NOVEMBER 1984 ?... . . . .... .... . ? ??... . . . . . . .... .. NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL WATER FLOW EQUATION WITH AND WITHOUT TEMPERATURE DEPENDENT HYDRAULIC PROPERTIES DEPARTMENT OF AGRONOMY AND SOILS DEPARTMENTAL SERIES No. 94 ALABAMA AGRICULTURAL EXPERIMENT STATION AUBURN UNIVERSITY GALE A. BUCHANAN, DIRECTOR AUBURN UNIVERSITY, ALABAMA CONTENTS SUMMARY. ...... .................... INTRODUCTION ...... ................. THEORY.... . . . . . . . . . . . . . . ... NUMERICAL IMPLEMENTATION ............... CALCULATION OF TIME STEP ............... RESULTS. ..... ..................... 1. Infiltration into sandy soil ....... 2. Infiltration into Yolo light clay. ... 3. Water movement with temperature affected properties. .................... LITERATURE CITED ..... ............... APPENDIX: Execution of Computer Model . . .. hydraulic . . . . . . . . . . . . . . .? hydraulic . . . . . . . . . . . . . . . Information contained herein is available to all persons without regard to race, color, sex, or national origin. Page . 4 . 5 .5 .10 .20 .21 .21 .27 .29 .35 .37 LIST OF TABLES AND FIGURES Page Table 1. Comparison of the absolute mass balance, the relative mass balance, and computing time after 0.8 hour of infiltration into a sandy soil for a pressure head and a flux top boundary condition, respectively, as calculated by WAFLOW and the predictor-corrector method,............................25 Table 2. Fffect of number of space steps on computer time and mass balance during 0.8 hour of infiltration in a 80-cm deep sandy soil profile with a flux top boundary condition...........................26 Figure 1. Relation between soil water pressure head (h) and water content ( at reference temperature, Tref" and at temperature T.........................9 Figure 2. Diagram of the finite difference grid superimposed on the depth-time region of a soil profile.. .......... 12 Figure 3. Diagram of the grid point distribution for a flux boundary condition at the soil surface.................14 Figure 4. Water content profiles during infiltration into a sandy soil after 0.2 and 0.8 hour as calculated with the h-implicit, WAFLOW and the predictor-corrector model.................23 LIST OF TABLES AND FIGURES (continued) Page Figure 5. Water content profiles during infiltration into a sandy soil after 0.2 and 0.8 hour as calculated with WAFLOW and the predictor-corrector model. .............. 24 Figure 6. Water content profiles during infiltration into Yolo 66 light clay after 10 and 3*106 seconds as computed by the h-implicit and the predictor-corrector model. ........... 28 Figure 7. Top boundary condition for long-term simulation . . . 30 Figure 8. Bottom boundary condition for long-term simulation. . 31 Figure 9. Water content profiles after 2.8, 29.8, and 41.7 hours of simulation at a constant temperature of 20 0 C (reference temperature), a variable temperature with a mean temperature of 20'C and a variable temperature with a mean temperature of 25 0 C .. ........ ........................... 33 Appendix Table 1. Definition of the main program variables. . . 40 Appendix Table 2. Required input data and a listing of the actual input data for example problem 1.... ............ 43 Appendix Table 3. Description and listing of output ........ 51 Appendix Table 4. Listing of predictor-corrector model. ...... 60 Appendix Figure 1. Flow chart of predictor-corrector model with provision of temperature dependent hydraulic properties. . . . 38 SUMMARY The pressure head form of the general flow equation for water in a porous medium was numerically solved using the predictor-corrector method. The mass-balance equation was used to check the accuracy of the simulation. If a predefined error criterion was not met, the time step increment was decreased. Several flow problems were solved, of which the resulting water content distributions were compared with other models. The execution time was generally less for the described model than for WAFLOW (2). However, space increments could not be changed during the simulation. The computer model also accounts for temperature effects on the hydraulic properties. For temperature varying with both time and depth, the effect seemed to be minimal if the hydraulic properties were determined at the mean temperature of the profile. NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL WATER FLOW EQUATION WITH AND WITHOUT TEMPERATURE DEPENDENT HYDRAULIC PROPERTIES J.W. Hopmans and J.H. Danel INTRODUCTION Solution of the one-dimensional soil water flow equation is usually complicated. Boundary conditions may vary with time, while the soil hydraulic properties often change with time and position. In view of this, most efforts have been concentrated on seeking numerical rather than analytical solutions. The Douglas-Jones predictor- corrector method is a finite difference method which can be used to solve nonlinear parabolic partial differential equations. The model was adapted to account for temperature dependency of soil hydraulic properties. The dependence of surface tension of water on temperature was assumed to be responsible for the temperature effect on soil water pressure head, while the hydraulic conductivity variation with temperature was attributed entirely to changes in the water viscosity. The source text, a description of the model, and three numerical examples are presented. THEORY The general transport equation for water movement in the soil, which was used in the simulation described in this report, can be formulated by combining the Darcy equation and the mass balance equation of soil water. In one-dimensional form the Darcy equation may be written as: v - K(h)3 -[1 az Graduate Research Assistant and Associate Professor, respectively, Department ,of Agronomy and Soils. where K(h) is the hydraulic conductivity function, h is soil water pressure head, H is hydraulic head, z is distance (z=O at reference level and z>O above reference level), and H is the hydraulic gradient. The algebraic sign of the flux v indicates the direction of the flow, i.e., v is upward if positive and downward if negative. Since the hydraulic head is the sum of the pressure and gravitational head, Eq. [11 may be written as: v = iK(h) + , [2] azz where Shis the pressure head qradient. For a certain set of assumptions the mass balance equation can be written as a volume balance equation: av' " ) [31 at 3 This equation relates the time rate of change of water content, at-, of a differential volume element of soil to the difference of inflow and av outflow across that element, 7, which is called the divergence of the flux. Combining Eq. [21 with Eq. [3] yields the general equation for vertical flow of water in soil: " a (h)( + I. [4] To obtain an equation for water flow in one dependent variable, another relation between e and h is required. Introducing the water c( capacity of the soil as C(h) -ah (slope of the water retention 6 curve), the time derivative term in Eq. F41 can be transformed to: ae de ah ah a - m zC (h) - [5] at at[51 Substituting Eq. F5] into Eq. [47 yields: C h T h- a{K (hT) ( T + I)}r61 3t Kz hT which is called the pressure head form of the one-dimensional general flow equation. An elaborate review of the movement of water in unsaturated soils has been given by Klute (5). Eq. [61 was derived for isothermal conditions. Because of the temperature dependency of a soil's hydraulic properties on temperature, additional complications in the numerical solution arise when the temperature varies with time and/or depth. The computer model presented in this report was adapted to account for temperature dependency of the hydraulic properties. According to Wilkinson and Klute (6), the change of pressure head (h) with temperature (T) can be described by dh hd h dT = dT y(T) , [7] where dh/dT is the temperature coefficient of soil-water pressure head (kPa/?C), ois the surface tension at the air-water interface (N/m), and y(T) is the temperature coefficient of surface tension of water. Application of Eq. [7]I and knowledge of a reference soil water pressure head value (href) at a reference temperature (Tref) allows the soil water pressure head value (hT) at any ether temperature to be approximated by hT href + (T-Tref) dh href + (T-Tref) hrefvY(T) or h T = 1 + (T-Tref).Y(T) .href 8 provided IT-Trefis small. The reference temperature is defined as that temperature at which the hydraulic properties were determined. Asy is temperature dependent and jT-Tref is not always small, (T - Tref).Y(T) was approximated by summation over a finite number of temperature steps of 0.01 'C, i.e. (T-Tf)y(T) Ek (T? - T)y(T 1 (T ref )i() =l (i+1 Ti i , [9] h k where T1=Tra f and Tk+1=T, so that h T = { + k (T - )y(T }h = a(T)href 10] T =l i+refref The coefficient a(T) is a function of both depth and time if T changes with depth and time. The water capacity, C(h), can also be determined as a function of temperature, figure 1: dO 1 d 0 _ 1 C(h C (hT - T TT) dhrf - T ) ref . F11 Tref I I I T ouI I SI C[hTref hT C [h'T] I I I " eT e FIG. 1. Relation between soil water pressure head (h) and water content () at reference temperature, Tref, and at temperature T. The hydraulic conductivity, K(O), at any temperature, T, can be calculated from Kref}K KT = KrT ef F121 where n ref andn T denote the viscosity of water (Ns/m) at the reference temperature and the soil temperature in question, respectively, and Kref is the hydraulic conductivity value at the reference temperature. It is assumed that the changes in water density with temperature are negligible. NUMERICAL IMPLEMENTATION To solve the flow equation, Eq. (6) is written in the Quasi-linear form: 2h C(h,T) Th _ 1 K(h,T) ah - 1 K(h,T) D z 2 K-h,T) "t K(h,T) z z K(h,T) z , [13 which can be written as a combination of two functions T2h ah th = fl(h,t,z)__ + f 2 (h,t,z,- ) . F141 z 2 1D t z A quasi-linear equation is one in which the highest order derivative appears linearly. The method that will be described to solve Eq. 141 was introduced by Douglas and Jones (3). The solution by a finite difference technique requires that a grid be superimposed upon the time-depth region of the flow system. The independent variables t and z will be subscripted by j and i, respectively. 10 Let L be the depth of the profile under consideration and T the total simulation time required, then for -L,4z4O and 0.t4T, the gridpoints (z i , tj) are defined for i=O, 1,....., N, and j=O, 1, ..... , M such that z 0 =O, zN=-L, t 0 =O and tM=T, figure 2. The Douglas-Jones approximation uses two equations, the predictor and the corrector. Each equation advances the solution one-half time increment. The predictor is a modification of the implicit method, and calculates the unknowns (h.) at the (j+!)- time level. The corrector is a 1 modification of the Crank-Nicolson scheme and uses the values of C(h) and K(h) calculated at the (j+!)- time level to solve for h. at time 1 (j+1). The grid spacing in the z-direction is fixed and is denoted by Az. The time increment is variable: At= t -tj+ j i +1 j If 6 2h/62 can be represented by two functions fl and f 2 as in Eq. F141, the predictor-corrector analog leads to linear algebraic equations. The predictor is hi,j+ -hi j2 (h+ij h, f2(zit+ h i zhi .) A2 (h i j+ ) fl(zitj+ ,hij). , ,At/2 + 2 (zij+,hij zhij 1z ' +1' 2At/2 '2' , 15a] for i=1,.....,N- , followed by the corrector A2 (hi,j+l+hi,j 1(zi'tj+ ,hi,j+ h i + j + 1 - h i ' j At ,[15b] f 2 (zij+ ,h i,j+ 6 zhi,j+ ) 11 AZ0. 11 ,0 . 0 N-i FIG. 2. Diagram of the finite difference grid superimposed on the depth-time region of a soil profile. 