

2004

Fall

Commercial

Vegetable

Variety

Trials

August 2005

Regional Bulletin 14

Auburn University

Alabama Agricultural Experiment Station Richard Guthrie, Director Auburn University Auburn, Alabama

Printed in cooperation with the Alabama Cooperative Extension System (Alabama A&M University and Auburn University)

Contents

Authors	page
Tips to Interpret Results on Vegetable Variety Performance	5
Lettuce Trial Exhibits Butterhead, Leaf and Romaine Types in Brewton	7
High Yields Found Among Top Performing Leafy Green Varieties	9
Pumpkin Numbers Down This Year	11
In Eggplant Trial, 'Black Bell' and 'Epic' Perform Well During Early and Late Season Harvests	13
2004 Hot Pepper Trials Continue at Brewton	15
Results of the 2004 National Sweetpotato Collaborators' Trial	17
Seed Sources	19

Information contained herein is available to all persons without regard to race, color, sex, or national origin.

Issued in furtherance of Cooperative Extension work in agriculture and home economics, Acts of May 8 and June 30, 1914, and other related acts, in cooperation with the U.S. Department of Agriculture. The Alabama Cooperative Extension System (Alabama A&M University and Auburn University) offers educational programs, materials, and equal opportunity employment to all people without regard to race, color, national origin, religion, sex, age, veteran status, or disability.

Authors

Randy Akridge

Superintendent Brewton Agriculture Research Unit P.O. Box 217 Brewton, AL 36427 (251) 867-3139

Jason Burkett

Superintendent E.V. Smith Research Center (334) 727-6159

Arnold Caylor

Superintendent North Alabama Horticulture Research Center (256) 734-5820

Joe Kemble

Associate Professor and Extension Vegetable Specialist Department of Horticulture Auburn University, AL (334) 844-3050 kemblejm@auburn.edu

Edgar Vinson

Research Associate III Department of Horticulture Auburn University, AL (334) 844-8494 vinsoed@auburn.edu

Larry Wells

Superintendent Wiregrass Research and Extension Center (334) 693-2363

Introduction: Tips for Interpreting Vegetable Varieties Performance Results

Edgar Vinson and Joe Kemble

The fall 2004 variety trial bulletin includes results from research and extension centers in southern, central and northern Alabama. The information provided by this report must be studied carefully in order to make the best selections possible. Although yield is a good indicator of varietal performance, other information must be studied. The following provides a few tips to help producers adequately interpret results in this report.

Open pollinated or hybrid varieties. In general, hybrids (also referred to as F1) are earlier and produce a more uniform crop. They have improved disease, pest, or virus tolerance/resistance. F1 varieties are often more expensive than open pollinated varieties (OP), and seeds cannot be collected from one crop to plant the next. Despite the advantages hybrids offer, OP are still often planted in Alabama. Selecting a hybrid variety is the first step toward earliness and quality.

Yield potential. Yields reported in variety trial results are extrapolated from small plots. Depending on the vegetable crop, plot sizes range between 100 to 500 square feet. Yields per acre are estimated by multiplying plot yields by corrective factors ranging from 100 to 1,000. Small errors are thus amplified, and estimated yields per acre may not be realistic. Therefore, locations cannot be compared by just looking at the range of yields actually reported. However, the relative differences in performance among varieties are realistic, and can be used to identify best-performing varieties.

Statistical interpretation. The coefficient of determination (r2), coefficient of variation (CV) and least significant difference (LSD, 5%) are reported for each test. These numbers are helpful in separating the differences due to small plots (sampling error) and true (but unknown) differences among entries.

R2 values range between 0 and 1. Values close to 1 suggest that the test was conducted under good conditions and most of the variability observed was mainly due to the effect of variety and replication. Random, uncontrolled errors were of lesser importance. CV is an expression of yield variability relative to yield mean. Low CVs (under 20%) are desirable but are not always achieved.

There must be a minimum yield difference between two varieties before one can statistically conclude that one variety actually performs better than another. This is known as the least significant difference (LSD). When the difference in yield is less than the LSD value, one cannot conclude that there is any real difference between two varieties. For example, in the pumpkin trial conducted at the North Alabama Horticulture Research Center (see "Pumpkin Numbers Down This Year", p. 11), 'Autumn King' yielded 33,578 pounds per acre, while 'Phantom' and 'Rocket' yielded 30,871 and 15,482 pounds per acre, respectively. Since there was less than a 13,865 difference between 'Autumn King' and 'Phantom', there is no statistical difference between these two varieties. However, the yield difference between 'Autumn King' and 'Rocket' was 18,096, indicating that there is a real difference between these two varieties. From a practical point of view, producers should place the most importance on LSD values when interpreting results.

