

FALL 1995 V Commercial Vegetable Variety Trials

April 1996 Progress Report No. 129 Alabama Agricultural Experiment Station Lowell T. Frobish, Director Auburn University

Contents

Authors	1
Introduction: Some Tips to Get the Most Out of Vegetable Variety Trial Results	2
Fall 1995 Weather Conditions	4
Fall Weather Interferes with Broccoli Evaluation	6
Head and Chinese Cabbage Included in Variety Trial	8
Non-Heading, Leaf Lettuce Varieties Show Good Potential for Alabama	10
Yes! Pumpkins Can be Grown in Alabama	13
Results of 1996 Southernpea Cooperator's Trial	16
Two New Sweetpotato Varieties for 1996	17
Sponsors and Suppliers	19

FIRST PRINTING 3M, APRIL 1996

Information contained herein is available to all without regard to race, color, sex, or national origin.

Authors

Eric Simonne

Postdoctoral Fellow Department of Horticulture (334) 844-4862

Karl Harker

Agricultural Meteorologist SE Agricultural Weather Service (334) 844-4514

Ellen Bauske

Extension Associate Department of Horticulture (334) 844-4862

Jim Bannon Director E.V. Smith Research Center (334) 727-7403

Brian Gamble

Assistant Superintendent Wiregrass Substation (334) 693-2363

Joe Kemble

Assistant Professor Department of Horticulture (334) 844-4862

Larry Wells

Interim Superintendent Wiregrass Substation (334) 693-2363

Jimmy Witt

Superintendent E.V. Smith Research Center Horticulture Unit (334) 727-7403

Arnold Caylor

Interim Superintendent North Alabama Horticulture Substation (205) 734-5820

Marvin Ruf

Interim Superintendent Sand Mountain Substation (205) 528-7133

Bobby Boozer

Area Horticulturist Chilton Area Horticulture Substation (205) 646-3610

Gene Hunter

Senior Research Associate Department of Horticulture (334) 844-4862

Oyette Chambliss

Professor Emeritus Department of Horticulture

Marlin Hollingsworth

Superintendent (retired) North Alabama Horticulture Substation

Introduction: Some Tips to Get the Most Out of Vegetable Variety Trial Results

ERIC SIMONNE

In order to select top-performing varieties, a producer must consider crop type, produce characteristics, yield potential, and reaction to insects and diseases. Therefore, glancing rapidly at the yield results may not give all the information about the good varieties. Here are few tips to get the most out of vegetable variety trials results.

Open pollinated vs. hybrid varieties -- In general, hybrids (also referred to as F1) are earlier and produce a more uniform crop or more uniform plants. They have improved disease, pest, or virus tolerance/ resistance. F1 plants are often more expensive than open-pollinated varieties (OP), and seeds cannot be kept from one crop to the next. Despite the advantages hybrids offer, OP plants are still often planted. Selecting a hybrid variety is the first step toward earliness and quality.

Types within a crop -- For each commodity, a standard type has been adopted by the industry. The bulk of commercial production aims at supplying the standard type, but other types should not be ignored. Examples of unusual types include yellow-peduncled summer squash; purple-calixed eggplant; whitefleshed sweetpotato; yellow-fleshed watermelon; yellow, orange, and other colored bell peppers; or small melons, such as honey dew, canary, Spanish or French charentais. Unusual types have been included in AU variety trials in an attempt to reflect the evolution of available types. At the same time, these uncommon types may represent alternate marketing opportunities.

Commercial variety and advanced breeding lines --Variety trials aim at comparing varieties that are commercially available. Because of year-to-year variability, the evaluation has to be conducted over several growing seasons. However, it is unpractical to wait for several years after release to know whether or not a variety is well adapted to Alabama growing conditions. Because the development and release of a new variety takes several years, it is possible to evaluate a genotype as an advanced breeding line, before it becomes commercially available. Advanced breeding lines usually have names that are combinations of letters and numbers. The advantage of evaluating an advanced breeding line is to be able to have two to three years of evaluation before it actually reaches the market. The life of commercial varieties is sometimes limited to a few years. Evaluating a genotype as an advanced breeding line is definitely an advantage.

Selection of entries -- Literally hundreds of varieties are available for most vegetable crops. Variety trials only include those varieties which are believed to have good potential for the area. Thus, the biggest selection process takes place before planting. Therefore, it is not a good approach to look at the first-ranked variety and consider it the best, and look at the bottom one and consider it the worst.

Earliness -- Having produce to sell early in the season is often synonymous with higher prices. Usually, earliness is part of standard variety information available in seed catalogues. This makes the comparison among varieties from the same seed source easy. However, because no standard measurement of earliness exists, it is often difficult to compare varieties from different sources. Sometimes, this information is not provided for fear of legal responsibility.

Two scales are commonly used for describing earliness. In the first one, "average" or "estimated" days after planting are provided. This scale is apparently accurate since, in theory, a one-day difference in earliness between two varieties can be identified. However, days to maturity depend on planting date and weather conditions. Comparing varieties from different seed sources may not be accurate. To avoid this shortfall, several seed suppliers use qualifiers to describe earliness. Instead of numbers, the scale consists of extra-early, early, mid-season, and main season. Other terms may even be used. This scale is more flexible because it is not as accurate, but the comparison between seed sources is still approximate. In addition, the relative earliness of plants grown from transplants also depends on cell size and transplant age.

Earliness as reported in seed catalogues is included in AU vegetable variety trial reports for information. For the reasons discussed above, this may be of lim-

DESCRIPTION OF RATINGS USED TO EVALUATE FALL 1995 VARIETY TRIALS						
Rating	Weather	Fertilizer	Irrigation	Pests	Overall	
5 4 3 2 1	Very Good Favorable Acceptable Adverse Destructive	Very Good Good Acceptable Low Very Low	Very Good Good Acceptable Low Insufficient	None Light Tolerable Adverse Destructive	Excellent Good Acceptable Questionable Useless	

ited practical use. Another way to evaluate the relative earliness for vegetable production in Alabama is to compare early yields provided in the AU variety trial reports. For once-over harvest crops, actual earliness can also be determined from planting dates and days to first harvest.

Yield potential -- Yields reported in variety trial results are extrapolated from small plots. Depending on the vegetable crop, plots used range between 100 to 500 square feet in area. Yields per acre are estimated by multiplying plot yields by corrective factors ranging from 100 to 1,000. Small errors are therefore amplified, and estimated yields per acre may not be realistic. However, the relative differences in performance among varieties are realistic and can be used to identify best-performing varieties.

Testing condition -- AU vegetable variety trials are conducted under standard, recommended commercial production practices. If the cropping system to be used is different from that used in the trials, the results of the trials may not apply.Information on planting dates, fertilizer rates and detailed spray schedule is provided to help producers compare their own practices to the standard ones used in the trials, and make the relevant adjustments. Detailed information on weather conditions and disease situation is therefore provided to help account for differences among locations and growing seasons.

At each location, variety trial conditions were rated on a 1-5 scale, based on weather conditions, fertilizer, irrigation, pest pressure, and overall condition (see table). Results from trials with ratings of 2 and under are not reported. These numbers may be used to interpret differences in performance from location to location. The overall rating may be used to give more importance to the results of variety performance under good growing conditions.

The numbers behind the numbers -- Just reviewing the yield data and other information included in this report may not give producers a complete picture of the best-performing varieties. Without some statistical analysis, it can be difficult to distinguish true differences in varieties from apparent differences that are caused by the use of small plots (sampling error). Therefore, this report includes the statistical information to help pinpoint the real differences between entries. These data include the least significant difference, coefficient of determination, and coefficient of variation. These three statistical parameters help evaluate the potential errors due to the use of small plots. If it were possible to plant larger plots of each variety, these parameters would be of less importance.

Statistically, there must be a minimum yield difference between two varieties before one can conclude that one variety actually performs better than another. This is known as the least significant difference (lsd). When the difference in yield is less than the lsd value, one cannot conclude that there is any real difference between two varieties. For example, in a 1995 broccoli trial, Packman yielded 5,313 pounds per acre, while Signal and Landmark yielded 4,878 and 2,874 pounds per acre, respectively. Since there was less than 1,803 difference between Packman and Signal, there is no statistical difference between the varieties. However, the difference between Packman and Signal was 2,439, indicating that there is a real difference between these two varieties. From a practical point of view, producers should place the most importance on lsd values when interpreting results.