12 hi+1,j-hi-1,j where azhi,j - 2Az h -2h. +h 2 i+1,j -2hi,j+hi-,j and Azhij (AZ) 2 An advantage of the predictor-corrector method is that it gives rise to sets of linear equations with tri-diagonal coefficient matrices. The predictor-corrector method is unconditionally stable and the truncation error is of the order (Az) 2 + (At) 3/ 2 Specific details of the procedure will be shown by means of an example. Consider a system with only 5 gridpoints in the z-direction (N=4), the boundary points included, figure 3. Assuming a pressure head bottom boundary condition, a derivation is given for the equations of the predictor and corrector for two different boundary conditions: (1) a constant pressure head top and bottom boundary condition, and (2) a flux boundary at the surface and a pressure head boundary at the bottom which may both vary with time. l.a. Predictor-- constant pressure head top boundary condition. Using finite differences, Eq. [14] can be written as: hi+,j+ -2hi,j+ +hi-1,j+ Cj hij+-hij + 1 . i= i+K. 2 At!? 3 (Az) 2 K i , j At/2 K -Ki_ 1 h -h , [16] I K +1,] i- , +1,3 i-1,j K i 2Lz 2Az which, on solving for the pressure heads at the unknown time level (j + ), yields: j '2j + 1 0 imaginary boundary i=O xxx physical top boundary intermediate i=2 XXX grid points = 4 x physical bottom boundary FIG. 3. Diagram of the grid point distribution for a flux boundary condition at the soil surface. 14 2 (Az ) 2 C. -i ~ (2 + 1 '3 + hi+].~* 2 At K- 2 (Az ) 2 C -k )h 3 1 , 4K , AZ or h~ ? 2 (2+a j)hi , +i+h i+ 2 =bjhi 1 j-ajhj ,j-bjhi+l ,j-Cj for i=1,2.3 and 2(Az) 2 C, aj A K A 1 K1~ b. K+1 i- 1 4Ki .5 C- =2Azb- r 191 It is obvious that a,, b., and c. vary with depth and time. Writing Eq. [181 in matrix form yields: 1 [ha - (2+a ) 2hb 1 ~ (2?aj] h3J 3 4I .2 . -a- L c 15 4Ki 5j srF171 [i181 L(2+a) where h 0 and h 4 are the values for h at the top and bottom boundary, respectively. 1. b. Corrector-- constant pressure head top boundary condition.. Again, as for the predictor, finite differences are used to rewrite Eq. [141: jh I 2 h i5 ?+ h i 5+~jjJ2h. .?hi~ i . C.. 1 2 h. + h. (AZ) 2 At +1 j_____+I--________-2_ 2Az L 2 Az + 11 [201 Solving Eq. F201. for the pressure heads at the unknown time level (j+1) yields: h. 5jl -(2+a )h ?jl h = 3l - h j 1 +(2aj,)h -hi+, ?2bi lhiI 2 bj? ih i +1 l2cj~l, (i=1, 2 53) where a,+, b.3 b and c+,. are defined as in Eq. FI-91 with all time steps incremented by 2. JI - [211 Writing Eq. F21] in matrix form results in 1) I - (2+aj +,) j+1 (2-a +) -1 0 0 -2b+ 2bj+ 0 0 2b + 0 h 1 -2b h 2 0 j+h 3 j 2b +2hoj+0-2c+1-hoj+l-h0,j -2c+ 1 -2b + 1 h 4 j+ -2c +-h4,j+1-h 4 j 2. a. Predictor-- flux top boundary condition. Introducing an imaginary boundary at distance z above the soil surface, figure 3, it is possible to determine the pressure head value at this imaginary point needed to sustain the flux at the soil surface. Writing Darcy's law in finite difference form: hl,j+ -h- 1 ,j+ ) V20j+ =-KOj( 2z ) - KOj , F22 ' ' 2AZ and solving for h 1 ,j+ (the imaginary boundary) yields: 2Az(V 0 1 + K 0 . h =h + 2Az(v 0 j+ + K [23 h1,j+ h 1,j+ , [3K 0 5 ' K 0 ,j 17 -1 (2-a j -1 0 -1 (2-a j+ J h 13 h 3 ] ] 2Az (V 0 ~j, 1 + K 01 ) d+ 2=K 0 , 1 Similarly.: where For i=O0,. 0..3, i nto Eq. FEIF,1 2Az(v 0 , 1 +K 01 j) d. = ___ _______j and substituting the expressions for h- ,+. yields the followirg set of linear equations: andh 2 0 0 -(2?a) 1 0 1 -(2+a.) 1 0 1 -(2+a) r h1 0 h h I h 2 3 -a. 3 b. 3 0 3 + 0 -a. 3 0 0 -b. 3 -a. 3 b. 3 c.-b d +dj+3 Lc 1 +h 4 sjI? 2+bjih 4 -j 2-. b. Corrector-- flux top boundary condition. Defining d.~ 2Az(V 0 +KO,j+ )+K +1Ko0 j+ '-2 18 or where r 241 (2+a) 1 0 0 h0 -a h. and d.i,, as before, substituting expressions for h 1 ~ and h into Eq.E21] results in: 2 0 0 -(2+a. + 10 1 -(2+a. +) I 0 1 -(2+a. +1'2 0 0 2b lb 0 . 0 0 b 0 -2b + 1 2bj + 0 hi h3 + j + 2 -1 -2 (2-a (2-a. + 1 -1 (2-a.j+1'2 h 2 31 F 2b d. -- d d i2c i -2c - 4 i 2 c+- 4 + 1 Once the matrices are defined it is relatively simple to calculate the h-values at all grid points at times j+I (predictor values) and j+1 (corrector values)., It should be noted that. all matrices are of the tridiagonal form (elements occur only on the main diagonal and on one subdiagonal above and below). Such a matrix can be solved explicitly for the unknowns,'and eliminates any matrix operations. Through transformation of a tridiagonal matrix into a simpler, bidiagonal form the unknowns can be solved by backward substitution. This method has been called the Thomas algorithm (1). In summary, at each time step two systems of linear equations (predictor and corrector) are solved. The pressure heads calculated by the predictor are used to define the hydraulic properties of the corrector. 19 and d. h + -2 -(2 +a 0 0 F 2b + 0 0 h 0: The solution process uses the initial condition to determine the pressure head values at the end of the first time step. These values are then used to determine the h-values at the next time step. The solution process thus marches forward in time by incrementsAt.. a CALCULATION OF THE TIME STEP The mass balance equation was used to control the time step size. A too large time step will result in an inaccurate approximation of h. . and v.. , which in turn will influence the outcome of the i 5j+1 153+ mass balance equation. At time t,+ 1 , the mass balance MBj. is defined tj+1 MB +1 O(z tj+1)-O(z,tj) ] dz - v(O,t) - v(-L,t)J dt ' 1 25-; -L tj where o 'z,t) is a function of pressure head and can thus be calculated. The increase in water in a profile (first integral form in Eq. F25]) was estimated by applying the trapezoidal rule. The second integral is simply a subtraction of the fluxes at the top and bottom of the profile under consideration and integrated over At.. a The flux at the bottom was approximated by: hNj+1+N-1 j+ 1 hNj-hN-1,j+ vN-j+1 K( ). N+I N2 z? In case of a pressure head top boundary condition, the flux at the surface was assumed to be equal to the average flux between the first two grid points. If MB. was larger than a specific value 0, the j+1 values of h. were rejiected, the time step decreased, and new values 1l,j+1 20 for h ij+ 1 were calculated. Very small values for MB+ 1, e.g. 0.1e i ,j+1 j+1' resulted in an increase of the time step. A relative mass balance was also calculated after each time step. The relative mass balance (percentage) is defined as MBj+1 *100 divided by the total amount of water that enters (or leaves) the profile across the bottom and top boundary over a given time step. The relative mass balance may be a better tool to check accuracy, especially if the second term of the right hand side in Eq. [25] is small relative to MB.+ I ? Mpj+1. RESULTS The results of three simulations will be presented in this section. The first two simulations describe the infiltration of water into a sandy and into a light clay soil, as reported by Haverkamp et al. (4). During the third simulation, both the boundary conditions and temperature distribution vary with time. 1. Infiltration into a sandy soil In this simulation (4), water was allowed to infiltrate into a 80-cm deep homogeneous soil profile, having the following hydraulic properties: A K = K . , K =34 cm/hr s A + Ah1b s A= 1.175*106 b= 4.74 and 21 a(O- r ) 6 = +6 a + hlb r , = 0.287 = 0.075 r 6 a= 1.611*10 b= 3.96 The initial and boundary conditions were: h=-61.5 cm 0 L 4 80 cm , t = 0 h=-20.73 cm, or v=-13.69 cm/hr z=0 , t 0 h=-61.5 cm z = -80 cm , t > 0 where v denotes a constant downward flux and h a constant pressure head. Water content profiles after 0.2 and 0.8 hour of simulation time are shown in figure 4 for the pressure head top boundary condition and in figure 5 for the flux top boundary condition, respectively. The water content distributions in figure 4 are compared with those computed by the h-implicit method of Haverkamp et al. (4) and by the model WAFLOW of Dane et al. (2). The results of the simulation with the flux boundary condition, figure 5, are compared with the water content profiles computed with WAFLOW. Table 1 displays the absolute mass balance, the relative mass balance, and the computing times required to simulate both situations for 0.8 hour by the predictor-corrector method and the WAFLOW model, respectively. The results indicate shorter execution times for the predictor-corrector method than for WAFLOW. It should be noted, however, that WAFLOW evaluated the coefficients C and K at the future time step, which consequently resulted in sets of nonlinear equations to be solved by iteration. Table 2 shows the effect of a decrease in the number of space steps on computing time and accuracy. It appears 22 Water Content, cm3/cm 3 0.12 0.14 ON 0.16 I 0.18 0.20 1I - " 0 10- 20- 30- 40- E 0 0 50- 60- 0.8h Ox. 0 x xo x 0 xc o FIG. 4. Water content profiles during infiltration into a sandy soil after 0.2 and 0.8 hour as calculated with the h-implicit, WAFLOW and the predictor- corrector model. 23 0.10 -1I 0.22 1 0.24 I 0.26 I 0 x ox0 pressure head top boundary condition 0.2h x 0 0 Ox OxOX x h -implicit o WAFLOW * predictor -corrector 70- 80- 0 0 oI oe X 0 0 x X X * X * 0 0 10- 20- 30- 40 50 60 70- 80- 0.05 Water Content, cm/cm 3 0.10- 0,15 0,20. flux top boundary condition 0.25 v6 2 h h o x 0 0 0 x O X o x P X 0 x x xpredictor-corrector oWAFLOW O x 0.8 h 0 x ox 0 x c x x FIG. 5.-Watercontent profiles during infiltration into a sandy soil after 0.2 and 0.8 hour as calculated with WAFLOW and the predictor-corrector model. 24 0.30 C. 0. -- -, - I I ox Table 1. Comparison of the absolute mass balance, the relative mass balance, and computing time after 0.8 hour of infiltration into a sandy soil for a pressure head and a flux top boundary condition, respectively, as calculated by WAFLOW and the predictor-corrector method (number of grid points:81, mass balance criterion: 0.001) Top boundary condition Pressure head Flux MODEL WAFLOW MODEL WAFLOW Computing time (minutes) 1.12 2.50 0.21 0.30 Absolute mass balance (cm) at 0.8 hour .17*10 -3 .12*103 .73*10 4 .78*103 Relative mass balance (%) at 0.8 hour .47 .35 .32 1.46 25 Table 2. Effect of number of space steps on computer time and mass balance during 0.8 hour of infiltration in an 80-cm deep sandy soil profile with a flux top boundary conditior Overall relative Number of Computer Relative mass balance(%) mass space steps time(sec) time (h) balance (%) 0.1 0.5 0.8 at t=0.8 h 80 27 0.38 0.44 0.32 0.79 60 27 0.75 0.84 0.57 0.94 40 30 0.51 1.0 1.0 1.36 20 33 2.5 0.8 1.1 138 15 35 6.5 0.55 0.5 0.74 WAFLOW 80 30 0.5 1.53 1.46 1.33 26 that computer time increases slightly with a decrease in grid points. Also note that the accuracy with only 15 grid points is at least as good as with 80 grid points. 2. Infiltration into Yolo light clay The hydraulic properties as presented by Haverkamp et al. (4) are: A K = K s sA + (h b K = 4.428*10-2 cm/hr A= 124.6 b= 1.77 a(6 -e ) a s r 0= 0.495 a+(Injhl~b 0= 0.124 r a= 739 b= 4.0 The infiltration profiles obtained by the h-implicit and the predictor-corrector model are presented in figure 6. The flow regime was subjected to the following initial and boundary conditions: h=-600 cm h=-0.5 cm h=-600 cm , t=0, zZ0 , t >0, z=0 , t0, z=-200 cm 27 and Water Content, cm3/cm 3 0.28 0.32 i i X C 0.36 0.40 0.44 I I I X 0 x X X X 0 x 0 x h-implicit . predictor -corrector 0 3 10 6 sec. xx X X 0 0 * X X 0 0 XX * X xxX x x , FIG. 6. Water content profiles during infiltration into Yolo light clay after 106 and 3*106 seconds as computed by the h-implicit and the predictor-corrector model. 28 0.20 0 -4 0.24 1 0.48 I 0.52 20- 40- 60- 80- 100 - 0 OX X 106sec. X X .