Testing conditions. AU vegetable variety trials are conducted under standard, recommended commercial production practices. If the cropping system to be used is different from that used in the trials, the results of the trials may not apply. Information on soil type (Table 1), planting dates, fertilizer rates, and detailed spray schedule are provided to help producers compare their own practices to the standard one used in the trials and make relevant adjustments.

Ratings of trials. At each location, variety trials were rated on a 1 to 5 scale, based on weather conditions, fertilization, irrigation, pest pressure and overall performance (Table 2). Results from trials with ratings of 2 and under are not reported. These numbers may be used to interpret differences in performance from location to location. The overall rating may be used to give more importance to the results of variety performance under good growing conditions.

Where to get seeds. Because seeds are alive, their performance and germination rate depends on how old they are, where and how they were collected, and how they have been handled and stored. It is always preferable to get certified seeds from a reputable source, such as the ones listed in Seed Sources, page 19.

Several factors other than yield have to be considered when choosing a vegetable variety from a variety trial report. The main factors are type, resistance and tolerance to diseases, earliness, and of course, availability and cost of seeds. It is always better to try two to three varieties on a small scale before making a large planting of a single variety.

Vegetable trials on the Web. For more vegetable variety information be sure to visit our Web page at www.aces. edu/dept/com_veg/veg_trial/cropveg.htm. Our Web site will provide a description of variety types, a ratings system, and information about participating seed companies.

Table 1. Soil Types at the Location of the Trial				
Location	Water holding Capacity (in/in)	Soil Type		
Gulf Coast Research and Extension Center (Fairhope)	0.09-0.19	Malbis fine sandy loam		
Brewton Agricultural Research Unit (Brewton)	0.12-0.14	Benndale fine sandy loam		
Wiregrass Research and Extension Center (Headland)	0.14-0.15	Dothan sandy loam		
Lower Coastal Plain Research and Extension (Camden)	0.13-0.15	Forkland fine sandy loam		
EV Smith Research Center, Horticultural Unit (Shorter)	0.15-0.17	Norfolk-orangeburg loamy sand		
Chilton Area Horticultural Substation (Clanton)	0.13-0.15	Luvernue sandy loam		
Upper Coastal Plain Research and Extension Center (Winfield)	0.13-0.20	Savannah loam		
North Alabama Horticultural Research Center (Cullman)	0.16-0.20	Hartsells-Albertville fine sandy loam		
Sand Mountain Research and Extension Center (Crossville)	0.16-0.18	Wynnville fine sandy loam		

		Table 2. De	scription of Rating	gs	
Rating	Weather	Fertilizer	Irrigation	Pests	Overall
5	Very Good	Very Good	Very Good	None	Excellent
4	Favorable	Good	Good	Light	Good
3	Acceptable	Acceptable	Acceptable	Tolerable	Acceptable
2	Adverse	Low	Low	Adverse	Questionable
1	Destructive	Very Low	Insufficient	Destructive	Useless

Letteuce Trial Exhibits Butterhead, Leaf, and Romaine Types in Brewton

Joe Kemble, Edgar Vinson, and Randy Akridge

A lettuce variety trial was conducted at the Brewton Agriculture Research Unit (BARU) in Brewton, Alabama (Tables 1 and 2). Beds were covered with white plastic mulch and drip irrigation was used.

On October 14, five-week-old butterhead, looseleaf, and romaine type lettuce transplants were set in double staggered rows spaced 12 inches apart with a 12-inch spacing within a row. Plots were covered in white plastic mulch and drip irrigation was installed. Plots were 20 feet long on five-foot centers. This created a stand of approximately 8,700 plants per acre. The experimental design was a randomized complete block with four replications.

Fertilization consisted of weekly, alternating injections of calcium nitrate and potassium nitrate at a rate of 30 pounds N per acre on October 25 and November 15. Fertilizers were applied according to the recommendations of the Auburn University Soil Testing Laboratory. Pesticides were applied weekly to control fungal, insect, and weed pests. Consult your county Extension agent for current recommendations for pest and weed control in vegetable production in Alabama.

