1.r +ace 7 Design and

Development

OF A
Multipurpose

Forest Projection

 SYSTEM FOR SOUTHERN FORESTS
Bulletin 603

January 1990
Alabama Agricultural Experiment Station Lowell T. Frobish, Director
Auburn University
Auburn University, Alabama

CONTENTS

Page
InTRODUCTION 3
Data 5
Methods 6
Cluster Analysis 7
Crown Ratio 8
DIAMETER Increment 9
Bole Length 10
SURVIVAL/MORTALITY 11
Twigs 12
Volume Equations 12
Conclusions and Recommendations 13
Acknowledgments 14
Literature Cited 15
Appendix 1. Relationship Among Site Class, Age, and Height 17
Appendix 2. List of Counties by Physiographic Regions As Used in Gatwigs 19
Appendix 3. Species Groups, Clusters, and Models 21
Appendix 4. Volume Equations 43
Appendix 5. Species Code, Commercial Trees 47
Appendix 6. Forest Type Definitions 50
FIRST PRINȚING 3M, JANUARy 1990

Information contained herein is available to all without regard to race, color, sex, or national origin.

Design and Development of a Multipurpose Forest Projection System for Southern Forests

ROGER K. BOLTON and RALPH S. MELDAHL ${ }^{2}$

S

INTRODUCTION

IMILARITIES in physiographic regions and forestry land use exist among states in the South. Therefore, data about forest growth processes from one state may be applicable to similar areas in other states of the region. Data from Georgia were used in development of the forest growth projection system reported herein, but the system should be applicable to similar physiographic areas in Alabama and other Southern States.

Georgia has a total land area of $\mathbf{3 7 . 3}$ million acres, of which 64 percent is classified as commercial forestland (11). Within Georgia, five physiographic regions exist, as shown by the accompanying map: Lower Coastal Plain, Upper Coastal Plain, Piedmont, Ridge and Valley, and Blue Ridge. These regions are occupied by six major forest types and a variety of tree species. Due to the size and diversity of the forest resource found within the State, the development of growth and mortality models for Georgia was formidable. When developing models, this size and diversity had to be considered. Thus, a large dataset was required to model the numerous conditions represented.

This report documents the modeling process used to derive a forest growth projection system for Georgia. This system is an individual tree distance independent simulation package for predicting tree and stand growth (7). Models were developed to predict live crown ratio, annual diameter increment, bole length, and mortality. These models

[^0]

Physiographic regions of Georgia.
were then implemented into the TWIGS 2.0 framework (3). Only the major results of these efforts are presented. If more information is desired, refer to Bolton and Meldahl (2).

The development of growth and mortality models is an ongoing process. With each new model, many different statistical techniques were investigated to insure that the growth processes were adequately modeled. In addition, several new techniques were developed and utilized in the modeling process.

DATA

The data for this study were obtained from the U.S. Forest Service Renewable Resources Evaluation Project. The data were from the Forest Survey of Georgia and were collected by the Southeastern Forest Experiment Station over a 3-year period beginning in 1980. In this survey, plots were systematically located on a 3 -mile grid with a random start in each county of the State. These plots were based on a 10 -point cluster design, with a distance of 70 feet between points. On commercial forest land, timber volume recordings were made on only three of the points. On these points, a fixed and a variable radius plot were established. The variable radius plots were used for all trees greater than or equal to 5 inches dbh, and were based on a basal area factor of 37.5 . The fixed area plots were used for all trees smaller than 5 inches dbh and were based on a radius of 6.8 feet. For more detailed information on the Survey, please refer to Tansey (11).

Forest Survey collects a multitude of information. As with most large sets of data, considerable time was spent examining the data and understanding variable definitions. For the purposes of modeling growth, some survey data variables are defined in ways which prohibit their use or make them difficult to use in analyses of growth. In addition, two other problems are inherent in using Survey data: Stand history is never completely known, and the sample design used was not optimal for modeling growth. However, these weaknesses in the data were not severe enough to preclude their use, and survey data provide a reasonable representation of current forest lands in Georgia. Furthermore, no other data have been found which cover the numerous growing conditions found throughout the State.

Competition variables are an integral part of a distanceindependent projection system. They consist of such variables as basal area larger, trees per acre larger, number of trees per acre, and basal area per acre. The competition variable basal area larger is defined as the amount of basal area per acre greater than or equal to the basal area of the current tree. Similarly, trees per acre larger is defined as the number of trees per acre that are greater than or equal to the current tree. During the 10 -year span that these measurements covered, many trees were cut, died, or grew on to the plot. Competition variables were thus needed that would measure the effect of these trees leaving and entering the plot. Therefore, for the purposes of modeling, those trees which were ongrowth/ingrowth $1 / 2$ of their time 1 value was contributed to the time 2 com-
petition variables. Likewise, those trees which died or were cut were allowed to contribute $1 / 2$ of their time 1 values to their time 2 competition variables. For example, if a tree died, then half of what that stem represents in basal area/acre at the initial measurement (time 1) was figured into the competition variables (i.e. basal area larger) for the second remeasurement period (time 2).

One of the more important variables used in growth modeling is some measure of site quality. Unfortunately, site index is not directly collected by Forest Survey. Instead a site is placed into site classes, based on the potential yield of that site. This is calculated by measuring the total height and age of a dominant tree which represents the sample location. Site class is then determined by reading the appropriate graph, Appendix 1. This site class can be converted to a site index figure using the table in Appendix 1. This was not a very accurate way to measure site index, but necessary for using these data. The paucity of information dealing with natural stands in the Southeast leaves few alternatives to this approach.

Physiographic regions were based on maps presented by Walker and Perkins (15), and which are currently being used by the Georgia Forestry Commission. Because the most detailed location variable within these data was county, physiographic regions were broken down according to counties. A listing of counties assigned to regions for the purposes of modeling is presented in Appendix 2.

METHODS

Four different sets of models for individual trees were developed to predict tree growth. Models were developed to predict crown ratio, annual diameter increment, bole length, and mortality. Four assumptions on tree growth were adhered to in the development of the methodology for deriving these models. First, species grow differently on the same site, e.g., loblolly pine versus sweetgum on the same site. Second, individual species may grow differently in the different physiographic regions of Georgia, e.g., loblolly pine in the Ridge and Valley versus loblolly pine in the Lower Coastal Plain, given identical stand conditions (age, site, density, etc.). Next, an individual tree may grow differently in different forest types, e.g., loblolly pine in the loblolly pine forest type versus loblolly pine in the oak-pine forest type, given identical stand conditions (age, site, density, etc.). Finally, species could be separated into three major divisions: pines, oaks, and non-oaks. Any of these assump-
tions may be argued; however, it was felt that they provide a reasonable representation of tree and stand growth.

Imposing the above assumptions on the data resulted in a rather large four dimensional matrix [physiographic region (5 regions), forest type (18 types), species division (3 divisions), and species (> 75 species)]. It was not desirable or practical to develop models for all cells within this matrix. Therefore, a clustering analysis was developed to shrink this matrix. This clustering algorithm is a heuristic attempt to group like cells of the large matrix together.

Next, regression analysis was used to derive a mathematical model for the characteristic being modeled (crown, diameter increment, bole length, mortality). This process first involved running a stepwise regression procedure to select variables for possible inclusion in the model for the aspect of growth being modeled. Then through repeated efforts to reduce the residual sum of squares and from examination of plots of residuals, a model form was selected for each major species division of the data (pines, oaks, non-oaks). Because cluster analysis also separates unlike groups, model forms can vary for clusters within each separation.

CLUSTER ANALYSIS

The goal of cluster analysis is to combine similar groups and separate those which are dissimilar. Thus, for the characteristic of interest, the elements within a cluster should be more similar to each other than they are to elements of another cluster. Use of cluster analysis for grouping species was described by Meldahl et al. (8). For more discussion on the principles of cluster analysis, please refer to Everitt (6) and/or Turner (12).

This clustering process was conducted for each model and species division. It starts by identifying the smallest feasible cell of the matrix, or species groups (SP__G). A SP__G contained at least 30 observations and/or exhibited a good distribution of the variable being modeled. These groupings were considered the smallest possible units in the clustering process. The reductions were rather arbitrary, but were based on keeping a species within similar forest types (see Appendix 6 for forest type definitions) within physiographic regions.

The first step in this reduction was to find species within the five different physiographic regions which had enough observations
within a forest type to be considered a separate SP__G. Next, within a physiographic region, the pine forest types (F _TYPE < 40), the upland oak forest types ($40<=\mathrm{F}$ __TYPE $=>50$), or the hardwood forest types (F _TYPE >50) were grouped together. When these groupings were not possible, either all the non-pine forest types (F__TYPE > 40) were grouped together, all forest types were grouped together, or physiographic regions were combined. These species groupings attempted to combine forest types which exhibited similar growth patterns.

The procedure used to group SP__G's into clusters was a fourpart process:

1. Stepwise regression, plotting of variables, a literature search, and "trial and error"' were used to select variables which exhibited a strong linear relationship with the function (crown class, diameter increment, bole length, or mortality) being modeled. For each of the SP__G's, this simple linear model is fitted. The regression coefficients (B_{0}, B_{1}) for each of these models are then standardized and entered into the clustering algorithm.
2. Cluster analysis of SP__G's into 15, 10, and 5 clusters was then performed using the clustering algorithm from Proc FASTCLUS (10). The simple linear relationship which produces the coefficients which minimized the mean square error was then chosen as the "clustering function."
3. Using a graph of the cubic clustering criterion, a graph of the clusters, and through some "trial and error," an "optimal" number of clusters was obtained.
4. Final adjustments were then made to insure SP__G's were intuitively correct, e.g., cedar is not assigned to the same cluster as loblolly pine.

CROWN RATIO

Crown ratio is strongly correlated with stand density, competition, and tree vigor. Therefore, it is an important variable in predicting tree growth. Southeastern Forest Survey defines crown ratio as "the percent of total tree height that supports green, live foliage that is effectively contributing to tree growth" (12). This was measured for all live trees using 10 crown ratio classes, with each class representing different percents of live crown. These crown ratio classes were treated as "pseudo-continuous" variables. This was done by assigning the crown ratio (CROWN__R) to be the midpoint of the crown ratio class. Since CROWN__R only existed for
trees at the second measurement, two sets of models were developed. One set predicted CROWN__R in the future as a function of initial conditions and the other predicted CROWN__R as a function of the current conditions. The first set of models was used in the prediction of growth and mortality. The latter was necessary for the prediction of bole length.

Clustering of species groups was done for the three major groups (pines, oaks, non-oaks) by the methodology presented previously. Crown ratio was viewed as being very species specific. Therefore, the primary goal in deriving SP__G's was to group a species together and avoid clumping of different species as much as possible. Final clusters were based on the relationship of CROWN__R $=f($ annual diameter increment). The 'optimal'" number of clusters was found to be 8 for pines, 13 for oaks, and 21 for the non-oaks. Multiple linear regression analysis was then used to predict CROWN__R. Clusters and models may be found in Appendix 3.

DIAMETER INCREMENT

In most tree simulation packages, basal area increment or diameter increment is typically used as the basic measure of growth. West (16) showed that little difference existed between the two types of models. Since diameter growth was the main focus of interest, more flexibility and versatility were foreseen in developing a diameter increment model. Efforts were therefore directed toward developing annual diameter increment (DINC) models.

The clustering technique used for diameter increment followed that mentioned previously. However, in assigning SP__G's, more attention was given to separating species by region. The following variables along with the "optimal" number of clusters were used to model DINC.

