Who let the cats out: a global meta-analysis on risk of parasitic infection in indoor versus outdoor domestic cats (*Felis catus*)

Kayleigh Chalkowski¹*, Alan E. Wilson², Christopher A. Lepczyk¹, and Sarah Zohdy^{1,3}

¹School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA

²School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn,

AL 36849, USA

³College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA

*corresponding author: <u>kzc0061@auburn.edu</u>

Note: This article was published in the *Biology Letters* (17 April 2019). This article appears here in its accepted, peer-reviewed form; it has not been copy edited, proofed, or formatted by the publisher.

1 Abstract

- 2 Parasitic infection risks in domestic animals may increase as a result of outdoor activities,
- 3 often leading to transmission events to and from owners, other domestic animals, and Chalkowski et al. Page 1

4 wildlife. Furthermore, outdoor access has not been quantified in domestic animals as a 5 risk factor with respect to latitude or parasite transmission pathway. Cats are an ideal 6 model to test parasitic infection risk in outdoor animals because there have been many 7 studies analyzing this risk factor in this species; and there is a useful dichotomy in cat 8 ownership between indoor-only cats and those with outdoor access. Thus, we used meta-9 analysis to determine whether outdoor access is a significant risk factor for parasitic 10 infection in domestic pet cats across 19 different pathogens including many relevant to 11 human, domestic animal and wildlife health, such as *Toxoplasma gondii* and *Toxocara* 12 *cati.* Cats with outdoor access were 2.77 times more likely to be infected with parasites 13 than indoor-only cats. Furthermore, absolute latitude trended towards significance such 14 that each degree increase in absolute latitude increased infection likelihood by 4%. Thus, 15 restricting outdoor access can reduce risk of parasitic infection in cats and reduce risk of 16 zoonotic parasite transmission, spillover to sympatric wildlife, and negative impacts on 17 feline health.

18

19 Keywords: felid, latitude, pathogen, pet, transmission, zoonotic

20

21 Background

22 Domestic animals, including pets, are responsible for spreading pathogens to 23 humans and sympatric wildlife (1-3). Notable examples include dogs transmitting rabies 24 to humans (4) or cattle transmitting *Cryptosporidium parvum* to humans and sympatric 25 wild ruminants (5,6). However, relatively few domestic animals have such stark 26 dichotomies regarding outdoor access, where environmental contact can therefore be 27 evaluated as a means of exposure. Understanding how outdoor access affects infection, 28 and infection by which pathogens are most affected by this risk factor, can have 29 important implications when mitigating parasite transmission among domestic animals, 30 humans and wildlife. 31 A model organism that is widespread and lives in close proximity to humans is 32 the domestic cat (*Felis catus*), which has coexisted with humans globally for millennia 33 (ca. 9,500 years; 7,8). In fact, pet cats often sit on their owner's lap and sleep in their 34 beds (9). Furthermore, cats are common as pets around the world with an estimated 89-90 35 million in the United States alone (10). Given that cats are widespread and associated 36 with humans, risk factors for parasitic infections in pet cats are important for zoonotic 37 parasite transmission with implications for cat health as well as spillover of parasites to

38 sympatric wildlife (11,12).

Domestic pet cats allowed outdoors can also pose health risks to cat owners (1319). For instance, *Toxoplasma gondii* (the causative agent of toxoplasmosis; 15) and *Bartonella henslae* (which causes cat-scratch disease; 17), both infect people worldwide.
In addition, there are many infectious diseases that have health consequences for cats
themselves. For example, FIV causes immunosuppression which can increase
susceptibility to other infections (20). Finally, interactions with sympatric wildlife may

result in spillover of parasites from domestic cats (Table 1). For example, domestic cats
have been responsible for the spread of FIV to mountain lions (*Puma concolor*) and
feline panleukopenia to the Florida panther (*Puma concolor coryi*) (11,12).

48 Many parasites known to infect cats have life cycles involving transmission from 49 soil, prey, or other cats (15, 21-24). Here, we hypothesize that cats with outdoor access 50 (free-roaming) will be more likely to be infected with parasites than indoor-only cats. To 51 test our hypothesis, we conducted a meta-analysis of outdoor access as a risk factor for 52 infection across 19 pathogens and 16 countries. Because differences in risk of infection 53 may exist due to changes in pathogen diversity (i.e., richness and abundance) across 54 transmission type and space (25-27), we considered transmission type and latitude as 55 separate moderators.

56

57 **Results**

58 Overall Effects

59 Our synthesis incorporated 21 studies with 31 sets of infection prevalence between 60 indoor-only cats and those with outdoor access (Table 2). Among the 21 studies, 19 61 parasites were analyzed (see Supplementary Figure 1 for odds ratios (OR) by parasite and 62 study). According to the overall model, cats with outdoor access are 2.77 (95%) 63 confidence limits (95% CL) = 2.10-3.67; p < 0.0001) times as likely to be infected with 64 parasites as indoor-only cats (Figure 1). Heterogeneity, or differences in outcomes between studies (28), in the overall model was high ($I^2 = 84.02\%$). The publication bias 65 66 analysis estimated 6 missing studies on the left side of the funnel plot (Figures 2a, 2b). 67 and incorporation of these randomly created studies using the trim and fill technique still resulted in the effect of outdoor access as a significant risk factor (2.39 OR; p < 0.0001). 68