Table 1. Ratin Lettuce V	ngs of the 2004 ariety Trial ¹	
Location	BARU	
Weather Fertility Irrigation Pests Overall	4 5 5 5	
ovorali	Ũ	

¹ See introduction for description of ratings scales

Lettuce was harvested on December 1 and graded according to the U.S. Standards for Grades (U.S. Dept. Of Agriculture Publication 60-6130) (Table 3). Of the butterhead types 'Louisa' had significantly higher yields than all other lettuce varieties of this type. 'Louisa' has an upright plant habit for a butterhead type with green, red-tinged leaves especially at the region of new growth at the top. 'Harmony' had the second highest marketable yield of the butterhead types. Like 'Louisa', 'Harmony' had an upright plant habit but with light green, glossy leaves.

	Table 2. Seed Source, Earliness, and Disease Claims of Selected Lettuce Varieties					
Variety	Head	Seed	Days to	Leaf	Disease	Years
	type	source	harvest	color	claims ¹	evaluated
Optima	Butterhead	Vilmorin\Sieger's	55	G	DM,LMV	95-97,02-04
Nancy	Butterhead	Johnny's	66	R	_	96,97,02-04
Esmeralda	Butterhead	Siegers	65	G	DM,LMV	02-04
Tania	Butterhead	Harris	65	G	DM	02-04
Harmony	Butterhead	Shamrock	68	G	B,DM,TB	02-04
Athena	Romaine	Enza Zaden/Siegers	63	G	CRR,DM,LMV,TB	02-04
Louisa	Butterhead	Harris	56	G-R	—	02-04
New Red Fire	Looseleaf	Takii	55	R	—	95,96,02-04
Slobolt	Looseleaf	Siegers	57	G	ТВ	96,97,02-04
Tango	Looseleaf	Johnny's	45	G	-	98,02-04
Green Towers	Romaine	Harris	74	G	-	02-04
Parris Island	Romaine	Stokes	65	G	ТВ	96,97,02-04
Red Eye	Romaine	Stokes	•	R	•	02-04

¹Disease claims: B=Bolting; CRR=Cork Root Rot; DM=Downy Milder; LMV=Lettuce Mosaic Virus; TB = Tip Burn. • = not found,— = none; from seed catalog.

In the looseleaf category, 'Tango' had a marketable yield significantly higher than 'Slobolt' and 'New Red Fire'. 'Tango' has a mound shaped plant habit with bunched and crinkly leaves. 'Athena' and 'Green Tower' produced the highest yields of the four romaine lettuce types in the trial. Both varieties have medium green, glossy leaves.

Butter	Butterhead, and Looseleaf Lettuce Types			
		Marketable	Marketable	
Variety	Туре	Weight	Heads	
-	-	lbs/a	#/a	
Louisa	Butterhead	21,822	13,718	
Harmony	Butterhead	20,383	13,501	
Nancy	Butterhead	18,418	13,065	
Optima	Butterhead	17,197	12,194	
Tania	Butterhead	17,149	13,646	
Esmeralda	Butterhead	16,335	12,847	
Tango	Looseleaf	20,143	13,283	
Slobolt	Looseleaf	16,911	13,501	
New Red Fire	Looseleaf	15,521	13,936	
Athena	Romaine	20,167	13,501	
Green Tower	Romaine	19,808	13,283	
Parris Island	Romaine	16,144	9,799	
Red Eye	Romaine	15,785	12,412	
r2		0.42	0.25	
CV		11	23	
LSD		868	1,108	

Table 3. Performance of Selected Romaine,

High Yields Found among **Top Performing** Leafy Green Varieties

Joe Kemble, Edgar Vinson, and Randy Akridge

A leafy green variety trial was conducted at the Brewton Agricultural Research Unit (BARU) in Brewton, Alabama (Tables 1 and 2).

Collard and turnip greens were seeded mechanically with a small planter on September 24 into plots that were 20 feet long and four feet wide. Collard and turnip seeds were spaced six inches apart. The harvest area for each plot was 15 feet long and four feet wide. Experimental design was a randomized complete block with four replications.

Fertilization was applied according to the recommendations of the Auburn University Soil Testing Laboratory. Consult your county Extension agent for current recommendations for pest and weed control in vegetable production in Alabama.

The ground was tilled with a roto tiller and received a preplant application of 60 pounds of N as ammonium nitrate on September 23. Fertilization of consisted of weekly applications of calcium (at a rate of six pounds of N) from September 24 until harvest. Pesticides were applied on October 27.

Table 1. Rating	is of the 2004 Variety Trial ¹	
Location	BARU	
Weather Fertility Irrigation Pests Overall	5 4 5 5 5	

¹See introduction for description of ratings scales

Leafy greens were harvested when they reached marketable size (Table 3). Turnip leaves were harvested on November 15, 2004, and collard plants were harvested on December 6, 2004. Yields were expressed in 30pound bushels.

