FERTILIZER STUDIES with VEGETABLE CROPS on REPRESENTATIVE SOILS in ALABAMA

AGRICULTURAL EXPERIMENT STATION of the ALABAMA POLYTECHNIC INSTITUTE M. J. FUNCHESS, Director AUBURN, ALABAMA

CONTENTS

REVIEW OF LITERATURE
NEED AND USE OF COMMERCIAL FERTILIZERS IN THE SOUTH
EXPERIMENTS DEALING WITH FERTILIZERS FOR VEGETABLE CROPS
Location, Soils, Crops, and Methods
Field Bins
FIELD PLOTS
Calculation of Returns
PRESENTATION OF DATA
COMPARATIVE RESPONSE OF VEGETABLE CROPS TO NITROGEN, PHOSPHORUS, AND POTASH
Studies in Field Bins with Individual Ele- ments for Different Crops on Different Soils.
PHOSPHORUS STUDIES ON NORFOLK, EUTAW, AND CECIL SOILS
NITROGEN STUDIES ON NORFOLK SOIL
POTASH STUDIES ON NORFOLK AND CECIL SOILS
FERTILIZER GRADE STUDIES WITH DIFFERENT VEGE- TABLE CROPS
Studies in Field Bins
STUDIES IN FIELD PLOTS
MISCELLANEOUS FERTILIZER EXPERIMENTS
Methods of Application of Fertilizers
NITROGEN, PHOSPHORUS, AND POTASH REQUIRE- MENTS OF VEGETABLE CROPS ON THIN SOIL RECEIVING LIGHT APPLICATION OF MANURE
RESIDUAL EFFECTS OF FERTILIZER MATERIALS
Summary
T (
LITERATURE CITED

First Printing 3M

FERTILIZER STUDIES with VEGETABLE CROPS on REPRESENTATIVE SOILS In ALABAMA

L. M. WARE,* Horticulturist W. A. JOHNSON, Laboratory Technician

NO OTHER GROUP of crops requires as much fertilizer as vegetables require. Use of commercial fertilizers in the production of vegetable crops is very necessary in the South where soils are low especially in available phosphorus and nitrogen.

Results reported in this bulletin are from experiments involving use of commercial fertilizers on the principal vegetable crops grown on different soils of the State. Results of studies presented here are confined to the three elements — nitrogen, phosphorus, and potash—which constitute what is generally referred to as a complete fertilizer.

REVIEW OF LITERATURE

NEED AND USE OF COMMERCIAL FERTILIZERS IN THE SOUTH

Use of commercial fertilizers in the United States is relatively old. Commercial fertilizers have played an important part especially in the agriculture of the South. During the last 50 years, the South has consumed two-thirds or more of the total amount of fertilizers used in the United States. In recent years, however, the proportion of national tonnage used by the South has declined, even though the actual quantity consumed has continued to increase. This decline is the result of increased use of commercial fertilizers in other sections of the country.

While the acreage of truck crops in the United States is small in comparison to that of field crops, the proportion of the ferti-

^{*}The outlying experiments reported in this bulletin were done under the supervision of Otto Brown, Harold Yates, Fred Stewart, R. C. Christopher (resigned), T. P. Whitten, J. W. Williamson, J. W. Richardson, and Robert Taylor (resigned) of the Agricultural Experiment Station staff.

lizer used on truck crops is relatively large. For instance, in 1946 the 67.2 million acres of wheat were fertilized with 1.08 million tons of fertilizer, which was an average rate of 32 pounds per acre. On the other hand, 1.0 million tons of fertilizer were applied to 2.6 million acres of potatoes; this was an average acre rate 769 pounds. In the same year, 88.7 million acres of corn were fertilized with 3.2 million tons of fertilizer, which was about 72 pounds per acre, whereas 1.6 million tons were used on 4.1 million acres of vegetable crops, or the average was 780 pounds per acre.

Fertilizers are important in the South because the soils are low in certain plant foods, which must be supplied if profitable production is obtained. To supply such needs, makes the cost relatively high. In 1945, the South used approximately 8.5 million tons of fertilizer at a value of about 350 million dollars.

Pierre (13) has pointed out the important role of phosphorus in plant nutrition and has discussed the importance of phosphorus fertilization. Scarseth and Tidmore (14, 15) reported that soils of the South were low in available phosphorus and had high phosphorus-fixing power.

Fudge (7) showed that acid-forming nitrogenous fertilizers caused a marked decrease in phosphate availability and an increase in water-soluble potassium. He also showed that physiologically basic fertilizers caused an increase in phosphate availability and a reduction in water-soluble potassium.

Studies of soils in the various sections of the United States have revealed that soils of the South have low amounts of organic matter and nitrogen (1). Jenny (9) found that the nitrogen and organic content increased 2 to 3 times for each 10° C fall in temperature provided the precipitation-evaporation ratio was constant. He found that the average soil in Canada contained about 0.4 to 0.5 per cent nitrogen, in Iowa and Minnesota about 0.2 to 0.3 per cent, and in Louisiana about 0.05 per cent.

The reasons for the low amount of nitrogen and of available phosphorus are well established. The South has long seasons of high temperature and high rainfall. Decomposition of organic matter is rapid and loss by leaching of the nitrogen released is high. High rainfall, likewise, causes high loss of minerals, especially magnesium and calcium. Midgley (12) and Scarseth (16)showed that the loss of magnesium and calcium resulted in an increase in the proportion of aluminum and iron, which causes a decrease in the availability of phosphorus in the soil.

FERTILIZER EXPERIMENTS with VEGETABLE CROPS

Cooper and others (5) reported that the amount of potash, especially in heavier soils, will often amount to 10 to 20 times the quantities of nitrogen or phosphorus. They also pointed out that it is not necessary to have as high a level of potassium in sandy soils of the Coastal Plain as in the soils of the Corn Belt.

Many investigators have studied the basic principles governing fixation of applied phosphorus. Scarseth and Tidmore (14, 15) and Scarseth (16) found that the efficiency of phosphorus decreased with the time of contact with the soil. They also found that the phosphorus-fixing capacity of soil colloids varied inversely with the silica-sesquinoxide ratio of the colloid. Bryan (2), Bushnell (3), Hawkins (8), Ware and others (19), and Ware and Johnson (21) showed that there is an accumulation of phosphorus on heavily fertilized soils and that it is available to crops in later years. From these studies, it appears much may be done in more efficient use, especially of phosphorus.

In view of the need in the South to correct certain soil deficiencies by use of commercial fertilizers and in view of the relatively high costs involved, the importance of determining the proper fertilizer for those crops grown in quantity is apparent.

EXPERIMENTS DEALING WITH FERTILIZERS FOR VEGETABLE CROPS

For some important truck crops, fertilizer needs have been fairly well established on the more important soils. Some work has been conducted with almost all vegetable crops at least on a few soils.

Lloyd and Strubinger (10) conducted fertilizer experiments with 25 different vegetable crops in Illinois. They obtained increases sufficient to recommend phosphorus applications in addition to manure and limestone for only nine crops and potash applications in addition to phosphorus, limestone, and manure for only seven crops.

Cooper and Watts (6) in fertilizer tests in Arkansas with five vegetable crops on two different soils found that phosphorus gave greater yield increases than nitrogen on one soil and increases about as large as nitrogen on a second soil. Yield increases were usually much less from potash.

Mack (11) in his studies on application of phosphorus, nitrogen, potash, and organic materials to cabbage, tomatoes, and potatoes found that the response to phosphorus applications was most striking.

Skinner and Ruprecht (17) reported that the fertilizer grade giving best results for tomatoes on Calcareous Glade soils of Florida, contained 4 to 6 per cent ammonia, 6 to 8 per cent phosphoric acid, and 6 to 8 per cent potash. He also found that when the nitrogen need of celery is satisfied potash is effective in producing yield of good quality. Celery gave little response to phosphorus applications.

White and Boswell (23) pointed out that manure produces the desired yields, but does so at high cost if it must be purchased.

Carolus (4), in his work showed that the potato has its maximum nutrient requirement between the 50th and 80th days. In 1936 during the 30-day maximum-absorption period, an acre of potatoes absorbed at the following rates per day: 1.66 pounds of nitrogen, 0.3 pounds of phosphorus, and 3.33 pounds of potash.

LOCATION, SOILS, CROPS, AND METHODS

FIELD BINS

Much of the work reported here was done at the Main Station, Auburn, and most of these experiments were conducted in concrete field bins, each 1/640-acre in size. The bottoms of the bins were open, and the introduced soils rested on the local subsoil, which was a sandy clay of Piedmont origin.

The soils used in the bins were Norfolk, Cecil, Eutaw, Decatur, Hartsells, and Chesterfield, which are representative of the Coastal Plain Region, Piedmont Plateau, Black Belt, Limestone Valley, Appalachian Plateau, and Piedmont-Coastal Plain transition, respectively. The Norfolk and Chesterfield soils were local, whereas the Cecil, Eutaw, Decatur, and Hartsells soils were introduced.

The soils selected varied considerably in physical and chemical properties. The Norfolk soil was a sandy loam, Cecil a sandy clay, Eutaw a clay, Decatur a clay, Hartsells a fine sandy loam, and Chesterfield a loamy sand.

Separate studies of nitrogen, phosphorus and potash were conducted in the first sets of bins constructed in 1933. In the newer sets of bins, built in 1938, studies of the three elements were combined into fertilizer grade experiments. In the first sets of bins, 15 vegetables were grown each year. Fertilizer treatments included five rates of nitrogen and phosphorus, and four rates of potash. The crops were rotated from section to section in succeeding years. Three successive crops were grown each year in each section. In the fertilizer grade studies, only two successive crops were grown each year.

When each element was varied, standard rates of the other two elements were used. The standard rates were 160 pounds per acre of P_*O_{\circ} on Norfolk and Hartsells soils, and 320 pounds per acre on Cecil, Eutaw, and Decatur soils. The standard rate of potash was 135 pounds per acre and of nitrogen 90 pounds per acre on all soils. Where two successive crops were grown on the same soil the same year, one-half of the standard rates of phosphorus and potash were applied to each crop, or where three crops were grown, one-third was applied to each crop. The full amount of nitrogen was applied to each crop.

All phosphorus and potash and a portion of the nitrogen were applied 10 to 14 days before planting. On the older sets of bins containing Norfolk, Eutaw, and Cecil soils, one-half of the nitrogen was applied with the phosphorus and potash; the other half was used as a side dressing 2 to 4 weeks after crops were up to a stand. Superphosphate was used as the source of phosphorus and muriate of potash as the source of potassium. Nitrate of soda or a combination of nitrate of soda and ammonium sulphate was used as a source of nitrogen.

The position of the rows remained about the same from year to year. During the course of the experiment, 27 different vegetable crops were studied in the phosphorus, nitrogen, and potash series in the old plots. From 7 to 13 crops were included in the fertilizer grade studies in the new bins.

As previously reported (20), field bins used in this study were satisfactory as compared to field plots. Results from the basic study of phosphorus utilization have been published by this Station (21). Earlier reports (18, 22) based on results from these studies have been issued.

FIELD PLOTS

At the Gulf Coast Substation, Fairhope, fertilizer studies were conducted with the more important commercial truck crops grown in the Gulf Coast area. The experiments were on Norfolk and Orangeburg soils.

Fertilizer experiments were conducted with potatoes, cabbage,

and sweetpotatoes on Decatur soil at the Tennessee Valley Substation, Belle Mina, and on Hartsells soil at the Sand Mountain Substation, Crossville. Sweetpotato fertilizer studies on Norfolk and Orangeburg soils were carried on at the Brewton and Monroeville Experiment Fields, respectively; on Red Bay soil at the State Farm, Atmore; and on a Chesterfield soil at the Main Station, Auburn. Cooperative field experiments with fertilizers involving a number of vegetable crops were conducted on a Ruston soil at Thorsby.

In field plots only one record crop was grown each year and the full annual application of all three elements was applied to the one crop.

CALCULATION OF RETURNS

In the final analysis, the farmer measures the value of a fertilizer in dollars returned for dollars spent. Occasionally relationships are pointed out between the amount and value of increased yield from different fertilizer increments and cost of increments. Fertilizer costs are based either on the highest price or the price range during the past 20 years. Values for the products are assumed.

PRESENTATION OF DATA

Location, type of plot used, soil type, rates of application of the three major elements, average number of years, and crop yields are presented in the tables.

COMPARATIVE RESPONSE OF VEGETABLE CROPS TO NITROGEN, PHOSPHORUS, AND POTASH

In Tables 1, 2, and 3 are given the average relative yields of a large number of vegetable crops grown on a number of different soils when receiving different rates of nitrogen, phosphorus, and potash. The yields are expressed in percentage of the yields from the highest rates of each element.

The Norfolk, Eutaw, and Cecil soils used in the studies of single elements were soils that had received low fertilizer rates or no fertilizers in previous years. The Hartsells, Decatur, and Chesterfield soils had been used in recent years for growing field crops and had received applications of fertilizers commonly used on general field crops.

Yields at the zero rates of nitrogen, phosphorus, and potash reflect past fertilizer treatments to a large exent. On the soils to which no fertilizers or small amounts had been applied in recent years, phosphorus appeared to be the most limiting factor and nitrogen second. The response to potash was small. The average relative yields of 26 crops in the no-phosphorus treatments were only 31 per cent on Norfolk soil, 14 per cent on Eutaw soil and 8 per cent on Cecil soil. In the no-nitrogen treatments, the average relative yield of 27 crops was 27 per cent on Norfolk soil. The average relative yields of 25 vegetable crops in the no-

TABLE 1. RELATIVE YIELDS OF VEGETABLE CROPS FROM INCREASED APPLICA-
TIONS OF NITROGEN ON DIFFERENT SOILS, FIELD BINS, MAIN
STATION, AUBURN, ALABAMA, 1933-42

Nitrogen (N)	Yields i	in pe <mark>r cent</mark> o	f that from	maximum niti	rogen rate ²
applied per acre ¹	Norfolk	Hartsells	Decatur	Chesterfield (A) ³	Chesterfield (B) ^s
Pound	Per cent	Per cent	Per cent	Per cent	Per cent
0	27	33	40		
30	58	62	65		
60	79	81	81		
90	93	95	93		
120 *	100	100	100		
0				42	
40				81	
60				95	
80 *				100	
⁷ 0					11
60					75
80					95
100					106
120 *					100

¹ Amount applied to each of three crops grown each year on the Norfolk and to each of two crops per year on the Hartsells, Decatur, and Chesterfield soils. Amounts of phosphorus and potash considered necessary for maximum yields were added to all treatments.