69

70 Moderators

71 Transmission type was not a significant moderator (p = 0.62; Figure 1), but infection risk 72 in indoor-only pet cats versus those with outdoor access trended towards significance 73 with latitude (Figure 2). Specifically, for every degree increase in absolute latitude, cats 74 with outdoor access were 4% more likely to be infected with parasites (95% CL = 1.0%-75 7.0%; p = 0.081; Figure 2a). Heterogeneity decreased considerably with the inclusion of this moderator to $I^2 = 55.7\%$ (from 84.0%) suggesting differences in latitude may account 76 77 for a significant portion of the variation among studies. 78 To determine the true effect of increasing latitude (since OR is only a relative 79 comparison of indoor-only and outdoor cats), we also conducted a meta-regression using 80 a raw proportion of the total number of infected cats, with absolute latitude as a 81 moderator. In this model, the overall proportion of infected cats significantly increased 82 0.7% (95% C.L. = 0.17%-1.3%; Odds Ratio 95% C.L. = 1.01-1.07; p = 0.010) for each 83 degree latitude increase (see Figure 2b), indicating that increasing risk of infection in cats 84 with outdoor access with increasing latitude is an important interaction. 85 86 Discussion 87 Outdoor access is a significant risk factor for parasitic infection in pet cats, where 88 cats with outdoor access were 2.77 times more likely to be infected with parasites than 89 indoor-only cats, demonstrating support for our hypothesis. Of the 21 studies we 90 included, only three suggested non-significantly higher risk of infection in indoor-only cats. Furthermore, latitude had a marginally significant effect on the likelihood of 91

92 infection. While there was publication bias indicating positive results for outdoor access

as a risk factor, following the trim and fill method, the effects were similar and still
significant, suggesting publication bias did not influence the significance of the metaanalysis results.

96 The parasites we analyzed have relevance to zoonotic parasite transmission, feline
97 health, and wildlife conservation. Given the association between humans and domestic
98 cats (9), habitat and lifestyle risk factors ought to be investigated with respect to zoonotic
99 parasite infection. Furthermore, despite ubiquity of domestic cats, cat-human

transmission is likely under-reported (29).

101 Not only are parasitic infections impactful to feline health, they are also relevant

102 to wildlife. Parasites of domestic cats have already been reported in sympatric wild

103 congeners, such as FIV in cougars (Felis concolor) and Candidatus Mycoplasma

104 *haemominutum* in wild felids deriving from domestic cats (11,12, 30). Positive

associations between FHV-1 and *Bartonella* in cougars and urban land-use have also

106 been reported, suggesting interactions with domestic cats (31). However, further

107 investigation into infection prevalence in wild populations and risk factors for

108 transmission between domestic cats and these species is warranted (12).

110 environmental), none differed significantly from each other with respect to effect of

111 outdoor access on parasitic infection. One explanation is the small sample size between

Among the transmission types analyzed (i.e., direct, vector-borne, and

- 112 groups or within studies, or high variability across studies. Additionally, a Bayesian
- 113 approach using a Markov Chain Monte Carlo method may have better accounted for this
- 114 uncertainty (32). Directly-transmitted parasites (i.e., cat-cat transmission), such as FIV,
- 115 was not significantly different from other transmission types with respect to outdoor
- access, which suggests these parasites may be more frequently encountered through

109

contact with feral populations or other pet cats allowed outdoor access rather than fromcats in shelters or the household.

119 Latitude as a moderator on infection risk in cats with outdoor access trended 120 towards a significant positive effect. The trend identified ran contrary to what has been 121 demonstrated for parasite richness and diversity, which typically decreases with 122 increasing latitude (25-27). Although one might assume that higher parasite diversity 123 results in higher infection risk in hosts, there have been multiple findings demonstrating 124 the opposite - that infection rates decrease with higher parasite diversity (33, 34) - which 125 is consistent with our findings that cats with outdoor access in northern regions are at 126 greater risk of infection. Interestingly, these results were also consistent with global 127 patterns of zoonoses in rodents, a common prey of domestic cats, where higher latitudes 128 saw greater numbers of species carrying zoonoses (35). Higher latitudes also predicted 129 greater risk of helminth parasites from wildlife found in domestic animals (2). 130 Organizations, including American Bird Conservancy (ABC) and People for the 131 Ethical Treatment of Animals (PETA) have created campaigns that raise awareness about 132 the detrimental impacts of cats with outdoor access in relation to feline health and 133 impacts on wildlife (36,37), though allowing pet cats outdoors is still common occurrence 134 (38,39). Increased awareness of the risks involved in outdoor access is one facet, but 135 legislation restricting outdoor access in cats would be an ideal outcome (40). Despite 136 hurdles in enacting new legislation, this issue has a relatively simple solution - keep cats 137 indoors.

138Domestic cats act as potent reservoirs for parasites transmissible to wildlife and

humans (41-43), and are a unique model for understanding pathogen transmission

140 dynamics given their global ubiquity and contact with humans, other animals, and the