* X@* 120- 140- 160- 180- 200 The numerical computations were made with a depth interval of 2 cm, while the time step varied from a few seconds (initial stage) to a few thousand seconds (for t 30 hours). The lower wetting front corresponds to a simulation time of about 35 days. 3. Water movement with temperature affected hydraulic properties This experiment involved a long-term simulation, during which infiltration and evaporation were alternated and varied in magnitude, figure 7. The bottom boundary condition was one of changing pressure head, figure 8. The hydraulic properties and initial condition were the same as those in the first example. In addition to these changing boundary conditions, a varying temperature was applied with regard to both time and position, viz., T(z,t)=20 + 10 exp(+z/0.226)sin(.2618t+z/0.266). [26] Eq. F261 indicates an average daily temperature (Ta) of 20'C at any av depth and a temperature amplitude at the soil surface of 10 0 C. Although the damping depth is a function of water content, it was chosen to be constant (0.266 m) since the only purpose of Eq. [26] was to obtain a reasonable change of temperature with time (t in hours) and depth. The constant 0.2168 is the angular frequency. The results of this flow problem and those of a similar flow problem but with a Tav of 25 0 C were compared with the results of the same flow problem subjected to a constant temperature of 20?C with respect to both time and depth. The water content distributions at specific times for the three temperature regimes are shown in figure 9. During the simulation, 2 hours of 29 + 18* 10-5 + 9*10 - 5 time, h 0 5 10 15 20 25 30 35 X" -. 01 -0.02 Experiment no. 3 Upper boundary condition -0.03 -- FIG. 7. Top boundary condition for long-term simulation. 30 -3 -4 Lower boundary condition -5 Q.CL Z -6 -7 -8 - -9 I I I I I I I I I 5 10 15 20 25 30 35 40 45 time, h FIG. 8. Bottom boundary condition for long-term simulation. 31 infiltration were followed with evaporation at an average rate of 0.00216 m day. After 27.8 hours of simulation, a second application of water infiltrated during a 2-hour period. For the remaining period of time, the top boundary condition was again changed to evaporation. figure 9 shows that a varying temperature with Tav= 20'C did not significantly affect the soil water content profiles. However, it should be noted that the average soil temperature at any depth was 20'C, which is the same as the reference temperature. More distinct differences did occur when the mean soil temperature differed from the temperature at which the hydraulic properties were measured (T = 25 0 C, av figure 9). 32 e 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.0 I ____Constant temp. 1 I o20 0 C ........... Variable temp. Tav= 20 0 C S Variable temp. Tav = 25 0 C 0.2 41.7h 0.3- E..229.8 h 2.8h l 0.4- . a) I I 0.6 5- I41.7hb* 0.8 6- .7-h t FIG. 9. Water content profiles after 2.8, 29.8, and 41.7 hours of simulation at a constant temperature of 20 0 C (reference temperature), a variable temperature with a mean temperature of 20 0 C, and a variable temperature with a mean temperature of 250C. 33 LITERATURE CITED (1) Ames, W.F. 1977. Numerical Methods for Partial Differential Equations. Academic Press. (2) Dane, J.H., J.W. Hopmans, and F.H. Mathis. 1982. An Adaptive Simulation Technique for the One-Dimensional Water Flow Equation. Department of Agronomy and Soils, Alabama Agricultural Experiment Station, Auburn University, Departmental Series No. 79. (3) Dougl as, J. and B.F. Jones. 1963. On a Predictor-Corrector Method for Nonlinear Parabolic Differential Equations. SIAM J. Appl. Math. Vol. 2, no. 1:195-204. (4) Haverkamp, R., M. Vauclin, J. Touma, P.J. Wierenga, and G. Vachaud. 1977. A comparison of Numerical Simulation Models for One-Dimensional Infiltration. Soil Sci. Soc. Am. J. 41:285-294. (5) Klute, A. 1969. The Movement of Water in Unsaturated Soils. The Progress of Hydrology in: Proc. of the First Int. Seminar for Hydrology Prof., Urbana, Ill., Vol II, 821-886. (6) Wilkinson, G.E. and A. Klute. 1962. The Temperature Effect on the Equilibrium Status of Water Held in Porous Media. Soil Sci. Soc. Am. Proc. 26:326-329. 35 APPENDIX Execution of the Program Appendix figure 1 shows a flow chart of the simulation model. The program consists of a main program, 6 subroutines (INIPLO, TEMP, CORTEM, PLO, MASSBA, CONDI) and 4 functions (FK, FC, FTH AND UIN). The input data are read from the data file DATIN. The functions FK, FC, and FTH define the hydraulic functions K(h), C(h) and (h) during initialization. The function UIN provides the initial conditions, expressed in pressure head as a function of depth. Upon execution of the program, a listing is printed of the soil's hydraulic properties and the initial conditions. INIPLO generates a plot of the initial pressure head and water content distribution, while TEMP sets the initial temperature distribution. CORTEM determines the temperature coefficients of pressure head and hydraulic conductivity as a function of water content and temperature. If the solution does not satisfy the criterion of the mass balance equation (calculations done in MASSBA), the time step is decreased and the solution process is repeated. The simulation, on the other hand, proceeds in time if the mass balance criterion is met. The time step size will increase for subsequent calculations if the mass balance is less than 1/10 of the imposed criterion. The simulation proceeds in time until the maximum simulation time is reached. The subroutine PLO generates a plot of the water content distribution at pre-defined times after the start of the simulation. CONDI allows for transient top and bottom boundary conditions and for a variable temperature distribution in both time and space. Appendix table 1 gives a list of the most significant variables 37 no yes APP. FIG. 1. Flow chart 'of predictor-corrector mode] with provision of temperature dependent hydraulic properties. 38 used in the program. Instructions for preparing the input data, together with a listing of the actual input data, are given in appendix table 2. A description and listing of the output are given in appendix table 3, while the listing of the program itself is given in appendix table 4. 39 Appendix Table 1. Definition of the Main Program Variables; if the Variable Represents an Array, the Maximum Dimension of that Array is Specified Variable Definition ALP Specifies whether the top boundary condition is a pressure head or flux: ALP=O.O : pressure head ALP=1.0 : flux CON hydraulic conductivity determined from FK(H, V,F) DT(2) time step (sec) DELMO change in stored water over current time step (cm), calculated from 2 consecutive water content profiles. DELFLU change in stored water over current time step (cm), calculated from fluxes at boundaries. DZ space step (cm) EMB absolute mass balance at current time step (cm) EPS criterion for mass balance (cm) F(220) factor by which pressure head must be multiplied in order to correct for temperature, if different from reference temperature Fil pressure head at imaginary grid point FC function, to compute water capacity from pressure head and F 40 Appendix Table 1 (continued) FK function to compute hydraulic conductivity from pressure head, F and V FTH function to compute water content from pressure head and F HO(220) pressure head at time level (I) Hi(220) pressure head at time level (j+!) H2(220) pressure head at time level (+1) NO number of times output-is desired NZ number of space steps NZI number of gridpoints (NZ + 1) 0(10) array, containina the times at which output is desired OVERAL relative mass balance since start of simulation (%) REMB relative mass balance at current time step (%) TE(220) array, containing temperatures at all grid points TEND end of simulation (sec) TI time since start of simulation (time level I) TI time since start of simulation (time level (j+l) TIll time since start of simulation (time level j+1) TH(220) array, containing water contents at all grid points IJBOT bottom boundary condition of profile (cm) UIII function, containing the initial conditions UTOP top boundary condition (flux or pressure head) 41 Appendix Table 1 (continued) V(220) factor by which conductivity must be multiplied to correct for temperature if different from reference temperature VO(220) array, containing fluxes at time level (j) V2(22?0) array, containing fluxes at time level (j+1) WAT(1) value representing amount of water stored in profile, as determined by trapezoidal rule Z(220O) array, containing the depths of the gridpoints (negative, cm) ZBOT depth of profile L (cm) 42 Appendix Table 2. Required Input Data and a Listing of Actual Input Data 1. Input data file DATIN column format 1-5 15 11-20 F10.4 21-30 F10.4 31-40 F10.4 41-50 51-60 61-70 1-5 6-10 1-80 F10.4 F10.4 F]0.4 F5.1 15 8F10.1 variable NZ ZBOT UTOP UBOT DT (1) TEND EPS ALP NO 0(8) description number of space steps profile depth (cm) top boundary condition, pressure head (cm) or flux (negative if downward, cm/hr) bottom boundary condition (cm) initial time step (sec) simulation time (sec) error criterion mass balance see appendix table I number of times that output must be printed array containing times (sec) that output must be printed (TEND included) 2. Initial conditions: The initial conditions are listed in the function UIN (Z), where 43 Appendix Table 2 (continued) only pressure head values can be assigned, and in the subroutine TEMP (Z,TE) for the initial temperature distribution. 3. Soil Properties: Analytical expressions for 0(h), K(h) and C(h) are defined in the functions FTH (H,F),FK(H,V,F) and FC (H,F). 4. Transient boundary conditions and temperature distributions can be defined in the subroutine CONDI. 44 INITIALIZATIONS AND BOUNDARY CONDITIONS NR. OF SPACE STEPS ........ 80 DEPTH OF PROFILE (CM) ..... 80.00000 TOP BOUNDARY CONDITION .... -0.003803 ALPHA = 1.0 BOTTOM BOUNDARY CONDITION . -61.50000 INITIAL TIME STEP (SECON) 0.0100 MODEL STOPS AT ............ 1000.00 SECON ERROR CRITERION MASS BAL..ANCE 0.00100 OUTPUT IS PRINTED AT 360.0 1000.0 45 THE F0LL'W ING T ABLE G, iVFS THE HYORAUL IC PROPERTIES OF THE SO".L CONSIDEREL SOIL TEMPERATURE [S REFEkE.NCE TEMP PRESSURE -10. 0 -15.0 -20.0 -30.0 -35.0U -40.0 -45.0 -50.0 - 55.0 -60.o0 -65.*0 -70.0 -75.0 -8000 -85. 0 -90 *0 -95.0 -10000 -100.0 -200.00 -300. 0 -40000 -500.0O -600. 0 -70000 -800. 00 -900.01 -100000 -1100.00 -120000 -1300.0 -1400.0 -1500.0 -2500.0 -3500.*0 -4500.*0 -5500.0 -7500.*0 -850000 -9500.0 -10500.0 -11 500.o 0 -12500.0 WA1EP ?CONTENT 3.281 0.270 0. 250. 0.*222 09192 0.164 0. 142 0. 124 0.*I11 00.102 0. 095 0 *087 0*084 0.083 0.081 0.080 0. 079 0.079 0.075 0. 075 0.075 0.075 0.0O75 0*075 0.075 0.075 0.075 00015 0.075 0.075 0.075 0.075 0. 075 0*075 0.075 0.0O75 0.075 0. 075 0.075 0.075 0.075 0.075 000N 75r CONDUCTIVITY 0.s90 22 5E -0?f* U. 71 569E-02 0.41 979E-02 0. 20535E-02 0.98987E-03 0. 504 1OE-03 0. 27456E-03 0. 15908E-03 0. 97187E-04 0. 6209 2E-04 0.41 199E-04 o *2823 QE 04 0. 19885E-04 0. 1434 7E-04 0. 10570E-04 0. 79325E-05 0.6051 IE-OS 0.468'3 E-35 0. 36733E-05 0.936733E -05 0 * 3 751 E-06 0. 20122E-07 0. 5145 BE-08 0. 17869E--08 0. 75!297E-09 0.3626 2E-09 0.192 56E-09 0. 11018E-09 0 .66868E-10 0.42 562E-1 0 0.2817 7E-10 0.1928 lE-lO 0.13 570E-1 0 0. 97846E-1 1 0. 86893E-12 0. 17633E-12 0. 53578E-13 0.2069 7E-1 3 0.93 758E-14 0.47 580E-14 0.26 289E-1 4 0.15 517E-14 0.f-tC 9655IE-C WATER CAPAC ITY. 0.'4699 3 E-011 0. 14928F-02 0.3 1?35E-0? 0. 48639E-02 0. 59319E-02, 0.59289E-02 0. 51J.85E-02 0. 40178E-02 0.2988 E-02 0.2166 5E-0-2 0. 15589E-02 0. 11248E-02 0. 81842E-03 0060228 E-03 0.4487 7f-03 0.033866E-03 0. 2587 7E-03 0. 200 IOE-03 0. 15648E-03 0. I5648E-03 0. 52113E-05 00 0 000 0.*0 000 000 000 .00 000 000 0.00 000 .00 000 00 000 000 000 .00 000 46 -I i % iL VIZ t, AI U Kt AUN L) I LMPL1kAlIURE CORRECT tON FACTORS FOR PRESSURE HEAD 000 - 10.0000 -. 0000 -3. 0000 -4. 0000 -5.3000 -6. 0000 -7. 0000 -8.00000 -9.00000 -10.00000 -1 1. 0000 -12.*0000 -13. 0000 -14.0000 -1 5.0000 -16.*0000 -ITT. 000 -18*0000 -19.00000 -20.*0000 -21.0O00 -22. 0000 -23.0000 -24. 0000 -25. 0000 -26.0000 -2 7.0000 -.28.00000 -90000 -30.00000 -31. 0000 -3 2.0000 -33. 0000 -34.*0000 -35. 0000 -36.*0000 -37.0000 -38. 0000 -3 9.00000 -40.0000. -41.*0000 -42.0000 -43. 0000n -55.*0000 -56. 0000 -57.*0000 A~ND HYDRAUL IC CONDUC IIIJV ITIY RE SP 20*0000 20*0000 20*0000 2 0.*000.0 20.*000 0 20.*0003 20.0000. 20.0000 20*0000 20.*000o 20*.0000 20 *0000 20o0000 20*.0000 20,100000 20*0000 20.0000 2000000 20*.0000 2 0.0000 20. 0000 20.00000 20.*0000 20.*0000 ?0.00000 20*0000 20.*0000 20.*0000 2090000 20.0000 20.0000 20*.0000 2 0. 0000 20.00000 20*0000 20. 