
CBE—Life Sciences Education • 16:ar56, 1–6, Winter 2017 16:ar56, 1

ARTICLE

ABSTRACT
Efforts to retain underrepresented minority (URM) students in science, technology, engi-
neering, and mathematics (STEM) have shown only limited success in higher education, 
due in part to a persistent achievement gap between students from historically underrep-
resented and well-represented backgrounds. To test the hypothesis that active learning 
disproportionately benefits URM students, we quantified the effects of traditional versus 
active learning on student academic performance, science self-efficacy, and sense of so-
cial belonging in a large (more than 250 students) introductory STEM course. A transition 
to active learning closed the gap in learning gains between non-URM and URM students 
and led to an increase in science self-efficacy for all students. Sense of social belonging 
also increased significantly with active learning, but only for non-URM students. Through 
structural equation modeling, we demonstrate that, for URM students, the increase in 
self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of 
student performance. Our results add to a growing body of research that supports varied 
and inclusive teaching as one pathway to a diversified STEM workforce. 

INTRODUCTION
As demographics in the United States become increasingly more diverse, we have 
committed to a number of efforts to improve the representation of historically under-
served groups within science, technology, engineering, and mathematics (STEM) 
fields (e.g., Maton et al., 2012; Wilson et al., 2012; Hernandez et al., 2013; Snyder and 
Wiles, 2015; Yeager et al., 2016). Although critical to national interests (American 
Association for the Advancement of Science, 2011), progress in diversifying STEM is 
slow. One obstacle that underrepresented minority (URM) students face is overcoming 
a “chilly” classroom climate, characterized by little student participation and facul-
ty-driven transmission of information in large introductory undergraduate classes 
(Hall and Sandler, 1982; Alexander et al., 2009). This environment can significantly 
undermine students’ academic abilities and disproportionately affects historically 
URM students, who face unique challenges resulting from feelings of social isolation, 
low confidence, and stereotype threat (Steele and Aronson, 1995; Steele, 1997; 
Nguyen and Ryan, 2008). Interventions that specifically address these social–psycho-
logical issues have shown some success, but classroom environments must also impact 
student attitudes and consequent performance (Clewell, 1992; Cohen et al., 2006; 
Walton and Cohen, 2011).

Recent studies also indicate that active-learning pedagogy (ALP)—characterized by 
in-class activities, prelecture preparation, and frequent low-risk assessment—increases 
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student learning and performance for all students (Freeman 
et al., 2014) and often disproportionately benefits URM stu-
dents and women compared with traditional lecture instruction 
(Lorenzo et al., 2006; Beichner et al., 2007; Freeman et al., 
2007; Haak et al., 2011). However, underlying mechanisms 
leading to those benefits remain undemonstrated, although the 
conventional explanation is that students at risk need more 
structure in the educational environment (Haak et al., 2011). 
Here, we propose another explanation: that ALP positively 
affects student well-being, which in turn enhances learning. To 
test this, we quantified student academic performance and two 
components of student well-being, self-reported confidence in 
the ability to do science, which we call science self-efficacy, and 
sense of social belonging (Walton and Cohen, 2011), in a large 
introductory STEM course that was modified from a traditional 
lecture format (n = 204; Fall 2014) to active instruction (n = 
217; Fall 2015).

We addressed three specific questions: 1) Does ALP 
decrease the performance gap between non-URM and URM 
students? 2) Does ALP increase self-efficacy and perception of 
classroom social belonging? 3) Do these factors influence per-
formance outcomes?

We chose science self-efficacy and classroom social belong-
ing as two measures of well-being because of their demon-
strated influence on student retention and performance in dif-
ferent educational contexts (Chemers et al., 2011; Hurtado and 
Ruiz, 2012). We also expect that ALPs, such as increased inter-
action with instructors and among students, will directly impact 
well-being in the classroom and effectively encourage non-
threatening interpretations of student interactions (Walton and 
Cohen, 2011). We also consider growth in elements of well-be-
ing as important stand-alone classroom outcomes.

