

USER'S GUIDI to a Multipurpose Forest Projection System For Southern Forests

Bulletin 604 January 1990 Alabama Agricultural Experiment Station Lowell T. Frobish, Director Auburn University Auburn University, Alabama

CONTENTS

Page

INTRODUCTION
FOR GEORGIA (GATWIGS)
Input
EXECUTING GATWIGS
SUMMARY
LITERATURE CITED
APPENDIX 1. FOREST TYPE DEFINITIONS
APPENDIX 2. SPECIES CODE-COMMERCIAL TREES
Yellow Pines
Other Softwoods
Soft Hardwoods
Hard Hardwoods
Miscellaneous Species

FIRST PRINTING 3M, JANUARY, 1990

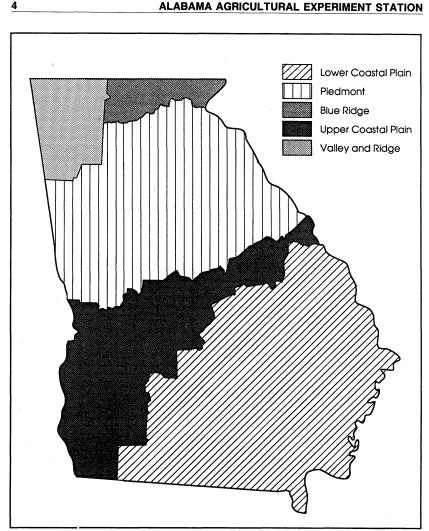
Information contained herein is available to all without regard to race, color, sex, or national origin.

USER'S GUIDE to a Multipurpose Forest Projection System for Southern Forests¹

ROGER K. BOLTON and RALPH S. MELDAHL²

INTRODUCTION

PPROXIMATELY 40 percent of the timberland in the United States is located in the South. This publication is a brief introduction and user's guide for a projection system based on data from the State of Georgia³. This system allows various management options to be explored on forestland, not only in Georgia but in similar adjoining areas in the South.


Georgia is the largest state east of the Mississippi River, with a total land area of 37.3 million acres. Of this total land area, 64 percent is classified as commercial forestland (7). These forests support a large forest industry and provide wildlife habitat, watershed protection, and a range of outdoor recreational opportunities. Within this resource, a prodigious amount of diversity occurs. For example, Georgia is often divided into five physiographic regions. The five physiographic regions, shown in figure 1, are the Lower Coastal Plain, the Upper Coastal Plain, the Piedmont, the Valley and Ridge, and the Blue Ridge Mountains (8). These regions are occupied by six major forest types (loblolly pine, shortleaf pine, slash pine, oak-pine, oak-hickory, oak-gum-cypress), a copious mixture of species, and a mixture of stand conditions.

Due to the complex structure of natural stands and the myriad conditions found within Georgia, a distance-independent, individual tree model was selected for the modeling methodology (5). In this

¹Project jointly funded by the Alabama Agricultural Experiment Station, Forest Resources System Institute (FORS), and Georgia Forestry Commission.

²Research Associate and Assistant Professor of Forestry.

^{&#}x27;Details about the projection system are reported in Alabama Agricultural Experiment Station Bulletin 603, "Design and Development of a Multipurpose Forest Projection System for Southern Forests."

4

FIG. 1. Physiographic regions of Georgia.

type of system, the growth and mortality of individual trees in a stand are projected into the future by using a set of equations. The data base to derive these equations consisted of the 1980 Forest Service FIA data of Georgia, from the Southeastern Forest Experiment Station. Models were developed from these data to predict live crown ratio, annual diameter increment, mortality, and bole length. Many of the approaches used in modeling were new and/or differed from previous projection systems. For example, as a means, of organizing the diversity of forest conditions, heavy use was made of cluster analysis. A more in-depth presentation of the modeling procedures may be found in Bolton and Meldahl (2). It is important that these procedures are reviewed before using the projection system, because many of the models were empirically derived and may not perform well outside the range of the data.

MULTIPURPOSE FOREST PROJECTION SYSTEM FOR GEORGIA (GATWIGS)

The growth and mortality models have been implemented into the TWIGS framework. TWIGS was originally developed by the U.S. Forest Service North Central Forest Experiment Station (1). This is a menu-driven program which allows the user to explore several silvicultural and economic alternatives. In its current version, this projection system is a PC-based program for IBM compatible machines with at least two floppy drives and 540K of memory.