Among the collard varieties, 'Flash' was almost twice as productive as 'Hevi-crop' and the standard varies Vates and Champion produced almost twice the number of bushels per acre. Both Flash and 'Top Bunch' produced yields that were significantly higher than the other varieties.

Table 2. Seed Se	ource and Ear	liness of Select	ted Leafy Green Vari	eties
Variety	Type ¹	Crop	Seed	Days to
			source	harvest
Champion	OP	Collard	Harris	75
Flash	F1	Collard	A&C/Stokes	73
Heavi-Crop	F1	Collard	Takii	70
Top Bunch	F1	Collard	Sakata	70
Vates	OP	Collard	Stokes	56
All Top	F1	Turnip	Sakata	50
Purple Top White Globe	OP	Turnip	Seminis/Stokes	60
Seven Top	OP	Turnip	Seminis/Stokes	45
Topper	F1	Turnip	Rupp	60
White Lady	F1	Turnip	Stokes	35

¹Type: OP=open pollinated; F1=hybrid.

ALABAMA AGRICULTURAL EXPERIMENT STATION

In the turnip category, 'All Top' and 'Topper' performed better than the standard varieties 'Seven Top' and 'Purple Top White Globe'. Yields of 'All Top' were two and a half times the yields of 'Purple Top White Globe'.

Table 3.	Performance of Select	ed
Collar	d and Turnip Varieties	
Variety	Туре	Heads #/a
Flash Top Bunch Hevi-Crop Vates Champion <i>r</i> 2 <i>CV</i>	Collard Collard Collard Collard Collard	807 713 454 439 420 0.51 31
LSD		268
All Top Topper Seven Top White Lady Purple Top White Globe r2 CV LSD	Turnip Turnip Turnip Turnip Turnip	656 557 396 337 258 0.81 19 123

Pumpkin Numbers Down This Year

Joe Kemble, Edgar Vinson, and Arnold Caylor

A pumpkin variety trial was conducted at the North Alabama Horticulture Research Center (NAHRC) in Cullman, Alabama (Tables 1 and 2).

Soils were fertilized according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. Consult your local county Extension agent for current recommendations for pest and weed control in vegetable production in Alabama.

Pumpkins were direct seeded in hills on rows that were 60 feet long on July 5. There was a 10 foot spacing between rows and a five foot spacing within a row. The experimental design was a randomized complete block with four replications.

Beds were made and weekly applications of five pounds per acre of N as ammonium nitrate were injected through the drip irrigation from July 12 through September 10. Plots received no other fertilization. Pesticides were applied weekly from July 14 through September 15.

Pumpkins were harvested on October 4. Because color development stops after harvest, pumpkins were harvested at the full-color stage and graded as marketable or nonmarketable (Table 3).

Table 1. Rating Pumpkin Va	s of the 2004 riety Trial¹	
Location	NAHRC	
Weather Fertility Irrigation Pests Overall	5 5 5 5 5 5	

¹See introduction for description of ratings scales

Pumpkin yields were lower this year than in 2003 (Table 3). This was attributed to a low marketable fruit number per acre. The mean individual fruit weight for 2004 (12.26 pounds) and 2003 (12.77 pounds) is virtually the same. All varieties produced individual fruit weights below class size range. With the exception of 'Rocket' (lowest yields), the yields of all varieties were statistically similar. 'Autumn King' had the highest marketable yield. It produced relatively large fruit though few in number.

The handles of the fruit varied in length, diameter, and sturdiness. 'Sorcerer' produced large fruit with a deep orange color and long, sturdy handles and had an

Table 2. Seed Source,	Relative Earlin	ess, and Fruit Size
of Ooloof	a d. D. mandata Ma	utatia a

	of Selected Pumpkin varieties				
Variety	Type ¹	Seed	Maturity	Fruit wt.	
		source	(days)	(pounds)	
Appalachian	F1	Seminis	90	20-25	
Autumn King	F1	Siegers Seeds	105	> 25	
Gold Bullion	F1	Rupp Seeds	110	15-25	
Gold Medal	OP	Rupp Seeds	108	>25	
Howdy Doody	OP	Rupp Seeds	90	15-25	
Sorcerer	F1	Harris Moran	105	15-25	
Phantom	F1	Seminis	110	20-30	
Magic Lantern	F1	Harris Moran	115	15-25	
Merlin	F1	Harris Moran	115	15-25	
Racer	F1	Johnny's Seeds	98	15-25	
Rocket	F1	Johnny's Seeds	85	15-25	

¹Type: OP=open pollinated; F1=hybrid. — = not found, from seed catalogues.

above average fruit number per acre. The market standard 'Appalachian' had medium to large fruit with short, thick handles. 'Racer' produced the highest number of fruit (statistically similar to all except 'Merlin' and 'Gold Medal') but the mean individual fruit weight was a low 7.2 pounds.