141 environment. Our analysis is the first to summarize across many parasites and geographic 142 localities that outdoor access increases odds of parasitic infection in pet cats as a model 143 for domestic animals. Future research might investigate this risk factor across other 144 domestic species and across factors, such as land use and presence of sympatric 145 congeners. While we do not necessarily advocate that all domestic animals be restricted 146 indoors, determining routes and risk factors of transmission with respect to environmental 147 contact may be useful in mitigating parasitic infection in domestic animals. 148 149 Methods 150 Literature Search 151 A literature search using Web of Science was conducted on 11 January 2018, 152 following PRISMA (44) guidelines with the following keywords: "feral cat" OR "feral 153 dog*" AND "infect*" OR "parasit*" OR "disease*" OR "virus*", excluding reviews. 154 This search returned 500 research articles, which were manually sorted for relevance. 155 Final output was based on the following exclusion criteria: review articles; case studies; 156 sample size <20 cats sampled; lack of comparison between indoor-only versus outdoor 157 access pet domestic cats; or outdoor access group included feral or stray cats. 158 An additional search was performed in Web of Science on 31 May 2018, using 159 the following keywords: "domestic cat*" OR "pet cat*" OR "Felis catus" AND "outdoor 160 access" AND TOPIC: ("infection*" OR "parasit*" OR "disease*" OR "pathogen*" OR 161 "virus*" OR "sick*" OR "illness*") which returned 213 additional articles. One search 162 was conducted in Google Scholar using the keywords as follows: domestic OR pet cat 163 OR Felis catus, outdoor access, infection* OR parasite*. This Google Scholar search 164 returned 1,190 results. We manually sorted through the first 100 studies using the

Chalkowski et al.

165 exclusion criteria described above. After manually sorting the original output of 813

studies, 21 studies fit the inclusion criteria and were used in the meta-analysis (45) (see

167 <u>https://figshare.com/s/3eebaf42e161c0e7e1ef</u> to access data-set).

168

169 Treatment of moderators

170 Parasite transmission type included direct, vector-borne, and environmental pathways

171 (see Supplementary Figure S2 for list of citations for each parasite). Latitude of each

172 study was determined using Google Earth by selecting the middle of the smallest

173 geographic area provided (such as country, state/province or city). Studies that included

174 multiple countries were removed from analysis of this moderator.

175

176 Statistical Analysis

177 All analyses were completed in R version 1.1.453 using the *metafor* package for 178 random effects models to account for between study heterogeneity using the odds ratio 179 (OR) effect size (46, 47), where an OR is the probability of an outcome as related to an 180 exposure (48). Here, the outcome is likelihood of infection as related to outdoor access as 181 the exposure mechanism. OR = 1 means outdoor access does not affect the likelihood of 182 infection; OR < 1 (upper 95% CI is less than 1) means outdoor access is associated with 183 lower odds of infection; and OR > 1 (lower 95% CI is greater than 1) means outdoor 184 access is associated with greater odds of infection. We considered p < 0.05 to indicate 185 significance of effect size. Two moderators, transmission type and latitude, were 186 evaluated using mixed effects models.

187 To estimate heterogeneity across studies, we used I^2 , where a value of 0%

188 indicates no heterogeneity; 25% indicates low heterogeneity; 50%, moderate; and 75% is

189	considered high	heterogeneity	(49).	To test for	publication bias,	we used a tri	m and fill

190 method to estimate the number of missing studies (50).

191

192 Competing Interests

- 193 The authors declare no competing interests.
- 194

Author contributions

- 196 KC designed the study, conducted literature review and analyses, and wrote the
- 197 manuscript; AW participated in statistical analyses, study design, and manuscript writing;
- 198 CL participated in statistical analyses and manuscript writing; SZ participated in
- 199 statistical analyses and manuscript writing. All authors gave approval for the final version

200 of this manuscript, and agree to be accountable for its content.

201

202 Ethical Considerations

- 203 There were no ethical considerations for this work.
- 204

205 Data Accessibility

- 206 Literature search: Figshare repository <u>figshare.com/s/3eebaf42e161c0e7e1ef</u> (45)
- 207 R code in analyses: Figshare repository <u>figshare.com/s/a334c7815b128cb63b98</u> (46)

208

209 Acknowledgments

- 210 Thanks to the Auburn School of Forestry and Wildlife Science SQUAD (Solving
- 211 Quantitative, Unusual and Awesome Dilemmas); Todd Steury and Ash Abebe with data

212	analysis and interpretation of results; and Patricia Hartman for help conducting the
213	literature search.

214

215	Funding
216	KC was supported by the Auburn University Cell and Molecular Biology Fellowship
217	Program. Funding for SZ was provided by a Young Investigator Award from the USDA
218	National Institute of Food and Agriculture, and CDC-RFA- CK14-1401PPHF. This
219	project was supported by the Alabama Agricultural Experiment Station, the Hatch
220	Program of the National Institute of Food and Agriculture, U.S. Department of
221	Agriculture
222	
223	References
224	1. Landaeta-Aqueveque C, Henríquez A, Cattan PE. 2014 Introduced species:
225	domestic mammals are more significant transmitters of parasites to native
226	mammals than are feral mammals. International Journal for Parasitology 44,
227	243–249. (doi: <u>10.1016/j.ijpara.2013.12.002</u>)
228	2. Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HI. 2018 Global
229	spread of helminth parasites at the human-domestic animal-wildlife interface.
230	<i>Glob Chang Biol</i> 24 , 3254–3265. (doi: <u>10.1111/gcb.14064</u>)
231	3. Clark NJ, Seddon JM, Šlapeta J, Wells K. 2018 Parasite spread at the domestic
232	animal - wildlife interface: anthropogenic habitat use, phylogeny and body mass
233	drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild
234	mammals. Parasit Vectors 11. (doi: <u>10.1186/s13071-017-2564-z</u>)

