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The assessment of wood biomass density through multivariate modeling 
of mid-infrared spectra can be useful for interpreting the relationship 
between feedstock density and functional groups. This study looked at 
predicting feedstock density from mid-infrared spectra and interpreting 
the multivariate models. The wood samples possessed a random cell 
wall orientation, which would be typical of wood chips in a feedstock 
process. Principal component regression and multiple linear regression 
models were compared both before and after conversion of the raw 
spectra into the 1st derivative. A principal component regression model 
from 1st derivative spectra exhibited the best calibration statistics, while 
a multiple linear regression model from the 1st derivative spectra yielded 
nearly similar performance. Earlywood and latewood based spectra 
exhibited significant differences in carbohydrate-associated bands (1000 
and 1060 cm

-1
). Only statistically significant principal component terms 

(alpha less than 0.05) were chosen for regression; likewise, band 
assignments only originated from statistically significant principal 
components. Cellulose, lignin, and hemicelllose associated bands were 
found to be important in the prediction of wood density. 
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INTRODUCTION 
 

 Vibrational spectroscopy has recently received increased attention because of its 

versatility in the determination of the chemical composition in biological materials and in 

process quality control. Vibrational spectroscopy includes near infrared reflectance (NIR) 

and Fourier Transform Infrared Reflectance (FTIR) spectroscopy.  NIR has been utilized 

more than FTIR because it requires little to no sample preparation, predictions can be 

made in seconds, and multiple properties can be predicted from a single spectrum.  NIR 

has therefore been used in several applications such as quantifying the properties of non-

woody including corn stover, miscanthus, switchgrass, and corn barley (Hodgson et al. 

2010; Liu et al. 2010, Sohn et al. 2007) and woody biomass (Nkansah et al. 2010; Yao et 

al. 2010) and for assessing the density of wood (Schimleck et al. 2001; Via et al. 2003, 

2005a).   

Fourier Transform Infrared Spectroscopy (FTIR) is now receiving increased 

attention because of the availability of the ATR-diamond reflectance method that has 
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made it possible for the spectra of solid samples to be acquired in seconds.  In addition, 

the peaks of FTIR spectra are more interpretable, resulting in easier qualitative analysis. 

In the past, assessment of specific peaks was performed to determine the effect of a 

perturbation on functional groups.  Now FTIR data can be coupled with multivariate 

analysis to build prediction equations of the trait of interest. Even though interpretation of 

functional groups in the near infrared region is also possible through multivariate 

modeling (Via et al. 2009), FTIR is still superior in peak resolution for the raw spectra, 

and this may translate into better resolution of global and local peaks during multivariate 

modeling.  These advantages make FTIR a viable option for laboratory analysis of 

biological materials. 

One hurdle for using FTIR spectroscopy on solid wood samples could be the 

cellular orientation in wood and its effect on reflectance, absorbance, and/or transmission 

of light (Tsuchikawa and Tsutsumi 1999).  For instance, when using NIR spectroscopy to 

scan solid wood samples, there can be significant differences in absorbance and shapes of 

the spectra between the tangential, radial, and transverse surfaces (Defo et al. 2007; 

Schimleck et al. 2005).  The few studies that have involved the use of FTIR for density 

assessment of wood were carried out on ground samples or samples where the surface 

presentation was controlled and band assignments were made (Freer et al. 2003; Meder et 

al. 1999; Ruiz et al. 2005). 

Band assignments can be of particular importance in quality control, because 

control charting methods can be utilized to determine when the process is out of control 

based on shifts in functional groups or principal components that represent key functional 

groups (Geladi et al. 2004; Kauper and Ferri 2004).  Any shift in the functional groups 

could be an indication of a change in feedstock quality.  Impacts of functional group shift 

on density can be understood through model investigation and precision adjustments to 

the process can be made accordingly. 

The objective of this study was to utilize FTIR spectroscopy and multivariate 

modeling to predict solid wood density.  Other goals were to a) identify those functional 

groups important in the prediction of density, b) compare principal components 

regression (PCR) and multiple linear regression (MLR) performance, and c) determine if 

transforming the spectra with a first derivative pretreatment would improve both the 

prediction and interpretation of models.   