0000 20.00000 20.0000 20*0000 2 0.0000 20,90000 20*0000 20.*0000 20.0000 2 0*0000 2 0.0000 1.00000 1 * 0000 1.10000 1 *00000 1.00000 100000 1's0000 100000 100000 1.100000 1.0000 1I *0000 1.00000 100000 1.00000 100000 1. 0000 1.00000 1 *00000 1.00000 100000 100000 1.00000 1 * 0000 1. 0000U 1.00000 I1*0000 1.40000 1.00000 1.00000 1 *.0000 1.00000 100000 1.0000 1. 0000 1.0000 1.100000 110000 1.*0000 1.00000 1.00000 1.0000 1.00000 1I 0000 1.0000 1.0000 100000 1 *00000 100000 1.00000 160000 10 0000 1100000 1 *00000 1. 00000 1. a0000 1.00000 I. *0000 1.00000 1.00000 1.00000 I1*00000 1.00000 1.00000 1.00000 1.00000 1.00000 1*0000 100000 1.00000 1.00000 1.*0000 1.00000 1.00000 1. 00000 1.00000 1.00000 1.00000 100000 1.00000 1.00000 1.00000 I. *0000 1.00000 1.00000 1.100000 1.00000 1.100000 1.00000 1.00000 1.100000 1.00000 1. 0 000 47 -58.*0000 -59.00000 -60.0000 -61.000 -62. 0000 -63.0000 -64. 0000 -6 5.0000 -66. 0000 -6 7.0000 -6 8.0000 -69.0000 -70.00000 -71. 0000 -72. 0000 -73.0000 -74.*0000 -75.0000 -76. 0000 -77.90000 -78. 0.000 -79.*0000 -80. 0000O 20.0000 20*0000 20*.0000 20 *0000 20*0000 20. 0000 20*0000 20.00000 2oo00 20.*0000 20.00000 2 0.0000 20.00000 2 0.0000 20.0000 20.o0000 20*0000 20.0000 20o.0000 20.0000 20 *0000 20.0000 20o0000 1.0000 1.*0000 1..00000 160000 1.00000 1.00000 10000 10000 100000 100000 1.00000 1. 0000u 1.00000 1.*0000 I1*0000O 100000 1.*0000 1.40000 100000 1.*0000 1.100000 1.00000 I1I*0000 1.00000 100000 100000 1100000 1 *00000 1.00000 1.00000 1. *0000 1.00000 I * 0000 1. *0000 1.00000 100000 1.00000 1.. 0000 1..00000 1.00000 1.00000 1.00000 1.0000 100000 1.00000 1*0000 48 INITIAL CONDITIONS ARE: NODE DEPTH 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 THETA 0. 0 -0. 20000E +01 -0. 30000E+01 -0. 40000E +01 -0. 50000E+01 -0. 60000E+0 1 -0 Oo70000E +0 1 -0. 90000E .01 -0. IOOOOE+02 -0.911OOOE+02 -0. 12000E+02 -0.913000E+02 -3. 14000E+02 -0. l5000E7+02 -0. 16000.E +02 -0017000E+02 -0.1 8000E +02 -0.19000E +02 -0. 2000E+02 -0923000E+02 -0.22 OOE +02 -0. 235000E +02 -0. 24000E+02 -0.2 5000E +02 -0. 268000E +02 -0. 27000 E+02 -0*28000E +02 -0. 29000E+02 -0. 30000E+02 -0. 31000E+02 -0. 32000E+02 -0. 33000E+02 -0. 34000E +02 -0 .3 000E +02 -0. 36000E+02 -0. 37000E+02 -0. 38000E+02 -0. 3900E +02 -0.40000E+02 -0. 41000E+02 -0. 42000E +02 -0. 43000E+02 -0.946000E+02 -0. 45000E+02 -0. 46000E +02 -0. 47000E +02 -0. o000E+02 -0. 51000E+02 -0. 52000Ei-02 -0. 53 OOE +02 0.998 SlE-Ol 0*99851E-01 0.998 SIE-Ol 0.99851 E-01 0.s99851E-01 0*99851E-01 0.998 51E-01 0*.99851E-01 0.998 51E-01 0. 99851E-01 0.998 SLE-Ol 0.99851lE-01 0.99851E-01 0.99851E-01 0.998 SlE-Ol 0.99851 E-0l 0.99851E-01 0.998 SIE-Ol 0. 99851E-01 0.99851E-01 0.'998 SlE-Ol 0 99851E-01 0.998 51E-01 0.998 SlE-Ol 0*99851E-01 0.99851 E-01 0. 998 51E-01 0.99851 E-0l 0.99851 E-0l 0.999851E-01 0.9 98 SIE-Ol 0*99851E-01 0.99851E-01 0.99851E-0l 0.99851E-01 0.99851E-01 0.998 SlE-Ol 0.998 51 E-01 0.998 SIE-Ol 0.998 SlE-Ol 0.99851E-01 0*99851E-01 0.99851E-01 0.998 51E-01 0. 99851E-01 0.99851E-01 0.99851 E-0l 0.99851E-01 0.998 SlE-Ol 0.998 SlE-Ol 0.99851E-01 0.*99851E-01 0.998 SlE-Ol. 0*9985i1E-01 FLUJX TEMPERATURE WATER CAPACITY PRESSUREHEM) -0. 61500E-0.2 -0. 61500E402 -0.6 1500E+02 -0. 61500E+02 -0. 61500E4-02 -0. 61500E+02 -0.o6 150E+02 -0. 61500E +0-2 -0. 61500E+02' -0. 61500E+02 -0. 61500E+02 -0. 61500E+02 -0. 6l500E'-02 -0.6 1500E4-02 -0. 61500E*02 - 0. 615 OQE 402 -0. 61500E4-02 -0. 61500E+02 -0. 6l500E+02 -0. 61500E +02 -0. 61500E+02 -0. 61500E+02 -0.6 1500E+02 -0. 61500E+02 -0. 61500E*02 -0. 6l500E4-02 -0*61500E+02 -0. 61500E+02 -0o.61500E+02 -0. 61500E+02 -0. 61500E+02 -0. 61500E4-02 -0*61500E*02 -0. 615 OOE+02 -0. 61500E+02 -0.6 1500E+02 -0. 61500E402 -0. 61500E4-02 -0.6 ISOOE+02 -0.6 1500E+02 -0. 61500E+02 -0. 61500Et02 - 0.6 15OOE 402 -0. 61500E4-02 -0.6 1500E4-02 -0. 61500E4-02 -0.6 ISOOE402 -0. 61500E4-02 -0. 61500E+02 -0. 36666E-04 -0. 36666 E-04 -0. 36666E-04 -0. 36666 E-04 -0. 36666E-04 -0. 36666E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 36666E-04 -0. 36666E-04 -0.o 36666E-04 -0. 36666E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 36666 E-04 -0.366 66E-04 -0. 36666 E-04 -0. 366 66E-04 -0. 3666 6E-04 -0. 36666E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 36666E-04 -0. 366 66E-04 -0. 36666E-04 -0. 36666E-04 -0. 366 66E-04 -0. 36666E-04 -0. 36666 E-04 -0. 36666E-04 -0. 36666 E-04 -0. 36666E-04 -0. 36666E-04 -0.936666E-04 -0. 36666E-04- -0. 366 66E-04 -0. 3666 6E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0. 366 66E-04 -0*36666E-04 -0*36666E 04 -0. 366 66E-04 -0. 36666E-04 -0. 366 66E-04 -0. 36666 E-04 -0. 36666E-04 -0. 36666E-04 20.00 20.00 20o00 2000 20.00 20.00 20.00 2000 20o00 20.00 20000 2000 2000 20.00 2000 20.00 20.00 20.0 20.00 20o00 2000 20000 20.00 20.00 2000 20. 00 20.00 20. 00 20.00 20.00 20.00 20.00 2000 20.00 20. 00 20.00 20.00 20h *00 20.00 20o00 20.00 20.-00 20.00 20.00 200.00 20.00 20.0 20.00 20.00 20.00 20.00 20.00 20.00 20.00 49 0.141 26E-02 0. 14126E-02. 0. 14126E-02 0. 14126-E-02 0. 14126E-02 0. 14126E-02 0.414126E-02 0. 14126E-02 0. 14126E-02 0. 14126 E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 1412 6E-02 0. 14126E-02 0. 1412 6E-02 0. 14126E-02 0. 1412 6E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0. 1412 6E-02 0. 14126E-02 0.141 26E-02 0. 14126E-"02 .14l.26E-02 -~~14126E-02-- 09.141 26E'-02 0. 14126E-02 0. 1412 6E-02- 0. 141,26E-02 0. 1412-6E-02 0. 14126E-02. 0.914126E-02 0. 14126E-02 0.141 26E-02 0*14126E-02 0. 14126E-02 0. 14126E-02 0. 14126E-02 0.414126E-02 0. 14126E-02 0. 1412,6E-041 55 57 58 59~ 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 -0. 54000E+o2 -0. 55000E+02 -0. 56000E +02 -0. 57000E*02 -0. 58000E+02 -0. 59000E*02 -0. 60000E+02 -0.61 OOOE*02 -0. 62000E+02 -0. 63000E+0? -0. 64000E +02 -0. 65000E +02 -0. 66000E+02 -0.6 1000E*02 -0. 68000E *02 -0.6 9000E *02 -0. 70000E +02 -0. 71000E+02 -0. 72000E *02 -. 73000E*02 -0. 74000E+02 -0. 75000E+02 -0. 76000E+02 -0. v77000OE +0&' -0.078000E +02 -0. 79000E+0 2 -0 *80000E *02 0.998 SIE-Ot 0.99851E-01 0.9985 IE-Ol 0.998512-01 0.99851E-01 0.998 51E-01 0 .98 51E-01 0.99851E-01 0.998 512-01 0.99851E-01 0.o998 512-01 0. 9985 12-01 0.99851 E-01 0.998512-01 0.9985 12-01 0-.99851E-01 0:99851E-01 0.99851E-01 0.-998 SIE-Ol 0. 998 51E-01 0.998 512-01 0.998 512-01 0.998512-01 0. 99851E-01 0.998512-01 0.99851E-01 0.99851E-01 -0. 615002*02 -0. 615002*02 -0. 6l500E*02 -0. 615002*0? -0. 61500E*02 -0. 615002*02 -0. 615002*02 -0.61500E*02 -0.6 15002*02 -0. 615002+02 -0. 615002*02 -0*615002*02 -0.P615002*+02 -0. 615 002*02 -0.615002*02 -0. 615002+02 -0.961500E+02 -0.o6 15002i02 -0. 615002*02 -0.61500E+02 -0*615002+02 -0. 615002*02 -0.61 SOOE*02 -0. 61500E+02 -0.61 500E*02 -0. 615002*02 -0. 615 002*02 -0. 366 66E-04 -0.* 366 66 E-04 -0. 366662-04 -0s.36666E-04 -0. 366662-04 -0.36666 2-04 -0. 366662-04 -0. 366 66E-04 -0. 3666 62-04 -0. 366662-04. -0.&36666E-04 -0. 36666E-04 -0. 366 66E-04 -0. 36666E-04 -0.36666 2-04 -0. 366 662-04' -0. 366662-04 -0. 366662-04 -0. 36666E-04 -0. 366 662-04 -0.36666 E-04 -0. 36666E-04 -0.366 662-04 -0.366 662-04 -0.36666E2-04 -0. 36666E-04 -0.9366 66E-04 20.00 20.00 20000 20000 20.0 20*000 20.00 20.00 20000 20.00 201.0 -20.00 .2000 20.00 20.00O 20.00 2.00 2.00 20.00 20.00 20.00 20.00- 2G.00 20.00 20.00 20.00 20.00 50 0*.1412 62-0? 0.141262-02 0.141262-02 0.141262E-02 0. 141262-02 0.141262-02 0. 14126E-02 0. 1412 6E-02 0. 14126E-02 . 14126E-02 0.1412 6E-02. 0. 14-126E-0-2 0. 14126E-02 0.141262-02- 0. 141262-02. 0. 141262-02 0. 141262-02 0. 14126E-02 0. 141262-02 0.141262-02 0. 141262-02 0. 141262-02 0.141262-02 0. 14126E-02 0.141262-02 0. 141262-02 Appendix Table 3. Description and listing of output. The following variables are printed during the simulation and at the selected times for output: TII- time since start of simulation WAT(1)- water storage in profile at time TII EMB- absolute mass balance over current time step REMB- relative mass balance over current time step OVERAL- relative mass balance since start of simulation UTOP- bottom boundary condition (pressure head) UBOT- top boundary condition (pressure head or flux) At the pre-selected times (defined in DATIN) a listing is given of pressure head, water content, flux,and temperature at all grid points. 51 AT TIME T1 WAT EMS TI WAT E MS T I WAT E MB T1 WAT EMS T I WAT EMS T I WAT EMS T I WAT FMB T 1.WATIE MS T I WAT EMS T I WAT EMS TI WAT EMS TI. WAT E MS T I WAT E MS TI WAT EMS T I WAT E MS TI1 WAT EMS T I WAT EMS T I WAT EMS T I WAT EMS T I WAT EMS T I WAT EMS T I WAT E MS T I WAT EMS T I WAT E MS TI, WAT EMS T I WAT EMS T I WAT EMS TI1 WAT EMS T I WAT EMS T I WAT EMS T I WAT EMS T I WAU EMS T I WAT EMS T I W AT EMS T I :WAT EMS T I WAT EMS T I WAT E MS T I WAT EMS T I WAT EMS T I WAT E MS T I WAT EMS T I WAT EMS TI WAT EMS TI WAT EMS T I WAT EMS T I WAT EMS T I WAT EMS T I WAT E MS T I WAT EMS T I W AT EMS T I WAT EMS T I WAT EMS T I WAT E MS T I W AT EMS T I WAT EMS T I WAT E MS T I WAT EMS T I WAT EMS 0. 0 R E OVER RE OVERP R E OVER RE FOVER R E OVER R E OVER R E OVER R E OVER R E OVER R E OVER R E OVER R E OVER RE OVER R E OVER RE OVER RE OVE R R E OVER R E OVER R E OVER RE OVERk R E OVER R E OVE R R E OVER RE OVER R E OVEP R E OVER R E OVER RE OVE R R E OVER R E OVER R E OVER RE. OVER RE, OVER RE OVER RE OVER R E OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER RE OVER WATER IN TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP BSOT TOP SOT TOiP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT TOP SOT PROFI LE I S 0.79581E4-0I CM 0.0 O0 799E+-01 0.205E-02 0.0 0.799E4-01 0.936E-03 0.O0*0799E+01 0.862E-03 0.0 0.T99E4-01 0.80*3E-03 0.O0*0799E4-01 O.752E-03 0.0 0*799E4-01 0.708E-03 000O.800E4-01 0.6 71E- 03 0.0 0.800E+01 O.661E-03 0.0 O.800E*01 0.605E-03 0.0 09800E+-01 0*583E-03 0.1 0.800E4-01 (x55,9E-03 0.1 0*500E4-0I 0.537E-03 0.1 0.SOOE~ol 0e5 18 E-0 3 0.1 0.800E+01 0.SOOE-03 0.1 09800E+01 0.483E-03 0.D1 0.800E*01 O.497E-03 0.1 0.SOOE+01 0.454E-03 0.1 0.800E+01 0.441E-03. 0.1 0.500E4-01 0.429E-03 0.1 0*800E+01 0.417E-03 0.1 09800E+01 0.*406E-03 0al.10*800E4-01 0.396E-03 0.1 0*800E4-01 0.414E-03 0.D1I0.SOOE.01 O.377E-03 0.1 0*800E+01 0.369E-03 0.1 0.SOO0E+01 Oo361E-03 0.1 0*800E+01 0*353E-03 0.1 0.801E4-01 0.345E-03 0.1 0*801E401 0.338E-03 0.1 0-1E +01 0*330E-03 0.*2 09801E+01 0.345E-03 0.2 0*801E+01 0.313E-03 0.2 0*801E+01 0*303E-03 0.2 0*801E*01 0.294E-03 0. 2 0,801E+01 0.282E-03 0.2 0.801E4-01 0*270E-03 0.2 0o801E*01 0*258E-03 0.2 0*801E*01 0.245E-03 0.2 0*801E*01 0*233E-03 0.2 0*801E+01 0*220E-03 0.2 0.801E*0. 0.235E-03 0.2 0.801E+01 0.198E-03 0.2 0.801E4-01 0.1L86E-03 0.2 0.801E+0l 0.116E-03 0.2 0.801E+01 0.166E-03 0.2 0&801E+01 0.158E-03 0.2 O.801E*01 0..150E-03 0.2 0.m801E4-01 0.164E-03 0.2 0*801E*01 0.135E-03 0.2 0.*801E +01 0.128E-03 0.3 0.801E*01 O.122E-03 0.3 0*801E4-01 0*116E-03 0.3 0.801E+01 O.I1IE-03 0.3 0.801E4-01 0.107E-03 0.3 0.801E*01 0.102EF-03 0.3 0e801E+01 .0*125E-03 0.s3 0*801E+-O1 09941E-04 0.3 0*801E4-01 0*127E-03 0. 552E+04 0.,497IE+404 0. 458E +04 0. 426E+04 0.9399E +04 0. 376E+04 0. 356E *04 0.35 1E+04 0. 323E*04 0. 309E+04 0 *2?97E *04 0. 265E*04 0.*275E*04 0.266E+04 0. 257E*04 0. 264E+04 0. 24IE *04 0. 234E*04 0.228E+04 0.22 IE+04 0. 216E 404 0.o21 E+04 0.220E *04 0. 200E 404 0. 196E+04 0. 192E+04 0. 18 7E*04 0. 183E*04 0.1 79E+04 0. 175E+04 0.9183E+-04 0.166E*04 0. 161E+04 0. 156E4-04 0. 150E*04 0. 144E 404 0. 137E4-04 0. 130E*04 0. 124E'-04 0. 1LTE*04 0.125E4-04 0. 105E 4+04 0. 989E*03 0. 935E *03 0. 884E+03 0. 838E*03 0. 794E *03 0.873E*03 0. 716E+03 0.681E4-03 0. 65LE +03 0.61 SE 03 0. 591E+03 0. 566E+03 0. 544E+03 0. 663E +03 0. 500E4-03 0. 475E *03 0. 45lE +03 0.552 E*04 0. 534E+04 0. 515 E+04 0.497E*04 0.481 E*04 0.466 E*04 0. 452 E+04 0.441E4-04 0.429 E*04 0.41 8E+04 0. 408E*04 0. 399E*04 0.390 E+04 0.382E4-04 0. 374E*04 0. 367E*04 0. 360E*04 0.3 54E +04. 0.347 E404 0.341E+04 0. 336 E+04 0*330E+04 0.326 E*04 0*321E+04 0. 316E*04 0*311E+-04 0. 307E+04 52 -0. 380E-02 -0. 380 E-02 -0. 380 E-02 -0. 380E-02 -0. 380E-02 -0.380 E-02 -0. 380 E-02 -0. 