- 4. Tang X, Luo M, Zhang S, Fooks AR, Hu R, Tu C. 2005 Pivotal Role of Dogs in
- 236 Rabies Transmission, China. *Emerg Infect Dis* **11**, 1970–1972.
- 237 (doi:<u>10.3201/eid1112.050271</u>)
- 5. Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F. 2003 Subgenotype
- Analysis of *Cryptosporidium* Isolates from Humans, Cattle, and Zoo Ruminants
- in Portugal. *Journal of Clinical Microbiology* **41**, 2744–2747.
- 241 (doi:10.1128/JCM.41.6.2744-2747.2003)
- 242 6. Alves M, Xiao L, Antunes F, Matos O. 2006 Distribution of *Cryptosporidium*
- subtypes in humans and domestic and wild ruminants in Portugal. *Parasitol Res*
- 244 **99**, 287–292. (doi:10.1007/s00436-006-0164-5)
- 245 7. Driscoll CA *et al.* 2007 The Near Eastern Origin of Cat Domestication. *Science*246 317, 519–523. (doi:10.1126/science.1139518)
- 8. Fleming PA, Bateman PW. 2018 Novel predation opportunities in anthropogenic
- 248 landscapes. *Animal Behaviour* **138**, 145–155.
- 249 (doi:<u>10.1016/j.anbehav.2018.02.011</u>)
- 250 9. Chomel BB, Sun B. 2011 Zoonoses in the bedroom. *Emerging Infect. Dis.* 17,
- 251 167–172. (doi:<u>10.3201/eid1702.101070</u>)
- 10. Lepczyk CA, Duffy DC. 2018 Feral cats. In *Ecology and management of*
- 253 *terrestrial vertebrate invasive species in the United States*, pp. 269–310. Boca
- 254 Raton, FL: CRC Press.
- 255 11. Jessup DA, Pettan KC, Lowenstine LJ, Pedersen NC. 1993 Feline Leukemia
- 256 Virus Infection and Renal Spirochetosis in a Free-Ranging Cougar (*Felis*
- 257 *concolor*). *Journal of Zoo and Wildlife Medicine* **24**, 73–79.

258	12. Roelke ME, Forrester DJ, Jacobson ER, Kollias GV, Scott FW, Barr MC,
259	Evermann JF, Pirtle EC. 1993 Seroprevalence of infectious disease agents in
260	free-ranging Florida panthers (Felis concolor coryi). J. Wildl. Dis. 29, 36–49.
261	(doi: <u>10.7589/0090-3558-29.1.36</u>)
262	13. Lepczyk CA, Lohr CA, Duffy DC. 2015 A review of cat behavior in relation to
263	disease risk and management options. Applied Animal Behaviour Science 173,
264	29–39. (doi: <u>10.1016/j.applanim.2015.07.002</u>
265	14. Loyd K a. T, Hernandez SM, Abernathy KJ, Shock BC, Marshall GJ. 2013 Risk
266	behaviours exhibited by free-roaming cats in a suburban US town. Vet. Rec. 173,
267	295. (doi: <u>10.1136/vr.101222</u>)
268	15. Hill D, Dubey JP. In press. Toxoplasma gondii: transmission, diagnosis and
269	prevention. Clinical Microbiology and Infection 8, 634–640.
270	(doi: <u>10.1046/j.1469-0691.2002.00485.x</u>)
271	16. Fisher M. 2003 Toxocara cati: an underestimated zoonotic agent. Trends in
272	Parasitology 19, 167–170. (doi:10.1016/S1471-4922(03)00027-8)
273	17. Chomel BB, Boulouis H-J, Maruyama S, Breitschwerdt EB. 2006 Bartonella
274	Spp. in Pets and Effect on Human Health. Emerg Infect Dis 12, 389–394.
275	(doi: <u>10.3201/eid1203.050931</u>)
276	18. Luft BJ, Remington JS. 1992 Toxoplasmic encephalitis in AIDS. Clin. Infect.
277	Dis. 15, 211–222.
278	19. Baliu C, Sanclemente G, Cardona M, Castel MA, Perez-Villa F, Moreno A,
279	Cervera C. 2014 Toxoplasmic encephalitis associated with meningitis in a heart
280	transplant recipient. Transpl Infect Dis 16, 631–633. (doi:10.1111/tid.12242)

- 281 20. Sparkes AH, Hopper CD, Millard WG, Gruffydd-Jones TJ, Harbour DA. 1993
- Feline Immunodeficiency Virus Infection Clinicopathologic Findings in 90
- 283 Naturally Occurring Cases. *Journal of Veterinary Internal Medicine* **7**, 85–90.
- 284 (doi:<u>10.1111/j.1939-1676.1993.tb03174.x</u>)
- 285 21. Beaver P. 1975 Biology of soil-transmitted helminths: the massive infection.
 286 *Health laboratory science* 12, 116–125.
- 287 22. Hardy WD, Old LJ, Hess PW, Essex M, Cotter S. 1973 Horizontal Transmission
- 288 of Feline Leukaemia Virus. *Nature* **244**, 266–269. (doi:<u>10.1038/244266a0</u>)
- 289 23. Allen HA. 2015 Characterizing zoonotic disease detection in the United States:
- Who detects zoonotic disease outbreaks & how fast are they detected? *Journal of Infection and Public Health* 8, 194–201. (doi:10.1016/j.jiph.2014.09.009)
- 292 24. Frenkel JK, Dubey JP. 1972 Rodents as Vectors for Feline Coccidia, *Isospora*
- *felis* and *Isospora rivolta*. *The Journal of Infectious Diseases* **125**, 69–72.
- 294 25. Guernier V, Hochberg ME, Guégan J-F. 2004 Ecology Drives the Worldwide
- 295 Distribution of Human Diseases. *PLoS Biology* **2**, e141.
- 296 (doi:<u>10.1371/journal.pbio.0020141</u>)
- 297 26. Cashdan E. 2014 Biogeography of Human Infectious Diseases: A Global
- Historical Analysis. *PLoS One* **9**. (doi:<u>10.1371/journal.pone.0106752</u>)
- 299 27. Thieltges DW, Hof C, Dehling DM, Brändle M, Brandl R, Poulin R. 2011 Host
- 300 diversity and latitude drive trematode diversity patterns in the European
- 301 freshwater fauna: Trematode diversity patterns. *Global Ecology and*
- 302 *Biogeography* **20**, 675–682. (doi:<u>10.1111/j.1466-8238.2010.00631.x</u>)
- 303 28. Higgins JPT, Thompson SG. 2002 Quantifying heterogeneity in a meta-analysis.
- 304 *Statistics in Medicine* **21**, 1539–1558. (doi:<u>10.1002/sim.1186</u>)