Group		Function
Pine	DINC $=\ln ($ predicted CROWN__R	12
Oak	DINC $=\operatorname{sqrt}$ (trees/acre larger)	23
Non-oak	DINC $=\ln (\mathrm{dbh})$	18

These final clusters may be found in Appendix 3.
Initial attempts at modeling DINC involved the use of non-linear regression models similar to those developed in the Lake States for STEMS (13). Such models are intellectually appealing. However, this approach did not produce satisfying results. Therefore, models
for each cluster were constructed by simply using multiple linear regression.

Next, an iterative method of fitting a power transformation to DINC was used to improve these initial models. This approach to fitting a transformation follows that suggested by Draper and Smith (5). The power transformation used was:

If lambda $=0$ then $\mathrm{W}=\ln ($ DINC)
else $\mathrm{W}=((\mathrm{DINC} * *$ lambda) -1.0$) / \mathrm{lambda}$
This transformation assumes that DINC >0. Within each group (pine, oak, non-oak), several clusters were identified for which transformations on the previously derived models had a marked impact on the analysis of the residuals. After comparing the maximum lambda value and its corresponding confidence interval for these select clusters, an acceptable value was chosen for lambda. The regressions were then estimated again using this value for lambda to calculate the power transformation. In all but a few cases, gains of 1-10 percent were noticed in the r-square. Furthermore, the analysis of the residuals showed marked improvement in every regression. The models, coefficients, and transformations for the final models are given in Appendix 3.

BOLE LENGTH

Equations were needed to predict some form of tree height, for use in calculating volumes. The preferred approach would have been to develop a height increment or bole increment equation, similar to that of DINC. However, the only measure of height in the data was bole length (BOLE) of trees at time 2 which had a dbh > = 5 inches. The Southeastern Forest Survey defined BOLE as "the distance on the main stem from a 1 -foot stump to a 4 -inch diameter outside bark." This definition set restrictions on the volume equations used in TWIGS.

The procedure used to develop the bole length models was the same as those used for DINC and CROWN__R. The cluster analysis resulted in clustering on the following equations and number of clusters:

Group	Function	Optimal no.
Pine	BOLE $=($ site index*dbh $) / 100.0$	14
Oak	BOLE $=$ site index*dbh	13
Non-oak	BOLE $=$ dbh	20

Regression analysis was used to derive equations to predict BOLE as a function of current growing conditions. The resulting clusters, equations, and coefficients may be found in Appendix 3.

SURVIVAL/MORTALITY

Mortality is one of the most difficult tree characteristics to predict. The only aspect of mortality which these data could be used to model was natural mortality. Therefore, plots which exhibited heavy mortality due to infestations of insects, disease, or fire were identified and deleted. Additionally, the nature of survey data is such that it is not known when in the remeasurement period a tree died. This inadequacy in the data severely limited the scope of the analysis.

The clustering technique used for mortality differed from that used in the previous models. This technique was based on the principle that greater mortality is anticipated for trees which grow slowly than for trees which are growing vigorously. Therefore, vigor was defined by the predicted annual diameter increment, or PDINC. In deriving SP_G's upon which to perform cluster analysis, efforts were then made to group species in a region which had a distribution of dead trees across the range of PDINC. This follows recommendations by Buchman et al. (4). In order to group species further, they were placed in the following categories:

$$
\begin{aligned}
\text { RO (red oaks) }-\mathrm{SP}= & 806,812,813,817,820,827,828, \\
& 830,831,833,834,837,838 .
\end{aligned}
$$

WO (white oaks) - $\mathrm{SP}=802,822,823,832,835$
RS (scrub oaks) - SP = 807, 819, 824, 825, 840, 841, 899.
SOFT (soft hardwoods) - $\mathrm{SP}=221,222,313,316,460555$, 580, 611, 621, 651, 652, 653, 691, 693, 694, 721, 731, 740, 762, 920, 950, 970.
HARD (hard hardwoods) - $\mathrm{SP}=311,318,370,400,491$, 531, 540, 552, 591, 602, 680, 901.

Also, due to the enormous number of small trees which existed in the mortality dataset, only trees with a dbh > $=5.0$ inches were used in deriving SP__G's and in the cluster analysis. Cluster analysis was then performed on the results of non-linear regression, by max-
imum likelihood method, to estimate a logistic function weighted by the initial dbh. Each group (pine, oak, non-oak) used coefficients for the function mortality $=f($ trees per acre larger) on which to cluster. The final number of clusters was selected by examining the graphical results of the cluster analysis and by minimizing the mean square error.

Logistic regression was then used to derive equations which predict the probability of survival. Initial attempts at modeling mortality utilized the full range of the data. However, the best results came from dividing the data into trees with dbh's $>=5.0$ inches and trees with dbh's < 5.0 inches. The clusters, equations, and coefficients may be found in Appendix 3.

TWIGS

The growth and mortality models have been implemented into the TWIGS 2.0 framework. TWIGS was originally developed by the U.S. Forest Service North Central Forest Experiment Station (1). It is a menu driven program which allows the user to explore several silvicultural and economic alternatives. The program is designed for IBM PC's and compatible machines. Little was changed in this program during model implementation. For more information on running this version of GATWIGS, refer to Bolton and Meldahl (3), and for a more detailed description of TWIGS see Miner et al. (9).

VOLUME EQUATIONS

Volume equations which represent the forest of Georgia were an essential requirement of the projection system. However, a scarcity of volume information, especially for southern pines, and the limitation of predicting bole length severely restricted the selection and implementation of volume equations into TWIGS.

In GATWIGS, volumes are calculated for the stem and product for all trees with a dbh > = 5 inches. The stem volume is measured by green weight of the bole, including bark, to a 4 -inch top (d.o.b.). Volumes for sawtimber and pulpwood are also estimated. Sawtimber is defined as any stem with a bole length > $=16$ feet, and for pines $\mathrm{adbh}>=9$ inches, or for hardwoods a dbh > $=11$ inches. Volume is estimated for sawtimber in cubic feet and board feet. Board foot volumes are calculated by the Scribner log rule for pines and by the Doyle log rule for hardwoods. Pulpwood is defined as any stem
that does not meet the requirements for sawtimber. It is measured in cubic feet and in cords. Cubic foot volumes for both products are only predicted for solid wood.

Attempts were made to use the most recent and complete volume information for each species. Selection of a volume equation proceeded with the following steps until available equations were found in the literature.

1. If an equation existed for that species in that physiographic region which calculated volume $=\mathrm{f}$ (dbh, bole).
2. If an equation existed for that species in an adjacent physiographic region which calculated volume $=f(\mathrm{dbh}$, bole $)$.
3. If an equation existed for that species in Georgia which calculated volume $=f(\mathrm{dbh}$, bole $)$.
4. If an equation existed for that species which calculated volume $=\mathrm{f}(\mathrm{dbh}$, total height). Where total height is predicted using unpublished Forest Survey equations. ${ }^{3}$
5. A miscellaneous category for that particular physiographic region. The equations finally selected and implemented into TWIGS are detailed further in Appendix 4.

CONCLUSIONS AND RECOMMENDATIONS

Georgia contains a large land base and a diverse forest resource. This diversity made the modeling of forest growth a complicated task. To capture and control this diversity, cluster analysis was used frequently in the modeling process. Four sets of models were calibrated to predict growth: crown ratio, diameter increment, bole length, and mortality. In deriving these equations, statistical techniques such as multiple linear regression, non-linear regression, power transformations, and logistic regression were used. These models will generally predict growth and mortality on the "average" very well. However, the forest ecosystem is a very complex system that is difficult to mathematically model. Therefore, these models have limits and may at times appear to behave illogically. At this time, these limits have not been fully investigated or defined. Users should be careful with the inputs to the model, and use their forestry background to assess the final results. Properly used, these models should allow many different aspects of forest growth and management to be investigated and studied.

[^1]
ACKNOWLEDGMENTS

Many people assisted in the development of this projection system. However, several individuals have made major contributions. Marian Eriksson developed much of the theory and methodology of the clustering analysis; and Chuck Warlick developed many of the programs used in data manipulation and variable selection. Mike Watson and Joseph Yu spent many hours making the needed computer programming modifications to TWIGS. Appreciation is also expressed to the Georgia Forestry Commission and Forest Resource Systems Institute for their funding and support of this project.

LITERATURE CITED

(1) Belcher, D.M. 1982. TWIGS: The Woodsman's Ideal Growth Projection System. In: Microcomputers, a New Tool for Foresters. Proc. of a conf. sponsored by Purdue Univ. Dept. of Forestry and Natural Resources and the S.A.F. Systems Analysis and Inventory Working Groups. (Purdue University, West Lafayette, Ind., May 18-20, 1982.)
(2) Bolton, R.K and R.S. Meldahl. 1986. A Multipurpose Forest Projection System for Southern Forests. Final Report for Georgia Forestry Commission Cooperative Agreement.
(3) Fort Pe. 1990. User's Guide to a Multipurpose Forest Projection System for Southern Forests. Ala. Agr. Exp. Sta. Bull. 604.
(4) Buchman, R.G., S.P. Pederson, and N.R. Walters. 1983. A Tree Survival Model with Applications to Species of the Great Lakes Region. Can. J. For. Res. 13:601-608.
(5) Draper, N.R. and H. Smith. 1981. Applied Regression Analysis. 2nd edition. John Wiley and Sons, New York, N.Y. pp. 225-241.
(6) Everitt, B. 1980. Cluster Analysis. 2nd edition. Halstead Press, New York, N.Y.
(7) Meldahl, R.S. 1986. Alternative Modeling Methodologies for Growth and Yield Projection Systems. In: Proceedings of a Computer Conference and Third Meeting of the Forest Resource Systems Institute, April 7-9, 1986, Atlanta, Ga. Forest Resource System Institute. Florence, Ala. pp. 35-39.
(8) —, M. Erissson, and C.E. Thomas. 1984. A Method for Grouping Species-Forest Type Combinations for the Development of Growth Models for Mixed Species Stands. In: Proceedings, Third Biennial Southern Silvicultural Research Conference. (E. Shoulders, Ed.) USDA Gen. Tech. Rep. SO-54. p. 422-442.
(9) Miner, C.L., N.R. Walters, and M.L. Belli. 1988. A Guide to the TWIGS Program for the North Central United States. USDA For. Ser. N. Cen. For. Exp. Sta., St. Paul, Minn., Gen Tech Rep. NC-125.
(10) SAS Institute Inc. 1982. SAS User's Guide: Statistics. SAS Institute Inc., Cary, N.C. pp. 433-447.
(11) Tansey, J.B. 1983. Forest Statistics for Georgia, 1982. USDA For. Ser. S.E. For. Exp. Sta. Res. Bull. SE-69.
(12) Turner, B.J. 1974. Applications of Cluster Analysis in Natural Resources Research. For. Sci. 20:343-349.
(13) U. S. Department of Agriculture. 1979. A Generalized Forest Growth Projection System Applied to the Lake States Region. USDA For. Ser. Gen. Tech. Rep. NC-49.
(14) - 1980. Field Instructions for Georgia. Renewable Resources Evaluation Project S.E. For. Exp. Sta.
(15) Walker, L.C. and H.F. Perkins. 1958. Forest Soils and Silviculture in Georgia. Ga. For. Res. Rep. No. 4.
(16) West, P.W. 1980. Use of Diameter Increment and Basal Area Increment in Tree Growth Studies. Can. J. For. Res. 10:71-77.