 

 

EXPERIMENTAL 
 

Materials Selection and Density Measurement 
 Southern pine (Pinus spp.) wood samples were generated from a rotating knife in 

the long direction of the original wood axis at a local wood manufacturing plant.  

Collection was done over the course of a day to ensure a wide range of samples and to 

increase the likelihood that each flake was independent from one another.  A flake was 

considered independent if it was not adjacent to another one within the tree.  Four 

hundred fifty samples were selected at random with the constraint that a significant area 

of the sample be mostly free of fracture and defects such as knots.  Samples were further 

milled with a band saw (Delta model 40-570) to a dimension of approximately 5 to 10 
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mm parallel to grain, 5 to 10 mm perpendicular to grain, and 0.8 to 1 mm in thickness.  

The variability in sample dimensions was necessary to ensure that a complete earlywood 

and latewood zone was present within each sample (which were then scanned later with 

FTIR).  The earlywood is that wood which is produced during the spring time and has a 

very low density, while latewood is that which is produced during the summer and has a 

very high density.  The samples were then placed into a dessicator where they were 

completely dried to bone dry density with Drierite (CaSO4) at 20°C and then each one 

was placed into a separate ziplock type bag (150 x 70 mm).  The weights were measured 

to 0.0001 g, dimensions were measured to 0.01 mm, and these measurements were 

utilized in the calculation of density.  The dimension in any plane was based on the 

average of 3 measurements.  After calculating the density of these 450 samples, the 

lowest 33 and highest 32 in density were selected.  The medium density group were also 

selected (n=33) around the mean density.   

 

FTIR Analysis 
 Mid-IR spectra were collected between 4000 and 650 cm

-1
 using a PerkinElmer 

Spectrum model 400 (Perkin Elmer Co., Waltham, MA) outfitted with a single 

reflectance ATR diamond.  The earlywood and latewood zones of each sample were each 

scanned four times and at a resolution of 4 cm
-1

. All scans were carried out at a 

temperature of 22°C ± 1.  Because each sample was stored in a separate ziplock type bag, 

they did not pick up any excess moisture during temporary opening of the dessicator.  

Scanning of the sample occurred immediately after withdrawal from the bag. 

 

Multivariate Modeling and Spectra Preprocessing 
 Prior to multivariate modeling, each spectrum was adjusted to a mean = 0 and a 

standard deviation = 1.  In addition to the raw spectra, the 1st derivative of the raw 

spectrum was computed to see if baseline variation could be removed, resulting in 

improved regression diagnostics.  The 1st derivative was computed by computing the 

slope between every two consecutive points/wavenumber interval in a spreadsheet. 

 Prior to regression, the absorbance data obtained from the FTIR were reduced to 

10 cm
-1

 intervals by averaging. Preliminary analysis to the data sets found that averaging 

to 10 cm
-1 

intervals yielded similar model coefficients and was necessary to reduce the 

data set to a manageable size by the SAS (2010) software. After reduction of absorbance 

data by averaging, the new spectral matrix consisted of 98 rows (number of samples) and 

336 lines (mean absorbance for every 10 cm
-1 

interval between 4000 to 650 cm
-1

) 

For MLR, the procedure PROC REG was used to regress the wavenumbers 

against density.  The following model form was chosen for regression: 

 

 Oven dry density = β0 + β1W1 + ……. + βiWi + ε  (1) 

 

where Wi represents the absorbance at the ith wavenumber with a maximum i=11, B0 

respresents the intercept, Bi represents the coefficient, and ε represents the error.  