² Number of crops on Norfolk 27, on Hartsells 11, on Decatur 12, on Chesterfield (A) 9, and on Chesterfield (B) 4. Percentages under each soil were calculated from combined total yields for all crops grown on that particular soil.

³ Chesterfield soil (A) represents area of medium fertility; Chesterfield soil (B) represents area of low fertility.

⁴ Maximum rate.

potash treatments were 85 and 89 per cent, respectively, on Norfolk and Cecil soils.

On soils that had received usual amounts of fertilizers for field crops in recent years, average relative yields of plots receiving no phosphorus ranged from 40 to 49 per cent, those receiving no

TABLE 2. RELATIVE YIELDS OF VEGETABLE CROPS FROM INCREASED APPLICATIONS OF PHOSPHORUS ON DIFFERENT SOILS, FIELD BINS, MAIN STATION, AUBURN, ALABAMA, 1933-42

		-				
Phosphorus (P.O.) applied	Yields in	per cent of	that fro	m maximum	phosphor	us rate ²
(P ₂ O ₅) applied per acre ¹	Norfolk	Eutaw	Cecil	Chesterfield	Decatur	Hartsells
Pound	Per cent	Per cent	Per cent	er cent	Per cent	Per cent
0	31					
13.33	73					
26.67	91					
40.00	100					
53.33 °	100					
0		14	8			
26.67		75	72			
53.33		89	92			
80.00		98	98			
106.67 °		100	100			
.0				45		
60				92		
80				91		
100				101		
120 ^s				100		
0					40	
40		•			95	
80					104	
120					101	
160 ³					100	
0						49
20						82
40						97
60						101
80 ^s						100

¹ Amount of phosphorus applied to each of three crops grown each year on the Norfolk, Eutaw, and Cecil soils and to each of two crops on the Chesterfield, Decatur and Hartsells soils. Amounts of nitrogen and potash considered necessary for maximum yields were added to all treatments.

² Number of crops on Norfolk, Eutaw, and Cecil 26, and on Chesterfield 7, on Decatur 12, and on Hartsells 11. Percentages under each soil were calculated from combined total yields of all crops grown on that particular soil.

^a Maximum rate.

Potash (K20)	Yields	in per cent o	f that from	maximum po	tash rate ²
applied per acre ¹	Norfolk	Cecil	Decatur	Hartsells	Chesterfield
Pounds	Per cent	Per cent	Per cent	Per cent	Per cent
0	85	89			
15	117	99			
30	94	103			
45 ³	100	100			
0			82	82	
22.5			93	92	
45.0			95	101	
67.5 ³			100	100	
. 0					72
40					96
60					101
80 ^s					100

TABLE 3. RELATIVE YIELDS OF VEGETABLE CROPS FROM INCREASED APPLICA-TIONS OF POTASH ON DIFFERENT SOILS, FIELD BINS, MAIN STATION, AUBURN, ALABAMA, 1933-42

¹ Amount applied to each of three crops grown each year on Norfolk and Cecil soil and to each of two crops per year on other soils. Amounts of phosphorus and nitrogen considered necessary for maximum yields were added to all treatments.

² Number of crops on Norfolk and Cecil 25, on Decatur 12, on Hartsells 11, and on Chesterfield 13. Percentages under each soil were calculated from combined total yields for all crops grown on that particular soil.

⁸ Maximum rate.

nitrogen ranged from 11 to 42 per cent, and those receiving no potash ranged from 72 to 82 per cent.

Irrespective of past fertilizer treatments, small applications of phosphorus and potash satisfied more quickly the requirements of vegetable crops for maximum or near-maximum yields than small applications of nitrogen. Applications of phosphorus as low as 26.67 pounds per acre of P_2O_5 gave yields that were 72 to 91 per cent as high as those from the highest phosphorus rates. Treatments of 40 to 53.3 pounds per acre of P_2O_5 resulted in yields of 89 to 100 per cent of those from the highest rates. Potash applications of 15 pounds per acre on Norfolk and Cecil soils gave yields as high as the highest rates, while applications of 22.5 pounds on Decatur and Hartsells soils gave relative yields of 93 and 92 per cent, respectively. Considerably higher amounts of nitrogen were required to give maximum or near-maximum yields. Applications of 30 pounds per acre of nitrogen gave relative yields of only 58 to 64 per cent. Relative yields from the 60-pound rate ranged from 75 to 81 per cent on all soils except one, in which case a higher yield was obtained. Applications of 80 to 90 pounds per acre gave relative yields of 93 per cent or higher. Increases in relative yields of 5 to 7 per cent were obtained from applications up to 120 pounds per acre on three soils, and up to 100 pounds on one soil.

STUDIES IN FIELD BINS WITH INDIVDUAL ELEMENTS FOR DIFFERENT CROPS ON DIFFERENT SOILS

Phosphorus Studies on Norfolk, Eutaw, and Cecil Soils

Results of the phosphorus phase of the study are presented in Table 4. The yields of 24 different vegetable crops grown on three soils of radically different physical and chemical characteristics and fertilized at five different rates of phosphorus are given in the table.

In a companion study (21), great differences were found among vegetables in their phosphorus requirements, phosphorusfeeding capacities, phosphorus-utilization efficiencies, and responses to increased applications of phosphorus.

Crops differed greatly from each other in their ability to get phosphorus when none was added and in their need for phosphorus for maximum production on different soils. These differences may be observed by comparing the total yields of beans and lima beans from different rates of phosphorus, Table 4, page 13. The total yields of beans on the Norfolk soil were increased more than 2.5 times by increasing the application of phosphorus. On the other hand, phosphorus did not increase the yields of lima beans grown on the Norfolk soil.

Continuing the comparison, it may be observed that on the Eutaw soil, the total yield of beans was increased over 5 times from applications of phosphorus, and on the Cecil almost 15 times, whereas the total yields of lima beans were increased only a fourth on the Eutaw soil and only two times on the Cecil soil.

The contrast in response of crops to phosphorus on different soils is illustrated still further by the yields of beets, Table 4, page 13. It may be observed that the yields of beet roots were increased about 10 times on the Norfolk soil, 85 times on the

		-					Yi	elds per	acre					
P₂O₅ applied per acre		ans :. av.)		Beans . av.)		ets . av.)	Chinese Cabbage (3-yr. av.)	Cabb (4-yr.		Carrot (4-yr. a		Chard (4-yr. av.)		ards . av.)
to each crop ¹	Early and med.		Early and med.		Roots	Total	Total	Heads	Total	Roots Marke able		Total	Early and med.	Total
Lb.	Bu.	Bu.	Bu.	Bu.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb. Lb	Lb.	Lb.	Lb.	Lb.
							Norfol	k Soil						
0 13.33 26.67 40.00 53.33 0 26.67 53.33 80.00 106.67	$28 \\ 58 \\ 91 \\ 116 \\ 127 \\ 35 \\ 114 \\ 164 \\ 199 \\ 224$	$72 \\ 132 \\ 153 \\ 175 \\ 190 \\ 53 \\ 152 \\ 211 \\ 250 \\ 273 \\ $	$156 \\ 157 \\ 145 \\ 154 \\ 161 \\ 124 \\ 172 \\ 187 \\ 183 \\ 188 \\ 188 \\$	213 207 193 203 205 167 200 211 205 211	$ \begin{array}{c} 10\\ 71\\ 85\\ 101\\ 104\\ \end{array} $ $ \begin{array}{c} 2\\ 62\\ 116\\ 154\\ 170\\ \end{array} $	$1,815 \\ 8,445 \\ 9,912 \\ 10,958 \\ 11,066 \\ 286 \\ 7,829 \\ 12,662 \\ 15,969 \\ 16,948 \\ \end{cases}$	6,184 24,943 35,347 37,685 36,203 Eutaw 1,489 31,223 36,002 38,908 41,146	2,680 9,180 14,040 14,740 13,760 Soil 14,160 14,160 18,220 18,900 19,540	10,860 20,080 26,820 27,360 27,260 27,260 27,000 32,520 33,120 35,400	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 18,166 5 8,346 3 16,441 5 19,620 0 22,383	7,158 $12,288$ $14,403$ $14,447$ 560 $3,983$ $5,543$ $8,195$	8,120 11,229 11,567 11,525 178 15,106	15,164 14,929 256 20,445 24,505 25,978
							Cecil	Soil						
$\begin{array}{c} 0 \\ 26.67 \\ 53.33 \\ 80.00 \\ 106.67 \end{array}$	$6\\41\\71\\97\\107$	$10 \\ 66 \\ 98 \\ 136 \\ 148$	$54 \\ 90 \\ 119 \\ 135 \\ 148$	96 145 170 190 201	$1\\90\\154\\169\\168$	447 9,352 16,322 16,316 16,624	962 26,731 34,087 34,118 31,077	$\begin{array}{r} 0 \\ 7,980 \\ 13,200 \\ 14,060 \\ 14,520 \end{array}$	$1,280 \\ 19,380 \\ 27,500 \\ 28,880 \\ 30,020$		9 22,300	$10,559 \\ 15,380 \\ 17,905$	13,945 14,715	172 14,098 18,755 19,247 19,441

 TABLE 4. YIELDS OF DIFFERENT VEGETABLE CROPS FROM APPLICATIONS OF DIFFERENT AMOUNTS OF PHOSPHORUS

 ON DIFFERENT SOILS, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹ Amount of phosphorus applied to each of three crops grown on same land the same year; 90 pounds per acre of N and 45 pounds per acre of K_2O were applied to all treatments.

					Yie	lds per ac	cre		a		
P₂O₅ applied per acre to each	Eggplant (3-yr. av.)	Kale (4-yr. av.)	Lettuce)(4-yr. av.)	Pepper (2-yr.av.)	English Peas)(4-yr.av.)	Pota (4-yr		Okra (2-yr.av.)	Onion (4-yr.av.)		dish 7r.av.)
crop 1	Total	Total	Total	Total	Total	Market- able	Total	Total	Total	Roots	Total
Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.
					Norfolk	Soil					
0 13.33 26.67 40.00 53.33	2,230 15,745 20,104 18,882 20,868	410 4,178 6,420 7,889 8,079	756 4,227 6,820 7,787 8,169	5,257 12,009 13,501 19,224 16,490	591 1,553 2,153 2,354 2,405	47 69 93 106 117	$93 \\ 123 \\ 147 \\ 158 \\ 164$	3,669 3,937 5,039 3,596 4,520	1,205 3,145 5,236 6,962 6,665	1,4953,9774,7294,5924,236	2,617 6,404 6,767 7,234 6,736
•	0.000	051	909	7 007	Eutaw	Soil	70	0 505	1 050	F00	1 0 4 0
$\begin{array}{r} 0 \\ 26.67 \\ 53.33 \\ 80.00 \\ 106.67 \end{array}$	2,333 20,824 20,133 25,269 24,940	251 6,182 8,951 10,377 11,160	393 3,023 5,009 8,253 9,349	7,387 17,090 19,600 23,104 30,405	1,301 3,532 3,609 3,679 3,599	55 117 181 203 203	$79\\148\\216\\245\\251$	3,587 5,252 5,312 5,693 6,482	1,856 4,368 8,365 9,789 10,581	$533 \\ 5,938 \\ 6,815 \\ 6,698 \\ 6,102$	1,0429,13810,50210,4839,524
					Cecil	Soil		•			
$0\\26.67\\53.33\\80.00\\106.67$	519 9,229 11,846 16,020 18,409	$\begin{array}{r} 132 \\ 5,939 \\ 7,324 \\ 7,705 \\ 8,525 \end{array}$	755 4,309 8,192 10,444 13,599	2,015 14,639 17,511 19,318 20,467	571 2,780 3,780 3,640 3,887	24 89 125 138 156	45 123 165 180 196	$\begin{array}{c} 1,443\\ 3,386\\ 5,245\\ 4,994\\ 4,676\end{array}$	876 4,067 7,243 9,481 9,306	$176 \\ 3,880 \\ 4,140 \\ 4,112 \\ 4,127$	573 6,025 6,523 6,400 6,733

TABLE 4. (Continued) YIELDS OF DIFFERENT VEGETABLE CROPS FROM APPLICATIONS OF DIFFERENT AMOUNTS OF PHOS-PHORUS ON DIFFERENT SOILS, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

(Continued)

¹ Amount of phosphorus applied to each of three crops grown on same land the same year; 90 pounds per acre of N and 45 pounds per acre of K_2O were applied to all treatments.

ALABAMA AGRICULTURAL EXPERIMENT STATION

					Yi	elds per a	cre				
P₂O₅ applied per acre	Rutal (2-yr		Squash (4-yr.av.)		otatoes .av.)	N. Z. Spinach (4-yr.av.)		Tomatoes, sum. (3-yr.av.)		Turnips (4-yr.av.)	
to each crop ¹	Roots	Total	Total	Market- able	Total	Total	Total	Early and med.	Total	Roots	Total
Lb.	Lb.	Lb.	Lb.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
					Norfo	lk Soil					
$\begin{array}{c} 0 \\ 13.33 \\ 26.67 \\ 40.00 \\ 53.33 \end{array}$	11,872 27,399 32,080 33,332 34,365	20,122 49,107 57,709 58,640 59,661	2,374 9,284 16,832 16,355 18,542	342 426 429 385 422	469 495 571 447 500	4,471 13,370 16,300 18,396 19,027	4,149 10,921 13,903 13,514 12,096	1,068 3,113 5,461 8,264 8,920	3,367 6,268 10,862 12,647 14,912	5,037 10,652 11,680 11,740 12,074	13,648 27,224 30,359 29,985 31,152
_					Eutav						
$\begin{array}{c} 0\\ 26.67\\ 53.33\\ 80.00\\ 106.67\end{array}$	$\begin{array}{c} 2,432\\ 31,185\\ 32,749\\ 33,543\\ 32,534\end{array}$	4,816 55,441 59,732 59,424 57,968	$1,096 \\ 10,280 \\ 14,118 \\ 16,464 \\ 16,650$	346 331 367 370 359	$\begin{array}{r} 453 \\ 428 \\ 440 \\ 444 \\ 453 \end{array}$	$511 \\ 24,216 \\ 27,341 \\ 31,047 \\ 29,244$	$142 \\ 17,457 \\ 19,521 \\ 21,421 \\ 21,134$	370 3,778 6,927 10,207 9,329	1,020 7,022 12,889 18,401 18,110	$1,091 \\ 13,035 \\ 14,778 \\ 15,601 \\ 14,598$	3,438 36,225 42,529 45,108 42,583
					Ceci	l Soil					
$\begin{array}{c} 0 \\ 26.67 \\ 53.33 \\ 80.00 \\ 106.67 \end{array}$	$506 \\ 34,109 \\ 34,180 \\ 34,278 \\ 36,199$	$\begin{array}{c} 1,379\\ 61,840\\ 62,416\\ 62,064\\ 64,640\end{array}$	8 6,661 11,124 12,063 12,806	157 259 311 368 286	227 376 392 436 399	261 16,415 18,172 22,575 17,584	$161 \\ 12,246 \\ 14,148 \\ 15,746 \\ 15,308$	$\begin{array}{r} 86\\ 2,115\\ 4,467\\ 2,357\\ 4,457\end{array}$	$\begin{array}{r} 455 \\ 5,728 \\ 8,613 \\ 8,009 \\ 12,084 \end{array}$	262 9,832 11,350 12,522 11,745	835 26,858 31,672 35,106 34,207

TABLE 4. (Continued) YIELDS OF DIFFERENT VEGETABLE CROPS FROM APPLICATIONS OF DIFFERENT AMOUNTS OF PHOS-PHORUS ON DIFFERENT SOILS, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹ Amount of phosphorus applied to each of three crops grown on same land the same year; 90 pounds per acre of N and 45 pounds per acre of K_2O were applied to all treatments.