APPENDIX 1. RELATIONSHIP AMONG SITE CLASS, AGE, AND HEIGHT

Table 1. Relationship Between Site Class and Site Index'

Species	Site index range ${ }^{2}$, by site class				
	1	2	3	4	5
White pine	$74+$	58-73	44-57	35-43	34 -
Longleaf pine	. $123+$	106-122	89-105	68-88	67 -
Slash pine	$103+$	93-102	80-92	62-79	61 -
Loblolly pine	$110+$	95-109	80-94	60-79	59 -
Shortleaf pine	104+	86-103	72-85	54-71	53 -
Virginia pine	$79+$	74-78	67-73	57-66	56 -
Pond pine.	$133+$	118-132	93-117	66-92	65 -
Sweetgum	---	$119+$	90-118	75-89	75 -
Yellow-poplar	$135+$	108-134	87-107	68-86	67 -
Mixed oaks....	.128+	109-127	89-108	60-88	59 -

'Personal communication, July 1986, J.P. McClure, FIA, Southeast Forest Experiment Station, Asheville, North Carolina, 28804.
${ }^{2}$ Height in feet at age 50 .

Site class based on culmination of mean annual growth (14).

APPENDIX 2. LIST OF COUNTIES BY PHYSIOGRAPHIC REGIONS AS USED IN GATWIGS

Blue Ridge

Fannin Gilmer

Appling
Atkinson
Bacon
Ben Hill
Berrien
Brantley
Brooks
Bryan
Bulloch
Burke
Camden
Candler
Charlton
Chatman
Clinch
Coffee
Colquitt
Rabun Union
Towns

Lower Coastal Plain

Cook
Dodge
Echols
Effingham
Emanuel
Evans
Glynn
Grady
Irwin
Jeff Davis
Jenkins
Johnson
Lanier
Laurens
Liberty
Long
Lowndes

McIntosh
Montgomery
Pierce
Screven
Tattnall
Telfair
Thomas
Tift
Toombes
Treutlen
Turner
Ware
Wayne
Wheeler
Wilcox
Worth

Piedmont
Baldwin
Banks
Barrow
Butts
Carroll
Cherokee
Clarke
Clayton
Cobb
Columbia
Coweta
Dawson
Dekalb
Douglas
Elbert
Fayette
Forsyth
Franklin
Fulton
Greene

Upper Coastal Plain

Baker	Houston Bibb	Richmond Bleckley
Jefferson	Schley	
Calhoun	Lee	Seminole
Chattahoochee	Macon	Stewart
Clay	Marion	Sumter
Crawford	Miller	Taylor
Crisp	Mitchell	Terrell
Decatur	Muscogee	Twiggs
Dooly	Peach	Washington
Dougherty	Pulaski	Webster
Early	Quitman	Wilkerson
Glascock	Randolph	
Bartow	Ridge and Valley	
Catoosa	Floyd	Polk
Chatooga	Gordon	Walker
Dade	Murray	Whitfield

APPENDIX 3. SPECIES GROUPS, CLUSTERS, AND MODELS

Species groups (SP__G) were assigned names based on a three part naming convention. The first part of the name identifies the physiographic region, the second part the species, and the third part the forest type. A typical SP__G name is then L611F60. The first character(s) of a SP__G name represents one of the following regions:
$\mathrm{L}=$ Lower Coastal Plain
$\mathrm{U}=$ Upper Coastal Plain
$\mathrm{P}=$ Piedmont
$\mathrm{V}=$ Ridge and Valley
$\mathrm{B}=$ Blue Ridge
$\mathrm{A}=$ all regions

All but the last code may be combined to represent several regions. The next 3 digits are simply the Forest Service's species codes, Appendix 5. The rest of the SP__G name represents the forest type by one of the following codes:

$$
\begin{aligned}
\text { FXX } & =\text { forest type XX, } \\
& \text { where XX is forest type (Appendix } 6) \\
A= & \text { all forest types } \\
\mathrm{OP}= & \text { oak - pine forest types }(\mathrm{F} \text { _-TYPE }<=50) \\
\mathrm{H}= & \text { hardwood forest types }\left(\mathrm{F} _ \text {TYPE }>50\right) \\
\mathrm{O}= & \text { oak forest types }(\mathrm{F} \text { _TYPE }=40 \text { or } 50) \\
\mathrm{PH}= & \text { mixed forest types } \\
\mathrm{M}= & \text { miscellaneous, all forest types excluding those } \\
& \text { assigned to other groups }
\end{aligned}
$$

All species not assigned to a SP__G are placed into a category called OTHER. Therefore, the SP__G name L611F60 represents $\mathrm{sp}=611$ (sweetgum) found in the Lower Coastal Plain, and located in Forest Type $=60$ (oak-gum-cypress).

The following is a listing of the variables and their computer symbols, which are used throughout the appendices.

BAL_T1	basal area larger - time 1
BAL_T2	basal area larger - time 2
DBHT1	dbh - time 1
dbh - time 2	
DBHT2	dredicted live crown
PLCR	prede SITE
site index	
STAND_A	stand age - time 1
STAND_AT2	stand age - time 2
TAL_T1	trees/acre larger - time 1
TAL_T2	trees/acre larger - time 2
TO_BA1	total basal area - time 1
TO_BA2	total basal area - time 2
TO_TA1	total number of trees/acre - time 1
TO_TA2	total number of trees/acre - time 2

Table 1. Crown Ratio Clusters

Pine.			Oak		Non-oak	
1.	$\begin{aligned} & \text { B110A } \\ & \text { A121A } \end{aligned}$		$\begin{aligned} & \text { P832A } \\ & \text { V832A } \end{aligned}$	V833A	AMAGA ${ }^{1}$ VLMAPELA ${ }^{2}$	
2.	$\begin{aligned} & \mathrm{B132A} \\ & \mathrm{P} 110 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \text { B832A }^{\text {BVSREDA }} \\ & \text { PU806A } \end{aligned}$	$\begin{aligned} & \text { V837A } \\ & \text { V806A } \end{aligned}$	B400A AHACKA ${ }^{4}$ P694A	$\begin{aligned} & \text { U691A } \\ & \text { V611A } \end{aligned}$
3.	$\begin{aligned} & \text { L131A } \\ & \text { P131A } \\ & \text { P131P1 } \end{aligned}$	$\begin{aligned} & \text { U131A } \\ & \text { U111A } \\ & \text { V131A } \end{aligned}$	$\begin{aligned} & \text { L835A } \\ & \text { PVSCRUBA } \\ & \text { A831A } \end{aligned}$		A531A	
4.	$\begin{aligned} & \text { L131P1 } \\ & \text { U110A } \end{aligned}$	$\begin{aligned} & \text { U111PL } \\ & \text { V110A } \end{aligned}$	$\begin{aligned} & \text { B833A } \\ & \text { B806A } \\ & \text { P833A } \end{aligned}$	$\begin{aligned} & \text { PU837A } \\ & \text { V802A } \end{aligned}$	$\begin{aligned} & \text { L222A } \\ & \text { A692 } \\ & \text { U221A } \end{aligned}$	V711A
5.	L110A		$\begin{aligned} & \text { B802A } \\ & \text { L802A } \\ & \text { L887A } \\ & \text { P824A } \end{aligned}$	P835A	B621A L221A L653A L694A	P540A V612A A902A
6.	L111A Ll11PL V131P1		$\begin{aligned} & \text { LSREDA }^{3} \\ & \text { U807A } \\ & \text { U835A } \end{aligned}$		$\begin{aligned} & \text { B316A } \\ & \text { L721A } \\ & \text { P316A } \end{aligned}$	V400A U970A
7.	$\begin{aligned} & \text { A128A } \\ & \text { A129A } \end{aligned}$		$\begin{aligned} & \text { L807A } \\ & \text { PU819A } \end{aligned}$		B491A B711A PUL711A	$\begin{aligned} & \text { U521A } \\ & \text { V316A } \end{aligned}$
8.	$\begin{aligned} & \text { P132A } \\ & \text { U131P1 } \\ & \text { V132A } \end{aligned}$		$\begin{aligned} & \text { L820A } \\ & \text { PSREDA } \\ & \text { PVB827A } \end{aligned}$	P802A U802A U827A	$\begin{aligned} & \text { B693A } \\ & \text { L316A } \\ & \text { AOTHERA } \end{aligned}$	PVB762A U653A U694A
9.			$\begin{aligned} & \text { U838A } \\ & \text { V835A } \end{aligned}$		A060A	
10.			B837A AOTHERA PUL825A		$\begin{aligned} & \text { P391A } \\ & \text { P400A } \\ & \text { P611A } \end{aligned}$	$\begin{aligned} & \text { PVBMAPLE }{ }^{2} \\ & \text { U400A } \end{aligned}$

[^2]Table 1 (continued). Crown Ratio Clusters

11.	L819A		A519A	
12.	PUL822A L838A P820A	U820A USREDA ${ }^{3}$ VULB824A	$\begin{aligned} & \text { L512A } \\ & \text { P512A } \\ & \text { V491A } \end{aligned}$	
13.	USCRUBA ${ }^{4}$ LSCRUBA ${ }^{4}$		V693A	
14.			$\begin{aligned} & \text { L391A } \\ & \text { L400A } \\ & \text { U491A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U316A } \\ & \text { U611A } \end{aligned}$
15.			L762A	U693A
16.			$\begin{aligned} & \text { L693A } \\ & \text { P693A } \end{aligned}$	P491A
17.			PV970A	U391A
18.			A701A	L491A
19.			ABIRCHA ${ }^{5}$ L.970A L611A L621A A680A	P653A P621A U762A U540A U621A
20.			$\begin{aligned} & \text { L540A } \\ & \text { L691A } \end{aligned}$	U222A
21.			$\begin{aligned} & \text { A555A } \\ & \text { A931A } \end{aligned}$	VB521A

Table 2 . Coefficients for Crown Ratio Equations - Pines

Cluster	$B 0$	$B 1$	$B 2$	$B 3$	$B 4$

CROWN_R $=B 0+B 1 *\left(\left[S I T E * S T A N D _A\right] / 100.00\right)+B 2 *\left(\left[S I T E * T O _B A 1\right] / 100.00\right)$

+ B3*(SITE*DBHT1) + B4*(ln(TAL_T1))

1	0.58671978	-0.00154260	-0.00085430	0.00002096	-0.01003733
2	0.43379111	-0.00166059	-0.00101115	0.00013397	-0.00476772
3	0.59532667	-0.00158220	-0.00035415	0.00000780	-0.03170961
4	0.57858310	-0.00136857	-0.00049365	0.00000614	-0.02745300
5	0.16596777	0.00076801	0.00348249	0.00042025	-0.01397368
6	0.61825820	-0.00187729	-0.00006025	-0.00004120	-0.03936502
7	0.68482619	-0.00080745	-0.00095414	-0.00002616	-0.02442492
8	0.57962489	-0.00277728	-0.00025979	0.00000336	-0.02539228

Table 3. Coefficients for Crown Ratio Equations- Oaks

Cluster	BO	B1	B2	B3	B4
$C R O W N _R=B 0+B 1 *\left(\ln \left[T A L _T 1\right]\right)+B 2\left(\ln \left[S T A N D _A\right]\right)+B 3 *\left(\ln \left(\left[0 _B A 1\right]\right)\right.$					
1	0.61787371	-0.01616234	-0.02508335	0.00143028	
2	0.63921987	-0.01587070	-0.03338825	0.00395124	
5	0.75320210	-0.01145295	-0.05660677	0.00736719	
6	0.90442649	-0.01194511	-0.05587069	-0.02159680	
8	0.66325143	-0.01179819	-0.03593225	0.00884265	
9	1.22163682	-0.01510610	-0.20061924	0.02520893	
10	0.76361118	-0.01896173	-0.07481344	0.02180847	
12	0.73126488	-0.00515414	-0.02007368	-0.02522286	
3	0.71492827	0.00292671	-0.00030155	-0.09198565	0.01886271
4	0.79028349	-0.00169732	0.00007943	-0.04394815	-0.00790070
99^{*}	0.68471313	0.00068135	-0.00000720	-0.02487705	-0.00100139