Table 3. Performance of Selected						
Pumpkin Varieties						
Variety	Marketable	Marketable	Individual			
	yield	fuits	fruit weight			
	lbs/a	#/a	lb			
Autumn King	33,578	2,066	16.50			
Phantom	30,871	2,393	13.00			
Appalachian	30,214	2,175	13.70			
Sorcerer	29,286	2,429	11.98			
Magic Lantern	27,942	2,356	11.41			
Gold Bullion	27,525	2,066	13.52			
Gold Medal	25,382	1,486	16.84			
Howdy Doody	24,911	2,284	11.04			
Merlin	23,889	1,776	12.95			
Racer	20,185	2,719	7.20			
Rocket	15,482	2,320	6.76			
r2	0.26	0.33	0.61			
CV	37	24	23			
LSD	13,865	759	4.07			

Joe Kemble, Edgar Vinson, and Jason Burkett

An eggplant variety trial was conducted at the E.V. -Smith Research Center (EVSRC) in Shorter, Alabama (Tables 1 and 2).

Soils were fertilized according to the recommendations of the Auburn University Soil Testing Laboratory. Current recommendations for pest and weed control in vegetable production in Alabama may be found in 'IPM Commercial Vegetables: Insect, Disease, Nematode and Weed Control Recommendations' (Publication 2003IPM-2 from the Alabama Cooperative Extension System).

Eggplant transplants were set on plots that were 20 feet long and five feet wide on June 16. Plants were spaced two feet apart within a row. The experimental design was a randomized complete block with four replications.

Pre-plant fertilization consisted of preplant applications of 0-0-60 and ammonium nitrate at rates of 150 and 187 pounds per acre respectively. Beds were formed and fumigated with methyl bromide (67/33 formulation) at a rate of 400 pounds per acre. Prosol fertilizer (20-20-20) was injected twice weekly beginning July 17 through September 3.

Table 1. Ratings of the 2004Eggplant Variety Trial1				
Location EVSRC				
Weather Fertility Irrigation Pests Overall	5 5 5 5 5 5			

¹See introduction for description of ratings scales

Pest control consisted of dual applications of fungicide and insecticide once per week from July 17 through August 26.

Eggplants were harvest 14 times between August 6 and September 8 (Table 3).

In early season production, 'Calliope', a small variegated purple and white eggplant, had yields that were similar to the standard varieties, 'Black Bell', and 'Epic' and 'Dusky'. 'Green Giant' produced large, light green fruit. This variety produced yields that were significantly lower than 'Black Bell' and 'Epic'. Both

	Table 2. Seed Source, Earliness, and Disease Claims of Selected Lettuce Varieties					
Variety	Type ¹	Seed source	Color ²	Shape	Maturity (days)	Disease resistance/ tolerance ³
Black Bell	F1	Stokes	В	Oval, elongated	65	_
Calliope	F1	Johnny's Select	P,W	Oval, compact	64	_
Dusky	F1	Seminis	В	Teardrop	62	TMV
Epic	F1	Seminis	В	Teardrop	64	TOMV
Ghostbuster	F1	Harris	W	Cylindrical, long	80	_
Green Giant	F1	Johnny's Select	G	Teardrop	62	_
Ichiban	F1	Gurney's	В	Slender, elongated	58	_
Megal	F1	Vilmorin	В	Slender, elongated	60	CMV, TMV
Night Shadow	F1	Stokes	В	Teardrop	75	_
Vernal	F1	Stokes	В	Teardrop	70	CMV ,TMV
Zebra	F1	Johnny's Select	P,W	Teardrip	70	—

¹Type: F1=hybrid.

²Color: B=Black, G=Green, P= Purple, W = White.

³Disease resistance/tolerance: CMV = Cucumber Mosaic Virus; TMV = Tobacco Mosaic Virus; TOMV = Tomato Mosaic Virus.

— = not found; from seed catalogues.

'Black Bell' and 'Epic' continued to be the top performers for total production, having significantly higher yields than all other varieties.