The coefficient of determination (R^2) and coefficient of variability (CV) are measures of variability in research conditions. R^2 ranges between 0-1; values close to 1 suggest that the test was conducted under good conditions, and most of the variability observed was mainly due to the effect of replication and true differences in variety. Random, uncontrolled errors were less important when high R^2 values are obtained. CV is an expression of yield variability relative to yield mean The lower the CV, the closer the mean is to reflecting a true picture of a crop's yield. CV values under 20% are desirable but are not always achieved.

In conclusion, several factors other than yield have to be considered when choosing a vegetable variety. The main factors are type, resistance and tolerance to diseases, earliness and of course, availability and cost of seeds. Ultimately, it is always better to try two to three varieties on a small scale before making a large planting of a single variety.

Fall 1995 Weather Conditions

KARL HARKER AND ELLEN BAUSKE

Hurricane Opal highlighted the fall 1995 growing season. As Opal made its northeastward path through Alabama in early October, it produced widespread crop and property damage. Maximum wind gusts of 50-60 mph were common as far north as Auburn. Heavy rains just prior to Opal saturated the top soil, making Opal's passage even more devastating. The Alabama Mesonet of automated weather stations captured the severity of the storm as it moved through the state by recording peak wind speeds and total rainfall.

Excluding Opal, the remainder of the fall growing season was not extraordinary. August continued the summer string of hotter-than-normal months, with a sharp

turn to colder than normal conditions in November (see figures).

August temperatures averaged 2° higher than normal at the Wiregrass Substation. There were eight days when maximum temperatures reached 95°, with an extreme of 101° on Aug. 15. August rainfall was close to normal. Only 1.7 inches of rain fell in September, which was less than half of the normal total. September temperatures were normal. About six inches of rain fell in early October with very little rain occurring the remainder of the month. Temperatures in October averaged 2° above normal. It became much colder in November with monthly temperatures averaging almost 4° below normal. The first freeze of the fall occurred on Nov. 12.

An intense heat prevailed at the E.V. Smith Research Center during mid-August, with maximum temperatures of 100° or above each day from Aug. 14-19. A maximum of 104° was recorded on Aug. 16. Rain amounts in August totaled only 2.5 inches, which was 1.5 inches less than normal. September rainfall and temperatures were close to normal. Flooding rains came in early October; more than 12 inches fell in a two-day period ending with the passage of Opal. The remainder of October was relatively dry with temperatures averaging 2° above normal. November turned

Fall Variety Trials Planted and Lost due to Adverse Environmental Conditions ¹							
Location ²	Broccoli	Cabbage	Lettuce	Pumpkin	Southern pea	Summer squash	Sweet potato
BEF	D	D	NP	NP	NP	D	NP
WS	R	NP	R	R	NP	NP	NP
EVSRC	R	R	R	R	R	NP	R
PS	D	D	NP	NP	NP	NP	NP
CAHS	D	D	NP	R	NP	D	R
UCPS	D	NP	D	NP	NP	NP	NP
NAHS	NP	R	R	R	NP	NP	R
SMS	D	NP	R	R	NP	NP	NP
$^{1}D = destructurethis location^{2}BEF = Br$	oyed trials on. rewton Exp	or insuffici eriment Fie	ent data;] eld; WS =	R = trials r = Wiregras	eported; N s Substatio	P = not plant pl	anted at $E = E.V.$

Smith Research Center; PS = Piedmont Substation; CAHS = Chilton Area Horticulture Substation; UCPS = Upper Coastal Plain Substation; NAHS = North Alabama Horticulture Substation; and SMS = Sand Mountain Substation.

much colder with average temperatures for the month 4° below normal. The first fall freeze occurred on Nov. 9, which was about on target for the average date.

It was a hot August at the North Alabama Horticulture Substation with temperatures averaging 4° above normal. There were 11 days with maximum temperatures of 95° or above. August rain totals were near normal. Normal rains continued in September with temperatures averaging slightly cooler than normal. October had more than twice the normal amount of rain. However, three-quarters of the total rain occurred during the first week of the month. October temperaturesdeviated very little from normal. November turned cold with temperatures averaging 6° below normal. However, the first fall freeze was about 10 days later than normal, occurring on Nov. 4.

August was hotter and wetter than normal at the Sand Mountain Substation. Temperatures averaged 4° above normal with rainfall totaling twice the normal amount. September was normal for temperature and rainfall. Precipitation was almost twice the normal amount in October as a result of Opal. October temperatures were close to normal. November turned sharply colder with temperatures for the month averaging 6° below normal. First freeze occurred on Nov. 4, which was about a week later than normal.

Total monthly precipitation, average temperatures, and normal precipitation and temperatures (based on 30-year averages) for the E.V. Smith Research Center, North Alabama Horticulture Substation, Sand Mountain Substation, and Wiregrass Substation.

5

Fall Weather Interferes with Broccoli Evaluation

ERIC SIMONNE, JIM BANNON, BRIAN GAMBLE, JOE KEMBLE, LARRY WELLS, AND JIMMY WITT

Broccoli variety trials were conducted using plastic mulch and drip irrigation at the Wiregrass Substation (WS) in Headland and Horticulture Unit of the E.V. Smith Research Center (EVSRC) in Shorter (Tables 1 and 2). Most fall broccoli in Alabama is grown on bare ground or new plastic mulch (as a first crop), but the potential exists for broccoli production following a spring crop on the same plastic. This practice is referred to as double-cropping.

Fertilization was done according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Current recommendations for pest and weed control in vegetable production in Alabama may be found in *IPM Commercial Vegetables: Insect, Disease, Nematode and Weed Control Recommenda*-

TABLE 2. SEED SOURCE, EARLINESS AND DISEASECLAIMS OF SELECTED BROCCOLI VARIETIES					
Variety Seed source	Earliness ¹	Disease claims ²			
	days				
Arcadia Sakata	95	DM			
Barbados Ferry-Morse	62	None			
Claudia Ferry-Morse	70	DM			
Eureka Stokes	87	BR, DM			
Greenbelt Sandoz Rogers	75	None			
Green Comet Takii	75	None			
Landmark Takii	66	None			
Mariner Petoseed	77	BLS, DM			
Olympus Takii	NA	NA			
Packman Petoseed	78	None			
Paragon Stokes	75	None			
Pinnacle Takii	68	DM			
Premium Crop Takii	82	DM			
PS 10990 Petoseed	NA	NA			
Regal Ferry-Morse	80	None			
Ritol Nunhems	NA	NA			
Signal Sandoz Rogers	57	None			
Title IST Takii	NA	NA			
¹ This information was obtained fro cases, this information was not av ² DM = Downy Mildew; BR = Blac Spot; NA = not available; None =	om seed cata ailable (NA k Rot; BLS no disease o	alogues. In some). = Bacterial Leaf claims.			

	WS	EVSRC
Weather		3
Fertility		5
Irrigation		4
Pests		5
Overall		4

tions (Publication 95IPM-2 from the Alabama Cooperative Extension Service).

At both locations, six-week-old broccoli plants were transplanted in staggered, double rows 12 inches apart at an in-row spacing of 12 inches. Rows were five feet apart. Plots were 10 feet long and contained 20 plants, which created a stand of approximately 21,800 plants per acre. Transplanting date was Sept. 8 at both locations.

At WS, broccoli was grown as a first crop on white plastic. One ton of dolomitic limestone and 1,000 pounds of 13-13-13 were preplant broadcast applied on Aug. 10. Injections of 10 pounds of N as calcium nitrate were made on Sept. 15, Sept. 25, Oct. 10, Oct. 25, Nov. 7; and as potassium nitrate on Oct. 2, Oct. 17, and Nov. 15. The fungicides Bravo 720 (at a rate of 1.5 pints per acre) and Asana XL (nine ounces per acre) were sprayed on Nov. 29, Oct. 6, and Oct. 11. Dimilin 4L was applied on Nov. 6 at a rate of four ounces per acre.