MATERIALS AND METHODS
Quantifying Classroom Changes with Active Learning
Our study focused on an introductory evolutionary biology and 
biodiversity course (BioEE1780) at Cornell University that is 
required of all biology majors and attended primarily by stu-
dents in their first year of college. In 2014, students came to 
class with no required preparation and listened to 50-minute 
traditional lectures with few interruptions or questions. In 2015, 
we implemented ALPs: 1) prelecture assignments (video pod-
casts and textbook readings); 2) low-risk prelecture quizzes; 
3) assigned student groups working on structured problems in 
which students expressed their reasoning and worked together 
to solve problems during lecture; 4) personal response systems 
used for graded multiple-choice questions; and 5) redistribution 
of point allocation to reward group work and ongoing prepara-
tion rather than exam performance exclusively. Prelecture quiz-
zes and in-class group work accounted for 18% of the final 
grade in the active semester. We expected students to partici-
pate in class and evaluated their engagement by rewarding 
iClicker points if groups participated, and taking away points if 
a group called on by the random number generator did not 
respond. In the traditional semester, exams accounted for 60% 
of the grade, compared with 42% in the active semester. Two 
examples of full-class activities developed by an instructor 
(C.J.B.) of Cornell’s evolutionary biology course are now pub-
lished as active-learning modules to accompany the Life: The 
Science of Biology textbook (Sadava et al., 2017). These modules 

offer instructors engaging approaches to teaching challenging 
concepts in introductory biology, such as calculating the Hardy- 
Weinberg equilibrium or interpreting phylogenetic trees. Other 
examples of active-learning exercises included interpreting 
graphs and tables from the primary literature, predicting the 
most effective life history strategy given a set of environmental 
scenarios, and using backward elimination to identify a clade to 
which an unidentified organism belongs. BioEE1780 includes 
three 50-minute lecture sessions and one 50-minute discussion 
section each week. The discussion sections, meetings of smaller 
groups of students (15–20 individuals) led by graduate teaching 
assistants, remained the same throughout the study.

Instructor Experience
The instructors who participated in this collaboratively taught 
course each had at least 5 years of experience teaching 
BioEE1780 and had been coteaching this course every semester 
since 2009. However, none had previous formal experience 
teaching in an active format in a large lecture classroom. Over 
both semesters, nine instructors shared in teaching modules of 
the course, which included the following topics: phylogenetics, 
biodiversity, adaptation and speciation, population genetics, 
macroevolution, and human evolution. To rule out the possibil-
ity of instructor gender influence (Cotner et al., 2011), both 
male and female instructors taught modules in each semester. 
All instructors received professional development training from 
the same active-learning postdoctoral associate (C.J.B.), which 
included guidance on developing and implementing activities 
that reached existing learning objectives for the course.

Student Demographics
In Fall 2014, the course was 60.7% female and 39.2% male; 
35.9% Caucasian, 34.9% Asian American, and 21.4% URM (we 
defined URM students as those who are African American, 
Latino, Pacific Islander, and Native American, and non-URM 
students as those who are not underrepresented in STEM fields, 
including white students who are not of Hispanic origin and 
Asian-American students), with 8.1% of students declining to 
declare their ethnicity. In Fall 2015, the course was 55.7% 
female and 44.3% male; 38.2% Caucasian, 28.1% Asian Amer-
ican, and 25.4% URM, with 7.0% of students declining to 
declare their ethnicity. Active consent was collected from stu-
dents each semester. We excluded four students over the two 
semesters who declined to participate in the study.

Data Collection
To compare student knowledge of course content across semes-
ters, we used course grades and a pre–post knowledge assess-
ment instrument (KAI). Because no research-validated concept 
inventory exists for use in our broad introductory evolutionary 
biology course, we designed the KAI to reflect the most important 
learning objectives listed in the syllabus and prelecture outlines 
(Supplemental Assessment S1). All nine faculty members who 
coinstruct the course contributed questions, edited, and 
approved the final KAI before its use. The KAI was distributed to 
students on the second day of class and then again on the last day 
of class and was not worth any grade points. We used Bloom’s 
taxonomy (Bloom, 1956) to design questions for the KAI that 
reflected the level of learning we expected of students. This tax-
onomy identifies six levels of understanding: 1) knowledge, 
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2) comprehension, 3) application, 4) analysis 5) synthesis, and 
6) evaluation. Level 1 relies on lower-order cognitive skills, such 
as memorizing concepts; higher levels require higher-order think-
ing, such as applying information in a new situation that is simi-
lar to the situation in which they learned it. We were interested in 
testing higher-order learning gains and thinking skills of URM 
students (N = 58) and non-URM students (N = 196) who com-
pleted the pre- and postcourse KAI. We asked two education 
experts in the Center of Teaching Excellence at Cornell University 
to assign a value of 1 to 6 to each KAI question. Ratings were 
performed separately, and we found substantial agreement 
between raters for both assessments (Cohen’s kappa > 0.95). We 
computed a simple average of the ratings for each question (Sup-
plemental Figure S1). Because the pre–post KAI is not worth 
points and is collected after each completion in class, there is no 
reason to think that students would ever have retained the assess-
ment for their own later use or for the use of other students.