ី

Eutaw soil, and 168 times on the Cecil soil by the highest applications of phosphorus.

Crops differ in a third important respect in the way they respond to phosphorus. With some crops very large increases resulted from small applications of phosphorus, but further increases were relatively small from the higher rates. For instance, the yield of turnips from the no-phosphorus treatment was 1,091 pounds of roots on the Eutaw soil, Table 4, page 15. This yield was increased 12 times by application of 26.67 pounds per acre of P_2O_5 . At the higher rates of phosphorus, the yield increased only from 13,035 to 15,601 pounds per acre. In contrast, the yield of lettuce increased materially at each higher rate of phosphorus, Table 4, page 14.

The response of each crop to phosphorus is shown by the data in the tables. Since the amounts of phosphorus added represent those applied to each of three crops grown each year on the same area and since crops consumed only a portion of the amounts added, each crop had the benefit of at least a portion of the phosphorus added to previous crops (21).

The cost range during the past 20 years for each increment of phosphorus on the Norfolk soil was approximately \$.54 to \$.93, and on the Eutaw and Cecil soils it was \$1.08 to \$1.87.

Some idea of returns from expenditures for phosphorus may be obtained from data on peppers grown on the Eutaw soil (Table 4). Assuming a maximum cost of \$1.87 for each increment of phosphorus and assuming a value of 2-1/2 cents per pound for pepper, the value of the increased yield per \$1 of cost from the first increment was about \$130, from the second about \$34, from the third about \$47, and from the fourth about \$98.

Nitrogen Studies on Norfolk Soil

The nitrogen studies in the older bins were confined to one soil type. The yields of 27 different vegetable crops from applications of five different rates of nitrogen on a Norfolk soil are given in Table 5. The rates of application consisted of 0, 30, 60, 90, and 120 pounds per acre of nitrogen. The cost range of each increment was \$2.50 to \$6.30.

Yields of the different crops in most instances increased with each increment of nitrogen applied up to the full rate of 120 pounds per acre. However, most crops at the 90-pound rate reached yields 90 to 95 per cent of those from the maximum nitrogen rate.

	Yield p	er acre on	Norfolk s ates of N		ifferent
Crop	0 lb. per acre	30 lb. per acre	60 lb. per acre	90 lb. per acre	120 lb. per acre
Beans (4-yr. av.)					
Early and medium, bu.	56	110	166	192	211
Total, bu.	68	140	207	241	270
Lima Beans (4-yr. av.)					
Early and medium, bu.	92	127	155	189	193
Total, bu.	114	143	178	219	227
Beets (2-yr. av.)					
Roots, lb.	750	4,050	5,600	6,150	6,900
Total, lb.	2,338	10,019	12,580	13,476	14,930
Cabbage (4-yr. av.)					
Marketable, lb.	3,200	8,320	12,860	16,840	20,700
Total, lb.	11,000	19,060	26,120	32,360	35,820
Chinese Cabbage					
(4-yr. av.)					
Total, lb.	7,144	20,641	31,067	40,062	45,459
Carrots (4-yr. av.)					
Marketable, lb.	1,601	6,428	9,668	11,829	14,278
Roots, lb.	2,622	6,137	8,201	9,239	10,307
Total, lb.	5,611	11,918	16,126	18,516	21,314
Chard, Swiss (4-yr. av.)	0.000				
Total, lb.	3,982	7,868	7,501	$6,\!554$	7,766
Collards (3-yr. av.)		,			
Total, lb.	7,847	11,920	16,140	16,973	18,556
Corn, sweet (5-yr. av.)					
Marketable, lb.	747	2,095	3,589	5,893	7,216
Total, lb.	1,679	4,610	7,540	9,013	10,261
Eggplant (3-yr. av.)					
Early and medium, lb.	1,277	7,363	12,492	$15,\!152$	12,952
Total, lb.	1,833	10,560	16,901	$21,\!667$	19,032
Endive (3-yr. av.)					
Total, lb.	1,435	5,501	8,393	10,310	9,805
Kale (4-yr. av.)					
Total, lb.	2,423	5,537	7,413	8,138	9,105
Kohlrabi (3-yr. av.)					
Enlarged stems, lb.	1,485	5,760	10,137	8,637	9,072
Total, lb.	2,207	7,231	11,700	10,771	11,800

 TABLE 5. YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON NORFOLK SOIL

 FROM APPLICATION OF DIFFERENT AMOUNTS OF NITROGEN, FIELD

 BINS, MAIN STATION, AUBURN, ALABAMA

(Continued)

¹ Amount applied to each of three crops grown each year on same land; 80 pounds of P_2O_5 and 45 pounds of K_2O per acre were added to all treatments.

~	Yield p	er acre on	Norfolk s ates of N		ifferent
Сгор	0 lb. per acre	30 lb. per acre	60 lb. per acre	90 lb. per acre	120 lb. per acre
Lettuce, spring					
(4-yr. av.) Total, lb.	2,789	6,217	6,857	7,319	8,759
Lettuce, fall (3-yr. av.)	4,008	6,399	6,852	8,511	8,884
Total, lb. Pepper	4,008	0,399	0,852	0,011	8,884
(2-yr. av.) Early and medium, lb. Total, lb.	$3,129 \\ 4,188$	$10,729 \\ 14,237$	$13,139 \\ 17,462$	$13,706 \\ 19,536$	$15,096 \\ 23,418$
English Peas (4-yr. av.) Total, lb.	523	, 1,783	2,183	2,533	2,525
Potatoes (4-yr. av.) Marketable, bu. Total, bu.	66 90	$\frac{119}{168}$	$\frac{151}{207}$	$\begin{array}{c} 184 \\ 246 \end{array}$	$\begin{array}{c} 191 \\ 259 \end{array}$
Okra (2-yr. av.) Early and medium, lb. Total, lb.	$1,526 \\ 2,490$	$2,521 \\ 4,290$	$4,056 \\ 6,614$	3,813 6,217	4,180 6,585
Onion (4-yr. av.) Total, lb.	3,064	5,491	6,503	7,729	7,886
Radish (3-yr. av.) Roots, lb. Total, lb.	2,616 4,512	4,522 7,231	4,777 7,502	5,292 8,172	5,171 8,021
Rutabaga (2-yr. av.) Roots, lb. Total, lb.	8,864 14,864	20,084 31,610	25,524 41,556	30,298 54,813	30,762 60,254
Squash (4-yr. av.) Early and medium, lb. Total, lb.	915 1,625	6,695 8,068	$11,\!176 \\ 13,\!466$	$15,109 \\ 18,656$	$16,069 \\ 18,986$
Sweetpotatoes (4-yr. av.) Marketable, bu. Total, bu.	$\begin{array}{c} 165 \\ 203 \end{array}$	299 349	$\begin{array}{c} 350\\ 412 \end{array}$	$\begin{array}{c} 380\\ 455\end{array}$	$\begin{array}{c} 432 \\ 505 \end{array}$
New Zealand Spinach (4-yr. av.) Total, lb.	6,273	13,178	16,674	20,510	18,320
Tendergreen (3-yr. av.) Total, lb.	4,619	13,378	17,269	18,379	18,592
Tomatoes, summer (3-yr. av.)	·	-		-	
Early and medium, lb. Total, lb.	8,158 10,221	$14,\!140 \\ 16,\!380$	15,086 18,593	$14,\!180 \\ 18,\!326$	$16,\!228$ $21,\!236$
Turnip (3-yr. av.) Roots, lb. Total, lb.	5,880 12,878	11,443 25,385	14,250 32,899	15,017 37,398	$14,\!804$ $38,\!960$

 TABLE 5. (Continued)
 Yield of Different Vegetable Crops Grown on Norfolk Soil from Application of Different Amounts of Nitrogen, Field Bins, Main Station, Auburn, Alabama

 1 Amount applied to each of three crops grown each year on same land; 80 pounds of P₂O₅ and 45 pounds of K₂O per acre were added to all treatments.

Increases in yield of most crops from increases in nitrogen applications were rather uniform up to the 90-pound rate. Some crops however, gave larger increases from the first 30 pounds applied than from the same increment at higher rates.

The increases in yields of beans (Table 5, page 17) are typical of the responses of most of the crops to the additional increments of nitrogen applied. Without nitrogen the bean yield was 68 bushels. From the first 30-pound increment, the increase was 72 bushels per acre; from the second, 67 bushels; from the third, 34 bushels; and from the fourth, 29 bushels. Assuming a maximum cost of \$6.30 for each 30 pounds of nitrogen added and a value of 5 cents per pound for the beans, the increase in yield per \$1 of cost from the first increment was worth about \$17, from the second \$16, from the third about \$8, and from the fourth about \$7.

Potash Studies on Norfolk and Cecil Soils

The potash studies were conducted on Norfolk sandy loam and Cecil sandy clay soils. The results from 21 crops are given in Table 6.

The rates of potash used were 0, 15, 30, and 45 pounds per acre of $K_{2}O$. The cost range of each increment was from \$.45 to \$.80.

The response of different crops was much less pronounced from applications of potash than from applications of the other two fertilizer elements. Some crops produced about as high yields without potash as with any amount. Other crops, however, gave material increases in yield from potash applications. Beans, lima beans, cabbage, kale, English peas, and tendergreen with no potash produced yields about as high as those from any amount applied. Potash applications on Norfolk soil resulted in yield increases of 24 per cent for rutabagas, 74 per cent for sweetpotatoes, 34 per cent for beets (roots), and 31 per cent for carrots.

An application of 30 pounds per acre of potash increased the yield of No. 1 potatoes on Norfolk soil 47 bushels. Sweetpotatoes produced yield increases of 148 bushels per acre of No. 1's from 45 pounds per acre of potash on Norfolk soil and 92 bushels per acre from 30 pounds of potash on Cecil soil.

It is pointed out that, although the increases in yields are small from applications of potash, the cost of the potash required is so low that the value of the increase may be many times the

	Yield	ls per a	cre for	differe	ent rate	es of po	tash (I	ζ ₂ Ο)
Сгор	Poun appli	ds of K ed to N	20 per lorfolk	acre soil ¹	Poun appl	ds of K ied to	₂O per Cecil s	acre oil ¹
the second se	0	15	30	45	0	15	30	45
Beans (4-yr. av.)								
Early and								
medium, bu.	187	193	197	193	90	96	96	95
Total, bu.	224	232	234	231	122	131	131	132
Lima Beans (4-yr. a Early and	v.)							
medium, bu.	176	195	172	186	97	100	106	104
Total, bu.	194	212	193	208	182	179	183	194
Beets (2-yr. av.)								
Roots, lb.	7,450	8,450	9,350	9,950	4,450	5,850	5,300	5,100
Total, lb.	14,731	15,852	17,071	18,071	9,269	11,378	10,696	
Cabbage (4-yr. av.)	-	-					-	
Marketable, lb.	12,680	13,560	13,660	13,580	14,580	15,720	15,040	16,280
Total, lb.				30,400				
Chinese Cabbage								
(3-yr. av.)								
Total, lb.	23,354	25,654	25,990	25,604	24,056	24,974	27,024	25,996
Carrots (4-yr. av.)								
Marketable, lb.	5,710	7,655	7,597	7,485	5,302	8,533	7,946	9,601
Roots, lb.	5,366	6,524			5,849	7,232	7,745	8,427
Total, lb.	11,112	13,297	13,173	12,419		15,141	16,454	17,008
Chard, Swiss								
(3-yr. av.)				•				
Total, lb.	4,281	6,233	8,550	7,886	17,388	25,157	23,520	23,425
Collards (3-yr. av.)								
Total, lb.	12,363	14,562	14,356	12,845	15,016	17,096	16,847	17,396
Endive (2-yr. av.)			•		•	•		-
Total, lb.	5,311	8,251	8,606	8,404	7,129	8,573	8,849	8,852
Kale (3-yr. av.)	-,	-,	-,	-,	.,	-,	-,	-,
Total, lb.	7,523	7,012	6,760	7,198	7,734	9,060	9,013	8,751
English Peas	.,=20	.,	3,.30	.,200	.,	2,200	0,010	
(3-yr. av.)	.* 1							
Total, lb.	2,489	2,794	2,533	2,281	3,915	4,421	4,344	4,231
Potatoes (4-yr. av.)	2,100	2,.01	2,000		0,010	-, -, - - -	1, 0 1	-,- J I
Marketable, bu.	163	190	210	195	139	155	151	148
Total, bu.	220	254	271	256	185	201	195	188
		T	ـ	100	100			

 TABLE 6. YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON NORFOLK AND

 CECIL SOILS FROM APPLICATION OF DIFFERENT AMOUNTS OF POTASH,

 FIELD BINS, MAIN STATION, AUBURN, ALABAMA

(Continued)

¹Amount of potash applied to each of three crops grown on same land the same year; 80 pounds per acre of P_2O_5 and 90 pounds per acre of N were applied to all treatments.