Broccoli was grown as a double crop at EVSRC. Watermelon vines were sprayed with Gramoxone (three pints per acre) and mowed to remove crop residues. New holes were punched for broccoli establishment. Fertilization consisted of a preplant injection of 35 pounds of N and 112 pounds of K₂O as potassium nitrate (13-0-44) per acre on Aug. 30. After transplanting, weekly injection of six pounds of N per acre were made, from a liquid calcium nitrate solution (9-0-0-11) on Sept. 6, Sept. 20, Oct. 4, Oct. 18, Oct. 25, Nov. 8, Nov. 22, and Dec. 6; and from a 20-20-20 fertilizer

on Sept. 13, Sept. 27, Oct. 11, Nov. 1, Nov. 15, Nov. 29, and Dec. 13. Insect control consisted of applications of LannateLV (three pints per acre) on Sept. 15, 22 and 29; and Larvin 3.2EC (two pints per acre) on Oct. 19.

Broccoli heads were harvested and graded when they reached six inches in diameter. Harvest dates were Nov. 1, Nov. 8, Nov. 20, Nov. 27, and Dec. 5 at WS; and Nov. 16, Nov. 22, Nov. 27, Dec. 1, Dec. 8 at EVSRC. Marketable weight (in numbers of 23-pound cartons) and corresponding number of heads were recorded (Table 3). To account for the possible loss of plants with double cropping, corrected yields were calculated by adjusting for stand. These estimates may be useful to compare variety performance across locations and cropping systems.

	ТА	ble 3. Actua Marketabl	l and Correc Je Yield and N	ted Number of Jumber of Head	23-pound C ds of Brocc	ARTONS, OLI ¹	
Variety	Actual marketable 23-lb. cart	Actual marketable yield	Actual marketable heads	Actual pct. marketable weight	Actual cull yield	Actual percent stand	Corrected marketable 23-lb. cart
	no./a.	lb./a.	no./a.	pct.	lb./a.	pct.	no./a.
			Wiregra	ass Substation			
Packman		5.313	20,469	100	0	83	301
Signal	212	4.878	24,170	100	0	70	305
Premium Cror	172	3,949	18.291	100	Ō	71	239
PS 10990.	154	3,542	14.226	100	Õ	75	208
Landmark	125	2.874	10.017	100	õ	58	185
Mariner	106	2,439	12,630	100	Ō	83	121
Pinnacle	101	2.323	10.452	100	Ō	79	136
Fureka	88	2,032	11 033	100	õ	70	133
Paragon		1 684	8 420	100	Ő	39	206
Rarhados	58	1 336	6 387	100	Ő	56	94
Δrcadia		1,550	0,507			85	
Greenhelt		õ				60	
R ²		0.79	0.86				
CV	•••••	32	21				
C V led	•••••	1 803	5 406				
<i>isu</i>	•••••	1,005	5,750 E N. S	Deservel Contor			
			E.v. Smith	Kesearch Center	0	71	160
Packman		7,361	11,105	100	U	/1	400
PS 10990	237	5,440	5,444	100	U	60	304
Mariner	191	4,395	5,226	100	0	68	310
Regal	167	3,840	6,097	100	0	53	276
Green Comet	131	3,018	4,137	100	0	40	351
Olympus	112	2,570	3,702	100	0	53	179
Title IST	92	2,108	2,831	100	0	66	148
Claudia		869	1,742	100	0	45	88
Ritol	33	752	871	100	0	35	59
<i>R</i> ²	•••••	0.55	0.61				1
CV	•••••	66	61				
lsd	•••••	1,480	4,094				

Head and Chinese Cabbage Included in Variety Trial

ERIC SIMONNE, JIM BANNON, ARNOLD CAYLOR, JOE KEMBLE AND JIMMY WITT

Cabbage variety trials were conducted using plastic mulch and drip irrigation at the Horticulture Unit of the E.V. Smith Research Center (EVSRC) in Shorter, and North Alabama Horticulture Substation (NAHS) in Cullman (Tables 1 and 2).

While fall cabbage can be grown on bare ground or new plastic mulch (as a first crop), the potential exists for double-cropping cabbage after a spring crop. Therefore, the evaluation of selected cabbage varieties was done as a double crop. At EVSRC, the test was conducted on black plastic following a watermelon crop. At NAHS, cabbage was planted on white plastic after tomato and eggplant (two replications following each spring crop). Spring crops were sprayed with Gramoxone (three pints per acre) at EVSRC and Roundup (approximately four quarts per acre) at NAHS. Plots were then mowed to remove dried crop residues. New holes were punched for cabbage establishment.

Soils were fertilized according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Current recommendations for pest and weed control in vegetable production in Alabama may be found in *IPM Commercial Vegetables: Insect, Disease, Nematode and Weed Control Recommendations* (Publication 95IPM-2 from the Alabama Cooperative Extension Service).

At both locations, six-week-old cabbage plants were transplanted in staggered, double rows 12 inches apart at an in-row spacing of 12 inches. Rows were five feet apart. Plots were 10 feet long and contained 20 plants, which created a stand of approximately 21,800 plants per acre. Transplanting dates were Sept. 8 at EVSRC and Sept. 12 at NAHS.

At EVSRC, fertilization consisted of a preplant injection of 35 pounds of N and 112 pounds of K_2O as potassium nitrate (13-0-44) per acre on Aug. 30. After transplanting, weekly injection of six pounds of N per acre were made, from a liquid calcium nitrate so-

TABLE 1. RATI	NGS OF 1995 CABBAGE V	VARIETY TRIALS 1
	EVSRC	NAHS
Weather		3
Fertility	5	5
Irrigation	4	5
Pests		5
Overall	4	4
¹ See Introduction	for a description of rating	scales.

TABLE 2. SOURCE, EARLINESS, AND DISEASE RESISTANCE/TOLERANCE OF SELECTED CABBAGE VARIETIES

Variety	Seed source	Earliness ¹	Disease claims ²
		days	
	Head Cabb	age	
Blue Pak	Ferry-Morse	80	FY
CB-7	Sandoz Rogers	NA	NA
Cheers	Takii	75	BR, FY
Constanza	Petoseed	87	BR, FW, TB
FMX 388	Ferry-Morse	NA	NA
Fortress	Ferry-Morse	69	BR, FY
Greenboy	Sandoz Rogers	87	BLS, FY
Green Cup	Takii	73	BR, FY
Hercules	Sandoz Rogers	NA	NA
Izalco	Sandoz Rogers	87	BLS, BR, FY
PS 4390	Petoseed	NA	NA
Quick Start	Takii	NA	NA
Rio Verde	Sandoz Rogers	87	BLS, FY
Royal Vantage	Sakata	88	BLS, BR, FY, TB
SCB 3319	Sakata	NA	NA
Survivor	Stokes	85	BR, FY
Wanda	Nunhems	NA	NA
	Oriental Cab	bage	
China Flash	Sakata	58	TB
Kasumi	Stokes	64	None
Monument	Stokes	70	None
Pak Choi-Lei Choi	Sandoz Rogers	47	None
Shinki	Takii	75	None
Shori 60	Nunhems	60	NA
Summertime II	Stokes	67	ALS, DM, WS
Yuki	Sakata	67	CR
¹ This information was	obtained from s	eed catalog	ues. In some cases,
this information was n	ot available (NA	N).	
² FY = Fusarium Yello	ws; $BR = Black$	Rot; FW =	Fusarium Wilt; TB
- Tin Dum BIS - B	Inctarial Leaf St	AIS -	- Alternaria Leaf

= Tip Burn; BLS = Bacterial Leaf Spot; ALS = Alternaria Leaf Spot; DM = Downy Mildew; WS = White Spot; CR = Clubroot; NA = not available; None = no disease claims. lution (9-0-0-11) on Sept. 6, Sept. 20, Oct. 4, Oct. 18, Oct. 25, Nov. 8, Nov. 22, and Dec. 6. A 20-20-20 fertilizer was injected on Sept. 13, Sept. 27, Oct. 11, Nov. 1, Nov. 15, Nov. 29, and Dec. 13. Insect control consisted of applications of Lannate LV (three pints per acre) on Sept. 15, 22, and 29; and Larvin 3.2EC (two pints per acre) on Oct. 19.

At NAHS and following soil test results, P and K were not applied. One-third (40 pounds per acre) of the recommended N rate was injected preplant as ammonium nitrate on Sept. 6. Remaining N was injected weekly as ammonium nitrate and calcium nitrate for seven weeks. Pest control consisted of applications of the insecticide Asana (9.6 ounces per acre) and the fungicide Ridomil/Bravo (two pounds per acre) on Sept. 29, Oct. 6, and Oct.17. The insecticide Lannate LV (three pints per acre) was used on Oct. 11. The insecticide Xentari (two pounds per acre) was used on Oct. 11 and 17.