The wavenumbers used for MLR model building were based on published band 

assignments in the mid-infrared region for chemical bonds that can exist in wood 

(Esmeraldo et al. 2010; Jonoobi et al. 2009; Jungnikl et al. 2008; Muller et al. 2009; 
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Pandey 1999; Qu et al. 2010; Rana et al. 2008; Singha and Rana 2010). These band 

assignments include: 1738 cm
-1

 C=O stretch in hemicelluloses, 1650 cm
-1

 C-O stretch in 

lignin, 1504 and 1600 cm
-1

 C=C stretching vibration in lignin, 1456 cm
-1 

asymetric 

bending in CH3 of lignin, 1425 cm
-1 

C-H deformation in lignin and carbohydrates, 1375 

cm
-1

, C-H deformation in cellulose and hemicelluloses, 1152 cm
-1

 C-O-C vibration in 

cellulose and hemicelluloses, 1104 cm
-1

 O-H association with cellulose and 

hemicelluloses, 1048 cm
-1

 C-O stretching vibration in cellulose and hemicelluloses, and 

898 cm
-1

 C-H deformation in cellulose.  

The predictive model that fit closest to the experimental data was chosen using 

the following statistical diagnostics: root mean square error of calibration (RMSEC), root 

mean square error of prediction (RMSEP), R
2
, adjusted R

2
, and variance inflation factor 

(VIF) (Neter et al. 1990).  The lower the values of RMSEC, RMSEP, and VIF, and the 

higher the values of R
2
, the better the fit of the model to experimental data. For model 

validation, the predicted sum of squares (PRESS) was computed and converted into 

RMSEP (Casal et al. 1996). The PRESS procedure used a leave one out strategy for each 

i
th

 data point and then estimated the sum of squares error across n-1 iterations. The 

stepwise selection procedure was utilized to determine which independent wavenumbers 

were important in predicting density.  The stepwise selection procedure was compared to 

other selection procedures such as: Akaike’s information criteria, Bayesian information 

criteria, and Mallow’s Cp statistic to protect against model overfit (Akaike 1974; 

Schwarz 1978; Neter et al. 1990).  The default selection criteria for multiple variable 

models was typically alpha = 0.15 (software default), although for MLR we had to adjust 

the selection criteria, within the stepwise procedure, to alpha = 0.01 level to eliminate 

significant VIF problems.  MLR on specific wavenumbers was deemed to yield 

interpretable models if the VIF factors were less than 10.  A low VIF was an indication 

that multicollinearity between the independent wavenumbers were not influencing the 

regression coefficients and thus interpretation of the slopes could be possible.  It should 

be noted that changing the alpha to 0.01 penalized the modeler during model building 

because it increased the chance of under-fitting the data. 

All wavenumbers (4000 to 650 cm
-1

) were used in PCR model building.  Each PC 

was the sum of the linear combination (wavenumber*corresponding eigenvector), 

resulting in 336 coefficients/weights that were then utilized to compute the PCi. The 

principal components from the spectra were determined through PROC PRINCOMP, 

which is a standard procedure that by default does not rotate the factors.  Then PROC 

REG was utilized on the principal components to develop the PCR model.  The same 

procedures used for MLR were then used for PCR.  The model for PCR took on the 

following form: 

 

 Oven dry density = β0 + β1PC1 + ……. + βiPCi + ε  (2) 

 

where PCi represents the i
th

 principal component. 

The coefficients (eigenvectors) of the PCR model obtained from the stepwise 

selection procedure were significant with 0.15 confidence level, which was the default 

level in SAS.  However, a stricter criterion was utilized for selection of the top three 

principal components in which loading interpretation was performed to determine which 
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bands where important (p-value ≤ 0.0001). The stepwise selection procedure was 

compared to other selection procedures such as: Akaike’s information criteria, Bayesian 

information criteria, and Mallow’s Cp statistic to protect against model overfit.   

 

 
RESULTS AND DISCUSSION 
 

Comparison of MLR to PCR 
 Figure 1 shows the relationship between RMSEP and the number of principal 

components utilized in the model.  The PCR + 1st derivative pretreatment performed the 

best but with the tradeoff of requiring many factors (10).  The final values of RMSEP and 

other statistical parameters for each model and pretreatment combination can be seen in 

Table 1.  The MLR (with no pretreatment) performed the worst (in RMSEP) with a 

RMSEP value that was 35% higher than the best performing PCR + 1st derivative model.  