Input

The data required to run this system are fairly straightforward and similar to that collected on a typical cruise. The table below is an example of a required input file (and is included as TREE.TXT on the data disk). This file may be created using any standard text editor (e.g., EDLIN, SPFPC). The file contains two types of records.

			AN EXAMPLE	PLOT					
J. D	oe Tract	S.W.1/4	1990	20	0		40	75.0	PIE
400		5.5	10.0		16.0				
491	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	5.7	10.0		10.0				
491		5.5	10.0		9.0				
110		7.1	10.0		28.0				
611		16.9	10.0		55.0				
611		7.4	10.0		25.0				
802 802		6.5	10.0		22.0				
802 802		4.3 6.1	10.0 10.0	1.	0.0 20.0				
802		14.3	10.0		36.0	<u>.</u>			
812		8.9	10.0		29.0				
812		5.8	10.0		17.0				1.1
812		8.9	10.0		30.0				
812		3.5	10.0		0.0				
820		8.3	10.0		26.0				
521		1.7	10.0		0.0				
552		7.6	10.0		20.0				
621		8.3	10.0		30.0				
131		10.5	10.0		45.0				
<u>131</u>		9.7	10.0		41.0				

The first type of record is the "header" or plot record. The fields are defined as:

Columns	Field
1-16	Property ID
18-25	Stand ID
27-30	Current year
32-36	Current stand age
40	Plantation status $(0 = no; 1 = yes)$
44-45	Tree count (total number of stems listed in the input file)
49-50	Forest type
52-55	Site index ⁴ (base age = 50)
57-59	Region

Forest type codes closely follow those used by Forest Survey and are further defined in Appendix 1. Region is a three-digit code representing the physiographic region. These are defined as:

LCP	=	Lower Coastal Plain
UCP	=	Upper Coastal Plain
PIE	=	Piedmont
VAL	=	Valley and Ridge
BLU	=	Blue Ridge Mountains

The second type of record is the tree record. The fields for this record are defined as:

Column	Field
1-3	Species code
12-16	Dbh
26-30	Expansion factor (trees/acre represented by the stem)
40-44	Bole length to a 4-inch d.o.b. (optional)

Species codes follow those used by Forest Survey, and are further defined in Appendix 2. Bole length is an optional entry.

EXECUTING GATWIGS

Once the input file is created, TWIGS is fairly simple to execute. GATWIGS is designed to run off either a hard disk or two floppy drives. This system is distributed on two diskettes. The first diskette is known as the EXE disk and the second as the DATA disk. If the user is operating off a hard disk, then both diskettes should simply be copied into a directory. To run GATWIGS on a dual floppy machine, place the EXE disk in drive A and the DATA disk in drive B. Now set the DOS prompt for drive A (A:/>) if using

^{&#}x27;Site index is a plot productivity value used for all species present.

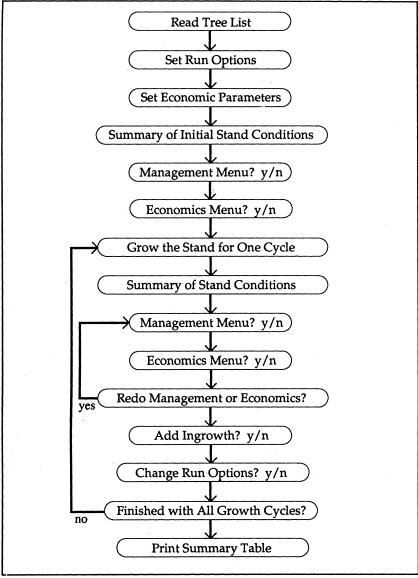


FIG. 2. Flowchart of a TWIGS projection (6).

the floppy drive method or for the appropriate directory (C:/GAT-WIGS>) if using a hard disk. Then simply type GATWIGS and hit return. TWIGS will then prompt the user for additional information. Figure 2 is a flow chart of a TWIGS program. Most op-

tions and menus are straightforward. For a more in-depth exeges is on TWIGS the user is referred to the description of the original TWIGS program or to the latest documentation on TWIGS (1,6).