When they reached marketable size, cabbage heads were harvested with four wrapper leaves and graded according to *United States Standards for Grades of Cabbage* (U.S. Department of Agriculture 46 FR 63203). Harvest dates were Dec. 1 and 11 at EVSRC, and Nov. 8 at NAHS.

Marketable weight (in numbers of 50-pound cartons) and corresponding number of heads were recorded (Table 3). To account for the possible loss of plants due to double cropping, corrected yields were calculated by adjusting for stand. These estimates may be useful to compare variety performance across locations and cropping system.

	TABLE N	E 3. A CTUAL A Marketable `	nd Corrected Yield and Num	NUMBER OF 50 1BER OF HEADS	-pound Carto of Cabbage ¹	ons,	
Variety	Actual marketable 50-lb. cart.	Actual marketable yield	Actual marketable heads	Actual pct. marketable weight	Actual cull weight	Actual percent stand	Corrected marketable 50-lb. Box
	no./a.	lb./a.	no./a.	pct.	lb./a.	pct.	no./a.
			E.V. Smith Re	search Center			
Cheers	397	19,845	7,621	100	0	80	510
Constanza		18,372	7,186	100	0	75	485
Izalco		9,926	4,573	100	0	76	269
Ouick Start		8,989	3,920	100	0	39	444
Green Cup		7,672	3,266	100	0	41	425
FMX 388		5,214	2,178	100	0	51	224
PS4390		2,783	1,307	100	0	70	88
SCB 3319		2,644	1,089	100	0	30	281
Rio Verde		1,734	1,089	100	0	33	78
Blue Pack		259	218	100	0	29	34
R ²		0.77	0.68				
CV		53	60				
lsd		5,883	2,796		1		
		Nor	th Alabama Hor	ticulture Substati	on		
Shori 60		40,606	11.541	99	346	65	1,378
Kasumi		39,798	15.243	98	738	86	956
Shinki	788	39.387	13.501	99	618	83	971
Yuki		28,536	8,275	84	5,228	65	920
Summertime II		27.643	8,057	99	486	. 99	926
China Flash		26.818	8,129	93	1,939	70	828
Pak Choi-Lei (Choi 521	26.056	11,541	87	3,889	78	672
Monument		24,730	10,017	100	0	73	701
R ²		0.55	0.56	0.55			
CV		21	23	116			
lsd		3,344	3,345	2,848			

Non-Heading Leaf Lettuce Varieties Show Good Potential for Alabama

ERIC SIMONNE, JIM BANNON, ARNOLD CAYLOR, BRIAN GAMBLE, JOE KEMBLE, MARVIN RUF, LARRY WELLS, AND JIMMY WITT

Lettuce production in Alabama is presently restricted to a very small acreage. Since lettuce is a fastgrowing, relatively cold tolerant crop, lettuce variety trials were conducted in the Fall at the Wiregrass Substation (WS) in Headland, Horticulture Unit at the E.V. Smith Research Center (EVSRC) in Shorter, North Alabama Horticulture Substation (NAHS) in Cullman, and Sand Mountain Substation (SMS) in Crossville (Table 1).

Lettuce was grown as a first crop at WS, and double crop at EVSRC, NAHS and SMS (Table 2). At all locations, six-week-old lettuce plants were transplanted in staggered, double rows 12 inches apart at an in-row spacing of 12 inches. Plastic-mulched, dripirrigated plots were 10 feet long and contained 20 plants (Table 3). Rows were five feet apart. This created a stand of approximately 21,800 plants per acre. Transplanting date was Sept. 8 at WS and EVSRC, and Sept. 12 at NAHS and SMS.

Soils were fertilized according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Current recommendations for pest and weed control in vegetable production in Alabama may be found in *IPM Commercial Vegetables: Insect, Disease, Nematode and Weed Control Recommendations* (Publication 95IPM-2 from the Alabama Cooperative Extension Service).

TABLE 2. CROPPING SYSTEMS USEDIN LETTUCE EVALUATIONS					
Location	Plastic color	Previous crop			
WS EVSRC ¹	White Black White	None Watermelon Tomato and Eggnlant ²			
SMS ¹	Silver	Tomato and Bell Pepper ²			
¹ Double-cropp ² Each in half	oing. of the field.				

	WS	EVSRC	NAHS	SMS
Weather	4	4	4	4
Fertility		5	5	5
Irrigation	5	4	5	5
Pests	5	5	5	5
Overall	5	5	5	5

At WS, one ton of dolomitic limestone and 1,000 pounds of 13-13-13 were preplant broadcast applied on Aug. 10. Injections of 10 pounds of N as calcium nitrate were made on Sept. 15, Sept. 25, Oct. 10, Oct. 25, and Nov. 7; and as potassium nitrate on Oct. 2, Oct. 17, and Nov. 15. The fungicides Bravo 720 (1.5 pints per acre) and Asana XL (nine ounces per acre) were sprayed on Nov. 29, Oct. 6, and Oct. 11. Dimilin 4L was applied on Nov. 6 at a rate of four ounces per acre.

For double-cropping, spring crops were sprayed with Gramoxone (three pints per acre) at EVSRC and Roundup (approximately four quarts per acre) at NAHS and SMS. New holes were punched for lettuce establishment.

At EVSRC, fertilization consisted of a preplant injection of 35 pounds of N and 112 pounds of K_2O as potassium nitrate (13-0-44) per acre on Aug. 30. After transplanting, weekly injection of six pounds of N per acre were made, from a liquid calcium nitrate solution (9-0-0-11) on Sept. 6, Sept. 20, Oct. 4, Oct. 18, Oct.25, Nov. 8, Nov. 22; and Dec. 6. A 20-20-20 fertilizer was injected on Sept. 13, Sept. 27, Oct. 11, Nov. 1, Nov. 15, Nov. 29, and Dec. 13. Insect control consisted of applications of Lannate LV (three pints per acre) on Sept. 15, Sept. 22, and Sept. 29 and Larvin 3.2EC (two pints per acre) on Oct. 19.

Following soil test results at NAHS, P and K were not applied. One-third (40 pounds per acre) of the recommended N rate was injected preplant as ammonium nitrate on Sept. 6. Remaining N was injected weekly as ammonium nitrate and calcium nitrate for seven weeks. Pest control consisted of applications of the insecticide Asana (9.6 ounces per acre) and the fungicide Ridomil/Bravo (two pounds per acre) on Sept. 29, Oct. 6, and Oct. 17. The insecticide Lannate LV (three pints per acre) was used on Oct. 11. The insecticide Xentari (two pounds per acre) was used on Oct. 11 and 17.

At SMS, fertilization consisted of injections of potassium nitrate (13-0-44) at a rate of 10 pounds of N and 35 pounds of K_2O per acre on Sept. 12, Oct. 4, and Oct. 18; five pounds of N and 17 pounds of K_2O per acre were applied on Oct. 20. Additional injections included 20-20-20 (10 pounds of N per acre) on Sept. 28, 20-20-20 plus ammonium nitrate (four plus six pounds of N per acre) on Oct. 12, and calcium nitrate (10 pounds of N per acre) on Oct. 26 and Nov. 1.

Insect control consisted of applications of Sevin (one pint per acre) on Sept. 13, Sept. 18, Sept. 25, Oct. 19, and Oct. 23; and Asana (nine ounces per acre) on Sept. 15, Sept. 29, and Oct. 16. B.T. was also applied on Sept. 18, Sept. 25, and Oct. 19 at a rate of half a pound per acre.

Lettuce was harvested when it reached marketable size and graded according to the U.S. Standards for Grades of Romaine (U.S. Dept. of Agriculture Publication 60-6130). Harvest dates were Nov. 1, Nov. 20, and Nov. 27 at WS; Oct. 27 and Nov. 3 at EVSRC; Oct. 24 and Nov. 8 at NAHS; and Oct. 24, Nov. 5, and Nov. 9 at SMS. Yields were expressed in 50-pound boxes of 24 units (Table 4, Page 12) calculated by dividing the number of marketable heads by 24. Heads were culled because of bolting or insufficient head size. To account for the difference between first and double crops, corrected yields were calculated by adjusting for stand. These estimates may be useful to compare variety performance across locations and cropping system. At several locations, rapid and nonscientific taste tests were conducted by non-trained panelists. Unpleasant bitterness was not markedly reported.