	Yield	ls per a	cre for	differe	ent rate	s of po	tash (I	ζ ₂ Ο)
Crop				acre soil 1			20 per Cecil s	
	0	15	30	45	0	15	30	45
Onions (4-yr. av.)								
Total, lb.	7,054	7,553	7,514	7,890	10,288	10,632	10,208	11,200
Radish (2-yr. av.)								
Roots, lb.	4,718	5,069	5,241	4,732	3,678	4,060	4,184	4,012
Total, lb.	7,580	8,605	8,049	7,858	6,425	6,980	7,284	6,894
Rutabaga (2-yr. av.)	1							
Roots, lb.							28,941	
Total, lb.	45,236	49,937	51,313	56,026	51,114	56,414	55,376	57,364
Squash (2-yr. av.) Early and		:						
medium, lb.			,	10,461		•	,	,
Total, lb.	10,443	12,623	11,088	13,280	5,351	6,190	7,690	6,891
Sweetpotatoes (4-yr. av.)								
Marketable, bu.	245	306	346	393	210		302	300
Total, bu.	289	361	417	502	277	322	365	369
N. Z. Spinach (4-yr. av.) Total, lb.	6,900	7.616	6.402	8.766	12.005	11.962	15,378	15,951
Tendergreen (2-yr. av.)	•.							
Total, lb.	16,785	17,144	17,862	17,996	12,750	13,260	13,441	11,354
Tomatoes (4-yr. av.) Early and						4.051	0 550	4 1 0 1
medium, lb.	4,984	,	4,995				3,572	
Total, lb.	14,205	13,672	12,862	13,714	11,869	19,319	14,744	10,029
Turnips (3-yr. av.)	0.042	0 00 ÷		0.001	F 010	0.000	F 079	0 1 0 0
Roots, lb.	8,746						5,873	
Total, lb.	20,929	20,072	20,331	48,934	17,098	19,441	18,275	19,442

 TABLE 6. (Continued)
 YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON NORFOLK AND CECIL SOILS FROM APPLICATION OF DIFFERENT AMOUNTS OF POTASH, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹Amount of potash applied to each of three crops grown on same land the same year; 80 pounds per acre of P_2O_5 and 90 pounds per acre of N were applied to all treatments.

cost of the material. For example, there was an increase of 2,199 pounds per acre in the yield of collards on Norfolk soil from an application of 15 pounds per acre of K₂O. At \$25 per ton for collards and at the maximum price for potash, the increase would be worth about \$35 for \$1 expenditure for potash.

FERTILIZER GRADE STUDIES WITH DIFFERENT VEGETABLE CROPS

Studies of fertilizer grades were conducted both in field bins and in field plots. Some of the experiments were carried on at the Main Station, others at outlying points.

Studies in Field Bins

The three soils used in the field bin studies were Decatur, Hartsells, and Chesterfield. The first two were introduced, while the third was a local soil. The fertilizer treatments used on the Hartsells and Decatur soils were in duplicate, and on the Chesterfield they were in quadruplicate.

EXPERIMENTS ON DECATUR SOIL. The rates applied to the Decatur soil were as follows: 0, 30, 60, 90, and 120 pounds per acre of N; 0, 40, 80, 120, and 160 pounds per acre of P_2O_5 ; and 0, 22.5, 45, and 67.5 pounds per acre of K₂O. Results on 12 crops are presented in Table 7.

The cost during the past 20 years for each increment of nitrogen has ranged from about \$2.50 to \$6.30, of phosphorus from \$1.60 to \$2.80, and of potash from \$.68 to \$1.20.

Nitrogen and phosphorus gave pronounced increases in yield of most crops. In general, higher rates of nitrogen were required to reach maximum yields than those of phosphorus. The response of the different crops to applications of potash on the Decatur soil was about the same as that obtained on the Norfolk and Cecil soils as previously described. Potash gave but small increases in yield with most crops on Decatur soil; the exceptions were lettuce, broccoli, tendergreen, and sweetpotatoes.

A few crops might be used to illustrate the effects of the three elements on crop yields. Yields of beans were increased from 118 bushels per acre to 235 bushels as the rates of nitrogen were increased from 0 to 120 pounds per acre. The increases were 45, 39, 11, and 22 bushels per acre for the four successive increments. Yields were increased from 155 to 201 bushels as the rates of P_2O_5 were increased from 0 to 160 pounds per acre. The increases were 22, 9, 12, and 3 bushels per acre for the four successive increments. The yields of this crop from the no-potash treatment were practically as high as those from any rate applied.

Increases in yields of sweetpotatoes were 75, 31, 4, and 45 bushels per acre for the four successive nitrogen increments, 5

		Yi	elds per a	cre on D	ecatur so	il for dif	ferent rate	s of nitro	gen, phosp	horus and	potash	
Amount applied		ans . av.)	Lima Beans (2-yr. av.)			Beets (2-yr. av.)		Broccoli (2-yr. av.)		age av.)	Lettuce (2-yr. av.)	
per acre ¹	Early	Total	Early and medium	Total	Roots	Total	Market- able ²	Total. ²	Heads	Total	Heads	Total
Lb.	Bu.	Bu.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
Nitrogen (N)											
0 30 60 90* 120	$ \begin{array}{r} 82 \\ 108 \\ 127 \\ 125 \\ 139 \\ \end{array} $	118 163 202 213 235	114 141 126 149 161	141 174 175 193 193	365 2,741 5,622 6,711 7,498	1,636 7,194 11,424 14,675 16,675	1,188 1,984 3,133 4,202 4,528	7,155 12,381 17,098 18,407 22,983	$1,498 \\ 5,557 \\ 14,363 \\ 22,034 \\ 26,081$	6,954 12,575 20,472 26,706 30,258	269 2,951 2,522 3,072 2,871	7,386 15,533 15,088 17,488 15,562
Phosphorus ((P ₂ O ₅)											
0 40 80 120 160*	$100 \\ 116 \\ 120 \\ 135 \\ 129$	155 177 186 198 201	$142 \\ 131 \\ 142 \\ 137 \\ 169$	162 170 182 172 214	1,252 6,980 6,861 6,138 5,175	3,674 15,360 15,085 12,912 11,431	246 3,799 4,346 4,010 4,426	916 17,146 19,424 19,824 18,893	1,058 17,583 20,209 20,455 17,258	4,655 22,562 24,660 26,695 22,666	0 346 1,709 1,626 3,651	$1,402 \\7,658 \\13,482 \\13,082 \\15,277$
Potash (K ₂ O))											
$\begin{array}{r} 0\\22.5\\45.0\\67.5^{*}\end{array}$	$125 \\ 125 \\ 125 \\ 125 \\ 127$	218 215 213 224	$162 \\ 170 \\ 132 \\ 165$	207 223 173 203	4,101 5,466 5,581 7,155	10,365 12,877 12,761 14,361	3,290 3,965 3,885 3,930	15,587 17,930 17,264 21,047	16,733 16,415 18,740 20,594	22,355 21,384 23,141 24,906	858 2,250 2,470 3,056	7,347 13,328 15,565 16,362

 TABLE 7. YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON DECATUR SOIL FROM APPLICATION OF DIFFERENT AMOUNTS OF NITROGEN, PHOSPHORUS, AND POTASH, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

(Continued)

¹ Amount applied to each of two crops grown same year on same area. Rates of each element applied when other elements were varied are indicated by asterisk (*).
 ² Marketable yield consists of flower parts and total yield consists of whole plant less flower part.

FERTILIZER EXPERIMENTS with VEGETABLE CROPS

	Y	ields per a	cre on De	catur soil fo	or differen	nt rates of a	nitrogen,	phosphorus	and potash	1
Amount applied per -	Onions (4-yr. av.)	Pota (4-yr.		Porto	SweetpotatoesPorto RicoSweet Corn(3-yr. av.)(2-yr. av.)			Tender- green (4-yr. av.)		rnips r. av.)
acre ¹	Total	Market- able	Total	Market- able	Total	Market- able	Total	Total	Roots	Total
Lb.	Lb.	Bu.	Bu.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.	Lb.
Nitrogen (N)										
0 30 60 90* 120	7,162 9,153 10,876 12,693 12,720	$75\\100\\136\\152\\168$	$104 \\ 131 \\ 168 \\ 183 \\ 204$	241 313 327 333 348	$295 \\ 370 \\ 401 \\ 405 \\ 450$	487 3,488 6,842 7,859 10,269	1,4666,0879,28010,84812,298	5,243 11,109 15,260 19,094 20,891	$7,878 \\10,982 \\11,681 \\12,418 \\12,934$	15,520 23,427 27,684 29,991 31,689
Phosphorus (F	P ₂ O ₅)									
0 40 80 120 160*	5,167 8,272 10,159 11,239 11,540	92 114 129 144 161	$118 \\ 140 \\ 163 \\ 178 \\ 194$	311 347 368 330 285	414 419 459 412 411	3,584 8,103 8,602 9,261 9,936	6,144 11,421 11,597 12,301 11,824	1,985 18,190 18,553 13,867 12,102	1,888 12,687 13,328 13,011 13,312	4,838 29,075 30,191 30,855 31,150
Potash (K ₂ O)										
0 22.5 45.0 67.5*	$\begin{array}{c} 11,827 \\ 13.233 \\ 11,979 \\ 11,396 \end{array}$	147 164 166 153	178 194 200 184	254 303 324 368	338 362 376 430	6,983 8,778 8,803 8,765	11,005 11,834 11,882 11,194	10,815 15,174 18,131 19,789	$\begin{array}{c} 12,\!277 \\ 13,\!134 \\ 12,\!189 \\ 11,\!992 \end{array}$	29,162 31,358 29,617 30,930

 TABLE 7. (Continued)
 YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON DECATUR SOIL FROM APPLICATION OF DIFFERENT AMOUNTS OF NITROGEN, PHOSPHORUS, AND POTASH, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹ Amount applied to each of two crops grown same year on same area. Rates of each element applied when other elements were varied are indicated by asterisk (*).

and 40 bushels for the first two phosphorus increments, and 24, 14, and 54 bushels per acre for the three potash increments.

Highest yields were obtained from 120 pounds per acre of nitrogen applied to beans, beets, broccoli, cabbage, potatoes, sweetpotatoes, sweet corn, tendergreen, and turnips; highest yields of lima beans, lettuce, and onions were obtained from 90 pounds per acre of nitrogen.

Yields of beans, lettuce, and potatoes continued to increase from applications as high as 160 pounds per acre of P_2O_5 . Maximum or near-maximum yields of beets were obtained from 40 pounds per acre; of broccoli, onions, turnips, tendergreen, sweetpotatoes, and cabbage from 80 pounds; and of sweet corn from 120 pounds.

Maximum or near-maximum yields were obtained from the following rates: beans, no-potash rate; onions, lima beans, sweet corn, broccoli, and turnips, 22.5 pounds per acre of K₂O; potatoes,

		Yield	s per a nit	cre on rogen,	Hartse phospl	lls soil norus, :	for diff and pot	ferent r ash	ates of	
Amt. applied per	Bea (3-yr		Lima Beans (2-yr.av.)				Cabb (4-yr		Lettuce (2-yr.av.)	
acre ¹	Early	Total	Early and med.	Total	Market able	- Total	Heads	Total	Heads	Total
Lb.	Bu.	Bu.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
Nitrogen	(N)									
0 30 60 90* 120 Phosphor 0 20 40 60 80*	74 98 110 120 118	109 178 202 209 222 5) 124 135 166 174 175	$101 \\ 122 \\ 146 \\ 154 \\ 171 \\ 144 \\ 148 \\ 152 \\ 146 \\ 123 \\ 123 \\ 101 \\ 123 \\ 101 \\ 122 \\ 101 $	$137 \\ 160 \\ 191 \\ 184 \\ 216 \\ 176 \\ 182 \\ 195 \\ 179 \\ 176 \\ 196 \\ 186 \\ 196 \\ 196 \\ 196 \\ 196 \\ 196 \\ 196 \\ 196 \\ 196 \\ 196 \\ 106 $	2,394 3,655 4,640 5,629 147 3,223 4,182 4,259	$13,219 \\ 17,747 \\ 21,968 \\ 25,050 \\ 464 \\ 12,064 \\ 17,635 \\ 18,778 \\ 13,278 \\ 13,219 \\ 14,100 \\ 14,1$	630 8,255 16,806 22,228 27,230 627 14,092 18,836 20,310 18,477	16,044 23,264 27,305 31,379 4,899 20,692 24,566 26,153	615 1,495 3,248 3,744 0 0 474 1,252	11,005 17,709 17,187 391 1,623
Potash (I	(2O)								•	-
$0 \\ 22.5 \\ 45$	111 107 110 * 108	181 179 189 189	140 140 153 165	179 178 189 199	4,192 4,522	19,507 18,759	17,308 18,733 24,853 22,465	25,425 28,954	$1,287 \\ 2,650$	6,535 11,811 15,152 13,850

TABLE 8. YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON HARTSELLS SOIL FROM APPLICATIONS OF DIFFERENT AMOUNTS OF NITROGEN, PHOSPHORUS, AND POTASH, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

(Continued)

¹ Amount applied to each of two crops grown same year on same area. Rates of each element applied when other elements were varied are indicated by asterisk (*).

		Yields 1		e on Ha ogen, p					ates of	
Amt applie per	donion	Potatoes		Sweet- potatoes Porto Rico Sweet		; Corn	Tender- green (4-yr.	- Turi	nips	
acre	av.)	(4-yr	.av.)	(3-yr.	av.)	(2-yr	.av.)	av.)	_(4-yr	.av.)
		Market		Market-	-	Market			.	
	Total	able	Total	able	Total	able	Total	Total	Root	Total
Lb.	Lb.	Bu.	Bu.	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.	Lb.
Nitroge	en (N)									
0	5,025	58	81	254	316	0	608			11,920
30	8,313	97	131	375	465	3,191	5,741		12,348	
60	10,371	118	153	447	532	6,147			14,699	
90*	13,104	119	165	467	558			18,336		35,066
120	11,826	130	184	441	549	8,666	11,459	20,646	14,245	36,267
Phosph	orus (P ₂ O	5)								
0	3,822	76	115	424	531	3,792	7,027			10,797
20	4,941	92	132	409	516	6,650		14,578		25,339
40	8,269	112	150	407	523	6,612		16,955		31,688
60	8,253	114	155	434	522	6,855		17,770		31,774
80*	9,502	118	163	393	535	6,451	9,015	14,313	12,751	30,419
Potash	(K₂O)									
0	10,741	116	155	316	408	4,372	8,887		15,285	31,846
22.5	11,517	113	147	352	421	6,832	9,277		15,036	34,060
45.0	11,766	119	161	363	472	6,586	9,712			35,436
67.5*	* 10,808	116	158	389	505	7,578	10,582	18,078	15,298	34,761

	YIELDS OF DIFFERENT VEGETABLE CROPS GROWN IN	
HARTSELLS SOIL FROM	APPLICATIONS OF DIFFERENT AMOUNTS OF NITROGEN,	
PHOSPHORUS,	AND POTASH, FIELD BINS, MAIN STATION,	
	AUBURN, ALABAMA	

¹Amount applied to each of two crops grown same year on same area. Rates of each element applied when other elements were varied are indicated by asterisk (*).