[^3]Table 4. Coefficients for Crown Ratio Equations - Non-Oaks

Cluster	BO	B1	B2	B3	B4	B5
2	0.65077629	0.00001585	-0.06493664	0.00035677	0.01390576	
4	0.61681247	-0.00001136	-0.00146183	-0.00685707	-0.04407853	
5	0.71433569	-0.00001321	-0.01624137	-0.02497831	-0.01476367	
6	0.80922492	-0.00004175	-0.02685701	-0.01903849	-0.02114446	
7	0.36802397	-0.00004038	-0.01651700	0.00352634	0.02700426	
8	0.73074453	-0.00000718	-0.01850771	-0.03381165	0.00237704	
10	0.73121784	-0.00003639	-0.04010656	-0.01568840	0.00741302	
11	1.24474979	-0.00004749	0.01095073	-0.03023905	-0.10812156	
12	0.30301827	-0.00011489	-0.02768460	0.04824427	-0.00873382	
14	0.80801309	-0.00001988	-0.06217830	-0.01391437	0.00153530	
16	0.58024327	-0.00006634	-0.04430699	-0.00931027	0.03935074	
19	0.65440445	0.00000699	-0.02788155	-0.00657313	-0.01117683	
20	0.58497571	-0.00000792	-0.00971895	-0.00728645	-0.02832546	
21	1.03782183	0.00001797	-0.04827582	-0.10125023	0.05461962	
$\begin{aligned} \text { CROWN_R }= & B 0+B 1 *\left(S T A N D _A\right)+B 2 *((S I T E * S T A N D A) / 100.00) \\ + & +B 4 *\left(\operatorname{sqrt}\left(T A L _T 1\right)\right)+B 5 *\left(\ln \left(T O R T\left(B A L _T 1\right)\right)\right. \end{aligned}$						
15	0.75079723	0.00266222	-0.00748811	-0.06161525	-0.00626863	0.03579465
17.	0.75718235	-0.00269809	0.00153455	-0.08382437	-0.00172909	0.02772736
99^{*}	0.66378006	-0.00166099	0.00007289	0.01325696	-0.00308951	-0.00178924

* Clusters - $1,3,9,13, \& 18$ were combined into this cluster.

Table 5. Coefficients for Crown Ratio Equations - Pines

Cluster	B0	B1	B2	B3	B4
$\begin{gathered} \text { CROWN_R }=\text { BO }+B 1^{*}([S I T E \star S T A N D A] / 100.00)+B 2 \star\left(\left[S I T E * T O _B A 2\right] / 100.00\right) \\ +B 3^{*}(S I T E * D B H T 2)+B 4^{*}\left(1 n\left[T A L _T 2\right]\right) \end{gathered}$					
1	0.58671978	-0.00154260	-0.00085430	0.00002096	-0.01003733
2	0.43379111	-0.00166059	-0.00101115	0.00013397	-0.00476772
3	0.59532667	-0.00158220	-0.00035415	0.00000780	-0.03170961
4	0.57858310	-0.00136857	-0.00049365	0.00000614	-0.02745300
5	0.16596777	0.00076801	0.00348249	0.00042025	-0.01397368
6	0.61825820	-0.00187729.	-0.00006025	-0.00004120	-0.03936502
7	0.68482619	-0.00080745	-0.00095414	-0.00002616	-0.02442492
8	0.57962489	-0.00277728	-0.00025979	0.00000336	-0.02539228

Table 6. Coefficients for Crown Ratio Equations - Oaks

Cluster	B0	B1	B2	B3
$C R O W N$ _R $=B 0$ + B1* $\left(\ln \left[T A L _T 2\right]\right)+B 2\left(\ln \left[S T A N D _A T 2\right]\right)+B 3 *\left(\ln \left[T O _B A 2\right]\right)$				
1	0.67857626	-0.0199988.1	-0.02430130	-0.00980732
2	0.63670670	-0.01611040	-0.03112951	0.00177135
4	0.62617555	-0.00291208	-0.03639119	-0.00273879
5	0.77268513	-0.01482497	-0.05702860	0.00613392
6	0.92013974	-0.01566130	-0.07268841	-0.00602839
8	0.70257374	-0.01414789	-0.03335369	-0.00073750
9	1.32784652	-0.01992882	-0.18582340	-0.00994076
10	0.85902067	-0.02427357	-0.06895190	-0.00054510
12.	0.80082060	-0.00657727	-0.01523777	-0.04261648
99*	0.77501650	0.00170704	-0.04043025	-0.00997731
\%				

- Clusters $-7,11, \& 13$ were combined into this cluster.

Table 7. Coefficients for Crown Ratio Equations - Non-Oaks

Cluster	B0	B1	B2	B3	B4	B5
2	0.62180129	0.00000346	-0.05969193	0.01126605	0.00090678	
4	0.55825051	-0.00004113	-0.01687799	0.00384287	-0.03175050	
5	0.69794133	-0.00002532	-0.01454281	-0.01830821	-0.02131153	
6	0.79805477	-0.00007935	-0.02719698	-0.01107934	-0.02819772	
7	0.18518734	-0.00008614	-0.01481022	0.02665836	0.03298846	
8	0.69166192	-0.00003365	-0.01234013	-0.01990346	-0.01304923	
10	0.66045308	-0.00008336	-0.04168485	-0.00322262	0.00756447	
11	0.88998435	-0.00019138	0.02014112	0.02409889	-0.10489869	
12	0.13047278	-0.00023119	-0.02430671	0.08510241	-0.01991285	
14	0.81262402	-0.00005201	-0.05911250	-0.00796262	-0.00937431	
16	0.49861277	-0.00014914	-0.04452100	0.00633516	0.03774567	
19	0.67675808	-0.00002296	-0.03494872	-0.00236557	-0.01444909	
20	0.60469732	-0.00001528	0.00668729	-0.00205668	-0.05084870	
21	1.08977746	-0.00000372	-0.02741897	-0.09396750	0.01343640	
$\begin{gathered} \text { CROWN_R }=B 0+B 1 *(S T A N D A)+B 2 *([S I T E * S T A N D A T 2] / 100.00)+B 3 *\left(\ln \left[T O _B A 2\right]\right) \\ +B 4 *\left(\text { sqrt }\left[T A L _T 2\right]\right)+B 5 *\left(\operatorname{sqrt}\left[B A L _T 2\right]\right) \end{gathered}$						
15	0.45496672	0.00570173	-0.01193936	0.03163636	-0.00755879	0.02580512
17	0.83950888	-0.00247987	0.00116878	-0.09304467	-0.00317068	0.02653958
99^{*}	0.55713463	-0.00163836	-0.00004506	0.04333391	-0.00307408	-0.00572902

* Clusters $-1,3,9,13, \& 18$ were combined into this cluster.

Table 8. Diameter Increment Clusters

	Pine		Oak		Non-oak	
1.	$\begin{aligned} & \text { P131PL } \\ & \text { U131F40 } \end{aligned}$		$\begin{aligned} & \text { L827F60 } \\ & \text { P812F40 } \\ & \text { U812H } \\ & \text { V832F50 } \end{aligned}$	$\begin{aligned} & \text { P812F32 } \\ & \text { P827F50 } \\ & \text { U827F50 } \\ & \text { V833A } \end{aligned}$	BOTHERA L540F60A P316F70 U611F40 U970H	B316MPH POTHERF70 U540MOH U693A V400P
2.	$\begin{aligned} & \text { B132A } \\ & \text { P132A } \\ & \text { U131F32 } \end{aligned}$	$\begin{aligned} & \text { P131F50 } \\ & \text { U131F31 } \\ & \text { U110F30 } \end{aligned}$	$\begin{aligned} & \text { B802A } \\ & \text { L838A } \\ & \text { P832A } \end{aligned}$	$\begin{aligned} & \text { B806A } \\ & \text { P802MPO } \\ & \text { P835F50 } \end{aligned}$	P621F31	P621F50
3.	L131A L111F22 P110F32 U110F40	$\begin{aligned} & \text { L121F22 } \\ & \text { P131F32 } \\ & \text { U121F21 } \end{aligned}$	B812A		L621F60	
4.	$\begin{aligned} & \text { L131PL } \\ & \text { L111PL } \\ & \text { P131F31 } \end{aligned}$	$\begin{aligned} & \text { L131F31 } \\ & \text { L111F21 } \\ & \text { V131MP0 } \end{aligned}$	POTHERA U831A	UOTHERA	L653MOP	U621067
5.	U121H		B833A		B400A	
6.	$\begin{aligned} & \text { P132F33 } \\ & \text { V132F33 } \end{aligned}$	$\begin{aligned} & \text { U131PL } \\ & \text { A129A } \end{aligned}$	$\begin{aligned} & \text { B837A } \\ & \text { U807A } \end{aligned}$	P835F40	P316F60	U200A
7.	L121MPH L110F32 P110F50	L128MPH L111F40	V802A	V8320	L611F22 UOTHERMP U611F60 U621M0	P540F70 U611F31 U611F70 V621A
8.	U111PL		L807A	L819A	POTHERP	P316F40
9.	$\begin{aligned} & \text { B110A } \\ & \text { P110MP } \\ & \text { P110F40 } \\ & \text { V132MPH } \end{aligned}$	$\begin{aligned} & \text { L111F60 } \\ & \text { P110F31 } \\ & \text { V110H } \end{aligned}$	L812A	P820A	B316F50 L611F31 POTHERF 50 P611F32 U400F50 V316A	B621A L611F50 P491MP0 UOTHERF70 VOTHERP V611A
10.	$\begin{aligned} & \text { L131F20 } \\ & \text { U111F22 } \end{aligned}$	P132MP	L840P	V824A	B711A L316MPO L721F60 POTHERF31 P491F50 U391A V491	$\begin{aligned} & \text { L222F22 } \\ & \text { L591A } \\ & \text { POTHERMH } \\ & \text { P491F40 } \\ & \text { P970P } \\ & \text { U491F50 } \end{aligned}$