Table 3. Performance of Selected Eggplant Varieties						
	Early	Early	Early	Early		
Variety	marketable	marketable	non-marketable	non-makretable		
	yield	number	weight	number		
	lbs/a	no/a	lbs/a	no/a		
Black Bell	1,213	5,438	194	870		
Epic	1,062	5,981	157	979		
Dusky	981	5,873	69	435		
Calliope	823	4,241	•	•		
Green Giant	717	3,915	267	1,305		
Megal	643	4,676	70	653		
Vernal	546	4,241	•	•		
Ghostbusters	316	2,066	117	435		
Zebra	268	1,523	•	•		
Night Shadow	246	1,305	120	435		
Ichiban	230	1,885	182	1,631		
r2	0.70	0.60	0.20	0.24		
CV	41	43	105	96		
LSD	426	2,619	262	1,473		
	Total	Total	Total	Total		
Variety	marketable	marketable	non-marketable	non-makretable		
	yield	number	weight	number		
	lbs/a	no/a	lbs/a	no/a		
Black Bell	7,579	26,861	1,946	7,286		
Epic	6,070	25,230	1,742	7,721		
Ghostbusters	4,881	20,119	827	3,371		
Vernal	4,664	25,991	884	4,024		
Dusky	4,578	19,793	908	3,806		
Green Giant	4,379	16,367	3,423	12,724		
Calliope	4,361	19,901	581	3,770		
Night Shadow	3,992	14,573	883	3,154		
Megal	3,671	21,098	1,265	7,939		
Ichiban	2,512	18,705	2,064	19,140		
Zebra	2,385	9,064	413	1,059		
r2	0.50	0.40	0.70	0.64		
CV	38	38	48	63		
LSD	2,407	10,949	955	6,216		

2004 Hot Pepper Trials Continue at Brewton

Joe Kemble, Edgar Vinson, Randy Akridge

Hot pepper varieties trials were conducted at the Brewton Agriculture Research Unit (BARU) in Brewton, Alabama (Tables 1 and 2).

Fertilization was applied according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Consult your county Extension agent for current recommendations for pest and weed control in vegetable production in Alabama.

Hot pepper transplants were set on 3- by 8foot row plots with a within-row spacing of 12 inches. Drip irrigation was used. Peppers were transplanted on June 3. Beds were covered in the experimental de-

Table 1. Ratings of the 2004Hot Pepper Variety Trial1				
Location	BARU			
Weather Fertility Irrigation Pests Overall	5 5 5 5 5			

¹ See introduction for description of ratings scales

sign was a randomized complete block with four replications.

Hot peppers were harvested on August 8, 16, 23, and 30 and September 7. The weight of 25 pods was also determined (Table 3).

Table 2. Seed Source, Fruit Characteristics, and Relative Earliness							
Variety	Type ¹	Seed source	Days to harvest	Pod shape	Color	RSR ²	Disease claims ³
			Anc	ho			
Tiburon Ancho San Martin Ancho 101	F1 F1 OP	Siegers Seminis Rupp	81 75 78	Tapered Tapered Tapered	G-R G-R G-R	1,000-3,000 — 1,000-1,500	
			Caye	nne			
Andy Cayar	F1 F1	Johnny's Select Seedway	65 63	Thin Thin	G-R G-R	_	TMV
Rupp Cayenne LS Mesilla TM 888 Thin Hot	OP F1 F1	Rupp Seminis Seedway	72 87 71	Thin Thin Thin	G-R G-R G-R	30,000-50,000 2,000-4,000 —	— PVY,TEV,TbP —
Jalapeño							
Ixtapa X3R Grande Mitla Tula	F1 F1 F1 F1	Seminis Seminis Seminis Seminis	75 75 72	Blunt point Blunt point Blunt point Blunt point	G-R G-R G-R G-R	4,000-6,000 4,000-6,000 4,000-5,000 4,000-6,000	BLS(1,2,3) PVY,TEV — TMV

¹Type: OP=open pollinated; F1=hybrid.

³Disease claims: BLS (1,2,3) = Bacterial Leaf Spot races 1, 2 and 3; G- R = Green fruit turning red; PVY=Potato Virus Y; TEV = Tobacco Etch Virus; TbP = Tobamo Virus; TMV= Tobacco Mosaic Virus.

— = not found; from seed catalogues.

²RSR = Relative Scoville Rating; the higher the rating, the hotter the variety.

Differences in yield were found among the three categories of hot pepper. The variety 'Ancho San Martin' had yields that were significantly higher than 'Tiburon' and 'Anch 101'.