To examine the extent to which students felt confident com-
prehending, critically assessing, and communicating scientific 
concepts, and following Bandura’s (Bandura, 1997) work on 
self-efficacy, we modified survey questions from an existing 
instrument (Robnett et al., 2015) in which students rated confi-
dence in their ability to complete course-relevant tasks. 
Responses were quantified on a five-point Likert scale (Supple-
mental Assessment S2): 1 = not confident; 2 = a little confident; 
3 = somewhat confident; 4 = highly confident; and 5 = extremely 
confident.

We conducted principle component analyses on the six sci-
ence self-efficacy survey items and three classroom-specific 
social belonging items. For science self-efficacy, we had ade-
quate sampling to produce reliable results according to the 
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy for 
the whole data set (for presemester and postsemester results, 
KMO > 0.8). To test the presence of relationships between vari-
ables, we used Bartlett’s test of sphericity, which we found to 
be significant (for presemester and postsemester results, p < 
0.001). The precourse survey results generated a single compo-
nent that explained 46% of the total variance; the postcourse 
surveys generated a single component that explained 56% of 
the total variance. We tested for internal consistency using 
Cronbach’s alpha and found survey items to be correlated 
(Cronbach’s alpha > 0.7). We then generated a single science 
self-efficacy response variable for each student by combining 
scores using an additive scale. We estimated the science self-ef-
ficacy differential among students by subtracting their pre-
course self-efficacy score from their postcourse self-efficacy 
score. We modeled the science self-efficacy gains with the com-
bined precourse self-efficacy measure as a covariate to account 
for variation in incoming attitudes of students.

To examine sense of social belonging of students, we used 
four survey questions modified from Cornell University’s Stu-
dent Engagement and Inclusion Survey conducted by the Uni-
versity’s Institutional Research and Planning group and in con-
sultation with the University Diversity Council (for more 
information see http://irp.dpb.cornell.edu); these responses 
were also quantified on a five-point Likert scale (Supplemental 
Assessment S3). We asked students to what extent they agree or 
disagree with statements related to classroom and university 
social belonging, and the scale was coded as follows: 1 = 
strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = 

strongly agree. Students took the social belonging survey only 
once (at the end of the course), because it was designed to 
gauge social belonging over the entire semester. We combined 
three social belonging survey items, because they were specific 
to the classroom environment, and compared students’ 
responses on the fourth item alone, because it gauged students’ 
perceptions about the institution more broadly.

To test whether these data were suitable for factor reduction, 
we conducted a principal component analysis. For social 
belonging, the KMO measure of sampling adequacy for the 
whole data set was KMO = 0.619, and Bartlett’s test of spheric-
ity was p < 0.001. The three survey items generated a single 
component that explained 63% of the total variance. We tested 
for internal consistency using Cronbach’s alpha, and found the 
survey items to be highly correlated (Cronbach’s alpha > 0.8). 
In response to these results, we combined measures using an 
additive scale that represented a comprehensive classroom 
social belonging score for analyses.

Statistical Analysis
General Linear Analyses. We performed all statistical analy-
ses using SPSS software version 24 (SPSS, Chicago, IL). We 
first used univariate general linear models to compare metrics 
of student achievement and well-being across the two semes-
ters: learning gains (semester grade and gain in KAI), science 
self-efficacy, and social belonging in the classroom. For all 
analyses, we used Pearson correlations to examine whether 
baseline estimates (data collected before the course) were cor-
related with each other and with student outcomes. To fit the 
assumptions of the general linear model, we transformed stu-
dents’ grades by taking the linear log of [120 − student grade]. 
Owing to the presence of outliers in the residuals in our analy-
sis of students’ grades, we reran the analyses with the outliers 
excluded to make sure our findings were robust. The results 
were similar, and so the model presented here includes those 
outliers. For all Likert-scale analyses, we treated the depen-
dent variables as continuous for ease of interpretation, given 
that nonparametric tests have yielded very similar results to 
the ones reported in this paper (Norman, 2010; Murray, 2013).