Table 8 (continued). Diameter Increment Clusters

11.	$\begin{aligned} & \text { L128F22 } \\ & \text { V131PL } \end{aligned}$	U131F50	L820F40	U820F60	LOTHERF40 LOTHERF70 L611F40 POTHERF60 P316MP0 P711F50 UOTHERF60 U540F60 VOTHERMH	LOTHERF60 L316F60 L970A P316F50 P611F50 UOTHERO U316HP U611F50 V711A
12.	$\begin{aligned} & \text { L121F21 } \\ & \text { L111F31 } \\ & \text { P121A } \\ & \text { V110P } \end{aligned}$	$\begin{aligned} & \text { L128F36 } \\ & \text { P131F40 } \\ & \text { U110F32 } \\ & \text { V131F31 } \end{aligned}$	L820F50		B491A LOTHERF50 L316F40 L653F60 L694F22 L694F60 P540MPH P693P P970H U491P U694F40 U694F60	B711F50 L222F40 L391H L692H L694F40 P491F31 P693H P762H U491MH U521A U694F50 V693A
13.			L820F60	V806A	P621H	
14.			L820P	P827P	$\begin{aligned} & \text { L221A } \\ & \text { L400A } \\ & \text { L721MPO } \end{aligned}$	$\begin{aligned} & \text { L316F22 } \\ & \text { L694F31 } \\ & \text { P711P } \\ & \hline \end{aligned}$
15.			L822A	U802A	L621M0	P621F40
16.			$\begin{aligned} & \text { L827F40 } \\ & \text { U812P } \end{aligned}$	P802F31 VOTHERA	U691A	
17.	-		$\begin{aligned} & \text { L827F50 } \\ & \text { P812F31 } \\ & \text { P827F40 } \end{aligned}$	$\begin{aligned} & \text { L827P } \\ & \text { P812F50 } \\ & \text { U827F40 } \end{aligned}$	LOTHERP L611F60 P060A P762P	$\begin{aligned} & \text { L316F50 } \\ & \text { L693A } \\ & \text { P611F60 } \\ & \text { U762A } \end{aligned}$
18.			$\begin{aligned} & \text { B832A } \\ & \text { U835A } \end{aligned}$	$\begin{aligned} & \text { P835P } \\ & \text { V837A } \end{aligned}$	$\begin{aligned} & \text { B693A } \\ & \text { L491A } \\ & \text { L694F50 } \\ & \text { P400F40 } \\ & \text { P521A } \\ & \text { P711F40 } \\ & \text { U400MPH } \\ & \text { V400H } \end{aligned}$	L222F60 L691F60 P391A P400MPO P694A U316F60 U653A
19.			$\begin{aligned} & \text { LOTHERA } \\ & \text { P802F40 } \\ & \text { V832F40 } \end{aligned}$	$\begin{aligned} & \text { P802F50 } \\ & \text { 0837A } \end{aligned}$		

Table 8 (continued). Diameter Increment Clusters

20.	L831A		
21.	$\begin{aligned} & \angle 835 \mathrm{~A} \\ & \mathrm{UB} 40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { P824A } \\ & \text { V835A } \end{aligned}$	
22.	P833A	U827F60	
23.	L840H	$\cup 819045$	

Table 9. Coefficients for Diameter Increment Equations - Pines

Cluster	B0	Bl	B2	B3	B4	B5
$\begin{aligned} & W= B 0+B 1 *([S I T E * P L C R] / 100.00)+B 2 *\left(S T A N D _A\right)+B 3 *(D B H T 1)+B 4 *\left(T O _B A 1 / S I T E\right)+ \\ & B 5 *\left(s q r t\left[T A L _T 1\right]\right) \end{aligned}$						
1	-0.75175908	0.00806429	-0.01132985	0.00157051	-0.03988400	-0.02323115
2	-0.97690793	0.00815043	-0.00771632	-0.00608998	-0.03898688	-0.02174645
3	-1.06206566	0.00307892	-0.00567702	0.00252820	-0.06665636	-0.01834552
4	-0.43816368	0.00059790	-0.01077181	-0.00714177	-0.12640480	-0.02635387
5	1.07195724	-0.03956717	0.00250204	-0.03600948	-0.38184447	-0.04487584
6	-1.23278964	0.00563915	-0.00617363	0.01967963	0.03314018	-0.01863985
7	-1.42595380	0.01619828	0.00009209	-0.03658446	-0.03647473	-0.01811980
8	0.12738235	-0.00218810	-0.02551635	0.00407352	-0.15176792	-0.03106088
9	-1.10464488	-0.00657847	-0.00473796	0.01464383	-0.08749770	-0.01382970
10	-0.22525604	-0.00367436	-0.01156928	-0.00900284	0.05211989	-0.03895463
11	0.03288369	-0.02243265	0.00086374	-0.01263540	-0.14762841	-0.02612898
12	-0.86071304	0.00397704	-0.00560024	-0.01168674	-0.06934679	-0.02732836
Where,						
DINC $=\left(\left[W^{*} 0.35\right]+1.0\right) * *(1.0 / 0.35)$						

Table 10．Coefficients for Diameter Increment Equations－Oaks

Cluster	B0	B1	B2	B3	B4	B5
1	－1．32501399	0.62536478	－0．00298999	－0．00477197	0.00368176	－0．03132648
2	－0．69893090	－1．39469354	－0．00301444	0.00127903	－0．01642658	－0．02274301
3	－1．19931070	－0．01793073	－0．00594414	－0．00590567	0.08348777	－0．03582079
4	－0．79577436	－0．81901111	－0．00544189	0.01762343	0.02547589	－0．02125517
5	－2．11679538	2.05830852	－0．00296299	0.02138262	－0．44587966	－0．02055009
6	－1．67882541	0.32125481	－0．00383395	0.00840340	－0．07240059	－0．01829927
7	－2．30140428	1.85481096	－0．00027839	0.00562756	0.00766738	－0．02627102
8	－1．97872530	0.21271929	－0．00146257	0.02108047	－0．07086816	－0．00636795
9	－2．70774893	2.56578690	－0．00571508	0.02487778	0.09385432	－0．02360776
10	－1． 91939813	0.48722724	－0．00605506	－0．00849574	0.05257516	－0．01028813
11	1.20203445	－3．70715547	－0．00785543	0.01748542	0.02500008	－0．03934875
12	－2．72672523	3.30930023	－0．00207102	－0．00657351	0.09670765	－0．03632951
13	－1．33399377	0：65613847	－0．00142158	－0．00394879	－0．07111605	－0．02428226
14	19.57062466	－38．18846567	－0．04068608	0.06684565	0.20128000	－0．05169545
15	－2．44590566	2.67112625	－0．00164263	－0．00248346	0.02445698	－0．03628908
16	－1．91519010	1.64066979	－0．00085211	－0．00821890	－0．17291823	－0．02346719
17	－0．87210940	－0．58765289	－0．00472228	0.01006620	－0．01738612	－0．02144100
18	－0．96932027	－1．06529334	－0．00532527	0.00847158	0.08144186	－0．02260131
19	－0．74987418	－0．57021006	－0．00578678	－0．00310797	0.10140864	－0．03554657
20	－14．99731693	22.09654205	0.03816865	－0．01793224	0.58597100	－0．05525150
21	－2．12058687	0.61202956	－0．00008411	0.00202469	0.00710054	－0．01818277
22	－0．57903963	－0．06720399	－0．00850916	－0．00237341	0.01434030	－0．03577062
23	－2．57541306．	1.21281405	0.00080182	－0．01050180	0.02289566	－0．01699124

Where，

$$
\text { DINC }=([W * 0.25]+1.0) * *(1.0 / 0.25)
$$

Table 11. Coefficients for Diameter Increment Equations - Non-Oaks

Cluster	B0	B1	B2	B3	B4	B5
1	-2.13947221	0.21118800	-0.00071122	0.04339527	0.01381083	-0.01397865
2	-1.42372883	1.94210085	-0.00626071	-0.01925349	0.04625379	-0.03884221
3	7.76276114	-16.42481019	-0.01039097	-0.00526574	-0.40325556	-0.03398598
4	-0.01147462	-1.71999703	-0.00478461	0.01041694	-0.15415411	-0.03744622
5	0.82591182	-5.05852615	-0.01529672	0.04818579	0.01617225	-0.01474917
6	-1.63291141	-0.70216262	-0.00008131	0.03768434	-0.02364058	-0.01524475
7	-1.20482426	-0.06903728	-0.00481095	0.01214267	0.01873088	-0.02619186
8	-0.41299856	-2.27238536	-0.00631562	0.04564528	-0.10769231	-0.01291362
9	-1.52526289	0.03120181	-0.00417812	0.01428138	0.05235534	-0.02391424
10	-2.20095830	0.57091372	-0.00250353	-0.02521788	0.07363077	-0.01035861
11	-1.41045273	-0.60352128	-0.00404528	0.01640188	0.02463621	-0.01652395
12	-2.28900036	0.55564419	-0.00153230	0.00991791	0.00154364	-0.00861532
13	-8.20024938	13.90509111	0.01443199	0.00986969	-0.00153866	0.00161674
14	-1.34449583	-0.06537910	-0.00559050	0.00635124	0.00256852	-0.01967158
15	-0.61982843	-0.04823953	-0.00475800	-0.02121113	0.21382103	-0.04967325
16	-5.45943363	10.37694935	0.02879308	-0.07875779	-0.20439142	-0.10490343
17	-1.75875152	0.52192240	-0.00309983	0.01508418	-0.09567373	-0.01377002
18	-2.39501254	0.36726507	-0.00084662	0.02627356	0.04581283	-0.01024107
Where,						
DINC $=\left(\left[W^{*} 0.20\right]+1.0\right) * *(1.0 / 0.20)$						

Table 12. BOLE Length Clusters

Clus	Pine		Oak		Non-oak	
1.	$\begin{aligned} & \text { B110A } \\ & \text { P131F31 } \\ & \text { U131F40 } \end{aligned}$	$\begin{aligned} & \mathrm{L} 128 \mathrm{~F} 36 \\ & \text { U131F31 } \end{aligned}$	POTHERH U802A	P802MPH	BOTHERA POTHERF50	$\begin{aligned} & \text { L316MPH } \\ & \text { UOTHERF50 } \end{aligned}$
2.	B132A L111F40 U110F32	$\begin{aligned} & \text { L111F22 } \\ & \text { POTHERA } \end{aligned}$	$\begin{aligned} & \text { POTHERA } \\ & \text { B812P } \end{aligned}$	POTHERF50 U827F50	P611F60	U611MPH
3.	$\begin{aligned} & \text { L121MPH } \\ & \text { U131F50 } \end{aligned}$	L131F40	P837A		L611MPH L694H V400A	$\begin{aligned} & \text { L694F40 } \\ & \text { P693A } \end{aligned}$
4.	V 110 H		UOTHERF50		B621A	
5.	$\begin{aligned} & \text { L131F31 } \\ & \text { P131F40 } \end{aligned}$	$\begin{aligned} & \text { L131MH } \\ & \text { P131F50 } \end{aligned}$	$\begin{aligned} & \text { B833A } \\ & \text { P832A } \end{aligned}$	B837A	P 612 H	U621F60
6.	$\begin{aligned} & \text { U131PL } \\ & \text { U131MPO } \end{aligned}$	U121A	$\begin{aligned} & \text { B832A } \\ & \text { L820F50 } \\ & \text { L838A } \\ & \text { U820F50 } \end{aligned}$	LOTHERF50 L820F60 P802F60 U820MPH	LOTHERMPH L691A POTHERF70 P316F70	L316F60 L694F60 P316F50 UOTHERMPH
7.	L11F60	L121F21	$\begin{aligned} & \text { L812A } \\ & U 812 A \end{aligned}$	UOTHERA	$\begin{aligned} & \text { P621F50 } \\ & \text { U621MPH } \end{aligned}$	P621P
8.	$\begin{aligned} & \text { L131PL } \\ & \text { L111MP0 } \\ & \text { V131AA } \end{aligned}$	$\begin{aligned} & \text { L111PL } \\ & \text { V110P } \end{aligned}$	B802A L827F60 P812F50 P827MPH P835F50	B806A P802F50 P820A P833A P835MPH	B316A P400F50 U400F50	$\begin{aligned} & \text { L222F40 } \\ & \text { P611F40 } \end{aligned}$
9.	$\begin{aligned} & \text { P132A } \\ & \text { V132A } \end{aligned}$	U1100MPH	V802A		P491MPH	
10.	L121F22		$\begin{aligned} & \text { L820MPH } \\ & \text { U827MPH } \end{aligned}$	P827F50	L222MPH	U653A