45 pounds; and lettuce, sweetpotatoes, tendergreens, cabbage, and beets, 67.5 pounds.

EXPERIMENTS ON HARTSELLS SOIL. With one exception, the experiments on the Hartsells soil were identical to those on the Decatur soil. The rates of phosphorus used on the lighter Hartsells soil were one-half of those used on the heavier Decatur clay. Yields of 11 crops are given in Table 8.

Responses to the three elements were about the same as those obtained on the other soils. However, responses of most crops on the Hartsells soil were higher from nitrogen applications and lower from phosphorus applications than those obtained on the Decatur clay. Except for lettuce, sweetpotatoes, and tendergreens, responses to potash applications were small.

	Yields pe	er acre o	n Chester	field soi	il of medi	um fer	tility for a	differer	t rates of	nitrogen,	phospho	orus, and	potash
Fertilizer	Pole	Beans	-		otatoes		Sweet	Corn	Tender-	Tomat	oes	Turi	nips
grade, 1,000	(3-yı	.av.)	Porto (2-yr		Triur (2-yr		(4-yr	.av.)	green (3-yr.av.)	(3-yr.:	av.)	(5-yr	.av.)
pounds per acre ¹	Early and med.	Total	Market- able	Total	Market- able	Total	Market- able	Total	Total	Market- able	Total	Roots	Total
N-P-K	Bu.	Bu.	Bu.	Bu.	Bu.	Bu.	Lb.	Lb.	Lb.	Bu.	Bu.	Lb.	Lb.
8-10-6	231	365	295	460	253	563	2,305	4,881	15,521	419	585	10,777	27,487
8-10-0	111	212	219	296	183	335	1,371	2,976	12,548	367	509	12,077	25,078
8-10-4	243	391	332	431	256	537	2,679	5,149	15,270	424	550	11,219	28,581
8-10-6	249	402	311	445	274	564	2,633	5,170	14,399	395	547	11,397	29,116
8-10-8	251	399	319	450	301	548	2,584	5,323	15,466	427	553	11,255	28,871
0-10-6	84	191	127	188	222	338	384	1,173	4,415	146	214	4,843	10,262
4-10-6	204	337	281	364	283	523	1,771	4,042	9,911	282	417	9,749	22,896
6-10-6	244	403	315	420	271	583	2,688	5,016	12,982	347	493	11,400	27,756
8-10-6	261	418	332	457	292	541	2,332	4,989	13,727	422	572	11,292	29,262
8-0-6	147	293	278	388	205	411	1,446	3,258	11,754	341	553	9,226	22,512
8-8-6	234	383	300	431	264	560	2,608	5,209	13,483	427	555	10,895	28,085
8-10-6	223	371	314	413	271	514	2,758	5,046	13,336	373	535	10,811	28,274
8-12-6	240	389	312	423	273	551	2,448	5,022	13,400	432	559	10,946	27,847
8-10-6	223	371	314	413	271	514	2,758	5,046	13,336	373	535	10,811	28,274
12 - 15 - 9	215	372	325	483	253	563	2,576	5,385	16,720	466	618	11,076	29,502

TABLE 9. YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON CHESTERFIELD	D SOIL OF MEDIUM FERTILITY FROM APPLICATIONS
OF DIFFERENT FERTILIZER GRADES, FIELD BINS, MAIN	N STATION, AUBURN, ALABAMA

¹ Amount applied to each of two crops grown each year on same area, with the exception of one crop of sweetpotatoes per year.

·	Yields per acre on Chesterfield soil of low fer- tility for different rates of nitrogen, phosphor- us, and potash Yields per acre on Chesterfield soil of tility for different rates of nitro us, and potash									itrogen, p		
Fertilizer grade, 1,000 pounds	Bea (3-yr		Broccoli (2-yr.av.)	Cabl (2-yr	bage .av.)	Mustard (2-yr.av.)	Fertilizer grade, 1,000 pounds	Kohl (2-yr		Onions (2-yr.av.)	Pota (2-yr	
per acre ¹	Early and med.	Total	Total ²	Market- able	Total	Total	per acre ¹	Crown	Total	Total	Market- able	Total
N-P-K	Bu.	Bu.	Lb.	Lb.	Lb.	Lb.	N-P-K	Lb.	Lb.	Lb.	Bu.	Bu.
8-10-0	94	122	7,917	6,243	11,386	4,749	6-10-0	506	3,037	4,106	54	78
8-10-4	115	160	10,858	6,595	14,742	8,067	6-10-4	1,011	4,666	6,138	73	100
8-10-6	123	170	11,264	8,198	16,998	10,061	6-10-6	1,178	4,963	6,291	71	102
8-10-8	137	177	10,855	7,395	15,991	12,032	6-10-8	1,024	4,861	6,279	67	95
0-10-6	19	23	1,332	0	1,981	1,172	0-10-6	35	1,043	1,978	27	39
6-10-6	111	142	8,896	5,562	13,232	8,387	2 - 10 - 6	387.	2,528	3,878	43	63
10-10-6	146	201	12,746	8,707	18,186	12,135	4-10-6	733	3,664	5,280	58	83
12-10-6	142	199	11,338	9,066	17,991	11,092	8-10-6	1,277	5,392	6,400	85	110
8-0-6	101	138	2,992	4,163	9,590	640	6-0-6	467	2,131	2,746	35	56
8-6-6	130	171	10,250	7,626	14,897	8,490	6-6-6	980	4,585	5,850	70	100
8-8-6	129	171	10,115	6,803	14,941	8,157	6-8-6	1,188	4,371	6,163	68	94
8-12-6	134	181	11,315	8,522	16,656	10,327	6-12-6	1,027	4,714	5,700	76	100
6-6-4	109	142	9,670	5,533	13,472	8,727	4-6-4	605	3,514	5,216	57	79
12 - 15 - 9	140	206	10,448	$9,\!543$	18,515	11,248	9-15-9	813	4,086	6,215	87	114

 TABLE 10. YIELDS OF DIFFERENT VEGETABLE CROPS GROWN ON CHESTERFIELD SOIL OF LOW FERTILITY FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹ Amount applied to each of two crops grown same year on same area. ² Broccoli consists of whole plant, no flower parts.

EXPERIMENTS ON CHESTERFIELD SOIL. Experiments were conducted on two Chesterfield soils, one of medium fertility and the other of low fertility. The rates of the three elements in the fertilizer are expressed as grades rather than as pounds of each. The basic application consisted of 1,000 pounds per acre of fertilizer. The rates were 0, 40, 60, and 80 pounds of N; 0, 80, 100, and 120 pounds per acre of P_2O_5 ; and 0, 40, 60, and 80 pounds per acre of K₂O.

Results of the studies on the better Chesterfield soils are given in Table 9, and those on the poorer soil are presented in Table 10.

Responses of crops to potash on both Chesterfield soils were considerably higher than those obtained on the other soils studied. Increases in yields from 40 pounds per acre of $K_{*}O$ applied to the better Chesterfield soil were as follows: pole beans from 212 to 391 bushels per acre, sweetpotatoes (Porto Rico variety) from 296 to 431 bushels, sweet corn from 2,976 to 5,149 pounds, and marketable tomatoes from 367 to 424 bushels. Similar responses were obtained on the Chesterfield soil of low fertility.

In general, response to phosphorus applications on both Chesterfield soils were less than those on other soils except on the Hartsells. Response to nitrogen was about the same on the Chesterfield soil of medium fertility as it was on the other soils, but it was much greater on the soil of low fertility than on any of others studied.

Studies in Field Plots

Fertilizer experiments have been conducted in regular field plots at the Main Station, Auburn, three substations, two experiment fields, and at Thorsby and Atmore. Results of a number of these experiments are given in Tables 11 to 19, inclusive.

EXPERIMENTS AT MAIN STATION. Results of fertilizer studies with the Porto Rico variety of sweetpotato on a Norfolk and on a Chesterfield soil and with the Triumph variety on a Chesterfield soil, are reported in Table 11. Rates of nitrogen, phosphorus, and potash are expressed as fertilizer grades. The base application was 1,000 pounds per acre. The rates were 0, 40, 60, 80, and 100 pounds per acre of N; 0, 60, 80, and 100 pounds per acre of P_2O_3 ; and 0, 40, 60, and 80 pounds per acre of K₂O.

Material increases in yield of both varieties of potatoes on the Chesterfield soil and of the Porto Rico on both soils were obtained from applications of potash and nitrogen. Yield increases were small from applications of phosphorus. Increased yields of

			Y	ields per acı	е	
Fert	ilizer	Chesterf		Norfol		Chester- field soil
		Porto	Rico	Porto	Rico	Triumph (3-yr.
0 1 1	Amount	(3-yr. a	verage)	(2-yr. a	verage)	av.)
Grades ¹	per acre	Market- able	Total	Market- able	Total	Total
N-P-K	Lb.	Bu.	Bu.	Bu.	Bu.	Bu.
6-10-0	1,000	134	169	157	188	253
6-10-4	1,000	142	193	178	212	301
6-10-6	1,000	160	208	166	214	325
6-10-8	1,000	166	220	196	235	342
0-10-6	1,000	77	121	104	130	171
4-10-6	1,000	134	189	160	195	297
6-10-6	1,000	168	211	183	223	321
8-10-6	1,000	185	229	191	225	356
10-10-6	1,000	175	219	178	214	355
6-0-6	1,000	169	216	174	215	324
6-6-6	1,000	180	232	174	213	330
6-8-6	1,000	155	200	170	205	319
10-10-6	600	152	193	166	204	306
6-10-6	600	130	188	150	183	257
6-10-6	1,200	168	214	185	222	318
6-10-6	800	142	192	169	209	310

 TABLE 11. YIELDS OF SWEETPOTATOES GROWN ON NORFOLK AND CHESTERFIELD

 SOILS FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS,

 MAIN STATION, AUBURN, ALABAMA

¹ All phosphorus as superphosphate, all potash as muriate of potash, and one-third nitrogen as ammonium sulphate were applied prior to planting; two-thirds of nitrogen as nitrate of soda was applied as side application 3 to 4 weeks after plants were up to stand.

each variety on both soils were obtained from applications up to 80 pounds per acre of potash and of nitrogen.

EXPERIMENTS AT THE GULF COAST SUBSTATION. The crops studied at the Gulf Coast Substation consisted of those of commercial importance in the truck-growing area of the Gulf Coast region. The more important crops studied were grown on freshly cleared land, referred to as "new land," and on land that had been in cultivation for a long period, designated as "old land." Experiments were also conducted on new land after it had been cleared and in cultivation for 5 or more years. The studies were conducted on Orangeburg and Norfolk sandy loam soils. The Orangeburg soil was old land and the Norfolk was new land.

Fertilizer treatments consisted of different grades and rates of fertilizers. The rates varied with different crops. Results are given in Tables 12 to 14, inclusive.

One of the most pronounced differences among the three elements was in response to phosphorus. With the exception of sweetpotatoes, near failure and in most cases complete failure of crops resulted on new land without the addition of some phosphorus. On old land receiving some phosphorus in previous years, fair yields were obtained without phosphorus.

For example, at the no-phosphorus rate, cabbage yields were 0.26 tons on new land and 10.56 tons per acre on old land (Table 13), while Irish potatoes produced 28 bushels on new land and 109 bushels per acre on old land (Table 14). Sweetpotatoes, however, produced fair yields on new land with no phosphorus added.

Fair yields of all crops were produced on new land without potash. However, applications of potash gave material increases in yields. Pronounced potash deficiencies were observed with some crops where potash was not applied. Cabbage showed typical potash deficiency at the leaf margins. Foliage of Irish potatoes receiving no potash was several shades greener than those receiving some potash.

With most crops, 3 per cent K_2O at the commonly applied rate of application of a complete fertilizer gave near-maximum yields. Exceptions were sweetpotatoes and Irish potatoes, where 6 or 8 per cent was needed.

On new land 24 pounds per acre of K_{*}O increased the yield of beans from 116 to 151 bushels per acre (Table 12); 36 pounds increased the yield of cucumbers from 94 to 155 bushels per acre; 45 pounds increased the yield of No. 1 potatoes from 68 to 129 bushels; 30 pounds increased the yield of watermelons from 10,642 to 12,227 pounds; 45 pounds increased the yield of head cabbage from 3.13 to 6.61 tons; and 24 pounds increased the yield of roasting corn from 31 to 44 crates per acre.