- 305 29. Day MJ *et al.* 2012 Surveillance of Zoonotic Infectious Disease Transmitted by
 306 Small Companion Animals. *Emerg Infect Dis* 18, e1.
- 307 (doi:10.3201/eid1812.120664)
- 308 30. Kellner A, Carver S, Scorza V, McKee CD, Lappin M, Crooks KR,
- 309 VandeWoude S, Antolin MF. 2018 Transmission pathways and spillover of an
- 310 erythrocytic bacterial pathogen from domestic cats to wild felids. *Ecology and*
- 311 *Evolution* **8**, 9779–9792. (doi:<u>10.1002/ece3.4451</u>)
- 312 31. Carver S *et al.* 2016 Pathogen exposure varies widely among sympatric
- populations of wild and domestic felids across the United States. *Ecol Appl* **26**,

314 367–381.

- 315 32. Higgins JPT, Thompson SG, Spiegelhalter DJ. 2009 A re-evaluation of random-
- 316 effects meta-analysis. Journal of the Royal Statistical Society: Series A (Statistics
- 317 *in Society*) **172**, 137–159. (doi:<u>10.1111/j.1467-985X.2008.00552.x</u>)
- 318 33. Johnson PTJ, Hoverman JT. 2012 Parasite diversity and coinfection determine
- 319 pathogen infection success and host fitness. *Proc Natl Acad Sci U S A* **109**,
- 320 9006–9011. (doi:<u>10.1073/pnas.1201790109</u>)
- 321 34. Johnson PTJ, Preston DL, Hoverman JT, LaFonte BE. 2013 Host and parasite
- 322 diversity jointly control disease risk in complex communities. PNAS 110, 16916–
- 323 16921. (doi:<u>10.1073/pnas.1310557110</u>)
- 324 35. Han BA, Kramer AM, Drake JM. 2016 Global patterns of zoonotic disease in
 325 mammals. *Trends Parasitol* 32, 565–577. (doi:10.1016/j.pt.2016.04.007)
- 326 36. American Bird Conservancy Cats Indoors. *American Bird Conservancy*.
- 327 Available at: <u>https://abcbirds.org/program/cats-indoors/</u> [Accessed October 3,
- 328 2018].

329	37. People for the Ethical Treatment of Animals Animal Rights Uncompromised:
330	'Outdoor Cats.' PETA. Available at: https://www.peta.org/issues/animal-
331	companion-issues/cruel-practices/outdoor-cats/ [Accessed October 3, 2018].
332	38. Lepczyk CA, Mertig AG, Liu J. 2004 Landowners and cat predation across rural-
333	to-urban landscapes. Biological Conservation 115, 191–201. (doi:10.1016/S0006-
334	<u>3207(03)00107-1</u>)
335	39. Clancy EA, Moore AS, Bertone ER. 2003 Evaluation of cat and owner
336	characteristics and their relationships to outdoor access of owned cats. Journal of
337	the American Veterinary Medical Association 222, 1541–1545.
338	(doi: <u>10.2460/javma.2003.222.1541</u>)
339	40. Lepczyk CA et al. 2010 What Conservation Biologists Can Do to Counter Trap-
340	Neuter-Return: Response to Longcore et al. Conservation Biology 24, 627–629.
341	(doi: <u>10.1111/j.1523-1739.2009.01426.x</u>)
342	41. Chomel BB. 2014 Emerging and Re-Emerging Zoonoses of Dogs and Cats.
343	Animals (Basel) 4, 434–445. (doi: <u>10.3390/ani4030434</u>)
344	42. Robertson ID, Irwin PJ, Lymbery AJ, Thompson RC. 2000 The role of
345	companion animals in the emergence of parasitic zoonoses. Int. J. Parasitol. 30,
346	1369–1377.
347	43. Hunter PR, Thompson RCA. 2005 The zoonotic transmission of Giardia and
348	Cryptosporidium. International Journal for Parasitology 35, 1181–1190.
349	(doi: <u>10.1016/j.ijpara.2005.07.009</u>)
350	44. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. 2009 Preferred
351	reporting items for systematic reviews and meta-analyses: the PRISMA
352	statement. PLoS Med. 6, e1000097. (doi: <u>10.1371/journal.pmed.1000097</u>)