Table 12 (continued). BOLE Length Clusters

11.	U111A		L822A	V837A	LOTHERF60 POTHERMPH	L400A
12.	A129A		L827F50 POTHERMPH VOTHERA	$\begin{aligned} & \text { L827MPH } \\ & \text { U835A } \end{aligned}$	$\begin{aligned} & \text { P400MPH } \\ & \text { P711A } \end{aligned}$	P611F31
13.	L128MP0		$\begin{aligned} & \text { P812F40 } \\ & \text { V832MPH } \end{aligned}$	V832F50	L611F40	P611MPH
14.	$\begin{aligned} & \text { L131MP0 } \\ & \text { P131F32 } \end{aligned}$	P131PL			$\begin{aligned} & \text { L540A } \\ & \text { U611F40 } \end{aligned}$	$\begin{aligned} & \text { U400MPH } \\ & \text { V621A } \end{aligned}$
15.					$\begin{aligned} & \text { L555A } \\ & \text { U694MPH } \end{aligned}$	UOTHERF60
16.					$\begin{aligned} & \text { L222F60 } \\ & \cup 619 \mathrm{~A} \end{aligned}$	P694A
17.					B400A L611F50 L653A U540A	L221A L611F60 P611F50 U970A
18.					P540A U611F50 U694F60	$\begin{aligned} & \text { P621F40 } \\ & \text { U611F60 } \end{aligned}$
19.					L694P P316MPH U316A	L970A P970A VOTHERA
20.					L621A	U200A

Table 13. Coefficients for Bole Length Equations - Pines

Cluster	B0	B1	B2	B3	B4
1	39.01972153	3.99180016	-0.79875633	-0.95269580	-0.00067370
2	30.97143318	4.99140557	-0.67914014	0.18485098	-0.00101922
3	37.99074464	3.39231491	-0.6085746.1	1.21033063	0.00064769
4	14.26990172	6.91213481	-0.73296781	1.86129142	0.00036666
5	37.05009096	3.70222923	-0.65346276	1.34585696	-0.00168459
6	28.38612923	4.45845522	-0.64896485	3.60397469	-0.00303813
7	55.80657728	4.35174239	-1.13738949	-0.53589665	-0.00239366
8	24.29234475	5.38883660	-0.68540608	-0.63120150	-0.00000337
9	11.15604203	6.06818162	-0.49167233	3.80768963	0.00159825
10	63.10088950	2.45991418	-0.87090472	-3.73184530	-0.00347381
11	34.39236033	5.84085188	-1.24383871	1.35982669	0.00405467
12	72.16468006	5.53988509	-1.89621549	-1.94637422	-0.00848680
13	66.38969504	2.61791743	-0.94309257	-11.95175404	-0.00374410
14	43.68922243	4.95560908	-1.32360432	-2.21564176	-0.00051928

Table 14. Coefficients for Bole Length Equations - Oaks

Cluster	B0	B1	B2	B3	B4	B5
BOLE LENGTH $=$ B0 + B1*(DBHT2) + B2*(SITE) + B3* (BAL_T2) + B4* (TO_TA2) + B5*(PLCR)						
1	52.50031126	3.03489054	0.02492904	-0.02899222	-0.00309185	-80.85865588
2	22.90544722	2.83122631	0.20490537	0.04241212	0.00073246	-67.34047230
3	127.87164288	2.25017585	0.23182976	-0.01714174	0.00130502	-279.35981767
4	-12.57362366	2.39940996	0.27974278	-0.02918460	0.00618849	-2.42709816
5	-10.00665124	1.97965551	0.38253461	-0.00118635	-0.00304441	7.24451735
6	51.98035344	1.87333317	0.08563130	0.00525169	-0.00193369	-74.32969075
7	7.14536603	2.65281021	0.23369684	0.05243512	0.00075709	-41.17305582
8	33.35573057	2.48614798	0.06312505	0.01031642	-0.00212752	-47.09514635
9	-13.03859804	2.29443313	-0.07599553	0.04990657	-0.00214860	81.91910065
10	58.56993240	2.46374607	0.02821655	0.00041211	-0.00248301	-87.60492903
11	-23.42788398	1.54099988	0.18778656	0.07939821	0.00337934	52.86717459
12	17.36207348	3.06505208	0.12817259	-0.00918845	0.00170556	-48.44069205
13	-2.06073224	2.54503349	0.16854654	0.00487251	-0.00070350	-1.63304060

Table 15. Coefficients for Bole Length Equations - Non-Oaks

Cluster	B0	B1	B2	B3	B4	B5
1	11.99805585	2.57071598	0.10239446	-0.01745911	-0.00026888	-22:33659577
2	-26.78619372	4.27470285	0.31258576	0.01320519	-0.00768636	6.98078503
3	11.17414893	3.45302253	0.06477151	0.00325131	-0.00099061	-28.42163995
4	218.49703327	4.08658564	0.07997534	0.01959178	-0.00893186	-518.20492317
5	127.17798701	1.08279686	0.18646014	-0.15632181	-0.00746105	-185.78633161
6	31.60793374	2.70940679	0.03503347	-0.00613777	-0.00276892	-47.16795576
7	90.32717505	2.62105177	0.15874811	-0.02722459	-0.00432662	-169.77069085
8	3.82422509	3.48634683	0.09442930	0.00060728	0.00086728	-14.90279471
9	46.31748394	5.27646110	-0.16147069	0.02861530	0.00154920	-98.80151689
10	-32.53252352	4.94947841	0.03150258	0.10328971	0.00084069	29.83539272
11	-13.69411907	3.40863928	0.20786327	-0.00447535	0.00184714	-10.45425679
12	-10.23490666	3.86878981	0.02961025	0.01115720	0.00176952	8.28936818
13	-23.04574406	3.00995490	0.18539977	-0.07156718	0.00043494	45.17757611
14	10.05131164	2.80981692	0.07122914	-0.01969680	-0.00053119	-0.88981247
15	8.56475765	2.30095453	0.10073394	-0.02510794	-0.00050817	-4.08671585
16	36.56004163	2.55226587	0.02471245	-0.02196641	-0.00160741	-40.20323175
17	13.13006481	2.73827305	0.06880837	-0.00712913	-0.00050708	-7.02088284
18	9.05231430	3.17035443	0.07022516	-0.00520148	-0.00196615	-4.09345350
19	7.07211337	3.06648069	0.08620558	-0.00615299	-0.00117936	-18.50935393
20	8.12592218	2.58756776	0.12749414	0.01032247	-0.00244715	4.55908838

Table 16. Mortality Clusters

Pine			Oak		Non-oak	
1.	P131MH	U131MPH	$\begin{aligned} & \text { BROA } \\ & \text { PROF50 } \end{aligned}$	LROF50	$\begin{aligned} & \text { BOTHERMPH } \\ & \text { V400A } \end{aligned}$	P611F31
2.	P110F32		$\begin{aligned} & \text { BWOA } \\ & \text { ULWOA } \end{aligned}$	PWOA	$\begin{aligned} & \text { BSOFTA } \\ & \text { P611F50 } \end{aligned}$	L691A
3.	$\begin{aligned} & \text { L131F31 } \\ & \text { P110F40 } \\ & \text { P132A } \end{aligned}$	$\begin{aligned} & \text { L131MPH } \\ & \text { P131MP } \\ & \text { V110A } \end{aligned}$	LROF40	PROMPH	U400A	
4.	L111F40 U111F22	POTHERA	P812F50		P400A	
5.	P110F50		P802F50		$\begin{aligned} & \text { LSOFTA } \\ & \text { L316A } \\ & \text { PARDA } \end{aligned}$	LUPOTHERA L611F60 UDARDA
6.	L121F21		$\begin{aligned} & \text { LROF60 } \\ & \text { UROF50 } \end{aligned}$	LROMPH UROMPH	P611MPH USOFTMPH	USOFTF60 U611MPH
7.	$\begin{aligned} & \mathrm{L} 111 \mathrm{~F} 22 \\ & \mathrm{U} 121 \mathrm{~A} \end{aligned}$	L121MPH	L820F50	VWOA	L200MPH	L222F60
8.	$\begin{aligned} & \mathrm{B} 132 \mathrm{~A} \\ & \mathrm{Ul10A} \end{aligned}$	$\begin{aligned} & \text { L128A } \\ & \text { U131F31 } \end{aligned}$	L820F60		U611F60	
9.	$\begin{aligned} & \text { LUOTHERA } \\ & \text { P110F31 } \end{aligned}$	$\begin{aligned} & \text { L11MPH } \\ & \text { V132A } \end{aligned}$	U827F50		$\begin{aligned} & \text { LHARDA } \\ & \text { L694MPH } \\ & \text { VOTHERA } \end{aligned}$	$\begin{aligned} & \text { L653A } \\ & U 694 \mathrm{~A} \end{aligned}$
10.	VBOTHERA	V131A	$\begin{aligned} & \text { RS } \\ & \text { VROA } \end{aligned}$	UROF60	L611MPH	U611MPH
11.					L621A	
12.					U316A	
13.					P621A	
14.					$\begin{aligned} & \text { L694F40 } \\ & \text { P316A } \end{aligned}$	PSOFTA
15.					L694F60	

Table 17. Coefficients for Mortality Equations - Pines

Cluster	- BO	B1	B2	B3	B4	B5	B6
DBHT1 > $=5.0$							
1	9.17194811	-0.00573346	-0.00016929	-13.4916	-0.03196000	-0.00314735	-0.02076203
2	-0.78041095	-0.00466196	-0.00001475	2.98230661	0.17228982	0.00540931	0.01340063
3	8.53440500	-0.00113172	0.00014907	-11.8552	0.03491021	-0.01246882	-0.01759301
4	5.80978614	-0.00100925	0.00092069	-8.25446	0.04367029	-0.01022889	-0.01095206
5	13.16736467	-0.01278102	0.00046394	-24.9957	-0.02969901	-0.00161554	-0.03760419
$7{ }^{*}$	5.51188474	-0.00436770	0.00012803	6.76269	0.02424753	0.00636203	-0.00618504
8	3.84942026	0.00044416	-0.00002004	-2.06575	0.14475845	-0.01412170	-0.01325697
9	0.14503691	-0.00520571	0.00028770	0.97895478	-0.10301292	0.03546311	-0.00209673
10	4.10658452	0.00270978	0.00185630	-7.24557	0.35603640	-0.03159388	-0.01583754
DBHT1 < 5.0							
1	-4.82795624	-0.00053386	-0.00018473	12.9987	0.27407612	0.00686293	-0.00560184
2	-4.22323488	0.00113204	-0.00060606	15.9906	0.74043693	-0.04388052	-0.01016036
3	-6.10969109	-0.00040948	0.00039518	14.3948	0.41438918	0.01152417	-0.01153440
4	-6.73120578	-0.00050135	-0.00011996	17.531	0.50903846	0.01406976	-0.00721299
52	28.67379618	-0.00228464	0.00210310	71.2498	-0.16246518	-0.01241976	0.03520507
$7{ }^{\circ}$	1.06453275	-0.00122383	0.00031542	9.761442	0.27397747	-0.03263240	-0.00748562
8	-2.74390748	-0.00091103	-0.00009472	13.5042	0.40923931	-0.01659749	-0.00237869
9	0.82525051	-0.00126769	0.00019524	3.491764	0.39636065	-0.02809345	-0.00566541
10	9.23707964	-0.00190108	-0.00010767	-3.73246	0.57870286	-0.11775905	0.00110457

Where,

- Cluster 6 combined with Cluster 7.