380E-02 -0.380 E-02 -0. 380 E-02 -0. JSOE-02 -0o.380E-02 -0. 380 E-02 -0. 380E-02 -0. 380E-02 -0. 380E-02 -0. 380E-02. -0. 380 E-02 -0. 380 E-02 -0. 380 E-02 -0.380 E-02 -0.38 OE-0 2 -0. 380E-02 -0. 380 E-02 -0. 380 E-02 -0. 380 E-02 -0. 380E-02 -0. 615E*02 -0. 615DW?0 -0*615E+02 -0.6 15E*0? -0. 615E+02 -0. 615E*02 -0. 615E *02 -0. 615E *02 -0.61 5E+02 -0.6 15E+02 -0.61 5E*02 -0 *615 E 402 -0.61 5E*02 -0. 615E4-02 -0.61 5E+02 -0*615E+0'>- -0. 615E 402 -0. 615E4-02 -0.6 15E+02 -0. 615E+02 -0.615E4-02 -0*615E+02 -0.61 5E+02 -0.61 5E+02 -0. 615E +02 -0*615E402 -0. 615E*02 -0.6 15E+02 -0.61SE +02 -0. 615E*02 -0.615E *02 -0. 615E4-02 -0. 615E+02 -0.6 15E+02 -0.61 5E+02 -0.o615E*02 -0*615E*02 -0. 615E4- -0. 615E4-02 -0.v 6 1.5E*0 2 -0. 615E 402 -0.615 E*02 -0. 615E*02 -0.6 15E4-02 -0. -615 E402 -0. 615E4-02 -0. 615E*02 -0.9615E+*02 -0.6l5E+02 -0.6 15E*02 -0. 615E+.o2 -0.615SE+402 -0*615E*02 -0.615E*02 -0. 615E+02 -0. 615E*012 -0.615E *02 -0. 615E4-02 -0.6 15E+02 0.303E+-04 -0*3080E-02 0.298E+04 -0*380E-02 .o294E404 -0.380E-02 0.291.E+04 -0*380E-02 0.287E4-04. -0.380E-02 0*283E+04 -0.380E-02 0*280E-04 -0*380E-02 0.276E+04 -0.380E-02 0-o2 73 E +04 -0 *3-80OE-0 2 0*269E+04 -0*380E-02 0*266E*04 -0o.80E-02 0*262E404 -04380E-02. 0*258E+04 -0.380E-02 0*255E+04 -0.*380-E-02 0-a2 52E+04. -0-. 3860 E- 02. 00248E-04 -0.380E-02 0.245E4-04 -0. 380-E-0-2 0*241E+04 -0.380E--2 0*238E+04 -0*380E-02 0.235E4-04 -.o380E-02 0. 232E+-04 -0. 380-E-02 0*229E4-04 -09380E-02 0*225E4-04 -0.380E-02 0*222E4-04 -0*380E-02 0.219E+04 -0.380E-02 0.216E+04 -0*380E-02 0.213E+04 -0*380E-02 0*211E*04 -0*380E-02 0.aO8E*04 -0. 380E-02 0*205E+04 -0.380E-02 0*201E*04 -0.380E-02 0.198E4-04 -0.380E-02 T I TIf I I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I TI T I TIf T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I T I WAT WAT WAT HAT HAT WAT HAT HAT HAT WAT HAT H AT WAT WAT HAT HAT WAT H AT HAT HAT WAT HAT WAY H AT WAT HAT HAT HAT HAT HAT H AT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT HAT HWAT HAT WAT HAT HAT HAT HAT HAT HAT HAT HAT WAT HAT EMB FMB F MB F MB EMB F MB FMB F MB EMB F MB F MB FMB FMB F MB EMB FMB FMB F MB EFMB FEMB EMB F MB F MB FEMB FMB EMB EFMB F MB EMB E MB F MB F MB FEMB F MB EMB F MB F MB EMB EMB F MB EMB F MB FEMB FMB FMB FEMB F MB FMB F MB FMB F MB FMB EMB FEMB E MB EMB EMB EMB EMB RFE R F R E R E R E RE RE R E R E R E R E R E R E RE R E R E R E R E R E R E R E REF R E R E RE R E R E RE R E RE R E R E RE R E R E R E RE RE R E RE R E R E R E RE R E RE RE R E RE R E RE RE RE R E R E R E R E R E R E OVER U VFR OVER OVER OVER OVE R OVER OVER OV ER OVER OVER OV ER OVER OVFR OVER OVER OVER OVE R OVER OVER OVER OVER OVER OVE R OVER OVER OVER OVER OVER OVER OVER OV ER OVER OVER OVERP OVER OVER OVER OVE R OVER OVER OVER OVER OVER OVER OVE R OVER OVER OVER OVER OVER OVER OVE R OVER OVER OVER OVER GOVE R TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TCP TOP TOP TOP TCP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP t3OT BOT BUT B UT BUT BOT BOT BOT BUT BOT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT B UT BUT BUT BUT BUT BUT BUT B UT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT B UT B UT BUT BUT BUT BUT BUT BUT BUT BOT BUT BUT BUT BUT BUT BOT 0.3 0.3 0.3 0.,3 0.3 0. 3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.o5 0.m5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 00.7 0.7 0.7 00.8 008 0.9 0.9 100 1.0 101 1.2 1.5 2e2 3o5 4.2 4.8 5.-5 6.1 6.08 7.4 8.01 8.7 9.4 1000 10o7 11.93 1200 12 0 14.6 16.5 0. 801F +01 U. 80LE +01 0o 801lE +01 oe 80OLE +01 0. 801E +01 0,801E+01 0. BOLE 4+01 0.80 1E401 0, B01E -01 0. 801E+01 0, 801E +01 0. 801E +01 0, BlE +01 0.a 801E +01 0. 801E +01 0, BOlE +01 0.830 1E+01 0*801E+01 0, 802E+01 0. 802E 401 0. 802E +01 0. 802E +01 0. 802E +01 0. 802E +01 0. 802E +0 1 0. 802E+01 0. 802 E+01 0. 802E +01 0. 802E+01 0. 802E +01 0, 802E +01 0. $02E4-0l 0. 802E +01 0.* 802E +01 0.* 802E +01 0.* 80 2E +0 1 0.802E4-01 0. 803E+-01 0.s 803E+01 0. 803E+01 0. 803E+01 0. 804E+-01 0. 804E+01 0.o 804E +01 0. 804E '01 0, 805E +01 0. 805E+0. 0.s 805E+01 0, 805E+01 0.9806E+01. 0. 806E +01 0, 806E+01 0. 807E +01 0. 807E+01 0. 807E +01 0. 120E-03 0. 114F-03 0, IOBE-03 0. 103 E-03 0a 126E-03 0. 946 E-04 0. 133E-03 U. 126E-03 0, 119E-03 0. 134E-03 0-s 105 E-03 0, lOOE-03 0, 953E-04 0, 134E-03 0. 152E-03 0s I117E-03 0, IIOE-03 0. 103E-03 0.123 E-03 0. 915E-04 0, 128E-03 0, 140E-03 0.10'9E-03 0.o1OIE-03 0.9934E-04 09155EF-03 0,115 E-03 0.127 F-03 0. 948E-04 0:153 E-03 0.9109E-03 0,122E-03 0. 104F-03 0, 716F-04 0.,885E-04 0.,994 E-04 0.915E-04 0. 462E-04 0. 331E-04 0,240 E-03 092 85E-03 0. 33 4E- 03 0. 331E-03 0, 296 F-03 0. 297E-03 0.a 2419E-03 0.253F- 03 0. 231E-03 0.v 191 E-03 0, 192 E-03 0. 173F-03 0, 134E-03 0, 142E-03 0, 129E-03 0. 930E-04 0*152E-03 0. 112E-03 0.112ZE-03 0. 977F-04 U. 42SF +03 U. 38 4F L03 0. 365t -0 3 0.o44SF +03 0. 33SF +03 0,31 5Eo+03 0. 297Eo+03 0, 280E+-03 0.,317E+03 0, 249E+03 0. 23 7E+03 0. 225E+03 0.21 LE+03 0, 240E +03 0.o I83E +03 0. l73E+03 0w 162E+-03 0. 194F+03 0. 144E+03 0.v 134E+03 0. 147E4-03 0.114E+03. 0. 106E+403 0. 980E +02 0. lOBE +03 0. 808F+02 0.886E+02 0. 66 3E+02 0. 711E+02 0. 509E+02 0. 568E-o02 0. 48SE +02 0. 334E'-0? 0. 27SF +02 0. 206F +02 0.4126E+02 0. 426E+01 0. 203E+-01 0,984E +01 0. 11 7E+02 0.,13 7E+02 0.9135E+02 0. 121E+02 0. 122E+02 0. 102E +02 0. 104E+02 0. 944E +01 0.781E4-01 0, 786E+01 0. 710E+01 0, 547E+01 0. 581E +01 0, 526E+0l 0. 380E +01 0. 41SF 401 0.30SF +01 0.o 305E +01 0.o26YE +01 0,194E+04 U. 190E+04 0,.18 iF +04o 0.1 B3F+-04 0.o 180 Ef-04 0. 1 77E+ 04 0, 1 73E+04 0.1 68E+04 0. 164E+04 0.1 60E+04 0,1 57F+04 01 ol53 E+04 0,01 50E4-04 0.o 145E+04 0,140E4-04 0,136E4-04 0. 132 E+04 0,128F4-04 0,. 1 2 SE- 04 0.12lE+04 0.117E4-04 0. 112E+-04 0.108 F+ 04 0.104 E404 0,101E+04 0. 960E+03. 0.9 16E403 0.8 76E*03 0.o839 E+03 0. 789E+03 0. 744E+03 0. 705EF403 0.669 E403 0.63 7E403 0. 593E+03 0,53 8E+03 0.4 71E+03 0, 39 7E+ 03 0. 320E+03 0&245E+'03 0. 198E4-03 0. 165F+03 0. 141E+03 0. 123E4-03 0. 109E+03 0,9 75E+02 0. 88lE+02 0,802 E+02 0.737E+02 0.680 F+02 0. 632E+02 0*590E+02 0.553 E+02 0. 520E+ 02 0. 491E+02 0. 453E 402 0.o421 F+02 0.393 E402 0. 368F4-02 -0. 380 E-02 -U. 380E-02 -0, 380 E-02 -0,380 E-02 -00380 E-02 -0. 380 E-02 -0.,380E-02 -0. 380 E-02 -00 380E-02 -0.,380 E-02 -0. 380E-02 -0. 380 E-02 -09 380 E-02 -0, 380E-02 -0. 380 E-02 -0,380 E-02 -0. 380E-02 -0.380 F-02. -0. 380E-02 -0. 380E-02 -0.380 E-02 -0, 380E-02 -0. 380E-02 -0. 380 E-02 -0. 380 E-02 -Da 380E-02 -0. 380 E-02- -00 380E-02 .-. 380E-02 -0.9380E-02 -0. 380E-02 -0. 380 E-02 -0.380 E-02 -0. 380 E-02 -0. 380E-02 -0. 380 E-02 -0, 380 E-02 -0. 380 E-02 -0. 380E-02 -0. 380 E-02 -0. 380 E-02. -0, 38GE-02 -0. 380E-02 -0.9380E-02 -0,380 E-02, -0, 380 E-02" -00 380E-.02 -0. 380E-02. -0. 380 E-02 -0, 380E-02 -0. 380E-02 -0, 380 E-02 -0.380 E-02 -0. 380E-G2- -0. 380 E-02 -0.3 80E-02 -0. 380 E-02 -0. 380 E-02 -0.380E-02 -0,615EU+0? -0.,61SFE+02 -0.61 SE +02 -0,615E+02 -0.61 SE+02 -0, 61SE +02 -0,61 SE-02 -0 *61SF +02 -0. 61 E+02 -0.6 15F+02 -0,61 SE+02 -0.61SF +02 -Oe6l5E+02 -0 615 E+02 -0 *61SF +02 -0 .615F +02 -0.6 15F+02 -0,61 5F +02. -0, 61SE+02 -0.615F+02 -0. 615E+02 -0961 5E+02 -0,61 5E+02 -Oo.15E4-02 -0. 615 E+02 -0. 615E'-02 -0. 61SF +02 -0.6l5E+02 -0.6 15E+02 -0. 615E+02 -0.61 5E402 -0. 61SF +02 -0.61 5F+02 -0. 615E+02 -0.61 5F+02 -0.615F+02 -0.6 15E+02 -0*615F+02 -0.61SF +02. -0.6l5E+02 -0.615EF+02 -0.61SF+02- -0. 615E+02 -0.61 5F+02 -0. 615 E402 -0*615E4-O? -0.61 5F+02 -0.61SF +02 -0, 615F+02 -0,61 5F+02 -0. 615F+02 -0. 6l5E+02 -0 615 F+02 -0. 6l5F+02 -0. 615F+02 -0, 615E+02 -0. 61SF+02 -0,61 SF+02 -0 e 61SE + 0 2 53 TI TI T I T I T I T I T I T I T I T I T I T I TI TI T I T I T I TI TI TI T I T I T I T I T I T I T I T I T I T I TI TI T I T I T I T I T I TI T I T I T I T I TI T I T I T I TI T I WAY W AT W AT WAT WAT W AT W AT WAT WAT WAT WAT WAT WAT WAT WAT WAT WAT WAT W AT WAT WAT W AT W AT WAT WAT W AT WAT WAT WAT WAT WAT WAT WAT WAT WAT WAT WAT 'WAT hAT WAT WAT WAT hAT WAT WAT W AT hAT WAT hAT WAT EMB EMB EMB E MB E MB E MB E MB E MB FMB E MB F MB F MB E MB EMB E MB E Mb EMB EMB EMB E MB E MB E MB E MB E MB E MB EMB EMB F MB EMB E MB3 E MB E MB EMB EMB F MB E MB EMB E MB EMB E MB E MB EMB EMB EMB E MB E MB E MB E MB E MB E MB PRE R E R E R E R E R E R E RE R E R E R E RE RE R E RE RE R E RE RE RE R E R E R E RE RE R E R E RE R E RE R E R E R E RE R E RE RE R E R E R E RE R E R E RE RE RE RE RE RE RE OVERP CVERP OVER OVER OVER OVE R OVER CVEP OVER OVE R OVER OVER OVER OVER OVE R OVER OVE R OVER OVE R OVER OVER OVER OVER OVER OVER OVER OVER OVER OVER OVER OVER OVERP OVER OVER OVER OVER OVER OVER OVER OVE R OVER OVER OVER OVER OVER OVER OVER OVER OVER OVE R TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP BUT 6B0T B (IT BUT BOT BOT BUT BUT BUT BOT BUT BUT B UT BUT BUT BUT BUT BUT BUT B UT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT BUT B UT BUT BUT BUT B UT BUT BUT BUT BUT BUT BUT 19.4 21.6 23.8 27. 1 32.0 39.4 46.8 54. ? 61.6 69.0 76.3 83.o7 91.1 98.5 105o9 113,3 120.o7 128.1 135o5 142o9 150.2 157.6 165.0 172.4 179.8 187.2 194.6 202.0 209.4 216. 7 224.1 231.5 238.9 246.3 253.o7 261.1 268.5 275 *9 283*3 290.6 298.0 305.4 312.8 320.2 327.6 335.0 342.4 349.8 357.1 360.0 0. 80SE *01l 0. 9019E +0 1 0. 810E+01 0. 81 1E +01 0. 313E+01 0. 816E +01 0. 819E+-01 0.* 822E +01 0. 825E +01 0. 82 7F +01 0. 830E +01 0. 833E+01 0. 836E'-01 0. 839E +01 0. 841E+01 0. 844E+01 0. 847E +01 0. 850E+01 0. 8 53E+0 1 0.9856E+01 0. 85 BE +01 0.P 86 IF +0 1 0. 86 4E +01 0. 867E +01 0. 870E+01 0. 872E +01 0. 875E+01 0. 878E+01 0. 881E+01 0. 884E +01 0. 887E+01 0. 889E +01 0. 892E+-01 0. 89SFE+01 0. 898E+01 0.o901IE+01 0. 903E+01 0. o906E +0ft 0.w 909E'+0 1 0.9 12E+01 0. 915E4-0l 0. 91 7E+01 0.o 9 20 E+0 1 0.923E+01 0. 926E+01 0. 929E +01 0.o 93 1E +0 1 0. 934E+01 0. 93 7E +01 0.,938E +01 0. 990E-04 0, 114E-0-4 0. 771E-04 O.675E-04 0. 627E-04 0. 703E-03 0. 898F-03 0.661F-03 0. 607E-03 0. 531E-03 0, 494E-03 0,460 E-03 0.45 3E-03 0.412 E-03 0,39 3 F-l3 0.3 79E-03 0. 379E-03 0.349 E-03 0. 338E-03 0. 327E-03 0. 332E-03 0. 308E-03 0. 299E-03 0.295F-03 0. 29'9E-03 0,.2 77E-03 0. 273E-03 0.26 8E-03 U. 273E-03 0. 255E-03 0. 251F-03 0. 247E-03 0.251E-03 0. 238E-03 0. 233E-03 0. 231E-03 0.237 E-03 0.222 E-03 0. 220E-03 0. 226E-03 0. 211E-03 0. 210E-03 0, 211F-03 0. 214E-03 0.201 E-03 0.1l98 E-03 0. 199E-03 0. 204E-03 0.191 E-03 0,426 E-04 0. 1iSOE +01 U. 139E +0 1 0, 93 5E +00 0. 546E +00 0. 33 8E+00 0. 253E+01 0. 323E+01 0. 238E+01 0. 21 8EF+01 0, 191LE +01 0a I 77E +01 0. 16SF +01 0. 16b3E +01 0. 148E+01 0. 141E+-01 0. 136E +01 0. 136E+01 0. 126E+01l 0. 12 1E+01 0. 118E+01 0& 119E +01 0.9111E+01 0. 1O8E +01 0, 106E +01 0.1 I08E +01 0. 996E +00 0. 98 1F +00 0. 964E +00 0.982E +00 0. 91 7E+00 0. 902E +00 0. 887E+00 0. 902E+00 0.855E+00 0. 837E+00 0. 830E+00 0. 852E +00 0. 797EF+00 0.790E +00 0. 813E+00 0. 75BE +00 0. 754E+00 0. 75 7E+00 0.7619E +00 0.721E+00 0. 712E +00 0. 714E+00 0. 733E+00 0*686E+00 0. 39 7E+00 U.,310E+02 0. 2 77E+02 0. 251E+02 0.,220E+ 02 0.1I 86E+02 0.1 56E+ 02 0.1 37E'-02 0 a1?1 E+02 0.6109 E+02 0.0996 E+01 0.91 7F+01 0.o8 5 1E +0 1 0, 795E+01 0.o746 E+01 0. 704E+01 0. 667E+ 01 0.63 5E+01 0.0605 E+01 0, 579E+01 0. 555E+01 0. 534E'-01 0.514E+01 0. 496E+01 0.4 79E+01 0.464E+01 0. 449E+01 0. 436E+ 01 0. 423E+01 0. 412 E+01 0. 401E+01 0. 391E+ 01 09381E+01 0.3 72E+01 0*364E+01 0. 35SFE- 01 0. 348 E+01 0.340 F+01 0*334FE+01 0. 32 7E+ 01 0. 321E+01 0.315E+01 0. 309E+01 0.303 E'01. 0O 298E+01 0. 293E +01 0. 288E+01 0.283E+01 0.2 79E+01 0.2 75E+01 0. 273E+01 -0. 380E-02 -0. 380 E-02. -0.,380E-02 -0. 380 E-02 -0. 380 E-02 -0. 380F-02 -0. 380E-02 -0. 380 F-02 -0.380 E-02 -0.380 E-02 -0, 380E-02 -0. 380E-02 -0. 380E-02 -0.380 E-02 -0. 380F-02 -0. 380 E-02 -0*380E-02 -0, 380 E-02 -0. 380 E-02 -0, 380F-02 -0. 380-E-0 2 -0. 380 E-02 -0. 380E-02 -0. 380 E-02- -0. 380E-02 -0. 380 E-02 -0. 380 E-02 -0.380 E-02 -0. 380 E-02 -0. 380 E-02 -0.380 E-02 -0. 380E-02 -0.s380 E-02 -0. 380 E-02 -0. 380E-02 -0. 380 E-02 -0. 380 -02 -0. 