Although yield increases from potash were low as compared to those from either nitrogen or phosphorus, applications of potash gave high returns. An application of 90 pounds per acre of $K_{*}O$ resulted in an increased yield of 92 bushels of No. 1 potatoes (Table 12). The value of the increased yield would range from

	Yi	elds per ac	re, Norfolk	c soil, ne	w land ²		Yields per	acre, Norf	olk soil, nev	w land ²
Fertilizer	Beans ³	Cucum- bers ³			Water- melons ³	Fertilizer	Cabba	age ^s	Roasting Corn	
grades 1	(5-yr.av.)	(2-yr.av.)	(5-yr.	(5-yr.av.) (2		grades ¹	(4-yr	.av.)	(5-yr	.av.)
5	Total	Total	No. 1's	Total	Total		Market- able	Total	Market- able	Total
N-P-K	Bu.	Bu.	Bu.	Bu.	Lb.	N-P-K	Ton	Ton	Crt.	Crt.
6-10-6	133	124	147	189	12,089	8-10-6	7.01	16.13	40	46
6-10-0 6-10-3 6-10-9 6-10-6	116 151 149 161	94 155 145 163	68 129 156 160	110 175 196 201	10,642 12,227 12,557 12,591	8-10-0 8-10-3 8-10-9 8-10-6	3.13 6.61 6.89 7.37	9.34 15.33 16.34 17.05	31 44 49 44	37 51 55 50
0-10-6 3-10-6 9-10-6 6-10-6	49 114 151 147	66 143 127 140	61 128 153 148	94 174 196 191	8,932 11,764 11,981 13,425	0-10-6 4-10-6 12-10-6 8-10-6	1.21 4.47 8.68 7.83	4.02 10.99 18.66 15.04	6 33 43 41	7 37 48 47
6-0-6 6-5-6 6-15-6 6-10-6	8 92 157 164	1 109 167 160	$11\\122\\160\\150$	$27 \\ 166 \\ 202 \\ 193 \\$	12,648 13,850 13,618	8-0-6 8-5-6 8-15-6 8-10-6	0 5.75 7.68 7.00	0 13.90 16.32 15.00	0 23 49 40	0 27 56 47
$\begin{array}{c} 6-10-6\\ 9-15-9\\ 3-5-3\\ 6-10-6\end{array}$	$154 \\ 177 \\ 102 \\ 149$	$143 \\ 165 \\ 105 \\ 130$	$150 \\ 179 \\ 99 \\ 147$	192 223 142 190	$\begin{array}{c} 13,502 \\ 11,841 \\ 11,754 \\ 12,351 \end{array}$	8-10-6 12-15-9 4-5-3 8-10-6	7.23 8.63 3.92 6.89	$\begin{array}{c} 16.48 \\ 19.63 \\ 10.38 \\ 15.93 \end{array}$	48 47 21 44	54 58 25 50

TABLE 12. YIELDS OF DIFFERENT VEGETABLE CROPS FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, GULF COAST SUBSTATION, FAIRHOPE, ALABAMA

¹ All phosphorus as superphosphate, all potash as muriate of potash, and one-third of the nitrogen as ammonium sulphate were applied prior to planting; two-thirds of nitrogen as nitrate of soda was applied as side applications 3 to 4

weeks after plants were up to stand. ² By "new land" is meant recently cleared land. ⁸ Beans and roasting corn were fertilized at rate of 800 pounds per acre, cucumbers at 1,200 pounds, potatoes and cab-bage at 1,500 pounds, and watermelons at 1,000 pounds.

ALABAMA AGRICULTURAL EXPERIMENT STATION

	Yields per acr	e, Norfolk so	il, new lan	d after 5 yr.	2 .		Yields 1	per acre	
Fertilizer grades applied at			~	English Peas	Fertilizer grades	Orangebu old lar		Norfolk soil — nev land after 5 years	
800 pounds per acre ¹	Beans (4-yr.av.)		Roasting Corn (4-yr.av.)		applied at 1,500 pounds - per acre ¹	Cabba (4-yr.a		Cabbage (4-yr.av.)	
• • · · · ·	Total	Market- able	Total	Total		Market- able	Total	Market- able	Total
N-P-K	Bu.	Crt.	Crt.	Lb.	N-P-K	Ton	Ton	Ton	Ton
8-10-6	101	78	92	4,229	10-10-6	9.66	16.23	12.03	21.41
8-10-0 8-10-4 8-10-8 8-10-6	87 105 95 99	37 76 78 79	45 91 96 97	3,382 4,298 4,197 4,354	10-10-0 10-10-4 10-10-8 10-10-6	8.17 8.45 7.86 8.84	$\begin{array}{c} 16.12 \\ 16.22 \\ 15.75 \\ 16.73 \end{array}$	$3.66 \\ 11.86 \\ 12.19 \\ 12.45$	$\begin{array}{r} 8.21 \\ 21.41 \\ 20.79 \\ 21.44 \end{array}$
$\begin{array}{c} 0-10-6 \\ 6-10-6 \\ 10-10-6 \\ 8-10-6 \end{array}$	19 106 96 102	21 73 81 80	31 82 101 100	1,087 4,047 3,903 4,102	$\begin{array}{c} 0-10-6\\ 8-10-6\\ 12-10-6\\ 10-10-6\end{array}$	3.59 8.65 9.39 9.23	$10.01 \\ 16.37 \\ 16.24 \\ 16.75$	$7.01 \\ 13.29 \\ 11.69 \\ 12.42$	$\begin{array}{c} 13.27 \\ 26.57 \\ 20.02 \\ 21.48 \end{array}$
8-0-6 8-8-6 8-12-6 8-10-6	$17 \\ 64 \\ 110 \\ 107$	2 65 77 68	5 81 98 87	323 3,804 4,487 4,184	10-0-6 10-8-6 10-12-6 10-10-6	$\begin{array}{c} 4.76 \\ 8.42 \\ 9.41 \\ 8.38 \end{array}$	$10.56 \\ 16.13 \\ 15.99 \\ 15.75$	$0\\10.48\\13.67\\11.59$	$\begin{array}{r} .26\\ 18.37\\ 22.76\\ 21.13\end{array}$
8-10-6 10-12-8 6-8-4 8-10-6	101 100 105 100	73 76 66 73	93 99 84 95	4,349 4,353 3,673 4,993	10-10-6 12-12-8 8-8-4 10-10-6	7.93 8.32 7.03 7.97	$\begin{array}{c} 15.84 \\ 15.98 \\ 13.65 \\ 15.03 \end{array}$	$12.32 \\ 13.03 \\ 10.99 \\ 11.78$	$\begin{array}{c} 21.57 \\ 22.45 \\ 19.19 \\ 20.03 \end{array}$

TABLE 13. YIELDS OF DIFFERENT VEGETABLE CROPS FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, GULF COAST SUBSTATION, FAIRHOPE, ALABAMA

¹ All phosphorus as superphosphate, all potash as muriate of potash, and one-third of nitrogen as ammonium sulphate were applied prior to planting; two-thirds of nitrogen as nitrate of soda was applied as side application 3 to 4 weeks after plants were up to stand. ² By "new land after 5 years" means land that has been in cultivation 5 years or more; by "old land" is meant land in

cultivation for many years.

	Yields p	er acre			Yieldspera	cre, Orange-			Yields	per acre	
Fertilizer	Norfol new	k soil, land	Fertil appli		burg soil	, old land	Fertilizer		il, –	Norfol new lan	d after
grades applied at 1,200 pounds per acre ¹	Triu: sweety early 5-yea	potato crop	Grades	Rate	Triumph sweetpotato late crop 3-yr. av.	late amon	arados		toes, mph	5 ye Pota Triu 4-yea	toes, mph
-	Market- able	Total		acre	Total	Total	-	No. 1's	Total	No. 1's	Total
N-P-K	Bu.	Bu.	N-P-K	Lb.	Bu.	Bu.	N-P-K	Bu.	Bu.	Bu.	Bu.
6-10-6	170	222	4-10-6	600	400	332	6-10-6	117	155	129	170
6-10-0 6-10-3 6-10-9 6-10-6	97 157 177 171	129 208 242 223	4-10-0 4-10-4 4-10-8 4-10-6	600 600 600 600	199 384 489 468	172 298 395 372	6-10-0 6-10-4 6-10-8 6-10-6	111 139 131 141	152 180 171 182	39 115 132 122	72 153 173 160
0-10-6 3-10-6 9-10-6 6-10-6	133 148 173 187	173 197 213 235	$\begin{array}{c} 0-10-6\\ 2-10-6\\ 6-10-6\\ 4-10-6\end{array}$	600 600 600 600	414 466 452 421	318 339 347 391	0-10-6 4-10-6 8-10-6 6-10-6	72 138 140 133	109 178 180 175	59 117 118 118	93 155 158 161
6-0-6 6-5-6 6-15-6 6-10-6	70 174 186 173	92 219 239 228	4-0-6 4-8-6 4-12-6 4-10-6	600 600 600 600	264 425 408 451	366 351 331 353	6-0-6 6-8-6 6-12-6 6-10-6	$73 \\ 131 \\ 144 \\ 142$	109 177 186 183	9 99 141 132	28 138 184 175
$\begin{array}{c} 6-10-6\\ 9-15-9\\ 3-5-3\\ 6-10-6 \end{array}$	190 185 164 193	238 262 200 241	0-0-0 4-10-6 4-10-6 4-10-6	0 800 400 600	357 484 409 420	181 403 284 295	6-10-6 8-12-8 4-8-4 6-10-6	143 147 126 135	185 187 168 177	121 126 100 118	161 165 140 159

TABLE 14. YIELDS OF SWEETPOTATOES AND POTATOES FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, GULF COAST SUBSTATION, FAIRHOPE, ALABAMA

¹All phosphorus as superphosphate, all potash as muriate of potash, and one-third of nitrogen as ammonium sulphate were applied prior to planting; two-thirds of nitrogen as nitrate of soda was applied as side application 3 to 4 weeks after plants were up to stand.

ALABAMA AGRICULTURAL EXPERIMENT STATION

about \$140 to \$185; the cost of the potash would range from about \$3 to \$5.

Response of crops to potash was less pronounced on old land that had received some potash than on new land that had received no potash. On old land (Orangeburg), an application of 60 pounds per acre of $K_{2}O$ increased the yield of cabbage from 8.17 to only 8.45 tons per acre, whereas on new land 60 pounds increased the yield from 3.66 to 11.86 tons. The increased yields of potatoes were from 111 to 139 bushels per acre on old land and from 39 to 115 bushels on new land from 60 pounds per acre of $K_{2}O$.

Nitrogen applications markedly affected yields of crops on both new and old land. In most cases 6 per cent nitrogen seemed adequate for most crops at the fertilizer rate used. Maximum or near-maximum yields were obtained on new land from the following nitrogen rates: beans, 48 pounds per acre of N; cucumbers, 36 pounds; potatoes, 90 pounds; watermelons, 60 pounds; cabbage, 180 pounds; early sweetpotatoes, 72 pounds; and roasting corn, 64 pounds.

On new land 5 years after clearing, maximum or near-maximum yields were obtained from 48 pounds per acre of nitrogen applied to beans, 64 pounds to roasting corn, 48 pounds to English peas, 120 pounds to cabbage, and 60 pounds to Irish potatoes.

The nitrogen requirement on old land was not materially different from that on new land. Maximum or near-maximum yields of potatoes and cabbage on old land resulted from 60 and 150 pounds per acre of nitrogen, respectively.

Practically no crop yields were obtained on new land without phophorus with exception of sweetpotatoes. Maximum or near-maximum crop yields were obtained on new land from applications of 80 pounds per acre P_2O_5 for beans, 120 pounds for cucumbers, 150 pounds for potatoes, 100 pounds for watermelons, 225 pounds for cabbage, and 120 pounds for roasting corn. On new land, 5 years after clearing, maximum or near-maximum yields resulted from applications of phosphorus at 80 pounds per acre of P_2O_5 for beans, 96 pounds for roasting corn and for English peas, 180 pounds for cabbage, and 150 for potatoes.

Crop yields were much higher on old land from no-phosphorus treatments than on new land, although about the same amount of phosphorus was required on old as on new land for maximum or near-maximum yields.

		Yields per acre	Yields per acre							
	Beans		atoes							
Fertilizer grades ¹	(4-yr. av.)	(4-yr. av.)	(4-yr. av.)							
grades	Total	No. 1's	Total							
N-P-K	Hampers	Bushels	Bushels							
6-10-6	72	83	113							
6-10-0	71	75	109							
6-10-3	78	90	121							
6-10-9	74	90	124							
6-10-6	76	89	123							
0-10-6	10	20	36							
3-10-6	62	78	110							
9-10-6	84	93	121							
6-10-6	74	92	126							
6-0-6	46	41	61							
6-5-6	76	90	122							
6-15-6	82	97	131							
6-10-6	82	101	134							
9-15-9	83	101	129							
6-10-6 ²	77	105	137							
6-10-6	72	92	124							

TABLE 15. YIELDS OF DIFFERENT VEGETABLE CROPS ON RUSTON SOIL FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, THORSBY, ALABAMA

¹Beans were fertilized at rate of 800 pounds per acre, and potatoes at 1,500 pounds per acre.

All superphosphate, muriate of potash, and one-third nitrogen as ammonium sulphate were applied at planting; two-thirds as nitrate of soda was applied 2 to 3 weeks after plants were up to stand.

² All nitrogen was derived from ammonium sulphate and was applied before planting.

EXPERIMENTS AT THORSBY. Experiments at Thorsby were conducted cooperatively on a truck grower's farm. The soil was a Ruston of fairly high fertility. Results of fertilizer studies with beans and potatoes are given in Table 15.

Maximum or near-maximum yields of beans were obtained from applications of 24 pounds of K_2O , 72 pounds of N, and 80 pounds of P_2O_5 per acre. For potatoes, applications of 45 pounds of K_2O , 90 pounds of N, and 150 pounds P_2O_5 per acre gave maximum or near-maximum yields.

EXPERIMENTS AT TENNESSEE VALLEY SUBSTATION. Fertilizer studies with a number of vegetable crops were conducted at the Tennessee Valley Substation. The soil is a good grade Decatur clay. Results from the work with potatoes, sweetpotatoes, and cabbage are given in Table 16.

Applications of 90 pounds K_2O per acre, 60 pounds N, and 150 pounds P_2O_5 gave maximum or near-maximum yields of Irish potatoes. Treatments of 30 pounds of K_2O , 40 pounds of N, and 100 pounds of P_2O_5 resulted in maximum or near-maximum yields of sweetpotatoes; while 72 pounds of K_2O , 108 pounds N, and 120 pounds P_2O_5 gave maximum or near-maximum yields of cabbage.

By increasing the application of 4-10-6 fertilizer from 1,500 to 2,250 pounds (equivalent of 1,500 pounds of 6-15-9) the yield of potatoes was increased from 144 bushels to 170 bushels per acre.