However, the MLR (with no pretreatment) did utilize a lower number of factors than the 

PCR + 1
st
 derivative pretreatment, which makes it difficult to make a direct comparison.  

Had the same number of factors been utilized, similar RMSEP were possible, but then 

there would be an increased risk of overfit. 

Similar rankings for RMSEC and RMSEP were obtained after final model 

selection (Table 1). Based on the values of RMSEC and RMSEP, PCR + 1st derivative 

was selected as the best model for in-depth interpretation and development.  However, 

MLR was further assessed due to the lack of availability of PCR regression to some 

users. 

 

 
Fig. 1. Model selection based on root mean square error of calibration (RMSEP) versus the 
number of factors (principal components).  Multiple linear regression (MLR) and principal 
components regression (PCR) was compared with no processing and after taking the 1st 
derivative. 
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Figure 2a demonstrates the predictive capability of MLR and PCR when no 

pretreatment was applied.  The MLR model exhibited a little more error than PCR for the 

raw data, as seen by the increase in scatter around the 1:1 line and the increased RMSEP 

in Table 1.  But after applying the 1st derivative, both MLR and PCR exhibit similar 

scatter (Fig. 2b) as indicated by the RMSEP in Table 1.  The competitiveness of MLR to 

PCR in prediction, after applying the 1st derivative, was encouraging for situations where 

PCR is not available.  But if interpretation of the trends between dependent and 

independent variables are important, then PCR is still superior due to the high VIF factors 

that  can  occur  with MLR.  A VIF  factor  greater  than  10  is  commonly  used  as the 

  

 
 

 
Fig. 2. Density estimated by MLR and PCR versus actual density for (a) raw/no pretreatment 
spectra (n=98) and (b) 1st derivative spectra (n=98) 
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threshold to determine if the covariance between independent variables is too high (Neter 

et al. 1990).  A high VIF means that the independent variables interfere with each other to 

such degree that interpretation of model coefficients is not possible.  The VIF factor for 

MLR on 1st derivative spectra was 8.88 and was deemed acceptable for interpretation of 

the coefficients.  However, it should be noted that the alpha had to be restricted to 0.01 

before acceptable VIF’s were found.   

 

Table 1. Model Validation in which the Best Model was Selected Based on the 
Lowest RMSEP.  The R2, Adj-R2, and VIF were based on the calibration model. 
 
 
Model + Pretreatment 

 
 
Factors 

 
 
RMSEC 
(g/cm

3
) 

 
 
RMSEP 
(g/cm

3
) 

 
 
R

2 

 
 
Adj-R

2 

 
 
Maximum 
VIF 

PCR + No Pretreatment 8 0.0646 0.0708 0.77 0.75 0 

MLR + No Pretreatment 6 0.0742 0.0812 0.69 0.67 1028 

PCR + 1
st
 Derivative 10 0.0581 0.0654 0.82 0.80 0 

MLR + 1
st
 Derivative 7 0.0608 0.0666 0.79 0.78 8.88 

 

Several studies have been carried out that compare NIR multivariate modeling 

techniques, while a limited amount of studies have been reported for FTIR.  For example, 

MLR has proven to be competitive with PCR for NIR spectroscopy in predicting 

strength, stiffness, and density of wood (Via et al. 2003), but in a later study it was found 

that PCR was more robust under extrapolation conditions (Via et al. 2005b).  In both 

studies, the RMSEC values for density were found to be between 0.0485 to 0.0510 g/cm
3
 

for MLR and PCR regression.  Higher values of RMSEC (0.0581 to 0.0742 g/cm
3
) were 

obtained for the FTIR based models in this study.  Ruiz et al. (2005) explained the lower 

performance of mid-IR spectroscopy in predicting density.  They compared the ability of 