380 E-02 -0. 380 E-02 -0. 380E-02 -0. 380 E-02 -0.380 E-02 -0. 380E-02 -0. 380 E-02 -0. 380E-02 -0. 380 E-02 -0. 380E-02 -0. 380E-02 -0.380 E-02 -0. 380E-02 -0*615E+02 -0. 615E +02 -0.61 5E+02 -0. 615E+02 -0. 615E+02 -0. 615F+02 -0. 615F+02 -0.61SE +02 -0* 61-5 E +0 2 -06 615F+02 - 0.a61 5C +02 -0. 61SF +02 -0.61 5E+02 -0.61SF '02 -0. 615E+02 -0.61 SE'-02 -0. 615 F+02 -0. 615E+02 -0. 6l5E+02 -0.6l1SF+02 -0 *61SF +0? -0.61SF +02 -0 *61 5E+ 02 -0.6 LSE+02 -0.61 SE'02 -0.6 15E+02 -0.61 SE+02 -0. 6l5E+O2 -0*615E+02 -0. 61SF +02 -0*615E'-02 ---0. 615 E+02 -0o.6 1SF+02 -0. 615E+02 -0. 615E+02 -0.+61 SE+02 -0.615SF'02 -0.615E+0-2 -0. -615E+0? -0.61 SE +02 -0. 61SF +02 -0. 61SF +02 -0. 615E'02 -0.6l5F+02 -0. 61SF+0 2 -0. 61SF +02 -0. 61SF +02 -0. 61SF+02 -0. 61SF+02 -0. 615E'-2 54 DEPTH, PRESSURE HEAD, THETA? FLUX AND TEMPERATURE AT T IMF: Z H (H V I H fH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z11H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H T H V Z H T H V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H T H V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H TH V Z H T H V Z H TH V Z H TH V Z H T H V Z H T H V Z H T H V Z H T H V Z H TH V Z H TH V Z H T H V Z H TH V Z H TH V 7 H TH V Z H T H V 7 H TH V Z H T H V 7 H TH V Z H T H V TEMP T EMP T EMP TEMP T EMP TEMP TEMP T EMP TEMP T EMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP T EM P T EMP TEMP T EMP TEMP TEMP TEMP TEMP TEMP TEMP tEMP TEMP TEMP TEMP TEMP TEMP T EMP TEMP T EMP TEMP T EMP TEMP TEMP TEMP TEMP T EMP TEMP TEMP T EMP TEMP T EMP TEMP TEMP TEMP T EMP TEMP T EMP TEMP 0.1.00 HOURS 0 * ( -0. lODOEs 0) -0, 2000E+01 -0 *4000E 40 1 -0.6000E4-01 -0. 7000E*01 -0. k300E*01 -0. 9000E+01 -0.1000QE+-02 -0.11.00E*02 -0.1 2O0E+02 -0. 1.300Es-02 -0.1400OE+02 -0.1500Es-02 -0. 1600E4-02 -0.1700E+-02 -0. l800Es-02 -0.1900E+02 -0. 2000Es-02 -0.2 lOOEs02 -0.2 200E *02 -0. 2300Es-02 -0.24'00 E+02 -0.*25 00Es-02 -0. 2600Es-02 -0.2 700Es-02 -0.2 800E*02 -0. 2900E*02 -0*3000Es-02 -0.3 IOOEs02 -0. 320C)E*02 -0.w3300Es-02 -0. 3400E* 02 -0.3 500E+-02 -0.3 600E*02 -0*3700E+02 -0. 3800E+02 -0.3 900Es-02 -0.4000Es-02 -0.4 100E 402 -0. 4200 Es02 -0. 4300E*02 -0. 4400E*02 -0. 4500Ee02 -0.4600E*02 -0. 4700E*02 -0.4800E+02 -0. 490 QEf02 -0. 5000E4-02 -0.5 100E+02 -0. 5200Es-02 -0. 5300Es-02 -0. 5400Es-02 -0. 5500E4-02 -0.05600E+-02 -0.,2331E+[0? -0, 2380E+-02 -0. 2438rE+02 -0. 25lOEs-02 -0. 2598Es-02 -0. 2 70'9 E-02 -0.,2852E+-02 -0, 3039 Ei-02 -0.3?88E*02 -0.3627 E+02 -0.,4078E+02 -0. 4632 E+02 -0. 5204 Es02 -0. 5653E4-02 -0.,5922E+-02 -0. 6053Es-02 -0. 61. ..E*02 -0. 6134E*02 -0.96143E+02 -0, 6147E+02 -. e61.48 Es02, -0.6149Es-02 -0.61.49 E*02 -0.,6149E+-02 -0,6149E+02 -0. 61.49 Es02 -0. 6149E+02 -0. 6149E*02 -0. 6149Es-02 -0.,6149E+-02 -0. 6l49Es-02 -0. 61.49Es-02 -0. 6149E*02 -0-a 61.49 E+02 -0.61.49 E+0? -0.,6149 E+02 -0. 6149 Es02 -0.,6149E+02 -0. 6149Es-02 -0. 6149E*02 -0. 6l49E*02 -0.6 149E*02 -0.6149 Es02 -0. 6149E+02 -0. 61.49 E+02 -0.61.49 E*02 -0. 6149E+02 -0, 61.49Es-02 -0. 61.49E4-02 -0.61.49 E*02 -0.6149E*02 -0.,614'9E+02 -0. 6149E4-02 -0.61.49 E+02 -0.,6149E+02 -0. 61.49E*02 -0. 61.49Es-02 55 0.25 75E+0 0, 25 54E +00 0,2527TE+00 0.,24 93 E+00 0,2448E+00c 0. 2390E *00 0.231 E *00 0. 22 OOE 00 0,2050OE+00 0, 1848E*00 041.605E+00D 0. 1364E*00 0. 11.84E +00 0, J.82E+00 0, 1033E+00 0. 1.03E *00 0. 1004E*00 0. 1001.Es-Q 0. 9994E-01 09 9989E-01 0, 9988 E-01 0.,9987E-01 *0.9987E-01 0. 9986E-01 0. 9986E-01 0. 99 86E-01 0.,9986E-01 0. 9986 E-0 1 0. 9986E-01 0. 99 86E-01 0.9986E-01 0.9986E-01 0. 9986 E-01 0.9986E-01 0.99 86E-01 0*9986E-01 0. 99 86E-01 0.99986E-01 0*99 86E-01 0. 9986E-0l 0.99 86E-01 0. 99 86E-01 0. 9986E-01 0.09986E-01 0. 9986E-01 0.99 86E-01 0. 9986E-01 0. 9986E-01 0. 9986E-01 0.9986E-01 0. 9986 E-01. 0*9986E-01 0. 9986E-01 0. 9986E-01 0. 9986E-01 0.99 86E-01 0*9986E-01 --0. 3803 E-02 -- 0, 37 73E-02 -0.3 t24E-02 -0. 3659 F-02 -0, 3572 E-02 -0. 3454 E-02 -0.3293 E-02 -0. 3069E-02 -0. 2758 E-02 -0, 2334E-02 -0, 1798E-02 -0. 121.3E-02 -0. 7049 E-03 -0. 3629 E-03 -0. 1800E-03 -0, 9635E-04 -0, 6084E-04 -0. 4625 E-04 -0, 4040 E-04 -0. 3810 E-04 -0. 3722 E-04 -0. 3688 E-04 -0. 3676E-04 -0. 3672 E-04 -0.3670E-04 -0, 36 70E-04 -0. 3670 E-04 --0. 36 70E-04 -0. 3669 E-04 -0.93669E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669E-04 -0.,3669 E-04 -0. 3669 E-04 -0. 3669E-04 -0. 3669 E-04 -0.3669E-04 -0. 3669E-04 -0. 3669E-04 -0. 3669 E-04 -0.,3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0.3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669 E-04 -0. 3669 F-04 -0. 3669E-04 -0. 3669 E-04 -0. 366 9E-04 -0.,3669 E-04 0o.200Es02 0. 2000 Es02 0. 2000Es02 0. 200E *02 0.,2000E+-02 0*2000Es-02 0 .2000Ei02 0. 2000Es02 0.2000E+-02 0.2000 E+02 0.2000E+02 0.2000 E+02 0.2 OOOEs02 0.2000E*02 0. 2000E* 02 0. 2000E *02 0.92000E+02 0.2000Es-02 0. 2000E+02 0*2000Es-02 0. 2000Es-02 0*20OOE+02 0. 20Es02 0. 2000Es-02 0.2 OOOEs02 0. 2000E +02 0.2 OOOEs-02 0. 2000Es-02 0*2000E+02 0. 200OE4-02 0.2000E *02 0. 2000Es02 0e *2000 E+02 0*2000Es-0? 0. 2000Es-02 0. 2000E*02 0.2000Es-02 0. 2000E+02 0. 2000Es-02 0. 2000Es-02 0. 2000Es-02 0.2000 E+02 0.2 OOOE*02 0*2000E+0*2 0. 2000E-0? 0.2000E+02 0.2000Es-02 0.2000 E*02 0.2 OOOEs-02 0*2000E+02 0. 2000E+02 0. 2000Es02 0.2000Es-02 0. ZOOOEs-02 0.2 OOOE+02 0. 2000Es-02 0. 2000Es02 TN TH TH- TH TH TH TN TN TN TN TNH TH TN TH TH TN TH TN TN TN TN TN TN TN TEMP TEMP T EM P TEMP T EMP TEMP TEMP T EMP T EMP TEMP T EMP TEMP TEMP TEMP TEMP TEMP T EMP T EMP TEMP TEMP TEMP TEMP T EMP TEMP WATER IN PROFILE TI HAT EMS RE DVI TI WAT EMS RE DVI TI HAT EMS RE DVI TI WAT EMS RE DVI TI WAT EMS RE DVI TI WAT EMS RE OVI TI WAT EMS RE CVI TI WAT EMB RE DVI TI HAT EMS RE DVI TI WAT EMS RE DVI TI HAT EMS RE DVI TI WAT EMS RE DVI TI WAT EMS BE DVI TI WAT EMS RE DVI TI HAT EMS RE DVI TI WAT EMS RE DVI TI HAT EMS RE CVI TI WAT EMS RE DVI TI WAT EMS RE DVI TI HAT EMS RE 0VI TI HAT EMS RE DVI TI HAT EMS RE DVI TI HAT EMS RE DVI TI WAT EMS RE DVI TI HAT EMS RE DVI TI HAT EMS RE DVI TI WAT EMS RE DVI TI WAT EMS RE DVI TI WAT EMS RE DVI TI1 WAT EMS RE DV TI HAT EMS RE DVI TI WAT EMS RE DVI TI WAT EMS RE DVI TI HAT EMS RE CVI -0.*5700E*02 -0. 5800E*02 -0,*5900 E+02 -0.6 000E+02 -0.6 100E+02 -0.6 200E *02 -0.6 300E *02 -O.6400E*02 -0.6 500E*02 -0. 6600E*02 -0.6 700E*02 -0.6 800E*02 -0.6 900E*02 -0.7 OOOE*02 -0.7 IOOE*02 -0.7 200E*02 -0. 7300.E*02 -0.74OOE*02 -0. 7500E*02 -0.7600E*02 -0. 7700E+02 -0.7 800E*02 -0. 7900E*02 -0. 8000E *02 E E E E E E E E E E E E E E E E E E E E E E AT TIME R TOP SOT :R TOP SOT R TOP SOT R5 TOP SOT R TOP SOT ER TOP BOT R TOP SOT ER TOP SOT R TOP SOT R TOP SOT R TOP SOT R TOP SOT R TOP SOT R TOP SOT =R TOP SOT R TOP SOT R TOP SOT zR TOP SOT :R TOP SOT .R TOP SOT -R TOP SOT :- RTOP SOT _-R TOP SOT :. RTOP SOT :R TOP SOT :- RTOP SOT P RTOP SOT .: RTOP SOT :- RTOP SOT 5: RTOP SOT :R TOP SOT S: RTOP SOT R TOP SOT -: RTOP SOT -0,614t9E+02 -0.,6149E+-02 ~-0, 6149 E+02 -0. 6149E*02 -0. 6149E*02 -0. 6149 E*02 -0. 61.49E*02 -0. 61494;-:02 -0. 614QE*02 -0. 61 49 E02 -0. 6149F*02 -0. 6149 E+02 -0. 6149E*02 -0. 6149E*02 -0. 6149E*02 -0.6 149E*02 -0. 6149E+02 -0. 6149E*02 -0. 6149E*02 -0. 6149E#*02 -0.61 49E* 02 -0.6150E*02 -0. 6150E*02 -0. 6150E*02 0.99 86E-01 0.,9986E-01 0*9986E-01 0. 99 86E-01 0,99 86E-01 0*9986E-O1 0. 9986E-01 0. 9986E-01 0, 9986E-01 0. 9986 E-01 0. 9986E-01 0. 9986E-0I. 0. 9986E-01 0.99 86E-01 0. 9986 E-01 0. 9986E-0 1 0, 9986E-01 0, 9986E-01 0.99 86E-01 0. 9986E-01 0. 9986E-01 0.99986E-01 0.9985E-01 0. 9985E-01 360.OOSEC: 0.93807E*OlCM 371.1 0.942E*01 0.434E-03 382.2 0.947E*01 0.423E-03 393.3 0.95IE +01 0.408E-03 404.3 0*955E*01 0*410E-03 415.4 0.*959E*01 0.389E-03 426.5 0.963E*01 0,380E-03 437.6 0.968E*01 0.382E-03 448.7 0.972E*01 09365E-03 459.a8 0.976E*01 0,359E-03 470.8 0*980E*01 0.362E-03 481.9 0.984Ei-01 0.345E-03 493.0 0.989E*01 0.341E-03 504.1 0Os99 3E*+0 1 0344E-03 515.2 0*997E*01 0.328E-03 526.3 0.IOOE*02 0*328E-03 537.3 0. lOlE *02 0. 323E-03 548.4 0*LO1E*02 0.314E-03 559.5 0*101E*02 0.314E-03 570.6 0.102E*02 0.308E-03 581.7 0.102E+02 0.301E-03 592.8 0.103E*02 0*305E-03 603.8 0*103E*02 0.296E-03 614.9 0.103E*02 0.292E-03 626.O0 0104E*02 0.293E-03 637.1 0.1 I04E*+02 0.286E-03 648.2 0.105E +02 0.281E-03 659.3 0*LO5E*02 0.285E-03 670.4 0,106E+02 0,276E-03 681.4 0.106E*02 0.272E-03 692.5 0.106E*02 9.276E-03 703.6 0,107E+02 0,268E-03 714,7 0. 107E*02 0.270E-03 725.8 0.108E*02 0,264E-03 736.9 0.108E*02 0.*261E-03 -0.,3669E-.04 -0. 3669 F-04 -0. 3669 E-O't -0.,3669 E-04 -0. 3669 E-04 -0, 3669 E-04 -0. 3669 E-04 -0.3669 E-04 -0. 3669E-04 -0.3669 E-04 -0. 3669 E-04 -0. 3669E-04 -0. 3669E-04 -0. 3669 E-04 -0. 3669 E-0't -0. 3669E-04 -0. 3669 E-04 -0. 36?OE-04 -0. 36 71E-04 -0. 36 72E-04 -0.3673 E-04 -0. 3674E-04 -0. 3676 E-04 -0. 3677E-04 0. 104E4-01 0. IOLE*01 0. 977E4-00 0. 98 2E 00 0. 931E*00 0 909E *00 0. 914E *00 0. 876E*00 0. 86lE *00 0. 86 7E 00 0. 827E*00 0.817E *00 0. 824E*00 0.9786E+00 0. 78 7E 00 0. 774E +00 0. 753E*00 0. 753E*00 0. 73 7E+00 0. 722E+00 0. 73OE *00 0. 710E*00 0. 699E *00 0. 70 IE 00 0. 684E *00 0.6 74E4-00 0. 68 3E 00 0. 66IE *00 0.*653E *00 0.o661IF 00 0. 643E *00 0.647E *00 0. 633E *00 0. 2000E*02 0, 200E *02 Ue0.20OE+02. 0. ?OOOE*02 0.2 000E+02 0,2000Ee-02 0 2000 E*02 0. 2000E*02 0. 2000E*02 0.2000E*02 0. 2000E*02 0. 2000E*02 0.2 000E+02 0. 2000E*02 0.2000E*02 0. 2000E*02 0 .2000E*02 0. 2000E*02 0. 2000E402 0. 2000E*02 0 2000 E*02 0.2000E+02 0, 2000E*02 0.2 OOOE*02 0. 268E4-01 0. 263 E*01 0.2 58E*01 0. 254E*01 0*250E*01 0.245 E*01 0.242 E *01 0. 238 E*01 0.234E*01 0*231E*01 0.w 22 7E+ 01 0. 224 E*01 0.22 1E401 0.2 18E*01 0. 215E*01 0*212E*01 0 .209E*01 0.20 7E*01 0. 204E+-01 0. 202E*01 0.*199E*01 0*197E*01 0. 1 94E+*01 0-1 92 E+01 0. 190E+01 0.-1 88 E+01 0. 186E+ 01 0.184E+01 0. 182E*01 0.s1 80 E+01 0.1 75E*01 0. 1 77E+01 0.1 75E+01 0. 1 73E+01 -0.380E-02 -0.615E4-02 -0. 380E-0-2 . -0-*6l5E--2 -0.380E-02 -0.o615E*02' -0*380E-02 .- 0*615E*02 -0.380E-02 -0*615E4-02 -0.380E-02 -0.615E*02 -0.380E-02 -0.615E*02 -0.e380E-02 -0.615E*02 -0*380E-02 -0.615E*02 -0.380E-02 -0*615E*02 -0.380E-02 -0.615E*0?- -0.380E-02 -0.615E*02 -0.380E-02 -0*615E*02- -0.380E-02 -0.615E*02 -0*.80E-0? -0*615E*-02 -0*380E-02 -0.615E+02 -0*380E-02 -0*615E*02 -0.380E-02 -0.615E*02 -0.380E-02 -0*615E*02 -0.380E-02 -0.615E*02 -0.380E-02 -0*.15E*02 -0.380E-02 -0.61.5E*02 -0.380E-02 -0.615E*02 -0.380E-02 -0*615E*02 -0*380E-02 -0.615E*02 -0.380E-02 -0.615E*02 -0.380E-02 -0*615E*02 -0.380E-02 -0.615E*02 -0.380E-02 -0*615E*02 -0.380E-02 -0,615E+02 -0.380E-02 -0,615E+02 -0.380E-02 -0.bl5E*02 -G.380E-02 -0.615F4-02 -0.380E-02 -0*615E4-02 56 YI T I T I T I T I T I T I T I T I T I T I TI T I T I T I T I T I T I T I T I T I TI WAT WAT WAT WAT W AT WAT wAr WAT WAT WAT WA T WAT WAT W AT WAT WAT WAT WAT WAT WAT W AT WAT WAT EMB EMB E MB E 148 E MB EMO E M6 E MB E MB E MB EMB EMO E MB E MB E MB EMR E MB E MB E MB E MB E MB E MB EMB 9 E R E RE RE R E R E RE RE RE R E R E R E RE RE RE RE RE RE RE RE R E RE R E OVER OVER OVER OVER OVER OVER OVER OVER OVER OVER OVERP OVER OVER OVER OVER OVE R OVER OVE R OVER OVER OVER OVER OVER TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP T OP TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP BOT ROT ROT ROT ROT ROT ROT ROT ROT ROT BOT ROT ROT ROT ROT ROT BOT ROT ROT BOT ROT ROT ROT TI WAT 1MB RE OVER TOP ROT 747.9 759.0 770.1 781.2 7192.3 803.4 814.4 825.5 836.6 847.o7 858.8 869.9 880.9 892.0 903.1 914.2 1925.3 936.4 947.5 958. 5 969 *6 980.7 991.08 0. 10O E +02 0. 109E+02 0. 109E+02 0. I IOE +02 0s 110E+02 0. 111E+-02 0. IIIlE tO 0. 11 1E+02 0. 112E+02 0.s 112E+02 0. 113E+02 0. 11 3Et+02 0 I1l4E +02 0. 114E+02 0. 1l14E +02 0, 1 5LEtO2 0. uSE +02 0.,116E +02 0. 11l6E +02 0. 11 7E +02 0.o 117E +02 0. 11 7E +02 0. 118E+-02 0. 26?E-03 0, 259E-03 0. 255 E-03 0,255E-03 0. 254E-03 0. 249E-03 0. 252E-03 0. 248 E-0 3 0.245 E-03 0.244 E-03 0. ?46E-03 0. 241 E-03 0.239 E-03 0. 240E-03 0, 236E-03 0, 234E-03 0. 237E-03 0,232E-03 0, 236E-03 0,229 E-03 0. 229E-03 0, 230E-03 0. 227E-03 1000.0 0.118E+02 0.1441-03 0. 62 7Et0O 0. 620E too 0,6111+00 0. 