	Yields	per acre	Fertilizer	Yields per acre Cabbage (3-yr. av.)		
Fertilizer grades ¹	Potatoes (5-yr av.)	Sweetpotatoes (5-yr av.)	grades [–] applied at 1,200 pounds –			
Bimach	Total	Total	per acre ¹	Total		
N-P-K	Bushels	Bushels	N-P-K	Tons		
4-10-6	144	333	6-10-6	6.84		
4-10-0	131	279	6-10-0	6.30		
4-10-3	142	286	6-10-3	6.87		
4-10-9	156	293	6-10-9	7.78		
4-10-6	149	282	6-10-6	7.99		
0-10-6	72	276	0-10-6	3.96		
2 - 10 - 6	126	285	3-10-6	6.69		
6-10-6	156	289	9-10-6	8.61		
4-10-6	153	315	6-10-6	6.34		
4-0-6	111	272	6-10-6	7.60		
4 - 5 - 6	138	293	6-0-6	3.03		
4 - 15 - 6	152	284	6-5-6	6.38		
4-10-6	152	305	6-15-6	8.03		
4-10-6 ²	136	307	6-10-6	8.17		
4-10-6 ³	147	310	All manure			
6-15-9	170	315	$6-10-6 + C_{2}$			
4-10-6	144	336	9-15-9	8.07		

TABLE 16. YIELD OF DIFFERENT VEGETABLE CROPS ON DECATUR SOIL FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, TENNESSEE VALLEY SUBSTATION, BELLE MINA, ALABAMA

¹ Potatoes were fertilized at the rate of 1,500 pounds per acre and sweetpotatoes at 1,000 pounds. All phosphorus as superphosphate, all potash as muriate of potash, and one-third of nitrogen as ammonium sulphate were applied at time of planting; two-thirds of nitrogen as nitrate of soda was applied after planting.

² All nitrogen as cottonseed meal was applied before planting.

³ One-third of nitrogen as cottonseed meal was applied before planting.

* Stable manure was applied at rate of 20 tons per acre.

⁵ Lime added.

EXPERIMENTS AT SAND MOUNTAIN SUBSTATION. Studies on the Sand Mountain Substation were conducted on a Hartsells sandy loam soil of fair fertility. Results of fertilizer experiments with sweetpotatoes, potatoes, and cabbage are given in Table 17.

On this soil maximum or near-maximum yields of sweetpotatoes were obtained from applications of 90 pounds of K₂O, 60 pounds of N per acre, and zero phosphorus. Applications of 90 pounds of K₂O, 90 pounds of N, and 150 pounds of P₂O₅ per acre for potatoes resulted in maximum or near maximum yields. Treatments of 72 pounds of K₂O, 108 pounds of N, and 180 pounds of P₂O₅ per acre gave approximately the highest yields of cabbage.

		Yields 1	per acre	Fertilizer	Yields per acre	
Fertilizer grades ¹		otatoes . av.)		atoes . av.)	grades applied at _1200 pounds	Cabbage (2-yr.av.)
	No. 1's	Total ²	No. 1's	Total ²	per acre ¹	Total
N-P-K	Bu.	Bu.	Bu.	Bu.	N-P-K	Tons
4-10-6 4-10-0 4-10-3 4-10-9	$165 \\ 121 \\ 159 \\ 167$	220 167 214 231	$110 \\ 72 \\ 103 \\ 111$	133 97 127 134	6-10-6 6-10-0 6-10-3 6-10-9	$\begin{array}{c} 8.50 \\ 6.44 \\ 7.27 \\ 7.66 \end{array}$
0-10-6 4-10-6 2-10-6 6-10-6	102 149 151 185	149 200 201 236	$27 \\ 93 \\ 84 \\ 125$	$\begin{array}{r} 48 \\ 115 \\ 103 \\ 148 \end{array}$	6-10-6 0-10-6 3-10-6 9-10-6	$\begin{array}{c} 6.79 \\ 1.25 \\ 5.76 \\ 8.84 \end{array}$
$\begin{array}{c} 4-0-6\\ 4-5-6\\ 4-10-6\\ 4-10-6\\ 4-15-6\end{array}$	$167 \\ 165 \\ 152 \\ 133 \\ 151$	224 223 201 186 204	53 98 101 106 108	70 123 124 131 132	$\begin{array}{c} 6-10-6 \\ 6-10-6 \\ 6-0-6 \\ 6-5-6 \\ 6-15-6 \end{array}$	$\begin{array}{r} 8.49 \\ 7.14 \\ .78 \\ 7.30 \\ 9.47 \end{array}$
4-10-6 [*] 4-10-6 [*] 6-15-9 4-10-6	151 156 191 150	207 208 239 195	122 118 111 93	166 143 135 116	6-10-6 All manu: 6-10-6 9-15-9	9.48 re ⁵ 7.36 10.50 12.35

TABLE 17. YIELDS OF DIFFERENT VEGETABLE CROPS ON HARTSELLS SOIL FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, SAND MOUNTAIN SUBSTATION, CROSSVILLE, ALABAMA

¹ Sweetpotatoes were fertilized at the rate of 1,000 pounds per acre and potatoes at 1,500 pounds. All phosphorus as superphosphate, all potash as muriate of potash, and one-third of nitrogen as ammonium sulphate were applied at time of planting; two-thirds of nitrogen as nitrate of soda was applied after planting. ² Total includes only No. 1's and No. 2's.

³ All nitrogen as cottonseed meal was applied before planting.

One-third of nitrogen as cottonseed meal was applied before planting. ⁵ Stable manure was applied at rate of 20 tons per acre.

When the application of the 4-10-6 fertilizer was increased from 1,000 pounds to 1,500 pounds per acre (equivalent to 1,000 pounds of 6-15-9), yields of No. 1 sweetpotatoes were increased from 150 to 191 bushels per acre. Similarly, the yield of cabbage was increased from 10.50 to 12.35 tons per acre by increasing the application of 6-10-6 fertilizer from 1,200 to 1,800 pounds per acre (equivalent to 1,200 pounds of 9-15-9).

EXPERIMENTS AT STATE FARM. Fertilizer studies at the State Farm, Atmore, were confined to sweetpotatoes. The soil is a fertile Red Bay sandy loam, which had received liberal applications of fertilizers in previous years. Results are presented in Table 18.

On this well fertilized and productive soil, quite satisfactory yields of the Triumph and the Porto Rico varieties were obtained even when any one of the three elements was omitted. The yield of the Porto Rico variety was not increased by applications of potash although the yield of Triumph was increased somewhat by 40

Fertili	zer	Yields per acre					
Grades ¹	Amount per	Porto I (3-year av	Triumph (2-yr. av.)				
	acre	Marketable	Total	Total			
N-P-K	Pounds	Bushels	Bushels	Bushe ls			
6-10-0	1,000	298	402	310			
6-10-4	1,000	272	404	338			
6-10-6	1,000	299	411	316			
6-10-8	1,000	309	429	336			
0-10-6	1,000	252	362	317			
4-10-6	1,000	303	421	343			
6-10-6	1,000	297	424	305			
8-10-6	1,000	288	407	358			
10-10-6	1,000	272	390	351			
6-0-6	1,000	271	399	334			
6-6-6	1,000	275	402	345			
6-8-6	1,000	290	411	323			
10-10-6	600	302	415	306			
6-10-6	600	267	369	332			
6-10-6	1,200	284	415	337			
6-10-6	800	298	408	321			
12-10-6	600	282	390	332			

TABLE 18. YIELDS OF SWEETPOTATOES ON RED BAY SOIL FROM APPLICATIONS OF DIFFERENT FERTILIZER GRADES, FIELD PLOTS, STATE FARM, ATMORE, ALABAMA

¹All phosphorus as superphosphate, all potash as muriate of potash, and one-third of nitrogen as ammonium sulphate were applied at planting; two-thirds of nitrogen as nitrate of soda was applied as side application. pounds per acre of $K_{2}O$. An application of 40 pounds per acre of N increased the yield of the Porto Rico variety 51 bushels and the yield of the Triumph variety 26 bushels per acre. Applications of phosphorus did not materially increase the yield of either variety.

Increasing the rate of a 6-10-6 fertilizer from 600 to 1,200 pounds per acre increased the yield of the Porto Rico variety from 369 bushels to 415 bushels per acre. The yield of the Triumph variety was not increased by the larger application.

EXPERIMENTS AT BREWTON AND MONROEVILLE EXPERIMENT FIELDS. Fertilizer experiments with sweetpotatoes were conducted on both the Brewton and Monroeville Experiment Fields. The soil at Brewton is a Norfolk sandy loam, while that at Monroeville is an Orangeburg sandy loam soil. Results are presented in Table 19.

Ferti	lizer	Yields per acre				
Grades 1	Rate per acre	Brewton Norfolk soil (7-year average) Total	Monroeville Orangeburg soil (7-year average) Total			
N-P-K	Pounds	Bushels	Bushels			
4-10-6	600	141	276			
4-10-0	600	76	244			
4-10-4	600	134	279			
4-10-8	600	144	291			
4-10-6	600	150	291			
0-10-6	600	105	214			
2-10-6	600	140	268			
6-10-6	600	155	276			
4-10-6	600	160	264			
4-0-6	600	123	266			
4-8-6	600	154	280			
4-12-6	600	145	278			
4-10-6	600	160	275			
0-0-0	0	74	178			
4-8-6	800	172	284			
4-8-6	400	138	251			
4-10-6	600	163	276			

TABLE 19. YIELDS OF TRIUMPH SWEETPOTATOES FROM APPLICATIONS OF
DIFFERENT FERTILIZER GRADES, FIELD PLOTS, BREWTON AND
Monroeville Experiment Fields

¹ All fertilizer applied at time of planting.

40

Yields of sweetpotatoes at Monroeville were about twice as high as those at Brewton. Maximum or near-maximum yields of sweetpotatoes were obtained at Brewton from applications of 36 pounds of $K_{2}O$, 24 pounds of N, and 48 pounds of $P_{2}O_{5}$ per acre. An application of 36 pounds per acre of $K_{2}O$ increased the yield 74 bushels per acre over that of the zero-potash treatment; 24 pounds of N increased the yield 55 bushels over the zero-treatment; and 48 pounds of $P_{2}O_{5}$ increased the yield 31 bushels per acre over the zero-phosphorus treatment.

Unfertilized sweetpotatoes yielded an average of 74 bushels per acre in a 7-year period at the Brewton Field. When 4-8-6 fertilizer was applied at 400-, 600-, and 800-pound rates, sweetpotatoes produced yields of 138, 154, and 172 bushels per acre, respectively.

At Monroeville, maximum or near-maximum yields were obtained from applications of 36 pounds of K₂O, 36 pounds of N, and 48 pounds of P₂O₅ per acre. An application of 36 pounds of K₂O per acre gave a yield increase of 47 bushels per acre; 36 pounds of N resulted in a 62-bushel increase, whereas the increase from phosphorus was 14 bushels.

MISCELLANEOUS FERTILIZER EXPERIMENTS

Two studies were conducted at the Main Station, Auburn, dealing with methods of applying fertilizers and with the effects of manure on the fertilizer requirements of vegetable crops. Studies at the Main Station, and at the Gulf Coast Substation, Fairhope, provide data on effects of residual phosphorus and potash.

Methods of Application of Fertilizers

Experiments to determine value of dividing fertilizer materials and value of a complete fertilizer when used with and without animal manure were conducted on a Chesterfield (loamy-sand) soil of low fertility.

The study included both spring and fall crops. Yields of all crops on this soil were low, especially in the spring. Results of chemical tests made after heavy spring rains showed that most of the nitrogen had been lost.

Three treatments were used, each with and without manure. In one treatment, all fertilizer materials were added 10 days before planting. In a second treatment, one-fourth of the nitrogen plus the full amounts of phosphorus and potash were applied before planting, the remaining nitrogen being applied in three equal applications at 2-week intervals after the crops were up to a stand. One fourth of the complete fertilizer was added before planting in the third treatment, and the other three-fourths were added in three equal applications at 2-week intervals after stands were established. Results are presented in Table 20.

Without manure, spring crops on the light soil used in the study practically failed when all fertilizer materials were applied before planting. Dividing the nitrogen increased the yield of carrots almost 3 times, increased the yield of beets about 15 times, and the yield of mustard about 3 times. Somewhat further increases were obtained by dividing the complete fertilizer. Manure increased materially the yield of each crop with each method of applying the fertilizer materials. Satisfactory yields of spring crops were not obtained until manure was used and the nitrogen or complete fertilizer was divided into several applications.

Yields were affected less in the fall by dividing the fertilizer materials. Manures, however, doubled the yields of fall crops receiving comparable fertilizer treatments.

		Total yields per acre							
Methods of fertilizer	Manure	S	pring cro	ps	Fall crops				
appli- cations ¹	per acre ²	Carrots (4-yr. av.)	Beets (4-yr. av.)	Mustard (4-yr. av.)	Tender- greens (4-yr. av.)	Turnips (4-yr. av.)	Radishes (2-yr. av.)		
	Tons	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds		
(1)	0	2,102	43	2,026	10,872	15,384	4,243		
(2)	0	6,173	663	6,231	10,594	16,896	6,624		
(3)	0	7,675	1,051	7,263	12,067	17,386	8,784		
(1)	12	7,416	3,802	3,648	20,712	32,185	12,231		
(2)	12	14,588	9,235	12,244	22,449	31,565	11,261		
(3)	12	15,984	10,752	12,504	$22,\!179$	32,813	11,386		

TABLE 20. CROP RESPONSE TO DIVIDED APPLICATIONS OF FERTILIZER MATERIALS ON CHESTERFIELD SOIL, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹Fertilizer (6-8-4) applied at rate of 1,500 pounds per acre to each of the spring and fall crops:

- All fertilizer applied before planting.
 All phosphorus and potash, and one-fourth nitrogen applied before planting, and three-fourths nitrogen applied in three equal applications at 2-week intervals after crops were up to stand. (3) One-fourth of complete fertilizer applied before planting, and
- three-fourths applied in three equal applications at 2-week intervals after crops were up to stand.
- ² Manure applied in August of each year.

42

Nitrogen, Phosphorus, and Potash Requirements of Vegetable Crops on Thin Soil Receiving Light Application of Manure

Results of other experiments had shown that satisfactory yields of some crops grown on Chesterfield soil of low fertility were not produced irrespective of the amounts of commercial fertilizer used. However, the addition of a small amount of manure resulted in a satisfactory yield. To determine how nitrogen, phosphorus, and potash requirements of crops were affected by manure, an experiment was conducted on this soil.

From 1938 to 1944 regular commercial fertilizer studies were conducted in which no manure was added. Beginning in 1945, stable manure at the rate of 6 tons per acre was included in all treatments.

Prior to 1947, two-thirds of the nitrogen and all of the phosphorus and potash were applied under the crops before planting; the remaining one-third of nitrogen being applied 3 to 4 weeks after the crop was up to a stand. Beginning in 1947, one-half of the P_2O_5 and K_2O and one-third of the N were applied before planting and a similar amount applied as a side application after planting; the remaining one-third of the nitrogen was applied as a second side application.