Variety	Seed source	Maturity class ¹	Туре	Disease claims ²
		days		
Aquarius	Sakata	Very Early	Butterhead, Compact	NA
Augustus	Petoseed	Main (70)	Romaine	CR, LMV, TB
Brunia	Vilmorin	62	Red Oak Leaf	NA
Bullseye	Petoseed	Main (77)	Salinas	TB
Divina	Vilmorin	45	Green Butterhead	NA
Еріс	Sakata	Early	Ithaca	NA
Gemini	Sakata	Mid Early	Compact, unique	ТВ
Legacy	Takii	NA	NA	NA
Nevada		Medium (58)	Green Butterhead	DM, LMV, TB
New Red Fire		45	Red Leaf	NA
Optima		Mid Early	Butterhead	DM, LMV
Parris Island	Stokes	Main (65)	Romaine	NA
Red Salad Bowl		50	Red Leaf	NA
Salinas 88 Supreme	Sakata	Main	Salinas	LMV
Sangria MTO		55	Red Butterhead	DM, TB
Sierra		NA	Red Batavia	DM, TB
Target	Petoseed	NA	NA	NA

TABLE 4. A	ACTUAL A Mark	and Corri etable Yi	ECTED N	UMBER OF NUMBER	50-pound of Heads	Cartons of Lettuc	(о г 24 н се ¹	eads),	
Variety Actual market. yield	Actual market. heads	Actual market. 50-lb. cart. ²	Actual cull weight	Actual cull heads	Actual pct. market. weight	Actual pct. market. number	Actual percent stand	Corrected market. yield	Corrected market. 50-lb. cart.
lb./a.	no./a.	no./a.	lb./a.	no la	nct	nct	nct	lh /a	no la
			Wirog	race Substa	pon	pon	pon		u
Torgot 7 907	6 0 6 9	200	o wineg	1455 500514	100	100	77	0.971	262
Talget	1 207	290	0	0	100	100	21	9,8/1	302
Epic 1,205	1,307	24	0	0	100	100	20	3,157	130
Comini 566	671	30	0	0	100	100	38 54	813	48
Sengria MTO 174	501	21	0	0	100	100	54 12	921	44
Sangria MIO 1/4	281	24	0	0	100	100	13	581	81
Aquarius0	. 0	0	0	0	100	100	44	0	0
Detimo	0	0	0	0	100	100	30	0	0
Ded Salad Revel	0	0	0	0	100	100	. 39	0	0
	0 65	0	U	0	100	100	17	U	0
R ⁻	0.05								
CV	1/9								
<i>isa</i> 2,970	2,420				-				
]	E.V. Smit	th Research	Center				
Bullseye 8,186	20,033	835	312	218	97	99	96	8,533	867
Augustus 5,344	15,025	626	1,332	3,484	80	82	98	5,451	640
Legacy 4,256	8,928	372	1,591	5,008	71	61	96	4,360	382
Gemini 2,947	8,057	336	2,334	6,968	60	55	94	3,099	354
Epic 2,166	6,315	263	149	436	95	95	63	3,681	452
Salinas 88 Supreme 2,061	5,879	245	77	218	97	97	90	2,224	269
Aquarius 2,003	8,710	363	1,605	5,879	56	58	95	2,106	382
Rouge Salad Bowl 1,572	6,387	266	0	0	100	100	68	2,114	368
Sangria MTO 1,313	6,097	254	38	218	99	98	90	1,513	292
Divina 1,304	4,936	206	64	290	98	97	63	2,268	370
Optima 954	3,049	127	2,626	8,275	22	. 24	75	1,217	163
R^2	0.72		0.70	0.80					
CV55	42		81	63					
lsd 1,262	6,725		1,309	3,136					
		North	Alabama	Horticultu	re Substatio	n			
Bullseve 21.991	14.372	599	0	0	100	100	98	22.416	612
Nevada 16,179	17,420	726	0	0	100	100	100	16,179	726
Sierra	16.549	690	Õ	ŏ	100	100	100	13.228	692
Augustus 12.529	16,114	671	54	218	99	99	94	13.221	716
Brunia 9.119	16.331	680	161	653	98	96	98	9.369	698
New Red Fire 8.534	16,114	671	0	0	100	100	96	8.827	697
R^2	0.30		0.30	0.34				-,	
CV	10		289	265			· ·		
lsd 8.544	2.395		157	575					
	2,070		Sand Me	untain Sub	etation				
Bullacua 7774	15 460	611			100	100	00	8 670	726
Dunseye	13,400	044	261	0	100	100	67 129	0,070 5 840	720
Augustus 7,643	23,735	989	261	218	97	99	138	5,840	/21
Legacy	14,807	017	457	653	95	90	· 145	0,339	094
Salinas 88 Supreme 6,881	25,041	1,043	392	430	95	98	145	4,8/3	719
Epic 6,794	23,133	989	1 210	0 170	100	100	130	5,081	621
Gemini	14,154	590	1,219	2,178	84	80 100	94	5,043	021
Keu Salad Bowl 4,355	12,//3	532	Ű	U O	100	100	13	0,242	720
Sangria MIO 3,854	10,114	0/1	2 2 (12 7 10	100	100	93	4,180	120
Aquarius0	U	U	3,200	13,/18	U	U	19	U	U
$Optima \dots 0$	0	U	2,280	13,/18	U	U	19	U	U
K*	0.92		0.80						
<i>CV</i>	20		11						
ısa 2,491	4,340		900						
¹ See Introduction for definition	ons of R ² .	CV. and lsd.	Actual p	ercent stand	ls above 1009	% may occur	when cell	ls were mult	iple-

seeded during transplant production. ²The number of 50-pound cartons of 24 heads was calculated by dividing the number of heads by 24.

12

Yes! Pumpkins Can Be Grown in Alabama

ERIC SIMONNE, JIM BANNON, BOBBY BOOZER, ARNOLD CAYLOR, BRIAN GAMBLE, MARVIN HOLLINSWORTH, JOE KEMBLE, JIM PITTS, MARVIN RUF, LARRY WELLS, AND JIMMY WITT

Like watermelon and cantaloupe, pumpkins are cucurbits. They are botanically very similar to squash. Hence, the cultural requirements for commercial pumpkin production are similar to the needs of these crops. Pumpkins need to be fertilized, irrigated, and sprayed to control downy mildew and other foliar diseases.

Pumpkin variety trials were conducted at the Wiregrass Substation (WS) in Headland, Horticulture Unit at the E.V. Smith Research Center (EVSRC) in Shorter, Chilton Area Horticulture Substation (CAHS) in Clanton, North Alabama Horticulture Substation (NAHS) in Cullman, and Sand Mountain Substation (SMS) in Crossville (Tables 1 and 2).

At all locations, hills containing two plants each were spaced 10 feet apart. Between-row spacing was 10 feet. Planting dates were July 20 at WS, June 24 at EVSRC, June 29 at CAHS, July 11 at NAHS, and July 14 at SMS.

Soils were fertilized according to the recommendations of the Auburn University Soil Testing Laboratory. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Current recommendations for pest and weed control in vegetable production in Alabama may be found in *IPM Commercial Vegetables: Insect, Disease, Nematode and Weed Control Recommendations* (Publication 95IPM-2 from the Alabama Cooperative Extension Service).

At WS, preplant fertilization consisted of 250 pounds of 13-13-13 and two tons of broiler litter per acre applied on July 12. On Aug. 28, plants were sidedressed with 80 pounds of N per acre as ammonium nitrate. Plots were cultivated on Aug. 8. The fungicide Bravo 720 (two pints per acre) was applied on Aug. 25, Sept. 5, Sept. 13, and Sept. 22. Pumpkins were over-head irrigated with one inch of water on Aug. 16, Aug. 31, and Sept. 25.