NIR and FTIR to predict solid wood density of Eucalyptus globulus.  An R
2
 value of 0.94 

was obtained when predicting density with NIR, but this value dropped to 0.84 when 

predicting density with FTIR. This drop was attributed to a better signal to noise ratio for 

the NIR equipment.  It should be mentioned that a comparable R
2
 value of 0.82 was 

obtained in this study even though the samples analyzed by Ruiz et al. (2005) were 

ground and sieved for tighter laboratory control, whereas the samples used in this study 

were solid and lacked control of surface orientation, which resulted in an increase in the 

number of factors necessary for prediction.  The result obtained from this study is 

important because this study provides a method to predict and interpret density from PCR 

and MLR models for samples typical of a manufacturing process.  Therefore, despite the 

random orientation of the tracheids within the samples, manufacturers may be able to 

monitor key functional groups within the process through control charting techniques and 

then refer to the model to understand which functional group is responsible for shifts in 

feedstock density. 

The density in a sample is highly dependent on the percentage of earlywood (or 

latewood) in a sample.  The earlywood density in this study typically fell near 0.3 g/cm
3
, 

while samples with all latewood had a density around 0.75 g/cm
3
.  This study found the 

1060 cm
-1

 wavenumber to be important in distinguishing latewood from earlywood due 

to the C-O deformation in carbohydrates (Kotilainen et al. 2000).  Other researchers who 
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have used FTIR to predict density found the nearby 1065 cm
-1

 wavenumber to be critical 

in predicting density due to lignin-associated structures (Nuopponen et al. 2004, 2006).  It 

should be mentioned that the other researchers that have used FTIR to predict wood 

density carried out their studies on ground wood samples (e.g. Nuopponen et al. 2004; 

Ruiz et al. 2005; Meder et al. 1999). However grinding of the sample did not necessarily 

improve the predictability of the models. For example Meder et al. (1999) sieved the 

ground wood particles in order to obtain a tightly distributed particle size.  A calibration 

R
2 

of 0.87 with 4 factors was obtained. However, during the validation stage, the R
2
 

dropped to 0.60. In this study, the adjusted R
2
 after validation only dropped by an average 

of 0.02 for all four models. 

Another important finding of this study was that MLR could be a viable 

alternative to PCR when modeling biomass density from FTIR spectra.  If one wants to 

directly use predetermined wavenumbers for modeling, it is likely that high covariances 

between wavenumbers in percent transmittance will occur. After taking the 1st 

derivative, we did find significant reductions in VIF but still,  many models exhibited 

unacceptable VIF numbers (>10) when the typical stepwise selection method was used.  

Also, we had to reduce the alpha to 0.01 to obtain models with acceptable VIF, which in 

turn limits the number of wavenumbers available for modeling.  As wavenumbers 

become further apart (often > 500 cm
-1

) range, they were less likely to interfere with one 

another during modeling.  This resulted in forbidding the use of several wavenumbers 

that were closer than 500 cm
-1

 apart.  Thus, it may be more difficult to utilize exact 

wavenumbers of interest during calibration and instead one is at the leniency of which 

wavenumbers are less correlated.  Nevertheless, these results suggest that MLR can be 

utilized for modeling density for interpretation purposes, but care needs to be taken 

during model development.  If one is willing to sacrifice some interpretation, such as that 

which might be necessary for biomass manufacturing, MLR becomes competitive to PCR 

in performance.  MLR may thus be useful for biomass applications where calibration 

equations can easily be programmed into common spreadsheets.  On the other hand, if 

manufacturers can afford software and control charting tools that can utilize PCR, then 

interpretation and control charting of key functional groups may be an advantage. 