61 11 to 0,.6091Etoo 0., 597E+tOO 0. 6041+00 0.5931+00 0. 586E +00 0. 5851+00 0.5901+00 0.5771+00 0. 573Et00 0.575Et0O 0.5661 tOO 0.56OEt00 0. 568E tOO 0. 557E too 0.5651 t0o 0. 5501+00 0. 549E +00 0, 5511+00 0&543E+tOO 0. I 721+01 0-a I70E+01 0.1 I68E+01 0.1671+01 0,165Et01 0,1 64Etoi 0, 163E+ 01 0,1 61E+01 0.160 1+01 0 e 1 581+-01 0a I157E+~01 0, 156 F+01 0.o15 551+0 1 0.o 1531E+01 0.v1521+ 0 1 0 o151 E +0 1 0.1 501+01 0.149Et01 0.m 1481E+0 1 0,1471+01 0.1461+01 0.1451+01 0. 1441E+01 -0. 380E-02 -0, 380 1-02 -0. 380 1-02 -0. 380 E-02 -0, 380 E-02 -0, 3801-02 -0. 380E-02 -0, 3801-02 -0.3801-02 -0. 380 1-02 -0. 3801-02 -0. 380 1-02 -0, 380E-02 -0. 380 1-02 -0. 380 1-02 -0. 3801-02 -0. 380 E-02 -0, 3801-0? -0. 380 E-02 -0. 380 E-02 -0. 380 1-02 -0 380 1-02 -0. 380E-02 0*.466Et+0 Oo0.431+01 -0, 380E-02 -0.61 51+02 57 -0. 6151 02 -0.615SE+O2 -0.6151+02 -0. 6151t02 -0.6151+02 -0. 615E+02 -0. 615EtO2 -0. 6151+02 -0. 61SE +02 -0, 615 E+02 -0. 615Et02 -0. 6151+02 -0. 6151+02 -0. 615E+02 -0, 6151+02 -0. 6151+02 -0. 61SE +02 -0. 6151+02 -0 .6 ISEtO -0.61 51+02 -0. 6l5E+02 -0. 6151+02 -0. 6l5E+02 DEPTH, PRESSURE HEAD, THETA, FLtUX AND TEMPERATURE k V r v A r .r 1% 7 n LA f, I n) Al TIME : 1 1 I 7 7 7 I I I I 1 7 7 z 1 I 7 z 7 I 7 7 7 7 7 7 7 7 I 7 I I 7 7 7 7 7 7 7 7 7 7 7 7 7 z 7 7 ? 7 z 7 7 7 7 I H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH T EMP TEMP T EMP TEMP TEMP TEMP T EMP TEMP T EMP TEMP TEMP TEMP TEMP TEMP TEMP T EMP TEMP T EMP T EMP T EMP TEMP TEMP TEMP TEMP TEMP T EMP T EMP TEMP TEMP TEMP TEMP TEMP TEMP T EMP TEMP TEMP TEMP T EMP T EMP T EMP TEMP TEMP T EMP T EMP T EMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP 58 000 -0. 1000E+01 -0.2000E+01 -0. 3000 E+0 I -0. 4000E+01 -0.:5000E+01 -0 * 600QE +01 -0. 7000E+01 -0. 8000E+01 -0. 9000E+Ol -0. 1000Ei-02 -0.1 100E+02 -0. 1200E+02 -0.1 300 E'02 -0.1 400E+02 -0.1 500E+02 -0. 1600E4-02 -0.1 700E4-02 -0. 1800E+02 -0.1 900E+02 -0. 2000E4-02 -0. 2100E+02 -0. 2200Ei-02 -0.2 300E4-02 -0.2 400E+02 -0.w2500E+02 -0. 2600E+02 -0.2 700E+02 -0. 2800E+02 -0.2 900E+02 -0.3 OOOE+02 -0. 3l00E+02 -0. 3200E+02 -0.3 300E+02 -0.3 400E+02 -0.3 SOOE+02 -0.3 600E+02 -0.3700E+02 -0. 3800E+02 -0*3900E+02 -0. 4000E+02 -0.4 IOOE+0 2 -0. 4200E+02 -0. 4300E +02 -0.4400E+02 -0.4 500E +02 -0. 4600E+02 -0.4700E +02 -0.4 800E+02 -0. 4900E+02 -0.5 000 E+0 2 -0.510O0E+02 -0. 5200E+02 -0. 5300E+02 -0. 5400E+02 -0.,5500E+02 -0. 5600E+02 -0, 2l13E+02 -0. 2l18E+02 -0. 2I25E+02 -0. 2133E+02 -0.,?141F+02 -0.92151E+-02 -0. 2162E+02 -0. 21 75E+02 -0. 2190E+02 -0. 2207 E+02 -0.,2227E+-02 -0. 2249 E+02 -0.,22 76 E+02 -0. 2306 E+02 -0. 2342 E+02 -0.2385 E+02 -00243 5E+02 -0. 2496 E+02 -0. 2569E+02 -0.92660E+02 -0. 2773E+02 -0.2915E.-02 -0.3l100E+02 -0. 3341 E+02 -0. 3659E+02 -0. 4069E+02 -0. 4561E+02 -0.o5075E+02 -0. 5512E+02 -0. 5809 E+02 -0. 5980E+02 -0. 6068 E+02 -0. 6111E+02 -0. 6131E+02 -0.,6141 E+051 -0. 6145E+0Z -0. 6147 E402 -0. 61 48E+ 02 -0. 6148 E402 -0. 6148E+02 -0. 6148 E+02 -0. 6148E+02 -0.,6148 E+02 -0. 6148E+02 -0. 6148E+02 -0. 6148 E+02 -0.,6148E+02 -0. 6l49E+02 -0.6149E+02 -0. 6149 E+02 -0. 6l49E+02 -0. 6149E+02 -0. 6149E+02 -0. 6149E+02 -0.61 49E+02 -0. 6149E+02 -0.,6149 E+02 0. 2661E +00 0. 26 59E +00 0. 265bE+00 0.,2654E+00 0.2651E +00 0.264 7E+00 0.2643E+00 0. 2638 E+0 0. 2632E+00 0. 26 26E 400 0,2618E+00 0. 26 09E +00 0. 25 98E +00 0.25 86E+0D 0. 25 70E +00 0. 2551E +00 0. 2528 E+00 0. 2499E+00 0. 2463E +00 0. 2416E+00 0. 23 55E +00 0. 22 73E +00 0. 2164E+00 0. 2018E+00 0. 1830E+0O 0. 1609E+00 0*1391E+00 0. 1219E +00 0*IIIIE+00 0.10 52E+00 0. 1024E+00 0. IO1OE+00 0. 1004E+00 0. IOOLE+00 0.9999E-01 o.9992E-01 0.9990E-01 0. 9988E-01 0.99 8BE-01 0. 9q88E-01 0. 998 7E-01 0.9987E-01 0. 9987E-01 0. 998 7E-01 0. 998 TE-Ol 0. 998 7E-01 0. 9987E-01 0. 9987E-01 0.998 7E-01 0.9987E-01 0.9987 E-0 I 0. 9987E-01 0.998 7E-01 0. 9987E-0i 0. 99 87E-0 I 0. 9987E-01 0,99 87E-01 -0. 3803 E-02 -0, 3801E-02 -0. 3796 F-02 -0. 3791E-02 -0. 3785 F-0? -0.37 78E-02 -0.37 70E-0? -0.93760E-02 -0.,3749 E-02 -0. 3735 E-02 -0. 3720 E-02 -0. 3701E-02 -0. 3679 E-02 -0. 3652E-02 -0. 3620 E-02 -0.3581E-02 -0. 3532 E-02 -0.3472 E-02 -0. 3396E-02 -0. 3299E-02 -0.31 72E-02 -0.3006 E-02 -0. 2784E-02. -0.92489 E-02 -0. 2106E-02 -0.1641 E-02 -0.1146 E-02 -0. 7098 E-03 -00 3988E-03 -0. 2155E-03 -0.1213 E-03 -0. 7602 E-04 -0. 5486 E-04 -0. 4505 E-04 -0. 4053 E-04 -0. 3845E-04 -0. 3751 E-04 -0.3 707 E-04 -0. 368 7E-04 -0. 36 79E-04 -0. 3674E-04 -0. 3673 E-04 -0.93672 E-04 -0.93672 E-04 -0, 3672 E-04 -0. 3672 E-04 -0. 3671 E-04 -0.36 71 E-04 -0.3671 E-04 -0. 3671 E-04 -0. 3671 E-04 -0. 3671E-04 -0. 3671E-04 -0. 3671E-04 -0. 3671 E-04 -0. 36 71E-04 -0.,3671E-04 0.2000 E+02 0*2000E+02 0. 2000E +02 0. 2000E+02 0. 2000E402 0.*?000E+02 0.2000E+02 0. 2000E+02 U. 2000E+02 0. 2000E+02 09.2000E+02 0. 2000E+02 0.92000E+02 0. 2000E+02 0. 2000E+02 0. 2000E+02 0.2000E+0? 0.2000E4-02 0. 2000E+02 0.2000 E+02 0. 2000E+02 0. 2000 E402 0*2000E+02 0.2000E+0? 0. 2000E+02 0.2000 E+02 0. 2000E+02 0.2000E+02 0. 2000 E+02 0. ?OOOE+02 092000E+02 0, 2000E+02 0*2000E4-02 0.2000E+02 0*2000E+02 0. 2000E+02 0. 2000E+02 0.2000 E+02 0. 2000E+02 0*2000E+02 0. 2000E+02 0.2000E4-02 0. 2000.E+02 0. 2000E 402 0. 2000E+02 0*2000E+02 0. 200E +02 0. 2000E +02 0. 2000E402 0. 2000E+0? 0. 200E +02 0*2000E+02 0.2000 E+02 0.2000E+02 0.2000 E+02 0*2000E4-02 0.,2000E+02 TH TH TH TH TH T H TN TH TN TH TN TH TH TN TN TN TN TN TN TN TN TN TN TN TEMP TEMP TEMP T EMP TEMP TEMP T EMP TEMP TEMP T EMP TEMP TEMP T EMP TEMP TEMP TEMP TEMP T EMP TEMP TEMP TEMP TEMP TEMP TEMP -0, 51 OE *0? -0.5 800E4-02 -0. 5900E4-02 -0.6000E#.02 -0.6100OE+02 -0.6 200E4-02 -0,6300E*-02 -0. 6400E+02 -0. 6500E.-02 -0.6600E*02 -0.6 IOOE+02 -0.6 800E*02 -0.6900E*02 -0. 7000E+02 -0. 7 10E*02 -0. 1200E 402 -0.7300Ei-02 -0 *7400Ei-02 -0. 7500E*02 -0. 7600E+02 -0.1 700E4-02 -0.7800E4-02 -0. 7900E4-02 -0. 8000E4-02 -0.,6149E+02 -0,661419E+02 -0,6149E+40? -0,6149E7+02 -0.o6149EO-02 -0,6149E0-02 -0. 61'9E.-02 -096149E7+02 -0.6149E4-02 -0. 6149E+02 -0. 6149E4-02 -0.o 6149 E--0? -0.,6149E+02 -0,6149E+*02 -0. 6149E1702 -0. 614,9 F02 -0.6149E4-02 -0.6149E4-02 -0 *6149 E*02 -0.61 49Ei-02 -0.6149 E402 -0. 6149 Ei02 -'0.6150E4-02 WATER IN PROFILE AT TIME 10O0oOOSEC: 0,11808E4-O2CM 59 0.99817-01 0,998 7E-01 0,*9987E7-01 0,998717-01 0,99817-01 0.998717-01 0. 9987E-01 0.998717-01 0.998717-01 0.,9987E-01 0.998717-01 0.998717-01 0.99877--Cl 0,9987E7-01 0,99817-01 0,'99817-01 0.9987E-01 0.998717-01 0.998717-01 0, 9987E-01 0.99 86E-01 0.9986E-01 0,9986E-01 0.998517-01 -0. 3671E-04 -0, 36 71E-04 -0,3671E7-04 -0,36711-04 -0.3671E7-04 -0.367117-04 -0.36711-04 -0.367117-04 -0*367117-04 -0.367117-04 -0.367117-04 -00367017-04 -0.367117-04 -0. 3671E-04 -0, 3671E-04 -0,36 71E-04 -0.367217-04 -0, 3613E1-04 -0.367417-04 -.e367417-04 -0.36 75E-04 -0. 3617E-04 -0. 36 78E-04 -0. 3679E1-04 0.? 00017*0? 0.200017+02 0.200017*0? 0*200017*0? 0. ZOOOE*0? 0&2000E7*02 0.200017402 0.200017+02 0.200017402 092000E7402 0.2 000E402 0.200017*02 0. 20004-2 0, 2000E*02 0.20007402 0.200017*02 0. 200017 402 0. 200017 02 0.200017+02 .e20001+02 0. 2000E1+02 0,200017402 0.200017+02 0.2000E+02 Appendix -1-able 4. Listing of proprai C c c c *** ***** **** *44**4**4** *4*4*4*4 *44*44* *4444*444*444*4**44** M M0(1D E tL * * * * * * * * * * * A O .NE 0IMENSLONAL SIMULATION MODEL USING THE RLDICTOF-CORRECTCP METHOD TIME STEP: VARIABI..E SPACE STE11:0 FIXED POSSIBLE BOUNDARY CONDITIONS:O 1.CONSTANT PRESSUPE HEAD FOP TOP AND BOTTOM BOUNDARY CONDITION 2.VARTABLE FLUX TOP BOUNDARY AND VARIABLE PRESSURE HEAD BOTTOM BOUNDARY CONDITION. ACC OUNTS FOR TEMPERATURE EFFECTS ON HYDRAULIC PROPERT IES. c 4 C 4 JAN HURMANS VEPSIUN DECEMBEP 1983 C****************4**************4* C c C C C *4 THE DATA ARE READ FROM DISK*************** INTEGER TT REAL HO(220),tHIL(220) 9H2( 220[,TH(220) tVO(2'20) tV2(?220) tDT(2) REAL Z(220) ,A(220OtB(220) ,C(2)) CC(2z20) qD(220),WAT(2) tO(1O) REAL TE(220),F(220) ,V( 220) CC( 220) 9GP (2201 COMMON AAAlJJJ, NLIt BOTp ALP,IJTOP, EMBPEMBv DEL MOTTtDFLFLUITEND READ( 3,t25) NZZ6OTUTOPs UBOTDT(.) ,TENDEPSALPNO READ(3926 1 (0(1 )I 1=1.,NO) 26 FORMAI(8F10.1) C 25 FORMAT(55X4F.O4FO.FO,t/,F5.I,15) C C CONVERT FLUX TOP BOUNDARY 10 CM/SEC IF (ALP.EQo1.0) UTOP = UTOPf3600 C C *44 THESE DATA ARE WRITTEN TO UNIT 6 ************ WRITE(6945) NZLZBCT,UTOPALPUBOT, DT( II PTEND9 EPSt (0(I),I=1,NU) 45 FORMAT( INIT IALIZATIONS AND BOUNDARY CONOITICNS t2Xt/, I1I NR. OF SPACE STEPS 1....'151/v 21 DEPTH OF PROFILE (CM).....',jF~O.5,/, 32 TOP BOUNDARY CONDITION ....',F10O.6it ALPHA =I5el/ 4' BOTTOM BOUNDARY CONDITION .',FIJOo.,/v 51 INITIAL TIME STEP (SECCN)PFiO05 9/ v 6' MODEL STOPS AT 0*...........'FlO.2,' SFCONI,/, 71 ERROR CRITERION MASS BALANCE ItFIO.593( /1, Be OUTPUT IS PRINTED AT 112(/), 60 * * * 92XRFO.1) C C ************~********* ***4.****************** C C C TOP BOUNDARY CONDITION: C C FLUX: ALP = L.0 C C PRESSURE HEAD: ALP = 0.0 C C 6OTTOM BFUNDARY CONDITION: C C PRESSURE HEAD ONLY C C C C C C C C REMEM B ER THE DARC Y C0 NVENTI0 N C C C C POSITIVE FLUX ---- > UPWARD FLOW C C NEGATIVE FLUX ---- > DOWNWARD FLOW C C C C *****~**********************4********~**4 ****4*****x*********4** C C C C C LISTING OF THE SOIL'S PHYSICAL PPCPEPTIES ..... WRITE(6,10) 10 FORMAT(1H1,' THE FOLLOWING TABLE GIVES THE HYDPAULIC PROPERTIES' I' OF THE SOIL CONSIDERED"/I SOIL TEMPERATURE IS REFERENCE TEMP' 22(/),' PRESSURE WATER CONTENT ', 31CGNDUCTIVITY WATER CAPACITY',/) FF= I. VV= 1. TE(1)=20.0 DO 20 1=10,100,5 U=-1.0*I THET = FTH(U,FF) COND = FK(U,VV,FF) CAP = FC(UFF) WRITE(6,50) UTHETCONOCAP C WRITF(1,50) UTHFTCCNDCAP 20 CONTINUE DO 30 1=100,1400,100 U=-1.0*I THET = FTH(UFF) CON) = FK(UVVFF) CAP = FC(UFF) WRITE(6,50) UTHETCONDCAP C WRITE(1,50) L,THET,CGND,CAP 30 CONTINUE DO 40 I=1500,15500,l000 61 U=-J..0*1 THET = FTH(UTFF) CON[) = FK(UvVV#FF) CAP = FC(U,FF). WRITE (6, 50) UtTHETv G'GNDCAP C WRITE(1,50) d,UfHEiCUNDtCAP 50 FORMAT (2.XtFB.1,7XFr .3,R8X, FI?.5,TX, F12s5) 40 CONTINUE C c SOME INTIALII4TIONS c 55 DELM= 0.0. DELF = 0.0 EPS -. 001 NO = 1 TT = 1 DZ = -ZBOT/NZ NZ1=NZ+I NI.Z=N7-I. N2Z=NZ-2 TI =0 *0 AAA =-0.30 JJJ1 0 KKK 1 CALL PLOTS(0,10) .C C INITIAL VALUES OF Z9UvV AND TH AT TIME ZERO PMAX=0. DO 60 I=19NZ1 Z(I) FLOAT(I-I.)*DZ HO( I)=UIN(Z( I)) PMAX =AMINl(PMAXvH0(11H 60 CONTINUE C C THIS SUBROUTINE GIVES AND PLOTS THE TEMP. DISTRIBUTION IN PROFILE. C AT TIME ZERO (ONLY TO BE USED IF TEMPERATURE IS CCNTSTANT WITH TIME): C CALL TEMP(ZTE) C C DETERMINATION OF TEMPERATURE COEFFICIENTS OF PRESSURE HEAD AND C HYDRAULIC CONDUCT IVITY: C CALL CORTEM(TErZIFIVJ WRITE( 6, 8) 8- nFnRAAA'T( I101-DEPTHTFMPERnATUREin CAND TE r 7 AMPrnATU IIRE COt-R-ARECTfIO In ' 62 61 CONTINUE 9 FORMAT (2Xt 4( f-XF9*'4)) C FOP TEMP. DISTRIBUTION AND/OP BOUNDARY CONDITIiONS, IF TRANSIENT: IF(ALP.EQ.1.H CAIA CONDI(LTFUTOPU1301,TI IF wVqH(NZ)) DO 62 1I=1,9NZI TH( I )=FTH(H0( I),F( I)) ,C( I )=FC(HU( I) ,F (lI 62 CONTINUE c C A PLOT OF 'INITIAL CCOITIONS:e c CALL INIPLO(LHOITHPMAX) DO 65 I 29NZl CON =-FK(.5*(HO(I).-HO(I-l)),.5*(V( I)+V(1I-1) )g,5*(F(I P+F(I-1 1 ))) VOCI) =C0N*((HO(I)-H0(I--1))/DZ) +-CON 65 CONTINUE VQ( I) =-FK(HO( Ii,V( 1),F(lI)) C *41151T THE INITIAL VALUES OF DFPTH, THETAPRESSURE HEAD AND FLUX RESP. c + TEMPERATURE. WRITE (6,66) 66 FOPMAT(IH1,/,' INITIAL CONDITIONS APE: 192(1)g 1' NODE DEPTH THETA PRESSURE HEAD 2' FL UX','9 TEMPERATURE1,' WATER CAPACITY,12(/) DO 70 I=ItNLI WRITE(6,75)P 1,1(1) ,TH( I),HU( I) VO( I),TE (I) C( I) 70 CONTINUE 75 FORMAT (2X I15,4X,4(AX, E12.5) v6XF6.2,r3XEl2.5) DEL#40 =00 90O'80 I=I-,NZ DELMf?=DELf4O-(T1(.tJ*T$( 1+0 )1 80 CONTINUE WAT(1) DL*0,ELM0/2., WRITE(6,-811 TIWAT( I) 81 FORMAT(LH1,' AT TIME ',F10.5,1 WATER IN PROFILE IS l'E12.5,' CM') C C C I F CONISTANT FLUX AT TOP THEN: IF (ALP.EQ.1.0) VO(1I)=UTOP IF(ALP.EQ.1.0) GO TO 300) C 63 85 00 90 1=2,Nl A( I) =( (2*D1**2 )/11( TT ) ) FC( HO (IvF-( I PI/FK (HOC I ?V (I P F (I)) BC I )=(FK(HO( 1-) V( 1+1.) ,F(1+1)1 KH(II),(- f -. 1 f(4(*EK(HO( I) IV( if( 1))) CC ( I ) =?