At EVSRC, a 5-10-15 fertilizer was broadcast applied preplant on July 13 to provide 50 pounds of N, 80 pounds of P_2O_5 and 120 pounds of K_2O per acre. On Aug. 14, ammonium nitrate (34-0-0) was banded to provide 40 pounds of N per acre. Preplant herbicide was Prefar 4E applied on July 13 at a rate of five

TABLE 1. RATING	s of 1995	Pumpkin	VARIETY	TRIALS
WS	EVSRC	CAHS	NAHS	SMS
Weather 4 Fertility 5 Irrigation 5 Pests 4 Overall 5	4 5 5 5 5	4 5 5 5 5	4 5 5 5 5	4 5 5 4 4
¹ See Introduction fo	or a description	on of ratin	g scales.	

quarts per acre. Insect control was provided by applications of Thiodan 3EC (1.5 pints per acre) on Aug. 5, Aug. 23, and Sept. 12; Lannate LV (three pints per acre) on Aug. 12, Sept. 1, and Sept. 15; and Ambush (eight ounces per acre) on Sept. 8.

Fungicides used were Dithane DF (two pounds per acre) on Aug. 5 and Sept. 8; Ridomil MZ58 (two pounds per acre) on Aug. 12; Ridomil/Bravo 81W (three pounds per acre) on Aug. 23; Bravo 720 (three pints per acre) on Aug. 25; Manzate 200 (two pounds per acre) on Sept. 1; Kocide DF (two pounds per acre) on Sept. 1, 8, and 15; and Manex (two quarts per acre) on Sept. 15.

At CAHS, preemergence herbicide was Curbit applied at a rate of two pints per acre on June 30. Fertilization consisted a preplant application of 1,000 pounds of a 5-20-20 fertilizer. Plants were sidedressed with 30 pounds of N per acre as ammonium nitrate on July 25. Between Aug. 1 and until harvest, irrigation was applied over-head at a rate of one inch per week.

Insect control was provided by applications of Lannate (two pints per acre) on Aug. 2, Aug. 25, and Sept. 29; Sevin (one pound per acre) on Sept. 14; and Dipel (two pints per acre) on Sept. 29. Fungicides used were Dithane (two pounds per acre) on Aug. 2, Aug. 18, and Sept. 14; Benlate (two pound per acre) and Captan (four pounds per acre) on Aug. 10; Kocide (three pounds per acre) on Aug. 18; and Bravo (two quarts per acre) on Aug. 25 and Sept. 29.

At NAHS, preplant fertilization consisted of 1,000 pounds per acre of 13-13-13 on July 10. Pre-plant herbicide was Command incorporated at a rate of 1.5 pints per acre on July 11. Pest control consisted of applications of the insecticide Asana and fungicide Ridomil/ Bravo on Aug. 5, Aug. 18, Aug. 25, Sept. 1, Sept. 8, Sept. 15, and Sept. 29. At SMS, preplant fertilization consisted of 150 pounds of ammonium nitrate, 120 pounds of concentrated superphosphate and 120 pounds of potassium chloride (muriate of potash) applied per acre on July 13. Plants were sidedressed with 100 pounds per acre of ammonium nitrate on Aug. 10. Preplant herbicide was Prefar applied on July 13 at a rate of four quarts per acre. Plants were sprayed with the fungicides Bravo (two pints per acre) on July 31, Aug. 11, Aug. 22, Sept. 1, Sept. 9, Sept. 15, and Sept. 29; Ridomil (1.5 pounds per acre) on Aug. 14 and 28; and Benlate (one-half pound per acre) on Aug. 16, Aug. 28, and Sept. 13. The insecticide Asana (six ounces per acre) was sprayed on Aug. 24 and 30.

Harvest dates were Oct. 12 at WS, Oct. 10 at EVSRC, Oct. 9 at CAHS, Oct. 10 at NAHS, and Sept. 28 and Oct. 13 at SMS. Hurricane Opal had limited effect on pumpkin variety trials because it reached Alabama a few days before harvest. Nevertheless, it interfered with the last-week spray schedule and dam-

aged the vines. In some cases, pumpkins had to be harvested before they were fully colored. Under normal conditions, pumpkins have to be harvested at the full-color stage because color development stops after harvest. Hence, the pumpkins that were green at harvest stayed green in storage.

Pumpkins were graded as marketable or non-marketable (Table 3). Most of the non-marketable fruits were culled because of decay due to excessive moisture or because they were harvested after the optimum harvest date.

Except Cinderella (Rouge Vif d'Etampes) and Alagold, all selected varieties were primarily ornamental pumpkins. Cinderella is best suited for cooking. Alagold was released in the 1950s by the AAES as a substitute for sweet potatoes for baking and pies. Small (between 0.3 and eight pounds) or white pumpkins are best suited for decoration or painting. Orange pumpkins weighing between 10 and 30 pounds are well suited for carving.

'ariety	Type ¹	Seed source	Maturity	Fruit weig	
			days	lb.	
lagold	OP	Auburn University	95	10-15	
Appalachian	F1	Rupp Seeds	90	20-25	
utumn Gold	F1	Sandoz Rogers	90	8-10	
aby Bear	OP	Rupp Seeds	105	1-2	
ig Autumn	F1	Sandoz Rogers	90	15-20	
Casper ²	OP	Rupp Seeds	90	10-20	
arly Sweet Sugar	OP	Sandoz Rogers	90	6-8	
lowden	OP	Stokes, Harris Seeds, Rupp Seeds	100	15-20	
ack-Be-Little	OP	Sandoz Rogers	95	0.25	
ack-Be-Ouick	OP	Rupp Seeds	95	0.25	
ack-of-All-Trades	F1	Rupp Seeds	88	9-10	
ackpot	F1	Harris Seeds	100	10-12	
umpin' Jack	OP	Rupp Seeds	120	30-50	
ittle Lantern	OP	Stokes	100	1-2	
)z	F1	Harris Seeds	105	3-5	
ankows Field	OP	Harris Seeds	120	15-20	
eek-A-Boo	F1	Rupp Seeds	90	3-4	
Cinderella ³		Vilmorin	95	20-30	
(Rouge Vif d'Etampes)					
S 1294	F1	Rupp Seeds	NA	20-30	
pirit	F1	Petoseed	98	10-12	
pookie	OP	Harris Seeds	105	5-6	
pooktacular	F1	Petoseed	85	3-5	
ugar Treat	F1	Rupp Seeds	90	3-5	
weetie Pie	OP	Stokes	110	0.25	
allman	OP	Stokes	110	15-30	
rick-or-Treat	F1	Petoseed	98	10-12	
ar #300		A&C	NA	15-20	
ar #500		A&C	95	18-22	
ar #510		A&C	95	22-26	
Vizard	F1	Harris Seeds	115	10-15	
DP = Open Pollinated; F1	= Hybrid; NA = not	available. This information was obtained from	n seed catalogues		