There were no differences in the weight of 25 pods. Among the cayenne types, 'Andy', 'Cayar' and 'Mesilla' were statistically similar. The yields of these varieties were significantly higher than 'TM 888 Thin Hot' and 'Rupp Cayenne LS'. These two varieties also had the lowest weight per 25 pods. In the jalapeño category, the standard variety 'Mitla' was similar to 'Grande' but significantly higher than 'Ixtapa' and 'Tula'. Weights per 25 pods were statistically similar.

Table 3. Performance of Selected							
Jalapeño, A	Jalapeño, Ancho, and Cayenne Hot Peppers						
Total							
		marketable	25- pod				
Variety	Туре	weight	weight				
		lbs/a					
Ancho San Martin	Ancho	32,321	1.58				
Tiburon	Ancho	25,360	1.24				
Ancho 101	Ancho	17,356	1.12				
Andy	Cayenne	32,498	0.56				
Cayar	Cayenne	28,727	0.50				
Mesilla	Cayenne	27,075	1.00				
TM 888 Thin	Cayenne	20,800	0.24				
Rupp LS Cayenne	Cayenne	15,051	0.21				
Grande	Jalapeño	39,386	1.21				
Mitla	Jalapeño	35,320	1.04				
Ixtapa	Jalapeño	32,257	1.07				
Tula	Jalapeño	30,914	1.19				
r2		0.80	0.90				
CV		16	17				
LSD		6,285	1.11				

Results of the 2004 National Sweetpotato Collaborators' Trial

Joe Kemble, Edgar Vinson, and Arnold Caylor

National sweetpotato collaborators' trials were conducted at the North Alabama Horticulture Research Center (NAHRC) in Cullman, Alabama (Table 1.).

Sweetpotato seed roots from selected commercial varieties and breeding lines were planted in a heated bed at NAHRC on April 12 for slip production. Sweetpotato slips were planted on June 8. Varieties were replicated four times. Plots contained two rows that were 25 feet long and 3.5 feet wide. Within-row spacing was one foot.

Soils were fertilized according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Consult your county Extension agent for current recommendations for pest and weed control in vegetable production in Alabama.

Table 1. Ratings of the 2004 Sweetpotato Collaborators' Trial ¹				
Location	NAHRC			
Weather Fertility Irrigation Pests Overall	5 5 5 5 5			

¹See introduction for description of ratings scales

Fertilization consisted of 80 pounds N per acre, 184 pounds of P_0O_c per acre, and 156 pounds of K_0O per acre.

Sweetpotatoes were harvested on September 23. Roots were graded as US #1 (roots 2 to 3.5 inches in diameter, three to nine inches in length, well shaped and free of defects), canner (roots one to two inches in diameter, two to seven inches in length), jumbo (roots that

Table 2. Yield and Grade Distribution of Selected Sweetpotato Breeding Lines and Cultivars						
Variety	Total marketable	US#1 ¹ ——50 lb bushe	Canner ² els per acre	Jumbo ³	Percent US #1 ⁴	Cull⁵
Beauregard (B63-G1 LSU)	653	558	63	33	85	28
Beauregard (B94-14-G2)	715	561	117	36	79	19
L-99-35	149	109	31	10	67	14
NC98-608	700	575	109	16	82	23
r2 CV LSD	0.91 14 124	0.90 17 122	0.60 39 40	0.20 105 51	0.34 14 16	0.10 89 6

Average yields are given on a per acre basis.

¹US #1: Roots 2" to 3 1/2" diameter, length of 3" to 9", must be well shaped and free of defects.

²Canner: Roots 1" to 2" diameter, 2" to 7" in length.

³Jumbo: Roots that exceed the diameter, length and weight requirements of the above two grades, but are of marketable quality. ⁴Percent US #1: Calculated by dividing the weight of US #1's by the total marketable weight (Culls not included).

⁵Culls: Roots must be 1" or larger in diameter and so misshapen or unattractive that they could not fit as marketable roots in any of the above three grades.

exceed the diameter, length, and weight requirements of the US #1 grade, but that are of marketable quality), or cull (roots at least one inch in diameter but so misshapen or unattractive that they could not be classified as marketable roots). Marketable yield was calculated by adding the yields of the US #1, canner, and jumbo grades. Percent US #1 was calculated by dividing the yield of the US #1 grade by the marketable yield (Table 2).

Seed Sources

Abbot and Cobb, Inc.

Tech Rep: Russ Beckham 146 Old US Highway 84 West Boston, GA 31626 Fax: 229-498-2366 rbeckham@rose.net

Harris Seeds

P.O. Box 2296060 Saginow Dr.Rochester, NY 14692-2960To order: (800) 544-7938

Harris Moran Seed Co.