To analyze learning gains and well-being, we included semes-
ter (traditional or active), gender (female or male), URM status 
(URM or non-URM), and the interaction between semester and 
gender and semester and URM status as factors in all analyses 
(Supplemental Tables S1, S2, and S3). We also included stu-
dents’ incoming Scholastic Aptitude Test (SAT) math scores and 
precourse KAI scores and, as covariates in the analysis, the course 
grades and KAI scores, respectively. These two covariates were 
added to account for variation in students’ incoming preparation 
for the course. An ANOVA showed that incoming math SAT 
scores (for non-URM students F(1, 26) = 0.007 p = 0.933; for 
URM students F(1, 4524) = 1.064 p = 0.305) and prelecture KAI 
scores (for non-URM students F(1, 26.20 ) = 2.13 p = 0.145; for 
URM students F(1, 3.52) = 0.237 p = 0.628) did not differ signifi-
cantly between semesters, indicating that incoming student pop-
ulations were comparable in their preparation. We also included 
presemester science self-efficacy score as a fixed effect in the 
analysis of science self-efficacy gains over the semester. We 
assessed model significance based on Akaike’s information crite-
rion (AIC). AIC allows us to estimate the best model for our data, 
based on an estimation using AIC differences (Akaike, 1974).
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Mediation Analyses. Using separate full-mediation analy-
ses, we tested the effects of pedagogy and student character-
istics (gender and incoming preparation) on student perfor-
mance, and whether performance gains were mediated 
by changes in scientific self-efficacy and sense of social 
belonging (see the Supplemental Material for detailed 
methodology).

RESULTS
Does Active Learning Decrease the Performance Gap 
between Non-URM and URM Students?
In 2014, non-URM students had significantly higher grades and 
KAI scores than URM students (Bonferroni post hoc pairwise 

comparison for both, p < 0.0001). This 
difference in performance disappeared in 
2015 (course grades, p = 0.938; KAI gains, 
p = 0.882; Figure 1 and Supplemental 
Table S1).

Does Active Learning Change 
Students’ Perception of the Class 
and of Their Abilities?
Reported self-efficacy increased from 
2014 to 2015 equally for all demographic 
groups (F(1, 1.73) = 6.55, p = 0.011; 
Figure 2 and Supplemental Tables S2, S4, 
and S5). Classroom social belonging 
(Supplemental Tables S3 and S4) also 
increased significantly with ALP (F(1, 
2.47) = 4.20, p = 0.041), but only for 
non-URM students (Supplemental Tables 
S3 and S6). However, there was no 
semester change in the degree to which 
students believed that Cornell demon-
strates a commitment to diversity (F(1, 

0.18) = 0.173, p = 0.678). This suggests that it is the class-
room environment that changed and not the general percep-
tions of the student cohorts.

What Factors Influence Performance Outcomes?
Our previous analyses demonstrated that, although all students 
gained science self-efficacy in the active semester, non-URM 
students’ academic performance metrics did not increase, while 
URM students’ performance metrics significantly increased 
(Figure 1 and Supplemental Table S1). In light of these results, 
we concluded that further investigation was required and con-
ducted mediation analyses after splitting the student sample 
according to minority status.

First, we compared the fit of partial- 
and full-mediation models with increase in 
self-efficacy being the mediating factor 
(Supplemental Figure S2). Semester, gen-
der, and incoming academic preparation 
(incoming SAT math scores or precourse 
KAI scores) were covariates in the analyses 
of the course grades and KAI gains. With 
full mediation, the covariates predicted 
increased self-efficacy, which in turn pre-
dicted performance measures. The partial 
model included both this indirect mediat-
ing effect of covariates on performance 
plus the direct effect of covariates. For both 
grades and KAI, adding the direct effect of 
any of the covariates on performance did 
not improve the prediction compared with 
only having the indirect mediating effect of 
self-efficacy. For grades, the inclusion of 
the direct effect did not improve the fit 
(χ2 (4) = 6.17, p = 0.19); for KAI, the full 
mediation with no direct effect fitted the 
data significantly better (χ2 (4) = 13.7, p = 
0.008). Therefore, full mediation is a bet-
ter fit and more parsimonious model.

FIGURE 1. URM and non-URM student changes in academic performance for traditional 
and ALP courses. (A) Mean student learning gains (95% confidence interval) on the KAI, a 
30-point assessment of course content. (B) Mean semester grades (95% confidence 
interval) controlling for incoming academic preparation. (Uncorrected means are 2015 
active: URM = 86.35, SE = 0.97, N = 60; non-URM = 87.94, SE = 0.76, N = 157; 2014: URM = 
80.02, SE = 1.86, N = 42; non-URM = 88.33, SE = 0.42, N = 162).