TABLE 3. YIELD AND INDIVIDUAL FRUIT WEIGHTS OF SELECTED PUMPKIN VARIETIES							
Variety N	Market. yield	Market. fruit	Cull yield	Total yield	Ind. fruit wt.	Variety Market. Market. Cull Total yield fruit yield yield fr	Ind. uit wt.
	lb./a.	no./a.	lb./a.	lb./a.	lb.	lb./a. no./a. lb./a. lb./a.	lb.
	Wire	grass Sub	station			North Alabama Horticulture Substation	St. 64.5
Var #300	13,616	1,262	1,044	14,660	11	Jack-of	
Var #500	11,832	1,044	2,153	13,985	11	-All-Trades	11
Autumn Gold	11,027	2,393	674	11,702	5	Appalachian 10,242 870 NA 10,242	12
Pankows Field	. 9,983	1,109	1,283	11,267	9	Peek-A-Boo	3
Jack-of	0.700	1 000	0.045	10 744	0	Early	
-All-Irades	6 072	1,022	2,045	10,700	8	Sweet Sugar	3
Farly Sweet	. 0,675	040	5,098	10,571	0	Autumn Gold	2
Sugar	. 6.786	2.849	413	7,199	2	Howden $4,912$ $1,527$ NA $4,912$	4 9
Spookie	. 6.569	2.610	0	6,569	3	RS 1294 3.875 218 NA 3.875	17
Var #510	. 5,720	522	1,109	6,830	11	Sweetie Pie	0.3
Howden	. 4,785	370	3,089	7,874	12	Alagold	3
Peek-A-Boo	. 4,241	1,892	609	4,850	2	Jack-Be-Little	0.3
Jack-Be-Quick	. 3,154	12,006	109	3,263	0.3	Jack-Be-Quick 1,451 5,416 NA 1,451	0.3
Jack-Be-Little	. 2,610	11,136	109	2,719	0.2	R^2	0.91
<i>R</i> ²	0.82	0.95		0.78	0.95	CV	34
lsd	2 761	1468		3 502	2	Isa	0
F	V Smi	ith Resear	ch Cent	e r	-	Sand Mountain Substation	0
Spirit	74 747	2 132	794	24 386	11	Spirit	8
Trick-or-Treat	22.726	1,936	418	22,918	12	Var #500 4 276 409 1 660 5 935	10
Cinderella	20.294	1.131	1.034	20,486	17	Spooktacular $4,060$ 2.153 1.153 5.213	2
Jumpin' Jack	18,864	1,262	1,483	19,008	15	Trick-or-Treat	8
Wizard	18,331	1,805	202	18,475	10	Var #510 3,117 1,063 1,485 4,603	4
Jackpot	18,230	1,305	216	18,374	14	Wizard 2,728 436 3,496 6,224	7
Sugar Treat	10,967	2,158	545	11,389	6	Jackpot 2,469 300 1,433 3,902	7
Oz	10,670	3,850	38	10,814	3	Casper	7
Spooktacular	8 015	3,390	2,308	0 185	37	Howden	10
Tallman	.7.907	696	948	8.099	12	O_7 842 300 973 1.815	3
Alagold	. 4.330	1,501	122	4,474	3	Little Lantern	2
Howden	. 3,852	392	0	3,852	10	Jack-Be-Quik	0.3
Baby Bear	. 3,034	1,914	233	3,754	8	Baby Bear 164 109 621 785	2
R ²	0.75	0.76		0.74	0.60	R^2	0.73
<i>CV</i>	37	34		36	44	<i>CV</i>	38
lsa	. 0,800	800	~ -	0,800	0	lsd 2,810 745 3,767	4
Chilto	n Area	Horticult	ure Sub	station	0		
Var #300	25,422	2,807	INA NA	25,422	9 0		
Trick-or-Treat	17,291	2,207	NA NA	17 985	9 8		
RS 1294	17,834	1,155	NA	17,834	15	· · · · · · · · · · · · · · · · · · ·	
Var #510	17,666	1,439	NA	17,666	11		
Appalachian	17,098	1,570	NA	17,098	11		
Jumpin' Jack	16,590	1,826	NA	16,590	11		
Pankows Field	15,977	1,504	NA	15,977	11		
Var #500	14,462	1,570	NA	14,462	9		
Spirit	14,059	2,115	NA NA	14,059	12		
Cinderelle	12,982	1,204	NA NA	12,902	10		
Alagold	8.834	2,463	NA	8.834	3		
Jack-be-Ouick	. 2,122	8,022	NA	2,122	0.3		
R ²	0.40	0.79		0.40	0.78		
<i>CV</i>	49	45		49	25		
lsd	. 9,832	1,352	-	9,832	3		
¹ See Introduction fo	or defin	itions of F	₹², CV, a	nd Isd.			

Results of 1995 Southernpea Cooperator's Trial

GENE HUNTER, JIM BANNON, OYETTE CHAMBLIS, AND JIMMY WITT

The E.V. Smith Research Center in Shorter has been one of 10 sites in the Southeast, from Texas to South Carolina, where southernpea breeding lines were tested to evaluate their adaptability and yield potential. The AAES submitted three breeding lines in 1994 and two in 1995. AU-93-M-C and AU-93-E are bush pinkeye purplehulls with persistent green seedcoats. AU-93-G is a bush cream type with large pods. The following standard pinkeye varieties were used as checks for AU93M-C and AU93M-E: Coronet, C.T. Pinkeye, and Pinkeye Purplehull-BVR. The cream Early Acre was used as a check for AU93M-G.

Planting dates were May 27, 1994 and May 23, 1995. Plants were thinned to four inches apart in rows 30 inches apart. Overhead irrigation with conventional flat planting in 1994 and drip lines with raised rows in 1995 were used to provide a mini-

mum of one inch of water per week. In both years, 120 pounds per acre of phosphorus and potassium were incorporated before seeding and plants were side-dressed with 30 pounds per acre of nitrogen.

All pods, including "snaps," were harvested from each plot when 80% of the pods were dry. To estimate yield and compensate for different percentages of dry and mature green pods among the plots, all peas shelled from each plot's harvest were soaked in water overnight (imbibed) to bring all peas to the same level of moisture. This step makes comparisons more realistic. Imbibed weights are estimates of mature green, shelled weight yield (see table). Bushels of fresh, in-pod yield per acre may be estimated by multiplying the imbibed weight by two (assuming an average shell-out of 50%) and dividing this by 25 (the average weight of a bushel of fresh, unshelled southern peas).

Days to N	IATURITY AND Y	ield of Select	ed Southernpi	ea Breeding Lin	NES AND VARIET	IES
Variety	Days to	maturity	Imbibed sh	elled yield Bushe		els per acre
	1994	1995	1994	1995	1994	1995
	days	days	lb./a.	lb./a.	no.	no.
AU93M-C		65	1,398	1,355	112	108
AU93M-E		63	1,169	2,085	93	167
AU93M-G	74	· ·	1,360	·	108	
Coronet	72	64	1,590	2,135	127	179
CT Pinkeye		67		1,947		156
PEPH-BVR		65	1,960	1,995	157	160
Early Acre	70		728	<u>,</u>	58	

Two New Sweetpotato Varieties for 1996

ERIC SIMONNE, JIM BANNON, BOBBY BOOZER, ARNOLD CAYLOR, MARLIN HOLLINGSWORTH, JOE KEMBLE, JIM PITTS, AND JIMMY WITT

Sweetpotato variety trials were conducted at the Horticulture Unit at the E.V. Smith Research Center (EVSRC) near Shorter, Chilton Area Horticulture Substation (CAHS) in Clanton, and North Alabama Horticulture Substation (NAHS) in Cullman (Tables 1 and 2).

Plots were fertilized according to the Auburn University Soil Testing Laboratory. Within-row spacing was one foot. Names of chemicals are mentioned only for describing the production practices used. This represents neither a recommendation nor an endorsement of these products. Current recommendations for pest and weed control in vegetable production in Alabama may be found in *IPM Commercial Vegetables: Insect, Disease, Nematode and Weed Control Recommendations* (Publication 95IPM-2 from the Alabama Cooperative Extension Service).

Sweetpotato seed roots from selected varieties and breeding lines were planted in a heated bed at NAHS in early April for slip production. Slips were removed from the beds as needed and bundled for shipment to the locations of the trials. Plots in all

ſ	CABLE 2. DISEASE RE OF SELECTED SWI	ESISTANCE AND TOLERANCE EETPOTATO VARIETIES ¹	S
Variety	Origin (year) ²	Resistance ³	Susceptibility ³
Beauregard	LSU (1987)	FW, SR(P), IC, SB, CS	SRN, BSR
Carolina Nugge	et NCSU, AU (1985)	see Jewel ⁴	see Jewel⁴
Cordner	TAM, OSU (1984)	FW, StR, SRN	SR(P)
Darby	LSU (1995)	SR, FW, StR, IC, FRR, BRR, SoF	SRN, RN
Georgia Jet	UGA (1974)	None	StR, N
Hernandez	LSU (1992)	FW, SRN, SoR, BRR	IC, StR
Jewel	NCSU (1970)	None	StR, N
¹ Source: release	e notes from HortScience	and Experiment Station Bulletin	s.
² AU = Auburn	University; LSU = Louis	iana State University; NCSU = 1	North Carolina
State University	ty; OSU = Oklahoma St	ate University; TAM = Texas A	A&M UGA =
University of C	Georgia. In parentheses is	the year each variety was releas	.ed.
³ FW = Fusariu	m Wilt, SRN = Southern	Root-Knot Nematode, SR(P) = 5	Soil Rot (Pox),

BSR = Bacterial Soft Rot, IC = Internal Cork, SB = Sclerotia Blight, CS = Circular Spot, StR = Stem Rot, SR = Soil Rot, RN = Reniform Nematode, FRR = Fusarium Root Rot, BRR = Bacterial Root Rot, SoR = Soft Rot, and N = Nematodes.

⁴The disease resistance and susceptibility of Carolina Nugget is comparable to that of Jewel.