Tech. Rep: Brad Conrad Ph: (941) 543-7300 Fax: (941) 543-7003

Johnny's Select Seeds

Tech. Rep: Steve Woodward 955 Benton Ave Winslow, ME 04901 To order: (207) 437-4395 Email: info@johnnyseeds.com

Rogers/Syngenta

7500 Olson Memorial Hwy Golden Valley, MN 55427 Ph: (763) 593-7333 Fax: (763) 593-7218

Rupp Seeds

17919 County Raoad B Waseon, OH 43567 To order: (800) 700-1199

Sakata Seed America, Inc.

Tech Rep: Atlee Burpee P.O. Box 880 Morgan Hill, CA 95038 Ph: (610) 316-6063

Seedway

Tech Rep: Michael Everson 1225 Zeager Road Elizabethtown, PA 17022 To order: (800) 952-7333 Fax: (800) 645-2574 E-mail: info@seedway.com

Seminis Vegetable Seeds, Inc

Tech Rep: Rusty Autry 2221 North Park Ave. Tifton, GA 31796 Ph: (229) 386-0750 -Tifton Seed Distribution Center Tech Rep: Van Lindsey Ph: (912) 382-1815

Shamrock Seed Co., Inc.

To order: (408) 351-4443 3 Harris Place Salinas, CA 93901-4586 Ph: (800) 351-4443 Fax: (831) 771-1517

Siegers Seed Company

Tech Rep: Darren Deal 13031 Reflections Drive Holland, MI 49424 Fax: (800) 962-4999

Stokes Seeds Inc.

To order: (800) 396-9238 P.O. Box 548 Buffalo, NY 14240-0548 Fax: (888) 834-3334

Takii Seeds

301 Natividad Rd Salinas, CA 93906 Ph: (831) 443-4901 Fax: (831) 443-3976

Guidelines for Contributions to the Vegetable Variety Regional Bulletin

Vegetable variety evaluation and selection is an essential part of production horticulture. The vegetable variety regional bulletin is intended to report results of variety trials conducted by research institutions in the Southeast in a timely manner. Its intended audience includes growers, research/extension personnel, and members of the seed industry.

Timeliness and rapid turnaround are essential to better serve our audience. Hence, two bulletins are printed each year: one in November with results from spring crops, and another one in April or May with results from summer and fall crops. It is essential that trial results are available before variety decisions for the next growing season are made.

Here are a few useful guidelines to speed up the publications process for the next regional bulletin (spring 2005).

When: September 23, 2005

Deadline for spring 2005 variety trial report submissions.

What: Results pertaining to variety evaluation in a broad sense. This includes field performance, quality evaluation, and disease resistance. Here are a few tips:

- Follow the format used in the other regional bulletins.
- Include each author's complete mailing address, e-mail address, and phone number.
- Follow your own unit's internal review process. Contributions will be edited, but not formally reviewed.

How: Send a disk and hard copy to Edgar Vinson or Joe Kemble Department of Horticulture 101 Funchess Hall Auburn University, AL 36849-5408

> Or send e-mail to vinsoed@auburn.edu kembljm@auburn.edu

Alabama's Agricultural Experiment Station AUBURN UNIVERSITY

With an agricultural research unit in every major soil area, Auburn University serves the needs of field crop, livestock, forestry, and horticultural producers in each region in Alabama. Every citizen of the state has a stake in this research program, since any advantage from new and more economical ways of producing and handling farm products directly benefits the consuming public.

Research Unit Identification

* Main Agricultural Experiment Station, Auburn.

- Alabama A&M University.
- ☆ E. V. Smith Research Center, Shorter.
- 1. Tennessee Valley Research and Extension Center, Belle Mina. 8. Black Belt Research and Extension Center, Marion Junction.
- 2. Sand Mountain Research and Extension Center, Crossville.
- 3. North Alabama Horticulture Research Center, Cullman.
- 4. Upper Coastal Plain Agricultural Research Center, Winfield.
- 5. Chilton Research and Extension Center, Clanton,
- 6. Piedmont Substation, Camp Hill.
- 7. Prattville Agricultural Research Unit, Prattville.
- 9. Lower Coastal Plain Substation, Camden.
- 10. Monroeville Agricultural Research Unit, Monroeville.
- 11. Wiregrass Research and Extension Center, Headland.
- 12. Brewton Agricultural Research Unit, Brewton,
- 13. Ornamental Horticulture Research Center, Spring Hill.
- 14. Gulf Coast Research and Extension Center, Fairhope.