Table 18. Coefficients for Mortality Equations - Oaks

Cluster	B0	B1	B2	B3	B4	B5
$X=$ INTERCEPT + B1*(TAL_T1) + B2* (T0_TA1) + B3* (PLCR $)+\mathrm{B4*}(\mathrm{DBHT} 1)+\mathrm{B5*}(\mathrm{SITE})$						
DBHT1 >= 5.0						
1	2.66936794	-0.00258932	-0.00036896	-0.64893593	-0.06867221	0.00814298
2	2.55396818	-0.00151891	-0.00034787	2.11597262	-0.05036853	0.00446648
3	3.97679002	-0.00356568	0.00012581	-2.07787545	-0.06960713	0.00108828
4	-48.18904781	0.00208279	0.00139744	87.08852827	-0.03961656	0.07226881
5	10.01225107	-0.00668616	0.00085341	4.05546436	-0:08388281	-0.08536477
6	7.39530461	-0.00142417	-0.00042258	-9.59791605	-0.08285416	0.01169516
7	12.63471990	-0.00255722	-0.00033127	-13.82405997	-0.15986485	-0.00262834
8	2.17917154	-0.00819368	-0.00021723	2.82336598	-0.16705102	0.01518120
9	15.35134699	0.00480380	-0.00005074	-33.41383007	0.13909130	0.02858400
10	4.81208046	-0.00017567	-0.00015810	-6.14094769	-0.04979528	0.00237904
DBHT1 < 5.0						
1	-1.05072284	-0.00149959	0.00039873	5.47045772	0.08607928	-0.01258862
2	-2.07158146	-0.00108736	0.00035022	6.00604069	0.24231681	-0.00504600
3	-0.94729026	-0.00199005	0.00135980	3.41293074	0.09162208	-0.00310951
4	-12.46268269	-0.00223315	0.00246556	17.74409086	0.80306420	0.0101013
5	-0.18656351	-0.00162776	0.00111065	-0.60628083	0.59732820	-0.00441235
6	0.00440130	-0.00106971	0.00054342	0.28191582	0.17824063	0.00072588
7	2.43853865	-0.00112802	0.00057549	-3.20578424	0.46917434	-0.00927278
8	-4.12711915	-0.00184693	0.00234250	14.79079526	0.36799232	-0.04704037
9	-1.48608659	-0.00177910	0.00074931	1.98237548	0.40730093	-0.00067373
10	1.19924067	-0.00098588	0.00079832	0.30136686	-0.03605216	-0.01509243

Where,

Table 19. Coefficients for Mortality Equations - Non-Oaks

Cluster	B0	B1	B2	B3	B4	B5
1	3.52714453	-0.00251632	0.00010350	-3.08200601	-0.06434783	0.01785795
2	1.98549664	0.00091330	-0.00000318	0.37657831	0.03534203	-0.00358113
3	4.72968692	0.00291256	-0.00098240	-8.58074263	-0.15716321	0.04763157
4	-16.81088533	-0.00265292	-0.00020498	38.48862230	-0.01891203	0.01586478
5	2.43497118	-0.00052694	-0.00002434	-0.70263276	-0.08255141	0.00429476
6	5.90065766	-0.00351118	-0.00021588	-6.31924092	-0.07992003	0.00799488
7	4.99455867	-0.00281550	-0.00057050	3.99864451	-0.00297943	-0.02459980
8	3.69710630	0.00513631	-0.00007706	-9.43457523	0.10318536	0.01038003
9	4.10017365	-0.00397938	-0.00014222	-4.50631308	-0.10533885	0.02215372
10	1.93475993	-0.00459870	0.00050530	-3.64710591	-0.11436720	0.02830042
11	40.53076008	-0.00239376	-0.00045265	-75.06607936	-0.36238716	0.00833487
12	9.47821152	-0.00565973	-0.00007703	-18.52463026	-0.11335788	0.03130244
13	20.58806257	0.01493787	-0.00001509	-47.37625847	0.13138042	0.02200683
14	2.49851174	-0.00186261	0.00097740	-0.29686558	-0.06398131	-0.00527276
15	7.15691228	-0.00136685	-0.00054068	-7.77034764	-0.14743483	0.01537900
DBHT1 < 5.0						
- 1	-0.04951055	-0.00126790	0.00107019	1.12726578	0.25511728	-0.00032126
2	0.86486933	-0.00065551	0.00029503	-0.60844971	0.23001919	0.00115650
3	-1.07471291	-0.00165916	0.00250079	2.96416697	0.15472986	-0.00443655
4	-1.69016462	-0.00195444	0.00111207	8.40329369	-0.01019835	-0.00881217
5	0.22335370	-0.00053517	0.00031428	0.99304544	0.15787323	0.00016156
6	-0.68939650	-0.00013888	0.00012862	2.99308524	0.37004638	-0.01016140
7	10.97160998	-0.00158603	0.00084213	-12.79533900	0.03692028	-0.04966315
8	-14.55606230	0.00018918	-0.00063616	43.48443703	0.01971491	-0.05281810
9	1.13206962	-0.00093940	0.00074221	0.96427222	0.09311962	-0.00853496
10	-5.02564235	-0.00090392	0.00038980	11.60855380	0.21544756	-0.00083931
11	1.44205600	-0.00220658	0.00085730	10.06941333	-0.18526511	-0.04363228
12	-2.12424916	-0.00221794	0.00133600	1.03715421	0.01621064	0.02848830
13	2.25726841	-0.00065776	0.00020831	-0.86208585	0.38325174	-0.01896380
14	-2.61098182	-0.00045306	0.00085802	7.34648851	0.19918127	-0.00835737
15	7.52002453	-0.00084789	0.00041461	-13.06963919	0.27919167	-0.01480949
Where,						
		$T=-1.0$	50			
$1.0+\exp (X)$						

APPENDIX 4. VOLUME EQUATIONS

This appendix documents the publications from which the various volume equations were selected.

Board foot equations were selected from the set presented by Parker (J). For the pines, the equation for Scribner log rule with a form class $=78$ is used. The hardwoods use the equation for the Doyle log rule with a form class $=78$. Sawtimber height is calculated for these equations, by utilizing a set of equations from the Southeastern Forest Survey Unit, which predicted sawlog length = $\mathrm{f}(\mathrm{dbh})^{1}$.

The number of rough cords per tree is predicted using an equation presented by Merrifield and Foil (I). The equation selected estimates rough cords for form class 77. These equations were designed for estimation of Southern Pine pulpwood to a 3-inch top (d.o.b.). However, the projection system uses the equation for both pines and hardwoods. Bole length (which is to a 4-inch top) is used as the merchantable height in these equations. Therefore, caution should be exercised with these figures until more appropriate volume equations can be found.

Considerably more information was available to predict both weight and cubic foot volumes. The equations selected are presented in table 1 and table 2. The capital letter in the table refers to the publication in the Literature Cited section which is being used for the species and region combination. A small s or h symbolizes that the equations for miscellaneous soft hardwoods or hard hardwoods are respectively being utilized. For those equations which require total height, a set of equations is again used from the Southeastern Forest Survey Unit, which predicts total height $=\mathrm{f}\left(\mathrm{dbh}^{2}\right)$.

[^4]Table 1. Green Weight Equations for Wood and Bark of Stem to a 4 -inch Top Used in GA-TWIGS

Species code	LCP, UCP	Pie	Val	Blu	Equivalent species
Hard hardwoods	E h	Ch	B h	D h	311, 491, 591, 680
318	A	A	A	A	
370	D	D	D	D	
400	E	C	B	D	601, 602
531	A	A	A	A	
591	D	D	D	D	
802	E	C	B	D	
806	C	C	B	B	
812	C	C	B	B	813
820	E	E	E	E	
822	K	K	K	K	804, 823, 825
827	E	E	E	E	826
831	N	N	N	N	
832	C	C	C	C	
833	D	D	D	D	
834	G	G	G	G	830, 828, 838
835	B	B	B	B	$\begin{aligned} & 807,816,819,824 \\ & 840,841,899 \end{aligned}$
837	D	D	D	D	
901	D	D	D	D	
540	L	L	L	L	
Soft hardwoods	E s	$C \mathrm{~s}$	$B \mathrm{~s}$	D s	$\begin{aligned} & 313,555,651,652, \\ & 653,691,740,920, \\ & 970 \end{aligned}$
221	F	F	F	F	220
316	E	C	D	D	
460	M	M	M	M	
611	E	C	B	B	
621	E	C	B	D	
693	D	D	D	D	
694	E	E	D	D	
731	C	C	C	C	
950	D	D	D	D	
Pines					
110	F				
111	F	F	F	F	
121	F	F	F	F	
129	F	F	F	F	
131	F	F	F	F	
132	F	F	F	F	
260	F	F	F	F	

Table 2. Cubic Foot Equations for Wood Only of Stem to a 4 -inch Top Used in GA-TWIGS

Species code	Lcp, Ucp	Pie	Val	Blu	Equivalent species
Hard hardwoods	E h	C h	B h	D h	$\begin{aligned} & 311,318491,531, \\ & 591,680 \end{aligned}$
370	D	D	D	D	
400	E	c	B	D	601, 602
540	L	L	L	L	
802	E	c	B	D	
806	c	c	B	B	
812	C	C	B	B	813, 828, 830, 834
820	E	E	E	E	
822	K	K	K	K	804, 823, 825
827	E	E	E	E	826
831	N	N	N	N	
832	C	C	C	C	
833	D	D	D	D	
835	B	B	B	B	$\begin{aligned} & 807,816,819,824, \\ & 840,841,899 \end{aligned}$
837 901	D	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & D \\ & 0 \end{aligned}$	
Soft hardwoods	E s	c s	B S	D s	$\begin{aligned} & 313,554,651,652, \\ & 653,691,740,762, \\ & 920,970 \end{aligned}$
221	F	F	F	D	220
316	E	C	D	D	
460	M	M	M	M	
611	E	C	B	B	
621	E	C	B	D	
691	E	E	E	E	
693	D	D	D	D	
694	E	E	D	D	
731	c	C	C	C	
950	D	D	D	D	
970	C	c	c	c	
Pines					
110	F	F	F	F	
111	F	F	F	F	
121	F	F	F	F	
129	F	F	F	F	
131	F	F	F	F	
132	F	F	F	F	
260	F	F	F	F	

Literature Cited

(A) Brenneman, B.R. and R.F. Daniels. 1982. A Case Study, with Alternatives, for Calculating Biomass Yield. In: Baldwin, V.C.; Lohrey, R.E., eds. - Proc. of 1982 Southern Forest Biomass Working Group Workshop, June 16-18, 1982, Alexandria, La. Louisiana State University. Baton Rouge, La. pp. 105-110.
(B)

Southeastern Tree Species [unpublish 1986. Weight and Volume Equations for For. Ser. S.E. For. Exp. Sta.
(C)
d Val_ 1986. Total Tree Weight, Stem Weight, and Volume Tables for Hardwood Species in the Southeast. Georgia Forestry Commission. Ga. For. Res. Pap. 60.
(D) Clark, A., III, D.R. Phillips, and D.J. Fredrick. 1986. Weight, Volume, and Physical Properties of Major Hardwood Species in the Upland-South. U.S. For. Ser. S.E. For. Exp. Sta. Res. Pap. SE-257.
(E) For. Exp. Sta. Res. Pap. SE-255. Plains. U.S. For. Ser. S.E. For. Exp. Sta. Res. Pap. SE-250. and J.G. Schroeder. 1986. Weight, Volume, and Physical Properties of Major Hardwood Species in the Southern Appalachian Mountains. U.S. For. Ser. S.E. For. Exp. Sta. Res. Pap. SE-253.
(H) McNab, W.H. and A. Clark, III. 1982. Total Tree and Major Component Green Weight of White Pine and Hemlock in North Georgia. Georgia Forestry Commission. Ga. For. Res. Pap. 31.
(I) Merrifield, R.G. and R.R. Foil. 1967. Volume Equations for Southern Pine Pulpwood. Louisiana State University, Agricultural Experiment Station, Hill Farm Experiment Station, Homer, La. Hill Farm Facts, Forestry 7. Parker, R.C. 1972. Regression Equations for the Mesavage and Girard Form-class Volume Tables. Virginia Polytechnic Institute and State University, Blacksburg, Va., Cooperative Extension Service, Pub. 501. Mississippi Delta. USDA For. Ser. So. For. Exp. Sta. Res. Pap. SO-173. Schlaegel, B.E. 1984. Overcup Oak Volume and Weight Tables. USDA For. Ser. So. For. Exp. Sta. Res. Pap. SO-207.
(M) \qquad 1984. Green Ash Volume and Weight Tables. USDA For. Ser. So. For. Exp. Sta. Res. Pap. SO-206.
(N) 1984. Sugarberry Volume and Weight Tables. USDA For. Ser. So. For. Exp. Sta. Res. Pap. SO-205.