TABLE 1. RATINGS OF 1995 Sweetpotato Variety Trials						
	EVSRC	CAHS	NAHS			
Weather	5	5	5			
Fertility	5	5	5			
Irrigation	5	5	5			
Pests	5	5	5			
Overall	5	5	5			
¹ See Introduction for a description of rating scales.						

trials were 30 feet long and 3.5 feet wide.

At EVSRC, preplant fertilization consisted of a broadcast application of 13-13-13 at a rate of 300 pounds per acre. Planting date was May 16. Dacthal herbicide was applied on May 17 at a rate of 10 pounds per acre. On June 14, sweetpotatoes were sidedressed with 40 pounds of N per acre as NH_4NO_3 . Overhead irrigation was applied as needed.

At CAHS, 1,000 pounds per acre of a 5-10-15 fertilizer were preplant applied on May 25. On May 26, slips were transplanted and Temik insecticide (20 pounds per acre) and Eptam herbicide (3.4 pints

> a.i. per acre) were applied. Sencore herbicide was applied on May 30 at a rate of 0.66 pounds per acre. No irrigation was necessary.

> At NAHS, a 5-10-15 fertilizer was broadcast applied on May 12 at a rate of 1,000 pounds per acre. Slips were transplanted on May 30. Weed control was provided by an application of Command (one quart per acre) on May 31. No irrigation was used.

> Sweetpotatoes were harvested on Aug. 30 at EVSRC, Oct. 13 at CAHS, and Sept. 27 at NAHS. Roots were graded as US#1 (roots two to 3.5 inches in diameter, three to nine

inches long, well shaped, and free of defects), canner (roots one to two inches in diameter, two to seven inches long), jumbo (roots that exceed the diameter, length, and weight requirements of the US#1 grade but are of marketable quality), or cull (roots at least one inch in diameter but so misshapen or unattractive that they could not be classified as marketable roots). Marketable yield was calculated by adding the yields of the US #1, canner, and jumbo grades. Percent US#1 was calculated by dividing the yield of the US#1 grade by the marketable yield (Table 3).

NC-C59 and NC-C75 will be released in 1996 by the North Carolina State University sweetpotato breeding program. The names of these new varieties are not known yet, but the roots can be unofficially described as follows:

NC-C59 -- Smooth to light russet, copper skin roots; roots elongate on one end, round on the other end; attractive deep orange flesh; high yields; good baking and canning quality; 18.2% dry matter; good ability for slip production.

NC-C75 -- Attractive red skin with some lenticels; nice shaped roots; orange flesh; high yields; early; this line scored poorly in baking and canning tests; 18.4% dry matter; good ability for slip production.

(IN 50-POUND BUSHELS) OF SELECTED SWEETPOTATO Advanced Breeding Lines and Commercial Varieties ¹							
Selection US #12	² Canner ²	Jumbo ²	Cull ²	Market. yield ³	Pct. US#14		
bu./a.	bu./a.	bu./a.	bu./a.	bu./a.	pct.		
	E.V. Sn	hith Research	Center				
NC-C58 353	121	136	158	610	56		
NC-C75	170	49	228	565	61		
NC-C59 340	117	97	228	554	64		
L-87-54 333	106	29	162	468	71		
Hernandez 302	138	0	97	440	69		
Georgia Jet 287	76	74	524	437	68		
L-89-72 273	150	22	260	445	60		
Beauregard 267	116	22	204	405	67		
L-89-110 264	104	19	285	387	. 67		
Cordner 255	75	19	174	350	70		
Darby	64	/1	231	300	60		
Herpondez 186	127	25	1/8	323	58		
Iewel 121	49	25	270	170	74		
W-210 52	33	0	240	94	64		
$R^2 = 0.42$	0.38	0.53	0.50	0.48	0.19		
CV	55	94	47	35	18		
lsd 175	90	68	173	250	20		
	Chilton Are	a Horticultur	e Substation				
L-89-72 262	68	107	62	437	59		
NC-C58 214	46	53	63	313	68		
NC-C59 211	73	68	53	352	60		
L-89-110 204	52	83	123	339	60		
Georgia Jet 199	51	108	185	358	57		
NC-C75 198	67	35	39	300	66		
Beauregard 194	36	67	101	298	66		
Darby 159	33	103	65	295	54		
Cordner 138	36	57	82	231	60		
Carolina Nugget 134	58	29	118	220	61		
Hernandez 128	44	40	02	212	53		
L-07-34 122	21	38	117	179	61		
W-210 27	8	3	103	37	76		
R^2 0.59	0.48	0.47	0.61	0.63	0.19		
CV	49	63	41	30	21		
lsd 80	32	58	51	119	19		
	North Alabar	na Horticultu	re Substation	L			
L-89-110	152	35	53	823	78		
Darby	119	211	67	937	65		
L-87-54 590	95	193	21	877	67		
L-91-150 537	183	47	60	767	67		
Georgia Jet 526	93	116	86	735	71		
NC-C58 480	83	45	45	608	79		
Hernandez 477	117	14	42	608	78		
Cordner 466	140	17	53	623	73		
L-89-72	100	21	39 77	612	71		
1 -01 - 180 420	123	50 45	40	596	71		
NC-C75 416	169	34	32	620	67		
Beauregard 350	116	80	23	546	71		
Jewel	204	9	65	515	56		
Carolina Nugget 276	182	33	82	491	57		
W-210	145	4	50	412	63		
R ² 0.61	0.38	0.66	0.27	0.65	0.31		
<i>CV</i>	42	89	84	20	18		
lsd 166	83	11	04	189	18		

TABLE 3. MARKETABLE YIELD AND GRADE DISTRIBUTION

¹See Introduction for definitions of R², CV, and lsd.

²US#1 = 2-3.5 inches in diameter, 3-9 inches long, well shaped, and free of defects; Canner = 1-2 inches in diameter, 2-7 inches long; Jumbo = exceed the diameter, length, and weight requirements of the US#1 but are of marketable quality; Culls = at least 1 inch in diameter but too misshapen or unattractive. ³Marketable yield was calculated by adding the yields of the US #1, canner and jumbo grades ⁴Percent US#1 was calculated by dividing the yield of the US#1 by marketable yield (culls not included).

Sponsors and Suppliers

Corporate Sponsors

Micro Macro International, Inc.

Mike Duemmel 183 Paradise Blvd., Suite 108 Athens, GA 30608 (706) 548-4557 (Provided analytical services)

Lewis Taylor Farms, Inc. Bill Brim PO Box 822 Tifton, GA 31793 (912) 382-4454 (Donated transplants)

Supporting Seed Companies

Ferry-Morse Seed Co. Glenn McKay **PO Box 392** Sun Prairie, WI 53590 Ph. (608) 837-6574

Nunhems Seed Co. John Willems PO Box 4005 6080 AA Haelen Holland Ph. (31) 47 59 92 22

Stokes Seeds Inc.

Joe Butwin PO Box 548 Buffalo, NY 14240-0548 Ph. (716) 695-6980

Contributing Seed Companies

Petoseed Co. Mario Rivas 3085 Whilraway Trail Tallahassee, FL 32308 Ph. (904) 668-9068

Sakata Seeds Howard Adams P.O. Box 1118 Lehigh, FL 33970-1103 Ph. (941) 369-0032

Sandoz Rogers Curt Pollard 2101 Melrose Drive Valdosta, GA 31602 Ph. (912) 245-9457

Takii Seed Haki Yamasaki

301 Natividad Rd Salinas, CA 93906 Ph. (408) 443-4901

Seed Suppliers

Abbott and Cobb (A&C) David Fritz 14460 Fortune Circle West Palm Beach, FL 33414 Ph. (407) 795-2588

Harris Seeds Bob Wilkins 60 Saginow Dr. Rochester, NY 14692-2960 Ph. 1-800-544 7938

Rupp Seeds Roger Rupp 17919 County Road B Wansiom, OH 43567 Ph. (419) 337-1841

Vilmorin **Gilles** Laurin P.O. Box 707 Empire, CA 95319 Ph. (209) 529-6000 19

LOCATIONS OF PARTICIPATING RESEARCH UNITS

- 4. Chilton Area Horticulture Substation, Clanton.
- 5. Piedmont Substation, Camp Hill.
- 6. Lower Coastal Plain Substation, Camden.
- 7. Wiregrass Substation, Headland.
- 8. Brewton Experiment Field, Brewton.
- 9. Gulf Coat Substation, Fairhope.