*D7 *B(.I,) 90 CONTINUE c WRITE(6,91) Ill 91. FORMAT(2(/)t' PPEDICTOPR AT TIME llF1O.591 SEC 1) HI (1. =UTOP HI( NZil PUBCI D(2)=-A"(2)*HO(2) - (2)*HO(3) CC(2) -HI(1) + B(2)*HO(l) D(Ni)= Bt(Z)HO(Nli)-A(NZ)*H0(NZ)- CC(NL)- Hl(NLIA-B(NZ)*HO( Nil) 90 100 I=3,NLZ D(l) B(IP*H0(I-l) -A(I)*HO(I)- B(I)*HO(+l-CC(IP 100 CONTINUE DO 105 I=2,INZ C WRIIE(6#104P i(1)9A(I),B(I),CC( I),D( I) 104. FORMAT(# Z A B CC D',2Xv5E15*5)) 105 CONTINUE C C SOLVE FOR PRESSURE HEAD BY THOMAS ALGORITHM. c C(?)= -1.0/(2.0 + A(21) D(2)= -D(2)/(2.O + A(2)) 00 120 I=3,Ni y = -2.0 - A(I) -C(-1) C(I) = 1./V 120 CONTINUE c DO 130 I=2,NZ c WRITE(6,125P IC(I),0(IP 125 FORMAT(2XOIC 0 1,13,2E15.5) 130 CONTINUE C(Ni )=0.0 H1(Ni) O(NZ) N2Z NI? -1 DO 140 I=1,N2Z J - NZ - I HI(J) D (J) -C(J)*H1(J*1P 140 CONTINUE DO 160 11,NZL C WRITE(6,150) J(I),HO(I),H1(I) I1qf) %:URQMAT1711AICI UOIU1I2X-15Y -Ir ./)I 64 ccccccccccccccccccccccccccccccccccccccccccccccc PRFO1CT(P C WRLITE(6dl6l TI1I 161 FORM'AT(2( /) 'CrRRFEC1CR AT TIME tFIO*5, SEC I) DO 180 I=2,NZ A( I)=( (2.0*DZ**,? )/)T(TT) )*FC( H].(I) ,F(I)) IFK(HI (I ,V( I) F( I)) B( I)=( FK(HI.( 11) ,V( 141) ,F( I ) ) -FK(HI.(I-It) V( I-1) ,F( 1-1)) 1tf( 4*FK(Hl( I) V( I) F( I)) CC( [)=2.0*0Z*B(I) 180 CONTINUE HZ (1 )UTOP H2 (NZL )=UBO T D(2I=(2.Q-A(2)I*HO(2)-H0(32,OB(2)*Hl()-20*B(2)*Hlt(I)- 1t 2.0*CC(2P -H62(1) - HO(It) D(NL)=-HO{(NlZ)s(2.0-A.(NZ))*HO(NL)4-2.O*B(NZ)*HI(NIZ) It -2.0*B(NZ)*H2(NIL) - 2.0O*CC(NZ)- H2(NZ1)- HO(NZL) DO 200 1=3,NIZl D(l) = -HO(I-t) + (20AI*OI HO(14-1) *?*3I*1(- It- 2*0*B(I)*Hl(I+1) - 2.w0*CC(I) 200 CONTINUE DO 205 1=2,NZ C WRITE(61104) Z(I)qAU )?B(I)tCC(IbD(I) 205 CONTINUE c C SOLVE FOP PRESSURE HEAD BY THOMAS ALGORITHM* C C(2*h= -1.0/(2.0 + 4k(2)) 0(2)= -D(2)/(42.0 +A(2)) DO 220 1=3,NZ y =-2.0 A(I) -C(1-1) C(I) = 1./Y D(l) =(D(l) -D([-JJ)/Y 220 CONTINUE C DO 230 I=2,NZ c WRITE(6,It25) I,C(IhD0(I) 230 CONTINUE C(NZ)=0.0 H2(NZ) =D(NL) DO 240 I=1,N2Z J = NZ - I H2(J) = (JI -C(J)*Hi7(J+1) 240 CONTINUE DO 260 [=1,21 c WRITE(6,250) ZI(I),HO(IbHl(I)tH2(I) 250 FCR MA T(1'9Z7H TH V TEPM P I, 3X , P1A3.4)1 65 CCCCCCCCCCCCCCCCCCC C 0 R R E C T 0 P cccccccccccccccccccccccccccc C SET-UP MASS BALANCE: GO TO 335 C C FOP VARIABLE FLUX TOP BOUNDAPY CDNDIlTI CN c 300 T1I TI +DT(TIl) C c c ccc cc cccc cc cc cc CCL,C cCC PRE D ICTI P R' CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 301 CONTINUE UUU=HO( Ni) TI I=T I + 5*DT (TT) CALL CONDI Z,ITEvUTOP2,vUF3T2vT I I I tFV,UUU) CALL. CONOI(Z, TE UT091iUBOT19T ItF *VIUUU) D1 = 2*DZ*(UTOP I + FK (H0(1)jrV(1 ) tF I) ))/FK (HO(I1) V(Ij,F(1j FUl =HO(2) *+D01 DO 303 1=1,NZ A(1I ) =( ( 2*DZI**2 ) /0OT (TT ))FC ( Ho ( I)IF ( I)I /FK (HO (IiJpV(I),F( I) IF(I.EQ.1) GO TO 302 B3( I) =( FK (HO ( I + 1),tV ( I +l),F( I1+1)) FK (HO ( I -I V ( I- I)vF ( I-I))) j / (4*FK (H01 IItV ( 1 ),F (I ) 302 IF( [.EQo1) BA IP (FK(HO( 1*1) ,V( 1+1) *H 1*1) )-FK(FUI ,V( I) F( I))) I / (4*FK (HO( I ) tV ( I ),F ( IP CC( I)=2*DZ*B(lH 303 CONTINUE c WRITE(6,91) TII HI(NLLP = UBOT? D(1P=-A(1)*Ho(l) - CC(i) + B(li*Dl- D2 D(NZ)= 3( NZ?*H0(NlZ)-A(NZ)*HO(NZ)-- CC(NI)- H1(NZ1)-B(NZ)*HO(N71) DO 304 I=2#NlZ 304 CONTINUE DO 305 I=lNZ c WRITE(6,10411(1) ,A(I ) B(! ) ,CC(I) ,D( I) 305 CONTINUE c C SOLVE FOR PRESSURE HEAD BY THOMAS ALGORITHM: 0(1)= -D(1Pf(2.O + A(fl)) DO 306 I=2,NT y = -2.0 - Al) - C(I-1.) C(I) = l.OIY D(l) =(D(l) -D(I-1))/Y 30 COf% rNTI NUEr 66 307 CONTINUE cN? 1=00 HL(NZ) =D(NI) 00 31.3 I=1,N1Z J = NZ - I HH(A =D( J) -C(,J)*H1I(J+1) 31.0 CONTINUE DO 31. 1[=1,NZJ. C WR ITE(6, 150) i(1),)-O( I) qHI(I) 311 CONTINUE C CCCCC CCCCCCCCCCCCCCCCCCCCC CORRECTOR CCCCCCCCCCCCCCCCCCCCCCCCCcCc c WRITE(6,1161) TI! CALL CONDI(Z, TE,UTOP 9 UfBCTTII,F<,VUUU) CALL COND I ( iTEUTOP2,lUBOT29TI I1,9F, V,UUU) 02 =2*DZ*( UT OP2 +FK (Hl (1)vV ( 1 VF(1I)I /FKC(Hl1)V( 1)F(1I)) 03 =2*O-*( UTOP + F K(Hl (1) IV(l )IF (II)/FK-(Hl (I ) #V( I )F(I1.)) FUl =H1(2) + 02 C WRITE( 6,312) 02,FUl 312 FORMAT(* D2 FUI',2E 12.5) D0 31.5 I=19N7 IF([.EQ.1l) GO TO 313 I / ( 4*FK (Hl1( I ) IV ( I) F ( I)) ) 313 IF( I .EQ. 1) B(I) =(FK (HI (14+l) 1V(I*+1)tF (14+ 1) )-F K( FIJIiVI)F(I)) 1 /( 4*&K(HI (I) V( I) F( I))) C WRITE(6v314) 1,3(I) 314~ FORMAT(f I B(I)',139E1.2.51 CC( 11=2.0*01*B(I) 315 CONTINUE H2( NZI)=UOT 0(1) =( 2.0-A( I)) *HO( 1.-2'*I-I(2?42.0*BC 1)*02-O1---3-2*CC(1) 0(NZ)=-HQ(N11)+(2.O--A(NZI*HO(NZ[*2.O*8(NZ.)*Hl(.N.Z.) I -2.0*8(NZ)*H2(NZl) -2.0*CC(NZ) H2(NZI) HO(NZI1) 00 320 I=2#N1Z D(1) = -HO(I-1.) + (2.0-A(I))*HO(l) - HO(I+1) +2.*B(I)*H1.(I-1) 1- 2.0*B(I)*Hl(I+1) - 2.0O*CC(1) 320 CONTINUE 00 321 !=1.NZ C W RI TE( 6 ,104 Z ( I)A (I),B( IC C ( I)D([)1 321 CONTINUE C C S'OLVE FOR PRESSU-qtRE HEAD BY THOMAS 4LGORITHM:O 67 y = -2.0 - AU) I C( -1 C( I) =1./V 0i( I 1 ({{ 1 91-1 1 )/Y 3425 CONTINUE C DO 326 1=1,NZ c WRITE( 6,125) IC( It)(I) 326 CONTINUE C( NZ) =0.0 H2(NL) =D(NZ) DO 330 I1,1NI.Z J-= NZ I H2(J) =9(J) -C(J)*H2(j+lJ 330 CONTINUE D0 331 [=1,21 c WRITE(6,2501 Z( IbHO(I),Hl(I),H?(I) 331 CONTINUE c 335 CAL MASSBA(THH2,ZVOV2,DTDZV,F ,COGP) C c IF(TI.GT.1.O0) EPS =0.001 c WRITE(69 501 ) DELMOv DEtLFtU9EM3,REMB 501 FORMAT( DELMO LELELU EMO REMBLt 4E15.5) TT = I IF(EMB.GToEPS) GO TOG'310 IF(EMEA.LT.0*1#EPS) DT(TT) = .5*DT(TT) C TIME STEP IS DECPEASED IF THE REL. MASS BALANCE IS TOO LAPGE: c C. !F(TII.GJ.500.ANDREMB.GT.0.5) GO 1051.0 GO TO 520 510 DT(TT) = 0.5* DT(TIT) TIIl 'TI + DT(TT) IF(TII.*GT.O(NC)) GO TO 900 IF(TI.EQ.0.0) GO TO 520 DO 515 I=1,NZ1 TH(I) =FTH(HO( I) ,FH()) 515 CONTINUE IF(ALP.EQ.1*0) GO TO 301 GO TO 35 520 1TI TII WAT(I) = WAT (1.) +DELMO DELF= DELF + DELFLU DELM =DELM +DELMO OV E0ALI --- I(IABQS I(DE IM-DEL.~tF- I/DELFC)*1C00A 68 451 FORMAT(f, WATEP IN PR~OF LLF A1 TIME iFlO.2, 'SEC :I El2e5,#CMI) IF( TIs.EQ.TEND) GO TC 1000 T I I TI4+ DT ( TT) If( T Is.EQ.(Nnl) iG TO '530 IF( T II.oGT.C(NOl) GO TO 900 530 TI[HR=TI1/3600 IF(T I.oEQ.O(NOI IWf1TE(69 5311)TLIHR 531 FORMAT(1IHI,' DEPIH, PRE-SSUPE HEAD, THETA, FLUX AND IFMAPFRAIURE if'AT TIME: ,9FIo.3v' HOUR S'I(f)I D0 700 11,NI IH( I FTH(H2 (I.F ( I) IF(TI.Q.0(NU) I WRITE(6,?50) 71 I),H2(TI,THUl)vV2(I) ,TE(II HOC I)=H2 (I) 700 CONTINUE IF(TI.9EQ.O(NOfl G-0 TO 800 GO TO 750 800 AAA = AAA - 0.3 JJJ = JJJ + 1 WPITE(61451) TI, WAT(1) CALL PLO( Z!THvTI ,0,PMAX, HO) NO NO + I. IF(TII.GT.C(NOH) GO TO 900 750 IF(At.P.EQe1.0l GO TG 301 GO TO 85 1900 TT=2 DT(TT)= O(NO) - TI T II= T I +DT(TT) DO 940 1=19 NZi HOC I)=H?(I) TH(I) =FTH(HO(I),tF(I)) VOCI) =V2(I) 940 CONTINUE IF(ALP.EQ.1.0) GO TO 301 GO TO 85 1000 TIHR=TIf3600 WRITE(6,531) TIHR 00 950 I1,NZI TH(I) -=FTH(H2-(I) F(I)) WPITE(69250) 71 IbH2(I) ,TH(I),V2(I),TE(lI 950 CONTINUE AAA =AAA -0.3 C ALL PLOC Z7.TH. TLr,0.PMA X.H21 69 CALL PLCT (00,0.0,4999) STOP END FUNCTION FTH(HF) C * COMPUTES WATER CONTENT FROM4 WATEP RE TENT ION'CUP VE So REAL HtFtHH PEAL M,N UH= (t./F)*H C IF(HH.GE.-l.0) GO T7o- 10 C GOTO 30 FTH=lo611E.-06*.212/(16llE+)6+ABS(HH)**3.o96) .075 c FTH=739*.o371/(139+AIGCG(ABS(HH))**4.OOh..124 GO TO 20 10 FTH=.1t95 30 N=4.i6259 A = 0.030627 M=1.-( 1./N) TE=(1.0/(1.Ot(A*ABS(HH)**N))4*M FTH=. 21.950*TE*D.0615 20 RETURN END FUNCTION FK(HVF) C * HYDRAULIC CONDUCTIVITY VALUES FROM PRESSURE HEAD DATA. REAL HVFtHH HH= (1.0/F)*H IF(HH.GT.0.D) HH=0.0 c GOTO 10 FK=3It*.j75E*06/(360Q*(1.175E+Q6*ABS(HHI**4*74fl C FK=4.428E-02*121t.bf(3,600*( 12'.6+A8S(HH)**1 .77)) FK =V*FK 70 FUNCTION FC(HtF) C * WATER CAPACITY VALUES FROM PRESSURE HEAD DATA. REAL HFHH REAL N,M c IF(HHeLT.-24(o(o) GO TO 10 c GOTO 30 FC=1.61.E+06212*396*ABS(HH)**2*96 FC = PCI (1061 1F+06*ABS (HH) *43.96 )**2- C IP(HH.GT.-l.3) CGO TO 10 c FC= 7 39*.371*400*ALOGABS(HH))**300G c PC =FC/('739+ALOG(ABS(HH)p**4.00,**2 c PC = C /A!3S(HH) PC FC/F GO rO 20 10 FC =0.0- GO TO 20 30 A = 0.030627 N = 4.*16259 M I -(1./N) R -m- HH =(li(A*ABS(Hfl**N)**R FC=O.2195*M*HH*N*(A**N)*(ABS(H)**T) 20 RETURN END FUNCTION UIN(L) C * THE INITIAL. CONDITIONSt EXPRESSED IN PRESSURE HEAD VALUES AS A C 4 FUNCTION OF DEPTH. UIN = -61.5 RE TURN END SUBROUTINE INIPIO0(ZHOTHPMAX) COMMOiN AAAtJJJNLLLBOT REAL Z(220) ,TH(220)bIHO(22o) CALL PLOT(1.0,9*0,-3) K=N71 '1 L =K'+ 0. CALL SYMBOL (2*0,-8.,*j0*1O, ITHETA AND PRESSURE HEAD' ,0*0#+23) CALL PLCT(0.0,0o0,-999) RETURN END .71 SUBROUTINE COfRTEM(TE9 ZFACT IVIS~ C DETER MINES THE TEMP. CUEFF IC [ENT 0F PPE SSURE HEAD AND HYDPAJL I C C CCNDUCTIVITY: c COMMON AAAJJJNL1 R EAL T E( 220) 9lZ( 22?01tF ACJT(220) VIS (2 20tT62?20) DO 200 L=1.,NLI SUM=0. 0 1(1 )=10.0*TE( ) IT=INT(T(I ) IF( IT.LE.200) GO IC 15() DO 100 J=?A0,IT E =J/10. SIG= 75.594 -0.1328*E-O.000537*E**2+2.2719E-06*E**3 DSIG= -. 1328 O.001074*E + 6.8157E-06*E**? GAM (3.0/SIG)*DSIG*.1 SUM =SUM + GAM 1.00 CONTINUE FACT(I)= 1.0 + SUM GO TO 200 150 f(IT.EQ.200) GO 1TO1.95 00 190 J=IT#200 E =J/10. S IG =15*594 -0. 1328*E-0.000537*E**2.+2.2719E-06*E**3 DSIG= -.1.328 -0,001074*E + 6.81.57E-06*E**2 GAM = (3.0/SIG)*OSIG*.1 SUM = SUM + GAM 190 CONTINUE 195 FACT(I)= 1.0 SUM1 200 CONTINUE DO 400 I=1,NLI IF(TE(I).LT.20.) GO TO 300 A =1*.372*20o-TUTH )-0.001053*(TE(I)-20.)**? B = TE(I) + 105. C =10**(A/8) V1 =0*01002*C I F(TE(I )oEQ.?020O VI=.01002 GO TO 350 300 A= 998* 333+80.1855* (TE (I1)-200.)0e.005 85*(TE()--20*)**2 B= (1301./A) - 3.30233 VI 10**B 350 VIS(I) = 0.01002/VT 400 CONTINUE OrE T1UION 72 SUBROUTI[NE MASSEBA(THH2t ZVOV2,DTtDZtVtF,COGR) C C CALCULATES MASS BAL ANCE OVEF EACH TIME PERIOD. c REAL IH(220),H2(22)0),iZ(220) ,VOL?2) , V2(220)9DT(2),V(2 0) ,F(220) REAL CO(22OhGP(?20) INTEGER TIJJJ COJMMON AAAtJJJ,NZ1,ZBO1,ALPUTOPEMBREMBDELMOTTD)ELFLU,TEND NZ =Nll -1 DO i() I=1,NI TH(I) =FTH(H2(l),F(1l)-TH(I) C WRITE(6,49) IH?(IbgTH(I1) 349 FORMAT(' I H DELTH,914,2E15.5) 1.0 CONTINUE DELMO=0.O DO 20 I=J,NZ DELMO = DELMG (TH(1PI + TH(I1+1P) 399 FORMAT(' DEITH 9,E12*51 20 CONTINUE c WRIT(6,399) DELMO DELMO DELMO *01 2.0 C IF(AIP.EQ.1 .0) VO(11)=UTOP DO 50 I=29NZI GP(I-l)=(H2(I)-H2(I-LH)/DZ CON = -FK(.5*(H2(I) H2.I(I-f),5*(V(fl+Vu1-1)h.5*(F(n)+FcL-1))) V2(1)= CON * ((H2(I)- H2LI-i))/DZ.) +CON Co( I-i) =-CON 50 CONTINUE V2( 1i=V2(2) IF(ALP.EQ.1.0) V2(1)=UTOP DELF LU = (-V2 41 -VO(01) +V2 (NZ 1)+VO (NZI O T (TT) /2. 0 EMf3 ABS(DELMO -DELFLU) REMB (EMB/ABS(DELFLU)l*100 RETURN END. SUBROUTINE TEMP(ZTE) C SETS AND PLOTS INITIAL TEMPERATUE DISTRIBUTION IN PROFILE c COMMON AAAtJJJ,NZ11ZBOT REAL Z(220PTE(220J DO 100 I=19NZI .C TE(I) =((t25.*I(I))/IBOT) +40. l t(I) A=ft.(1% CALL LINE (TE, Z1,il. 1 +It1.) CALL SYMBOL (2.0#-8.o2,O.*10,'1TEMPERATURE PROFILE" ?,.Ov19) CALL PLOT (0.O,0.00,-999) RETURN END 73 SUBROUTINE COND(Z,TUTUB, TIF ,V, U) C C TEMPERATURE DISTR [BUTLON AND TRANSIENT BOUNDARY CONOITIONS C AS A FUNCTICN OF TIME: C PEAL Z(220),T220) UTUBTIMF 220)9,V(220),XX COMMON AAA,JJJNZ1,ZBOT GO TO 600 XX=100000. $ 01) IG10021 LABEL IF(TIM.GT.17200.+XX)) GO TO 100 IF(TlM.LT.7200 0 ) GO TO 200 IF(TIM.GT.XX) GO TO 300 100 At =(2*3.141*(TM-7200))/86400 UT=0.0000025+0.0000025*SIN(Al GO TO 400 200 UT= -3./3600 GO TO 400 300 UT =(-2./3600)*(TIM-XX)/3600. IF(TIM.GT.(XX+3600)) UT=-2./3600 400 IF(TIM.GT.7200.) UB = U-0.05 IF(T[M.LT.7200.P UB = -61.5 WW = 7.272E-05 TA = 25.0 AO = 15.0 DD = 22.6 DO 500 [=iNZ1 A2 = Z(I)/DD A3 = (EXP(A2)*SIN(WW*TIM + A2) T(I) = TA + AO*A3 C T(I) = 20.0 500 CONTINUE GO TO 700 600 UT = -13.69/3600. UB = -61.5 DO 650 I=1,NZ T(I)=20.0 650 CONTINUE 700 CALL CORTEM(TZFV) RETURN END 74 SUBRO~UTINE PLUCG(CtGvZ) RE:AL 1( 100) ,C(1(0), G( 100) CUM~fNNAAAtJJ,tNZ,7 / qJAL PUTOP, EMPf FMP.,DFLMOII flELFLU, TEN) NZ=NLI -1 DO 10 J=1,vNZ ZAJ)=Z(J+1) 10 CONTINUE- DO 20 11 tN Z WRIIE( 6,25) 1(1) ,C( I ,G( I 20 CONTINUE 25 FORMAT( I Z C GI,2Xj3El$'')5) C (K )=0 * C(L )=0.0005 G(K) =0.0 G(L)=1.0 U U :IBCTf8.0 CALL PLOT (2w 0, 9.0 -3) CALL AXI S(0 *0,90.0 1 DPTH C M,8,8o.0, 2 70o.010*.0 Z(L) CALL AXlS(0.O000,'PRESSURE GRADIENT' ,17,8.00~0,0.0,I.0O) CALL AXIS(0O,.l43, 'CONDUCITIVITY' ,12,10.Q,0.O.0,0.00O05) C A LL LINE (GtL,NZt 1, +It,1) CALL L INE(C ,NZ t19 , 2) CIA LL PLOT (0.0,0.0,-999) RETURN END SUt3RCUTIN E PLOt Z THi TIMEO, PMAXIH) C * THETA WILL BE PLOTTED VERSUS DEPTH FOR THE TIMES SPECIFIED C * IN THE INPUT DATA FILE. REAL l(220)tTH(220),TIME,0(i10),H(220),PMAXP COMMON AAAJJJNIIlBO6T K =Nut. + 1 L=K + 1 ZAK) = 0.0 Z(L) = ZBOT/8.0 H(K )=O.0 H( Ll) -PMAX/4.m P =PMAX/4. TH(K) =0.0 TH(L) =0.05 IlF(TIME.GT.O(1)) GC TO -20 CALL PLOT ( 0000,+3) RETURN END 75