FIGURE 2. Analyses of non-URM and URM students show the mediation effect of self-effi-
cacy on course grades (solid arrows) for URM students but no mediation for non-URM 
students. The partial-mediation model is illustrated by the dashed-line arrow. It tests the 
direct effects of pedagogy and student characteristics on performance and their indirect 
effect via scientific self-efficacy. In addition to the significant effects illustrated above, 
incoming academic preparation (e.g., SAT math score) also predicted all performance 
outcomes. *, p ≤ 0.05; ***, p ≤ 0.001.
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For both grades and the KAI, the full-mediation models 
showed different results for non-URM and URM students. For 
non-URM, the covariates predicted self-efficacy, but self-effi-
cacy was not correlated with performance (pgrade = 0.996; pKAI 
= 0.685). For URM students, the covariates also predicted 
self-efficacy, but self-efficacy was correlated with perfor-
mance, and in fact fully mediated the dependence of perfor-
mance on the covariates (pgrade = 0.054; pKAI = 0.010; Figure 2 
and Supplemental Table S5). In other words, ALP increased 
self-efficacy, but this led to improved academic performance 
only for the URM students—an improvement that eliminated 
the learning gap.

Second, we carried out a similar mediation analysis for 
social belonging responses and found that social belonging was 
not significantly related to either performance metric across 
semesters (Supplemental Table S6). Although other studies 
have shown that an increased sense of belonging improves per-
formance for URMs (Walton and Cohen, 2007, 2011), it is likely 
that this is not evident here, because the differences are small 
and more distal to class performance than is the self-efficacy 
measure.

DISCUSSION
Our data show that ALP improved knowledge of course mate-
rial and that URM students benefited disproportionately. An 
active classroom using structured group activities also resulted 
in increased self-reported student confidence in scientific ability 
and overall increased classroom social belonging. Our analyses 
revealed that, for non-URM students, there was no mediation 
effect of science self-efficacy on performance. Conversely, for 
URM students, the increased science self-efficacy students expe-
rienced during the active-learning semester mediated the 
improved course performance (grades) and KAI gains. In other 
words, ALP increased students’ science self-efficacy, and this led 
to improved academic performance for URM students. How-
ever, there was no such mediation effect for non-URM students. 
These results shed light on one mechanism that may underlie 
the positive effects of active-learning practices on URM stu-
dents. Overall, our findings indicate that instructor efforts to 
incorporate active learning into their curricula can have posi-
tive results over the course of one semester.

This work has a few limitations that warrant consideration. 
First, we only compare cohorts of students across two semes-
ters. While our work adds to compelling existing evidence that 
active learning benefits URM students (Beichner et al., 2007; 
Freeman et al., 2007; Haak et al., 2011), replications of the cur-
rent study are required to clarify the relationship between sci-
ence self-efficacy, pedagogy, and performance. A longitudinal 
study design could address lasting impacts of ALP in introduc-
tory science courses. We may expect positive lasting impacts, 
particularly for URM students, who cite negative experiences in 
introductory science courses as the primary reason for declining 
interests in obtaining a science degree (Barr et al., 2008). Sec-
ond, we were unable to disaggregate URM student groups in 
the mediation analysis, because we would not have enough 
subjects to achieve adequate power to test for mediation. With 
a larger sample size, future work will be able to test the gener-
ality of these results and illuminate the impact of many affective 
measures on different URM groups after exposure to active 
learning.

Many studies support the notion that better pedagogy can 
lead to learning gains (Armbruster et al., 2009; Haak et al., 
2011; Freeman et al., 2014). A significant gap in the literature 
is the mechanism by which these gains occur, and why they 
benefit students in different demographic groups. Our results 
indicate that elements of classroom climate that promote col-
laborative problem solving, enhance group development, and 
engender confidence likely play an important role in learning. 
Instructors and researchers will profit from a deeper examina-
tion of other underlying mechanisms that impact achievement 
and well-being in underserved groups. For example, one char-
acteristic feature of an active classroom is decreased reliance on 
a few high-stakes exams as primary contributors toward final 
course grade. Instead, the active classroom may also reward 
ongoing participation, in-class assignments, and group work. 
Future research should address the effects of exams and mixed 
assessment methods on students’ well-being and course perfor-
mance in traditional and active settings. Other benefits of active 
learning may result from the mediating effects of affective mea-
sures that we did not test here, such as engagement, motiva-
tion, and interest in course content.

Our findings underscore that students from different demo-
graphic groups may benefit in different ways from evidence- 
based teaching methods that emphasize interactive course 
design and collaboration. These teaching methods can reduce 
particular barriers that are faced by historically underrepre-
sented students in STEM. The widespread adoption of these 
ALPs will be essential to our national efforts to improve diversity 
in STEM disciplines, while providing benefit to all students.
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