  

Further PCR Development and Interpretation 
After generation and comparison of many PCR models, the best PCR model 

(Table 1) was chosen for both prediction and interpretation purposes.  This PCR model 

required the 1
st
 derivative pretreatment and 10 factors plus an intercept term.  Table 2 

gives the details of this model, including coefficients and level of significance associated 

with each factor.  PC 2, 3, and 5 were determined to be important in predicting density 

based on the t-statistic and total variance accounted for by each PC (not shown).  As 

such, the loadings across all wavenumbers was plotted for PC2 (Fig. 3a), PC3 (Fig. 3b), 

and PC5 (Fig. 3c).  Significant global and local peaks from these three graphs are also 

listed in Table 3 with their band assignments.  Consequently, most of the wavenumbers 

that were found to be important through PCR (Table 3 and Fig. 3a, b, and c) were also 

used for MLR, where the PC’s were selected a priori to the performed analysis (see 

methods section).  All of the important wavenumbers found important through PCR 

could be traced back to cellulose, hemicellulose, and lignin polymers.   
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Fig. 3. Eigenvector loading on 1st derivative spectra for (a) principal component 2, (b) principal 
component 3, and (c) principal component 5. 
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Of particular interest were those wavenumbers that showed up as being important 

in the loadings for 2 independent factors (Table 3), implying that these band assignments 

may be of higher importance in predicting density.  For example, the 1048 cm
-1

 was 

attributable to the C-O stretching vibration in hemicellulose and cellulose.  The 1736 cm
-1

 

was attributable to the C=O stretching vibration in hemicellulose.  The sensitivity of 

FTIR to hemicellulose signals is beneficial, particularly from a modeling standpoint.  

FTIR appears to better detect hemicellulose signals than NIR.  For example, one study 

found NIR to be more sensitive to lignin and cellulose than hemicellulose (Via et al. 

2009). 

 
Table 2. Best PCR Calibration Model to Predict Density 

 
 
Parameter 

 
 
Estimate 

 
 
Standard 
Error 

 
 
t-statistic 

 
 
p-value 

β0 0.465 0.00587 79.27 <0.0001 

β1 0.0039 0.00053 7.26 <0.0001 

β2 -0.0052 0.00091 -5.73 <0.0001 

β3 -0.0167 0.00144 -11.6 <0.0001 

β4 -0.0069 0.00177 -3.91 = 0.0002 

β5 -0.0075 0.00190 -3.96 = 0.0001 

β6 0.00726 0.00196 3.71 0.0004 

β7 0.01822 0.00205 8.90 <0.0001 

β8 0.00888 0.00223 3.98 0.0001 

β9 0.00453 0.00237 1.91 0.05 

β10 0.01301 0.00246 5.29 <0.0001 

 

Table 3 demonstrates the important wavenumbers in predicting density.  When 

compared to a similar study on ground wood (Nuopponen et al. 2006), over 50% of the 

wavenumbers that were significant in that study matched the wavenumbers deemed 

important through PCR analysis in this study.  In addition, it was also found that four 

wavenumbers were important in two factors. This indicates that these are the four most 

important wavenumbers for predicting density of woody biomass (Table 3).   Two of 

these four wavenumbers were also highlighted by Nuopponen (2006) as being important 

in predicting density from ground wood.  These wavenumbers found by Nuopponen 

(2006) were the C-O stretching vibration in hemicellulose and cellulose (1048-1050 cm
-1

) 

and the C=O stretching vibration (1736 cm
-1

) in hemicelluloses. 

In another study predicting density of E. globulus for ground wood, 2 more 

significant wavenumbers arose as being important, which also agreed with this study 

(Table 3) (Freer et al. 2003).  The 1504 cm
-1

 wavenumber due to the C=C lignin bond 

was critical in both studies.  Likewise, the 1736 cm
-1

 wavenumber was once again 

important in demonstrating the sensitivity of FTIR to hemicellulose signals.  The 

sensitivity of 1736 cm
-1

 for this study and other gymnosperm and angiosperm woody 

plants demonstrates the utility of utilizing similar functional groups across plant species 