It is important, due to the size of the output file, that when prompted for the location of the output file that it is assigned a location somewhere else than on the EXE disk. It is also important that DOS naming conventions are followed whenever such information is required. At most prompts, an example is given of the input required by TWIGS.

SUMMARY

After running TWIGS once the user will notice that many different options are available. These options should allow the user to explore myriad management strategies. The user is reminded that this projection system is based on a set of models, which have various assumptions. Information regarding the GATWIGS models and some of the known limitations is provided to the user at the start of each simulation. There are many reasons why these models may fail to accurately predict a given situation (4). Therefore, it is important that users familiarize themselves with how the models were constructed and think about what is input and output. For example, the system will allow the user to input a 30-inch dbh dogwood tree. The system will also grow the tree and calculate volumes. However, this tree is well outside the range of the data and any results should be suspect. Model validation is an on-going process. Due to the nature of the data used in deriving the models, this is an important process. It is also an involved process (3). Initial results suggest that overall the models adequately predict tree growth and mortality. Therefore, if used with some thought and caution, this projection system may prove to be a valuable tool.

8

LITERATURE CITED

- (1) BELCHER, D.M. 1982. TWIGS: The Woodsman's Ideal Growth Projection System. In: Microcomputers, a New Tool for Foresters. Proc. of a conf. sponsored by Purdue Univ. Dept. of Forestry and Natural Resources and the S.A.F. Systems Analysis and Inventory Working Groups. (Purdue University, West Lafayette, Ind., May 18-20, 1982.)
- (2) BOLTON, R.K. AND R.S. MELDAHL. 1990. Design and Development of the Multipurpose Forest Projection System for Southern Forests. Ala. Agr. Exp. Sta. Bull. No. 603.
- (3) BURK, T.E. 1986. Growth and Yield Model Validation: Have You Ever Met One That You Liked? Pages 35-39 *in:* Proceedings, Data Management Issues in Forestry. Forest Resource System Institute. Florence, Ala.
- (4) HEPP, T.E. 1987. The Shortcomings of Models. Compiler 5(4):9-12.
- (5) MELDAHL, R.S. 1986. Alternative Modeling Methodologies for Growth and Yield Projection Systems. Pages 27-31 *in:* Proceedings, Data Management Issues in Forestry. Forest Resource System Institute. Florence, Ala.
- (6) MINER, C.L., N.R. WALTERS, AND M.L. BELLI. 1988. A Guide to the TWIGS Program for the North Central United States. USDA For. Ser. N. Cen. For. Exp. Sta., St. Paul, Minn., Gen Tech Rep. NC-125.
- (7) TANSEY, J.B. 1983. Forest Statistics for Georgia, 1982. USDA For. Ser. S.E. For. Exp. Sta. Res. Bull. SE-69.
- (8) WALKER, L.C. AND H.F. PERKINS. 1958. Forest Soils and Silviculture in Georgia. Ga. For. Res. Rep. No. 4.

APPENDIX 1. FOREST TYPE DEFINITIONS

White Pine - Hemlock (Code 4)—Forests in which eastern white pine and hemlock, singly or in combination, comprise a majority of the stocking.

Loblolly Pine Plantation (Code 5)—Forests in which loblolly pine was artifically regenerated with acceptable survival and comprises a plurality of the stocking.

Shortleaf Pine Plantation (Code 6)—Forests in which shortleaf pine was artifically regenerated with acceptable survival and comprises a plurality of the stocking.

Longleaf Pine Plantation (Code 7)—Forests in which longleaf pine was artifically regenerated with acceptable survival and comprises a plurality of the stocking.

Longleaf Pine (Code 21)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which longleaf pine contributes the most stocking of the pines.

Slash Pine (Code 22)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which slash pine contributes the most stocking of the pines.

Loblolly Pine (Code 31)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which loblolly pine contributes the most stocking of the pines.

Shortleaf Pine (Code 32)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which shortleaf pine contributes the most stocking of the pines.

Virginia Pine (Code 33)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which virginia pine contributes the most stocking of the pines.

Redcedar (Code 35)—Forests in which redcedar comprises a plurality of the stocking.

