi.org/10.1016/j.prevetmed.2012.01.003
https://doi.org/10.2460/javma.251.2.187


Chalkowski et al.   Page 25 

Table 2 Pathogen prevalences in domestic cats (Felis catus) in this study by country 538 


	Kayleigh Chalkowski1*, Alan E. Wilson2, Christopher A. Lepczyk1, and Sarah Zohdy1,3
	Abstract
	Keywords: felid, latitude, pathogen, pet, transmission, zoonotic
	Background
	Results
	Overall Effects
	Moderators
	Discussion
	Methods
	Literature Search
	Statistical Analysis
	Competing Interests
	The authors declare no competing interests.
	Author contributions
	Acknowledgments
	Funding
	References
	Figure Legends