353	45. Chalkowski K, Wilson A, Lepczyk C, Zohdy S. 2019 Data from: Who let the cats
354	out: a global meta-analysis on risk of parasitic infection in indoor versus outdoor
355	domestic cats (Felis catus). Figshare Digital Repository
356	(https://figshare.com/s/3eebaf42e161c0e7e1ef)
357	46. Chalkowski K, Wilson A, Lepczyk C, Zohdy S. 2019 Data from: Who let the cats
358	out: a global meta-analysis on risk of parasitic infection in indoor versus outdoor
359	domestic cats (Felis catus). Figshare Digital Repository
360	(figshare.com/s/a334c7815b128cb63b98).
361	47. Viechtbauer W. 2007 Accounting for heterogeneity via random-effects models
362	and moderator analyses in meta-analysis. Zeitschrift für Psychologie/Journal of
363	Psychology 215, 104–121. (doi:10.1027/0044-3409.215.2.104)
364	48. Szumilas M. 2010 Explaining Odds Ratios. J Can Acad Child Adolesc
365	Psychiatry 19, 227–229.
366	49. Cuijpers P, van Straten A, Bohlmeijer E, Hollon SD, Andersson G. 2010 The
367	effects of psychotherapy for adult depression are overestimated: a meta-analysis
368	of study quality and effect size. Psychological Medicine 40, 211.
369	(doi: <u>10.1017/S0033291709006114</u>)
370	50. Duval S, Tweedie R. 2000 Trim and fill: A simple funnel-plot-based method of
371	testing and adjusting for publication bias in meta-analysis. <i>Biometrics</i> 56, 455–
372	463.
373	51. Di Cesare A, Laiacona F, Iorio R, Marangi M, Menegotto A. 2016
374	Aelurostrongylus abstrusus in wild felids of South Africa. Parasitol Res 115,
375	3731–3735. (doi: <u>10.1007/s00436-016-5134-y</u>)

376	52. Qureshi, T. 2014 Isospora felis. American Association of Veterinary
377	Parasitologists. Available from: http://www.aavp.org/wiki/catprotozoa/coccidia-
378	apicomplexan/isospora-felis/ [Accessed January 16, 2018].
379	53. Bowman A. 2014 Isospora rivolta. American Association of Veterinary
380	Parasitologists. Available from: <u>http://www.aavp.org/wiki/catprotozoa/coccidia-</u>
381	apicomplexan/isospora-rivolta/ [Accessed January 16, 2018].
382	54. Leclaire S, Menard S, Berry A. 2015 Molecular characterization of Babesia and
383	Cytauxzoon species in wild South-African meerkats. Parasitology 142, 543–548.
384	(doi: <u>10.1017/S0031182014001504</u>)
385	55. Shock BC et al. 2011 Distribution and prevalence of Cytauxzoon felis in bobcats
386	(Lynx rufus), the natural reservoir, and other wild felids in thirteen states. Vet.
387	Parasitol. 175, 325–330. (doi:10.1016/j.vetpar.2010.10.009)
388	56. Butt MT, Bowman D, Barr MC, Roelke ME. 1991 Iatrogenic Transmission of
389	Cytauxzoon felis from a Florida Panther (Felix concolor coryi) to a Domestic
390	Cat. Journal of Wildlife Diseases 27, 342–347. (doi: <u>10.7589/0090-3558-</u>
391	<u>27.2.342</u>)
392	57. Bowman, A. 2014 Cytauxzoon felis. American Association of Veterinary
393	Parasitologists. Available at: http://www.aavp.org/wiki/catprotozoa/coccidia-
394	apicomplexan/piroplasms-cytauxzoon-babesia/cytauxzoon-felis/. [Accessed
395	January 16, 2019].
396	58. Dalimi A, Sattari A, Motamedi G. 2006 A study on intestinal helminthes of dogs,
397	foxes and jackals in the western part of Iran. Veterinary Parasitology 142, 129-
398	133. (doi: <u>10.1016/j.vetpar.2006.06.024</u>)

399	59. Segovia JM, Torres J, Miquel J, Llaneza L, Feliu C. 2001 Helminths in the wolf,
400	Canis lupus, from north-western Spain. Journal of Helminthology 75, 183–192.
401	(doi: <u>10.1079/JOH200152</u>)
402	60. Heeney JL, Caro T. 1990 Prevalence and Implications of Feline Coronavirus
403	Infections of Captive and Free-Ranging Cheetahs (Acinonyx jubatus). J. VIROL.
404	64 , 9.
405	61. Daniels MJ, Golder MC, Jarrett O, MacDonald DW. 1999 Feline Viruses in
406	Wildcats from Scotland. Journal of Wildlife Diseases 35, 121-124.
407	(doi: <u>10.7589/0090-3558-35.1.121</u>)
408	62. Ostrowski S, Van Vuuren M, Lenain DM, Durand A. 2003 A Serologic Survey
409	of Wild Felids from Central West Saudi Arabia. Journal of Wildlife Diseases 39,
410	696–701. (doi: <u>10.7589/0090-3558-39.3.696</u>)
411	63. Harrison TM, Mazet JK, Holekamp KE, Dubovi E, Engh AL, Nelson K, Van
412	Horn RC, Munson L. 2004 Antibodies to canine and feline viruses in spotted
413	hyenas (Crocuta crocuta) in the Masai Mara National Reserve. Journal of
414	<i>Wildlife Diseases</i> 40 , 1–10. (doi: <u>10.7589/0090-3558-40.1.1</u>)
415	64. Feng Y, Xiao L. 2011 Zoonotic Potential and Molecular Epidemiology of
416	Giardia Species and Giardiasis. Clin Microbiol Rev 24, 110–140.
417	(doi: <u>10.1128/CMR.00033-10</u>)
418	65. Willi B et al. 2007 Worldwide Occurrence of Feline Hemoplasma Infections in
419	Wild Felid Species. Journal of Clinical Microbiology 45, 1159–1166.
420	(doi:10.1128/JCM.02005-06)