In this experiment, Irish potatoes, beets, and carrots were grown as spring crops, and turnips and kohlrabi as fall crops. Yields of the five vegetable crops from different rates of nitrogen, phosphorus, and potash are given in Table 21.

From the data it may be observed that, in general, the yield of each crop was much higher after the manure was applied than before. Seasonal conditions and different methods of applying the complete fertilizer, in all probability, played some part in causing these differences. Quantitative comparisons, therefore, of yields before and after applying manure are not warranted. Yields, however, ranged from about 50 to 400 per cent higher after the manure was applied than before. This was true regardless of the method used in applying the complete fertilizer.

The 6 tons of manure apparently provided sufficient amounts of potash for maximum or near-maximum yields. Increases in yield from different rates of potash applications averaged about 39 per cent without manure and about 11 per cent with manure. With most crops the greatest increases in yields were from the first increment of potash.

	Total yields p							oer acre					
T	reatment	Potatoes		Beets		Carrots		Kohlrabi		Turnips			
	1,000	Manure ²		Manure ²		Man	Manure ²		Manure ²		Manure ²		
No. pounds	pounds per acre ¹	None, 2 crops 1940-43	6 tons, 1 crop 1946	None, 1 crop 1939	6 tons, 1 crop 1948	None, 2 crops 1941-44	6 tons, 1 crop 1947	None, 2 crops 1939-42	6 tons, 1 crop 1945	None, 1 crop 1943	6 tons, 1 crop 1946	6 tons, 1 crop ¹ 1948	
	N-P-K	Bushels	Bushels	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds	
1 2 3 4	6-10-0 6-10-4 6-10-6 6-10-8	78 100 102 95	$135 \\ 130 \\ 140 \\ 133$	2,137 3,750 3,270 3,545	7,610 6,174 8,294 7,213	3,601 4,516 4,327 4,128	14,611 15,994 17,696 15,827	3,037 4,666 4,963 4,861	7,610 8,787 8,518 8,858	4,416 6,259 4,531 6,163	$\begin{array}{r} 18,822\\22,016\\23,117\\24,563\end{array}$	28,454 29,107 30,867 30,573	
5 6 7 8	0-10-6 2-10-6 4-10-6 8-10-6	39 63 83 110	$107 \\ 118 \\ 123 \\ 146$	358 1,760 3,014 5,318	3,488 5,645 7,782 8,096	2,365 3,757 3,927 4,326	7,386 11,635 14,650 19,469	1,043 2,528 3,664 5,392	2,995 4,954 6,823 8,934	3,226 2,035 3,648 5,952	8,864 12,403 19,558 25,850	7,168 16,218 23,962 31,610	
9 10 11 12	6-0-6 6-6-6 6-8-6 6-12-6	56 100 94 100	103 133 134 129	2,503 4,102 4,269 3,456	7,277 7,821 7,616 7,283	2,883 4,307 5,092 3,975	12,794 17,850 17,536 18,131	$2,131 \\ 4,585 \\ 4,371 \\ 4,714$	7,264 8,839 8,678 9,452	$1,670 \\ 3,264 \\ 5,126 \\ 4,070$	$\begin{array}{c} 17,754 \\ 23,213 \\ 21,523 \\ 23,317 \end{array}$	28,685 31,200 31,270 30,790	
13 14	4-6-4 9-15-9	79 114	133 140	3,123 4,339	6,592 8,845	3,907 3,905	14,368 18,784	3,514 4,086	8,063 8,281	3,898 7,776	19,834 29,600	25,306 33,747	

TABLE 21. FERTILIZER GRADES STUDIES ON POOR SANDY SOILS WITH AND WITHOUT MANURE, FIELD BINS, MAIN STATION, AUBURN, ALABAMA

¹Beginning in 1947, the complete fertilizer was divided, one-half P_2O_5 and K_2O , and one-third of nitrogen being applied under the crop two weeks prior to planting and similar amounts applied 3 to 4 weeks after planting; the remaining onethird of nitrogen was applied as a second side application. Before 1947, all P_2O_5 and K_2O , and two-thirds of the nitrogen were applied before planting; one-third of the nitrogen was applied as a side application.

² Manure was applied first in 1945.

ALABAMA AGRICULTURAL EXPERIMENT STATION

4

With three exceptions, increased yields of all crops resulted from each additional increment of nitrogen — from lowest to highest applications. This was true of yields from treatments with or without manure. While relative increases from nitrogen without manure were somewhat larger than those from nitrogen plus manure, the actual increases were higher when manure was included.

The relative increases in yields of the several crops resulting from adding 60 pounds per acre of P_2O_5 over the no-phosphorus application ranged from approximately 50 to 120 per cent without manure, and from approximately 8 to 30 per cent with manure. For most crops, the 100-pound rate of P_2O_5 was adequate irrespective of application of manure.

Residual Effects of Fertilizer Materials

Fertilizer materials may exert a considerable influence on crops following those to which the materials were applied. This is an important point in fertilizing truck crops grown on the same land for many years. The residual effects of nitrogen, phosphorus, and potash differ greatly. The form in which the element is applied, especially of nitrogen, likewise influences residual effects. The residual effects of phosphorus and potash are more pronounced than those of nitrogen.

Midgley (12), Scarseth, and Tidmore (14, 15) have shown that large quantities of phosphorus are fixed in the soil. Other investigators (2, 3, 8) have shown that plants may utilize much of this fixed phosphorus at later periods. A companion report to this bulletin (21) presents considerable evidence on the accumulation of phosphorus in soil and its later availability to plants. An earlier report presented data on the residual effects of phosphorus on yields of Irish potatoes at the Gulf Coast Substation (19).

Data in Tables 13 and 14 give some evidence on residual effects of phosphorus. Sweetpotatoes on new ground (Table 14) produced a total of 92 bushels per acre without phosphorus and 219 bushels from 60 pounds per acre of P_2O_5 . On old land that had received phosphorus applications in past years, sweetpotatoes produced 366 bushels per acre without phosphorus and 353 bushels from 60 pounds per acre of P_2O_5 . Cabbage, (Table 13) on land that had received no phosphorus, produced 0.26 ton per acre without phosphorus and 21.13 tons from 150 pounds per acre of P_2O_5 . On old land previously receiving phosphorus, the yield was 10.56 tons per acre without phosphorus and 15.75 tons from 150 pounds of P_2O_5 . Irish potatoes (Table 14) on new ground yielded 28 bushels per acre from no-phosphorus treatment, and 175 bushels from 150 pounds per acre of P_2O_5 . On old land without phosphorus, the yield was 109 bushels; and from 150 pounds of P_2O_5 , it was 183 bushels per acre.

Residual effects of potash also continue for many years (Tables 13 and 14). The yield of cabbage on land that had received no potash was increased from 8.21 to 21.41 tons per acre by an application of 60 pounds per acre of K_2O . On old land previously fertilized, the yield was 16.12 tons per acre from the no-potash treatment and 16.22 tons on the plot receiving 60 pounds per acre of K_2O . Potatoes (Table 14) on new ground produced only 72 bushels without potash, and 160 bushels from 90 pounds per acre of K_2O . On old land, however, the yield was 152 bushels per acre without potash and 180 bushels from 60-pound application of K_2O .

Residual effects of nitrogen are limited and of short duration. At the Main Station, Auburn, on a light Chesterfield soil, yields were increased in the spring from 2 to 15 times by dividing the application even to a single crop (Table 20).

SUMMARY

Results of fertilizer experiments with vegetable crops at the Main Station, Auburn, and at seven outlying points in the State are reported in this bulletin. Nine soil types and 27 different crops were involved in the study. The studies were confined to rates of nitrogen, phosphorus, and potash and to different rates and grades of fertilizers.

A major portion of the work was done at the Main Station in field bins filled with soils shipped in from several agricultural sections of the State. A few of the experiments at the Main Station and all of those at outlying points were conducted in field plots.

Only one crop was grown each year in field plots; either two or three successive crops were grown in field bins.

In all experiments certain rates of nitrogen, phosphorus, and potash considered adequate to measure the requirements of each crop or group of crops were established. The full amounts of nitrogen were applied to each crop. Where two successive crops were grown on the same land within a year, one-half of the full amounts of phosphorus and potash was applied to each crop; and where 3 successive crops were grown, one-third was applied. The choice of this method of application, based on earlier experiments, proved to be fortunate.

On soils that had received no fertilizers or low applications in past years, phosphorus limited production more completely than did the other two elements. Nitrogen was second, while potash seemed adequate in most soils to give 80 per cent of maximum yields without an application.

Small applications of phosphorus and potash more quickly satisfied requirements of vegetable crops for maximum or nearmaximum production than did nitrogen.

Crops were found to differ greatly in their phosphorus requirements and in the amounts required to give maximum or nearmaximum yields on different soils.

Vegetable crops as a group on most soils continued to give increased yields from increased applications of nitrogen up to 120 pounds per acre. Yields, however, were generally 90 per cent or more of the maximum when 90 pounds per acre of N was added.

Considered as a group, vegetable crops responded to potash only to a limited extent. In general, soils apparently supplied enough potash to give 80 to 90 per cent of a maximum yield without the addition of $K_{2}O$. Some crops on some soils gave about as high yield without potash as with potash additions. Most crops, however, gave increases from potash additions that justified the cost several times.

Most crops on most soils gave increased yields from applications of nitrogen, phosphorus, and potash worth many times the cost of the materials applied. Even small increases in yields returned several times the cost of the material.

Dividing the nitrogen into several applications increased several times the yield of spring-grown vegetables on light, sandytype soil.

Phosphorus and potash applications affected the yield of crops for many years, whereas nitrogen effects were of short duration, especially on light soils.

At the Gulf Coast Substation on newly cleared land that had never been fertilized, complete or nearly complete failure resulted when no phosphorus was added with all crops except sweetpotatoes. On the other hand, old land fertilized only moderately for several years produced fair yields on no-phosphorus plots. Response to potash on the new land was relatively low in comparison with responses to phosphorus and nitrogen.

On land at the State Farm, Atmore, that had been heavily fertilized in recent years, high yields were obtained without the application of either phosphorus, nitrogen, or potash.

Response to the three elements at other points in the State varied according to the crop, soil, and past fertilizer treatment. In general, the largest response to applications were obtained from nitrogen, second largest from phosphorus, and third from potash.

LITERATURE CITED

- (1) ALBRECHT, WILLIAM A. Loss of organic matter and its restoration. U. S. Dept. of Agr. Yearbook. 347-361. 1938.
- (2) BRYAN, O. C. The accumulation and availability of phosphorus in old citrus grove soils. Soil Sci. 36: 245-259. 1933.
- (3) BUSHNELL, J. Possibility of reducing the proportion of phosphate in fertilizers applied to sandy soils. Amer. Potato Jour. 20: 153-155. 1943.
- (4) CAROLUS, R. L. Chemical estimation of the weekly nutrient level of a potato crop. Amer. Potato Jour. 14: 141-153. 1937.
- (5) COOPER, H. P., SCHREINER, OSWALD, AND BROWN, B. E. Soil potassium in relation to soil fertility. U. S. Dept. of Agr. Yearbook, 397-405. 1938.
- (6) COOPER, J. R. AND WATTS, V. M. Fertilizers for Irish potatoes, sweetpotatoes, tomatoes, muskmelons, and watermelons. Ark. Agr. Expt. Sta. Bul. 333. 1936.
- (7) FUDGE, J. F. The influence of various nitrogenous fertilizers on the availability of phosphate and potassium. Ala. Agr. Expt. Sta. Bul. 227. 1928.
- (8) HAWKINS, A. Nutrient status of soils in commercial potato producing areas of the Atlantic and Gulf Coast. III. Plant response to fertilization. Soil Sci. Soc. Amer. Proc. 10: 252-256. 1945.
- (9) JENNY, HANS. A study of the effects of climate upon the nitrogen and organic content of the soil. Mo. Agr. Expt. Sta. Bul. 152. 1930.
- (10) LLOYD, J. W. AND STRUBINGER, L. H. Fertilizing twenty-five kinds of vegetables. Ill. Agr. Expt. Sta. Bul. 346. 1930.
- (11) MACK, W. B. Fertilization of truck crops in rotation. Penn. Agr. Expt. Sta. Tech. Bul. 210. 1927.
- (12) MIDGLEY, A. R. Phosphate fixation in soils. A critical review. Soil Sci. Soc. Amer. Proc. 5: 24-30. 1940.
- (13) PIERRE, W. H. Phosphorus deficiency and soil fertility. U. S. Dept. of Agr. Yearbook, 377-396. 1938.
- (14) SCARSETH, G. D. AND TIDMORE, J. W. The fixation of phosphates by clay soils. Jour. of Amer. Soc. Agron. 26: 152-162. 1934.
- (15) _____. The fixation of phosphates by soil colloids. Jour. of Amer. Soc. Agron. 26: 138-151. 1934.
- (16) ______. The machanism of phosphate retention by natural alumino-silicate colloids. Jour. of Amer. Soc. Agron. 27: 596-616. 1935.

- (17) SKINNER, J. J. AND RUPRECHT, R. W. Fertilizer experiments with truck crops. Fla. Agr. Expt. Sta. Bul. 218. 1930.
- (18) WARE, L. M. Fertilizer requirement of the potato on different soils of Alabama. Amer. Potato Jour. 16: 259-266. 1939.
- (19) _____, BROWN, OTTO, AND YATES, HAROLD. Residual effects of phosphorus on Irish potatoes in South Alabama. Proc. Amer. Soc. Hort. Sci. 41: 265-269. 1942.
- (20) ______ AND JOHNSON, W. A. Use of Field Bins for Experimental studies with vegetable crops. Proc. Auburn Conference on Statistics Applied to Research (etc.). 54-60. 1948.
- (21) ______. Phosphorus studies with vegetable crops on different soils. Ala. Agr. Expt. Sta. Bul. 268. 1949.
- (22) ______. Nitrogen requirements of different groups of vegetables. Proc. Amer. Soc. Hort. Sci. 44: 343-345. 1944.
- (23) WHITE, T. H. AND BOSWELL, V. R. Amounts of fertilizer and manure required for maintenance of fertility for vegetable production. Md. Agr. Expt. Sta. Bul. 309. 1929.