(Freer et al. 2003; Nuopponen et al 2006).  This is especially useful, since the 

hemicellulose between softwoods and hardwoods differ in concentration and distribution 

of branched heteropolysaccharides. 
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Interpretation of important wavenumbers on density can be important because it 

enables the quality control manager to better understand the quality of the wood and the 

interrelationships between functional groups and density.  This can be important to 

product quality, and likely different genus and/or species will have slightly different 

coefficients and overall models.  But future studies would be necessary to confirm this 

possibility.  Likewise, in pine, juvenile wood concentration will be an important factor 

for biomass processing due to the recent shift from mature to juvenile wood in 

production. Increased juvenile wood in pine will have less cellulose and more lignin, 

which will have a negative impact on density and perhaps product quality.  This 

consequence may be detectable through the monitoring of key principal components 

through T
2 

Hotelling.  T
2 

Hotelling is a multivariate quality control technique that can 

handle simultaneous shifts in multiple PC’s attributable to changes in the concentration of 

underlying functional groups (Marengo et al. 2003).  

 
Table 3. Band Assignment for Important Wavenumbers extracted from 
Statistically Significant Principal Components (p-value ≤ 0.0001) through 
Regression Analysis on 1st Derivative Spectra   

Wavenumber 
 
2

nd
 PC 

 
 
3

rd
 PC 

 
 
5

th
 PC 

 
 
Band Origin 

1048 1048  C-O stretching vibration in 
hemicellulose and cellulose 

1504   C=C stretching vibration in 
lignin 

2935 2935  C-H stretching vibration 

 730  No sources available 

 1160  C-O-C bridge stretching in 
cellulose  

 1320  C–O vibration in syringyl ring 

 1456  Asymmetric CH3 bending in 
lignin 

 1736 1736 C=O stretching vibration in 
hemicellulose 

 2842 2842 C-H stretching vibration 

  896 C-H deformation vibration 
cellulose 

  1030 Aromatic C-H in plane 
deformation 

  1648 C-O stretching vibration in 
lignin 

  3230 No sources available 

 

 

Effects of Earlywood and Latewood on Spectra 
 Figure 4a demonstrates the effect of earlywood and latewood on the spectra.  

There were clear shifts between 4000 to 3660 cm
-1

, 3160 to 3030 cm
-1

, 2810 to 1820   

cm
-1

, and 1030 cm
-1

.  Given the lack of control over surface presentation, it was 

apparently difficult to partition out peaks due to specific functional groups (Fig. 4a).   
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Fig. 4. FTIR spectra for earlywood (n=98) and latewood (n=98) for (a) unprocessed raw spectra 
and (b) after the 1st derivative pretreatment 
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Further data analysis that involved taking the 1st derivative resulted in three peaks 

that were distinctively different for earlywood and latewood (Fig. 4b). The peak at 1000 

and 1060 cm
-1

 differed between earlywood and latewood due to the C-O bond present in 

carbohydrates (Goncalves et al. 1998; Kotilainen et al. 2000).  The peak at 1068 cm
-1

 was 

found to be due to arabinose concentration (Hori and Sugiyama 2003), while the peak at 

1110 cm
-1

 was due to the O-H association of cellulose. 

 
 
CONCLUSIONS 
 

1. Capable models were developed from FTIR spectra to predict the density of solid 

wood biomass.  The biomass possessed a random tracheid orientation with respect to 

the FTIR beam.  This random surface axis is considered more representative of an 

industrial feedstock than similar studies in the literature where the wood was ground 

or the tracheid axis was controlled during milling of the samples. 

2. Multiple linear regression could be used to build models, using an approach that is 

easier to utilize during programming or in common spreadsheet software; however, if 

interpretation of the coefficients are of interest, then the alpha had to be set to 0.01 

and the first derivative was necessary to remove the covariance between adjacent 

wavenumbers.   

3. Principal component 3 (after 1
st
 derivative processing) was the most statistically 

significant in prediction of biomass density based on t-value and p-value results.  Of 

the loadings in principal component 3, the top 4 bands were identified at 1048, 1736, 

2842, and 2935 cm
-1

.  Respectively, these were attributable to the C-O stretching 

vibration in cellulose and hemicellulose, the C=O stretching vibration in 

hemicellulose, and the C-H stretching vibration (2842 and 2935 cm
-1

) of cellulose.  

The asymmetric CH3 bending in lignin at 1456 cm
-1 

was also influential. 
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