APPENDIX 5. SPECIES CODE, COMMERCIAL TREES

107 Sand pine
110 Shortleaf pine
111 Slash pine
115 Spruce pine
121 Longleaf pine
123 Table-Mt. pine
126 Pitch pine
128 Pond pine
131 Loblolly pine
132 Virginia pine

010 Fraser fir
043 Atlantic white-cedar
060 Eastern redcedar
090 Red spruce
129 White pine
221 Baldcypress
222 Pondcypress
241 Northern white-cedar
260 Eastern hemlock

Yellow Pines

Pinus clausa
Pinus echinata
Pinus elliottii
Pinus glabra
Pinus palustris
Pinus pungens
Pinus rigida
Pinus serotina
Pinus taeda
Pinus virginiana

Other Softwoods

Abies fraseri
Chamaecyparis thyoides
Juniperus virginiana
Picea rubens
Pinus strobus
Taxodium distichum var. distichum
Taxodium distichum var. nutans
Thuja occidentalis
Tsuga canadensis

Soft Hardwoods

313 Boxelder
316 Red maple
317 Silver maple
330 Buckeye
460 Hackberry
555 Loblolly-bay
580 Silverbell (in mts.)
601 Butternut
611 Sweetgum
621 Yellow-poplar
651 Cucumbertree
652 Magnolia
653 Sweetbay
691 Water tupelo
693 Blackgum (upland)
694 Blackgum (lowland)
731 American sycamore
740 Cottonwood
762 Black cherry
920 Willow
950 American basswood
970 Elm

Acer negundo
Acer rubrum
Acer saccharinum
Aesculus spp.
Celtis occidentalis
Gordonia lasianthus
Halesia spp.
Juglans cinerea
Liquidambar styraciflua
Liriodendron tulipifera
Magnolia acuminata
Magnolia spp.
Magnolia virginiana
Nyssa aquatica
Nyssa sylvatica
Nyssa sylvatica
Platanus occidentalis
Populus spp.
Prunus serotina
Salix spp.
Tilia americana
Ulmus spp.

Hard Hardwoods

311 Florida maple
318 Sugar maple
370 Birch (except yellow)
371 Yellow birch
400 Hickory
491 Flowering dogwood
521 Persimmon (forest grown)
531 American beech
540 Ash
552 Honeylocust
591 American holly
602 Black walnut
680 Red mulberry
802 White oak
804 Swamp white oak
806 Scarlet oak
812 Southern red oak
813 Cherrybark oak
817 Shingle oak
820 Laurel oak
822 Overcup oak
823 Bur oak
825 Swamp chestnut oak
826 Chinkapin oak
827 Water oak
830 Pin oak
831 Willow oak
832 Chestnut oak
833 Northern red oak
834 Shumard oak
835 Post oak
837 Black oak
838 Live oak
901 Black locust

Acer barbatum
Acer saccharum
Betula spp.
Betula alleghaniensis
Carya spp.
Cornus florida
Diospyros virginiana
Fagus grandifolia
Fraxinus spp.
Gleditsia triacanthos
Ilex opaca
Juglans nigra
Morus rubra
Quercus alba
Quercus bicolor
Quercus coccinea
Quercus falcata
Quercus falcata var. pagodaefolia
Quercus imbricaria
Quercus laurifolia
Quercus lyrata
Quercus macrocarpa
Quercus michauxii
Quercus muehlenbergii
Quercus nigra
Quercus palustris
Quercus phellos
Quercus prinus
Quercus rubra
Quercus shumardii
Quercus stellata
Quercus velutina
Quercus virginiana
Robinia pseudoacacia

Miscellaneous Species

310 Chalk maple
315 Striped maple
319 Mountain maple
341 Ailanthus
352 Serviceberry
391 Blue beech
421 American chestnut
451 Catalpa
471 Eastern redbud
521 Persimmon (field grown)
548 American mt. ash
581 Carolina silverbell (except mts.)
641 Osage-orange
660 Domestic fruit (apple etc.)
661 Chinaberry
692 Ogeechee gum
701 Eastern hophornbeam
711 Sourwood
712 Royal paulownia
721 Redbay
722 Planer-tree (water elm)
760 Fire cherry
807 Bluejack oak
816 Bear oak
819 Turkey oak
824 Blackjack oak
840 Dwarf post oak
841 Dwarf live oak
899 Other scrub oaks
931 Sassafras
999 Other miscellaneous trees

Acer saccharum var. leucoderme
Acer pensylvanicum
Acer spicatum
Ailanthus spp.
Amelanchier spp.
Carpinus caroliniana
Castanea dentata
Catalpa spp.
Cercis canadensis
Diospyros virginiana
Pyrus americana
Halesia carolina
Maclura pomifera
Malus spp.
Melia azedarach
Nyssa ogeche
Ostrya virginiana
Oxydendrum arboreum
Paulownia tomentosa
Persea borbonia
Planera aquatica
Prunus pennsylvanica
Quercus incana
Quercus ilicifolia
Quercus laevis
Quercus marilandica
Quercus stellata spp.
Quercus virginiana spp.
Quercus spp.
Sassafras albidum

APPENDIX 6. FOREST TYPE DEFINITIONS

White Pine - Hemlock (Code 4) - Forests in which eastern white pine and hemlock, singly or in combination, comprise a majority of the stocking.

Loblolly Pine Plantation (Code 5) - Forests in which loblolly pine was artificially regenerated with acceptable survival and comprises a plurality of the stocking.

Shortleaf Pine Plantation (Code 6) - Forests in which shortleaf pine was artificially regenerated with acceptable survival and comprises a plurality of the stocking.

Longleaf Pine Plantation (Code 7) - Forests in which longleaf pine was artificially regenerated with acceptable survival and comprises a plurality of the stocking.

Longleaf Pine (Code 21) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which longleaf pine contributes the most stocking of the pines.

Slash Pine (Code 22) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which slash pine contributes the most stocking of the pines.

Loblolly Pine (Code 31) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which loblolly pine contributes the most stocking of the pines.

Shortleaf Pine (Code 32) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which shortleaf pine contributes the most stocking of the pines.

Virginia Pine (Code 33) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which virginia pine contributes the most stocking of the pines.

Redcedar (Code 35) - Forests in which redcedar comprises a plurality of the stocking.

Pond Pine (Code 36) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which pond pine contributes the most stocking of the pines.

Pitch Pine (Code 38) - Forests in which southern yellow pines, singly or in combination, comprise a plurality of the stocking, and in which pitch pine contributes the most stocking of the pines.

Oak-Pine (Code 40) - Forests in which hardwoods (usually upland oaks) comprise a plurality of the stocking but in which pines com-
prise 25 to 50 percent of the stocking. (Common associates include gum, hickory, and yellow-poplar.)

Oak-Hickory (Code 50) - Forests in which upland oaks or hickory, singly or in combination, comprise a plurality of the stocking, except where pines comprise 25 to 50 percent, in which case the stand would be classified oak-pine. (Common associates include yellowpoplar, elm, maple, and black walnut.)

Chestnut Oak (Code 52) - Forests in which chestnut oak (Quercus prinus) comprises a plurality of the stocking.

Southern Scrub Oak (Code 57) - Forests in which blackjack, bluejack, turkey, dwarf post, and bear oak, singly or in combination, comprise a plurality of the stocking.

Oak-Gum-Cypress (Code 60) - Bottomland forests in which tupelo, blackgum, sweetgum, oaks, or southern cypress, singly or in combination, comprise a plurality of the stocking, except where pines comprise 25 to 50 percent, in which case the stand would be classified oak-pine. (Common associates include cottonwood, willow, ash, elm, hackberry, and maple.)

Elm-Ash-Cottonwood (Code 70) - Forests in which elm, ash, or cottonwood, singly or in combination, comprise a plurality of the stocking. (Common associates include willow, sycamore, beech, and maple.)

Alabama's Agricultural Experiment Station System AUBURN UNIVERSITY

With an agricultural research unit in every maiar soil area, Auburn Ofniversity serves the needs of field crop, livestock, forestry, and horticultural producers in each region in Alabama. Every citizen of the State has a stake in this research program, since any advantage from new and more economical ways of producing and handling farm products directly benefits the consuming public.

Research Unít Identification

Main Agricultural Experiment Station, Auburn. E. V. Smith Research Center, Shorter.

1. Tennéssee Valley Substation, Belle Mina.
2. Sand Mountain Substation, Crossville.
3. North Alabama Horticulture Substation, Cullman.
4. Upper Coastal Plain Substation, Winfield.
5. Forestry Unit, Fayette County.
6. Chilton Area Horticulture Substation, Clanton.
7. Forestry Unit, Coosa County.
8. Piedmont Substation, Camp Hill.
9. Plant Breeding Unit, Tallassee.
10. Forestry Unit, Autauga County.
11. Prattville Experiment Field, Prattville.
12. Black Belt Substation, Marion Junction
13. The Turnipseed-Ikenberry Place, Union Springs.
14. Lower Coastal Plain Substation, Camden.
15. Forestry Unit, Barbour County.
16. Monroeville Experiment Field, Monroeville
17. Wiregrass Substation, Headland.
18. Brewton Experiment Field, Brewton.
19. Solon Dixon Forestry Education Center, Covington and Escambia counties.
20. Ornamental Horticulture Substation, Spring Hill.
21. Gulf Coast Substation, Fairhope.

[^0]: 'Project jointly funded by Alabama Agricultural Experiment Station, Forest Resources System Institute (FORS), and Georgia Forestry Commission.
 ${ }^{2}$ Research Associate and Assistant Professor of Forestry.

[^1]: ${ }^{3}$ Personal communication, December 1987, J.P. McClure, FIA, Southeastern Forest Experiment Station, Asheville, North Carolina 28804.

[^2]: ${ }^{1} \mathrm{SP}=651.652$.
 ${ }^{2} S P=310-318$, not including 316 .
 ${ }^{3} \mathrm{SP}=812,813,834$.
 ${ }^{4} \mathrm{SP}=460,461,462$.

[^3]: - Clusters - 7, 11, \& 13 were combined into this cluster.

[^4]: ${ }^{1}$ Personal communications, December 1987, J.P. McClure, FIA, Southeastern Forest Experiment Station, Asheville, North Carolina, 28804.