Pond Pine (Code 36)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which pond pine contributes the most stocking of the pines.

Pitch Pine (Code 38)—Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which pitch pine contributes the most stocking of the pines.

Oak-Pine (Code 40)-Forests in which hardwoods (usually upland

oaks) comprise a plurality of the stocking, but in which pines comprise 25 to 50 percent of the stocking. (Common associates include gum, hickory, and yellow poplar.)

Oak-Hickory (Code 50)—Forests in which upland oaks or hickory, singly or in combination, comprise a plurality of the stocking, except where pines comprise 25 to 50 percent, in which case the stand would be classified oak-pine (Common associates include yellow-poplar, elm, maple, and black walnut.)

Chestnut Oak (Code 52)—Forests in which chestnut oak (Quercus prinus) comprises a plurality of the stocking.

Southern Scrub Oak (Code 57)—Forests in which blackjack, bluejack, turkey, dwarf post, and bear oak, singly or in combination, comprise a plurality of the stocking.

Oak-Gum-Cypress (Code 60)—Bottomland forests in which tupelo, blackgum, sweetgum, oaks, or southern cypress, singly or in combination, comprise a plurality of the stocking, except where pines comprise 25 to 50 percent, in which case the stand would be classified oak-pine (Common associates include cottonwood, willow, ash, elm, hackberry, and maple.)

Elm-Ash-Cottonwood (Code 70)—Forests in which elm, ash, or cottonwood, singly or in combination, comprise a plurality of the stocking (Common associates include willow, sycamore, beech, and maple.)

APPENDIX 2. SPECIES CODE - COMMERCIAL TREES

Yellow Pines

- 107 Sand pine
- Shortleaf pine 110
- Slash pine 111
- 115 Spruce pine
- 121 Longleaf pine
- Table-Mt. pine 123
- 126 Pitch pine
- Pond pine 128

- Loblolly pine 131
- Virginia pine 132

Pinus clausa Pinus echinata Pinus elliottii Pinus glabra Pinus palustris Pinus pungens Pinus rigida Pinus serotina Pinus taeda Pinus virginiana

Other Softwoods

Fraser fir	Abies fraseri
Atlantic white-cedar	Chamaecyparis thyoides
Eastern redcedar	Juniperus virginiana
Red spruce	Picea rubens
White pine	Pinus strobus
Baldcypress	Taxodium distichum var. distichum
Pondcypress	Taxodium distichum var. nutans
Northern white-cedar	Thuja occidentalis
Eastern hemlock	Tsuga canadensis
	Atlantic white-cedar Eastern redcedar Red spruce White pine Baldcypress Pondcypress Northern white-cedar

Soft Hardwoods

313	Boxelder	Acer negundo
316	Red maple	Acer rubrum
317	Silver maple	Acer saccharinum
330	Buckeye	Aesculus spp.
460	Hackberry	Celtis occidentalis
555	Loblolly-bay	Gordonia lasianthus
580	Silverbell (in mts.)	Halesia spp.
601	Butternut	Juglans cinerea
611	Sweetgum	Liquidambar styraciflua
621	Yellow-poplar	Liriodendron tulipifera
651	Cucumbertree	Magnolia acuminata
652	Magnolia	Magnolia spp.
653	Sweetbay	Magnolia virginiana
691	Water tupelo	Nyssa aquatica

ALABAMA AGRICULTURAL EXPERIMENT STATION

693 Blackgum (upland)
694 Blackgum (lowland)
731 American sycamore
740 Cottonwood
762 Black cherry
920 Willow

Elm

American basswood

Nyssa sylvatica Nyssa sylvatica Platanus occidentalis Populus spp. Prunus serotina Salix spp. Tilia americana Ulmus spp.