421	66. Mercer SH, Jones LP, Rappole JH, Twedt D, Laack LL, Craig TM. 1988
422	Hepatozoon sp. in Wild Carnivores in Texas. Journal of Wildlife Diseases 24,
423	574–576. (doi: <u>10.7589/0090-3558-24.3.574</u>)
424	67. Kellner A, Carver S, Scorza V, McKee CD, Lappin M, Crooks KR,
425	VandeWoude S, Antolin MF. 2018 Transmission pathways and spillover of an
426	erythrocytic bacterial pathogen from domestic cats to wild felids. Ecology and
427	<i>Evolution</i> 8 , 9779–9792. (doi: <u>10.1002/ece3.4451</u>)
428	68. McAllister MM, Dubey JP, Lindsay DS, Jolley WR, Wills RA, McGuire AM.
429	1998 Dogs are definitive hosts of Neospora caninum. Int. J. Parasitol. 28, 1473-
430	1478.
431	69. Dubey JP. 2003 Review of <i>Neospora caninum</i> and neosporosis in animals.
432	<i>Korean J Parasitol</i> 41 , 1–16. (doi: <u>10.3347/kjp.2003.41.1.1</u>)
433	70. Hoberg EP. 2006 Phylogeny of Taenia: Species definitions and origins of human
434	parasites. Parasitology International 55, S23–S30.
435	(doi: <u>10.1016/j.parint.2005.11.049</u>)
436	71. American Association of Veterinary Parasitologists. 2014 Toxocara cati.
437	Available at: http://www.aavp.org/wiki/nematodes/ascaridida/toxocara-cati/
438	[Accessed January 16, 2019].
439	72. Dubey JP. 2009 Toxoplasmosis of Animals and Humans. Boca Raton, FL; CRC
440	Press.
441	73. Ghai RR, Simons ND, Chapman CA, Omeja PA, Davies TJ, Ting N, Goldberg
442	TL. 2014 Hidden Population Structure and Cross-species Transmission of
443	Whipworms (Trichuris sp.) in Humans and Non-human Primates in Uganda.
444	PLoS Negl Trop Dis 8. (doi: <u>10.1371/journal.pntd.0003256</u>)

445	74. Xie Y, Zhao B, Hoberg EP, Li M, Zhou X, Gu X, Lai W, Peng X, Yang G. 2018
446	Genetic characterisation and phylogenetic status of whipworms (Trichuris spp.)
447	from captive non-human primates in China, determined by nuclear and
448	mitochondrial sequencing. Parasit Vectors 11. (doi: 10.1186/s13071-018-3100-5)
449	75. Deak G, Ionică AM, Mihalca AD, Gherman CM. 2017 Troglostrongylus
450	brevior: a new parasite for Romania. Parasit Vectors 10. (doi: 10.1186/s13071-
451	<u>017-2551-4</u>)
452	76. Diakou A, Sofroniou D, Di Cesare A, Kokkinos P, Traversa D. 2017 Occurrence
453	and zoonotic potential of endoparasites in cats of Cyprus and a new distribution
454	area for Troglostrongylus brevior. Parasitol. Res. 116, 3429–3435.
455	(doi: <u>10.1007/s00436-017-5651-3</u>)
456	77. Díaz-Regañón D, Villaescusa A, Ayllón T, Rodríguez-Franco F, Baneth G,
457	Calleja-Bueno L, García-Sancho M, Agulla B, Sainz Á. 2017 Molecular
458	detection of Hepatozoon spp. and Cytauxzoon sp. in domestic and stray cats from
459	Madrid, Spain. Parasit Vectors 10. (doi: 10.1186/s13071-017-2056-1)
460	78. Bell ET, Toribio J a. LML, White JD, Malik R, Norris JM. 2006 Seroprevalence
461	study of feline coronavirus in owned and feral cats in Sydney, Australia. Aust.
462	Vet. J. 84, 74–81.
463	79. Chang-Fung-Martel J, Gummow B, Burgess G, Fenton E, Squires R. 2013 A
464	door-to-door prevalence study of feline immunodeficiency virus in an Australian
465	suburb. J. Feline Med. Surg. 15, 1070–1078. (doi: <u>10.1177/1098612X13491959</u>)
466	80. Norris JM, Bell ET, Hales L, Toribio J-ALML, White JD, Wigney DI, Baral
467	RM, Malik R. 2007 Prevalence of feline immunodeficiency virus infection in