Hard Hardwoods

311	Florida maple	Acer barbatum
318	Sugar maple	Acer saccharum
370	Birch (except yellow)	Betula spp.
371	Yellow birch	Betula alleghaniensis
400	Hickory	Carya spp.
491	Flowering dogwood	Cornus florida
521	Persimmon (forest grown)	Diospyros virginiana
531	American beech	Fagus grandifolia
540	Ash	Fraxinus spp.
552	Honeylocust	Gleditsia triacanthos
591	American holly	Ilex opaca
602	Black walnut	Juglans nigra
680	Red mulberry	Morus rubra
802	White oak	Quercus alba
804	Swamp white oak	Quercus bicolor
806	Scarlet oak	Quercus coccinea
812	Southern red oak	Quercus falcata
813	Cherrybark oak	Quercus falcata var.
		pagodaefolia
817	Shingle oak	Quercus imbricaria
820	Laurel oak	Quercus laurifolia
822	Overcup oak	Quercus lyrata
823	Bur oak	Quercus macrocarpa
825	Swamp chestnut oak	Quercus michauxii
826	Chinkapin oak	Quercus muehlenbergii
827	Water oak	Quercus nigra
830	Pin oak	Quercus palustris
831	Willow oak	Quercus phellos
832	Chestnut oak	Quercus prinus
833	Northern red oak	Õuercus rubra
834	Shumard oak	Õuercus shumardii
		~

14

950

970

835	Post oak	Quercus stellata
837	Black oak	Quercus velutina
838	Live oak	Quercus virginiana
901	Black locust	Robinia pseudoacacia

Miscellaneous Species

310	Chalk maple	Acer saccharum var. leucoderme
315	Striped maple	Acer pensylvanicum
319	Mountain maple	Acer spicatum
341	Ailanthus	Ailanthus spp.
352	Serviceberry	Amelanchier spp.
391	Blue beech	Carpinus caroliniana
421	American chestnut	Castanea dentata
451	Catalpa	Catalpa spp.
471	Eastern redbud	Cercis canadensis
521	Persimmon (field grown)	Diospyros virginiana
548	American mt. ash	Pyrus americana
581	Carolina silverbell	2
	(except mts.)	Halesia carolina
641	Osage-orange	Maclura pomifera
660	Domestic fruit (apple etc.)	Malus spp.
661	Chinaberry	Melia azedarach
692	Ogeechee gum	Nyssa ogeche
701	Eastern hophornbeam	Ostrya virginiana
711	Sourwood	Oxydendrum arboreum
712	Royal paulownia	Paulownia tomentosa
721	Redbay	Persea borbonia
722	Planer-tree (water-elm)	Planera aquatica
760	Fire cherry	Prunus pensylvanica
807	Bluejack oak	Quercus incana
816	Bear oak	Quercus ilicifolia
819	Turkey oak	Quercus laevis
824	Blackjack oak	Quercus marilandica
840	Dwarf post oak	Quercus stellata spp.
841	Dwarf live oak	Quercus virginiana spp.
899	Other scrub oaks	Quercus spp.
931	Sassafras	Sassafras albidum
999	Other miscellaneous trees	

Alabama's Agricultural Experiment Station System AUBURN UNIVERSITY

With an agricultural research unit in every major soil area, Auburn University serves the needs of field crop, livestock, forestry, and horticultural producers in each region in Alabama. Every citizen of the State has a stake in this research program, since any advantage from new and more economical ways of producing and handling farm products directly benefits the consuming public.

Research Unit Identification

Main Agricultural Experiment Station, Auburn.

- 1. Tennessee Valley Substation, Belle Mina
- 2. Sand Mountain Substation, Crossville.
- 3. North Alabama Horticulture Substation, Cullman.
- 4. Upper Coastal Plain Substation, Winfield.
- 5. Forestry Unit, Fayette County.
- 6. Chilton Area Horticulture Substation, Clanton.
- 7. Forestry Unit, Coosa County.
- 8. Piedmont Substation, Camp Hill.
- 9. Plant Breeding Unit, Tallassee.
- 10. Forestry Unit, Autauga County.
- 11. Prattville Experiment Field, Prattville.
- 12. Black Belt Substation, Marion Junction.
- 13. The Turnipseed-Ikenberry Place, Union Springs.
- 14. Lower Coastal Plain Substation, Camden.
- 15. Forestry Unit, Barbour County.
- 16. Monroeville Experiment Field, Monroeville.
- 17. Wiregrass Substation, Headland.
- 18. Brewton Experiment Field, Brewton.
- 19. Solon Dixon Forestry Education Center, Covington and Escambia counties.
- 20. Ornamental Horticulture Substation, Spring Hill.
- 21. Gulf Coast Substation, Fairhope.