468	domesticated and feral cats in eastern Australia. J. Feline Med. Surg. 9, 300-308.
469	(doi: <u>10.1016/j.jfms.2007.01.007</u>)
470	81. Ravi M, Wobeser GA, Taylor SM, Jackson ML. 2010 Naturally acquired feline
471	immunodeficiency virus (FIV) infection in cats from western Canada:
472	Prevalence, disease associations, and survival analysis. Can Vet J 51, 271–276.
473	82. Walker VR, Morera Galleguillos F, Gómez Jaramillo M, Pereira Almosny NR,
474	Arauna Martínez P, Grob Behne P, Acosta-Jamett G, Müller A. 2016 Prevalence,
475	risk factor analysis, and hematological findings of Hemoplasma infection in
476	domestic cats from Valdivia, Southern Chile. Comp. Immunol. Microbiol. Infect.
477	Dis. 46, 20–26. (doi: <u>10.1016/j.cimid.2016.03.004</u>)
478	83. Bergmann M, Englert T, Stuetzer B, Hawley JR, Lappin MR, Hartmann K. 2017
479	Risk factors of different Hemoplasma species infections in cats. BMC Vet. Res.
480	13 , 52. (doi: <u>10.1186/s12917-017-0953-3</u>)
481	84. Baneth G, Sheiner A, Eyal O, Hahn S, Beaufils J-P, Anug Y, Talmi-Frank D.
482	2013 Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on
483	phylogenetic analysis, tissue and blood form morphology, and possible
484	transplacental transmission. Parasites & Vectors 6, 102. (doi:10.1186/1756-
485	<u>3305-6-102</u>)
486	85. Willi B et al. 2007 Worldwide Occurrence of Feline Hemoplasma Infections in
487	Wild Felid Species. Journal of Clinical Microbiology 45, 1159–1166.
488	(doi: <u>10.1128/JCM.02005-06</u>)
489	86. Meneses IDS de et al. 2014 Frequency of antibodies against Sarcocystis neurona
490	and Neospora caninum in domestic cats in the state of Bahia, Brazil. Revista

- 491 Brasileira de Parasitologia Veterinária 23, 526–529. (doi:<u>10.1590/S1984-</u>
 492 29612014080)
- 493 87. Nijsse R, Ploeger HW, Wagenaar JA, Mughini-Gras L. 2016 Prevalence and risk 494 factors for patent Toxocara infections in cats and cat owners' attitude towards 495 deworming. Parasitol. Res. 115, 4519–4525. (doi:10.1007/s00436-016-5242-8) 496 88. Must K, Lassen B, Jokelainen P. 2015 Seroprevalence of and Risk Factors for 497 Toxoplasma gondii Infection in Cats in Estonia. Vector Borne Zoonotic Dis. 15, 498 597-601. (doi:10.1089/vbz.2015.1809) 499 89. Ahmad N, Ahmed H, Irum S, Qayyum M. 2014 Seroprevalence of IgG and IgM 500 antibodies and associated risk factors for toxoplasmosis in cats and dogs from 501 sub-tropical arid parts of Pakistan. Trop Biomed 31, 777–784. 502 90. Deksne G, Petrusēviča A, Kirjušina M. 2013 Seroprevalence and Factors 503 Associated with *Toxoplasma gondii* Infection in Domestic Cats from Urban 504 Areas in Latvia. Journal of Parasitology 99, 48–50. (doi:10.1645/GE-3254.1) 505 91. Györke A, Opsteegh M, Mircean V, Iovu A, Cozma V. 2011 Toxoplasma gondii 506 in Romanian household cats: evaluation of serological tests, epidemiology and 507 risk factors. Prev. Vet. Med. 102, 321-328. 508 (doi:10.1016/j.prevetmed.2011.07.015) 509 92. Ketzis JK, Shell L, Chinault S, Pemberton C, Pereira MM. 2015 The prevalence 510 of Trichuris spp. infection in indoor and outdoor cats on St. Kitts. J Infect Dev 511 *Ctries* **9**, 111–113.
 - 512 93. Opsteegh M, Haveman R, Swart AN, Mensink-Beerepoot ME, Hofhuis A,
 - 513 Langelaar MFM, van der Giessen JWB. 2012 Seroprevalence and risk factors for

514	Toxoplasma gondii infection in domestic cats in The Netherlands. Prev. Vet.
515	Med. 104, 317–326. (doi:10.1016/j.prevetmed.2012.01.003)
516	94. Burling AN, Levy JK, Scott HM, Crandall MM, Tucker SJ, Wood EG, Foster
517	JD. 2017 Seroprevalences of feline leukemia virus and feline immunodeficiency
518	virus infection in cats in the United States and Canada and risk factors for
519	seropositivity. J. Am. Vet. Med. Assoc. 251, 187-194.
520	(doi: <u>10.2460/javma.251.2.187</u>)
521	
522	Figure Legends
523	Figure 1 Overall effect size and transmission type effect sizes for infection
524	prevalence in cats with outdoor access versus indoor-only cats. Cats with outdoor
525	access are 2.77 (95% CL = 2.10-3.67; $p < 0.0001$) times as likely to be infected with
526	parasites as indoor-only cats. Transmission types include environmental (soil-borne and
527	intermediate hosts), vector-borne, and direct. Transmission type was not significant
528	moderator (p=0.62) for outdoor access on infection prevalence in domestic pet cats.
529	Figure 2 a) The relationship between odds ratio for each study/parasite in domestic
530	pet cats across a range of latitudes. For every degree increase in latitude, cats with
531	outdoor access were 1.04 times as likely to be infected with parasites (95% $CL = 1.01$ -
532	1.07). Latitude as a moderator to indoor/outdoor infection risk, was trending towards
533	significance (p=0.08).
534	b) Total proportions of infected cats for each study/parasite across a range of
535	latitudes where overall proportion of infected cats significantly increased 0.7% (95% CL
536	= 0.17%-1.3%; p=0.01) for each degree latitude increase.

537 Table 1 Host ranges of pathogens analyzed in this study

538 Table 2 Pathogen prevalences in domestic cats (*Felis catus*) in this study by country