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Introduction Transport Maps Karhunen-Loeve Expansion
Let e Transport maps are measure preserving e When the covariance kernel ot a random field is
u=G(x;0()) transforms. known, the Kosambi-Karhunen-Loeve theorem
and consider the prob- e Given measures p and v, find a map T s.t. ocuarantees the representation
fnction 10 mothem e e e 01(w) = ) + 2 VAo
. T minE[l|lc - T st v=Tp (1) | s
cal model, given u an I | where ¢;’s are the orthogonal eigenfunctions and
observation of solution to the model at point x [1). * When the measure y has no atoms, problem (1) \;’s are the corresponding eigenvalues of the
has been shown to have a unique and monotone integral equation

solution [4].

[.Ct,8)pi(s)ds = Ng(t),  teT

We aim to:

o Find a representation of 6(&) that captures the Important Result

stochasticity in wu.

McCann [1995]:

Given that  and v are Borel probability meausres on R"™ with © vanishing on subsets of R™ having
Hausdorff dimension less than or equal to n — 1. Then the optimization problem (1) has a uniquely
determined p-almost everywhere solution. This map is the gradient of a convexr function and is

Background therefore monotone [5]

e Learn a low dimensional representation of G,
the observation operator via transport maps.

e When () is rough and G is a forward solver,

FEM requires high resolution to capture fine Generalized Polynomial Chaos Results
details in w.

Expansion
Uniform True distribution vs PC distribution Exponential True distribution vs PC distribution
e (Generalized polynomial chaos are orthogonal - 00
polynomials w.r.t to the standard probability 0 300
This leads to computational complications and distributions. N 20
intractability:. Distribution polynomials | density o 100 -
o Techniques such as midpoint (MP), spatial Gaussian Hermite | p(¢) = J5ze ar S T
. . . A a—1 _—A\
averaging (SA), shape function (SF) and series Gamma(a, ) | Laguerre | p(¢&) = gy (M) e Lo
- I - - (1-9)(1+¢)"
expansion (SE) are used to homogenize the Beta(a, 3) Jacobi | p(§) = serET B AT 05 - —
random field [2] Uniform(a, 3) | Legendre | p(§) = ﬁ S —
, 0.6 - S ——
e The method of moments approach easily leads to Arcsin Chebyshev | p(&) = —-! -
. 1—£2 |
the long-standing well known unsolved closure : 04 — mc mean soln
= mc 95th perc
problem |3]. Figure 1:Wiener-Askey Scheme 021 ) — it pere
=== pc sample soln
. . . . . L e === pc 95th perc
* When §(¢) is a random variable and is <1, u is o Cameron & Martin [1947] first proved the space e s -~ pe Sth perc

0 2 4 & 8 10

Figure 2:Soln of v/(x) = —0u(x)

also amenable to perturbation techniques. of the chaos polynomials is dense in LZ, for the

» Monte Carlo sampling is great but we have to case when the distribution is Gaussian.

wrestle with burn-out and slow convergence.

o Ernst etal [2012] extended this result to an Fig (2) compares a 5, 9 degrees chaos representation
If all existing methods are defied. what arbitrary distribution whose moment problem is for the parameter 68 & the solution w respectively
then is a way forwaré? | uniquely solvable. with 10, 000 Monte Carlo samples [6].
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Conclusion

e Most, if not all mathematical models depend on
certain random parameter(s)

e Successes in making inference from or validating
these models depend on how well the stochastic
information from these parameters are
propagated into the state variables

e We demonstrated that transport maps are
powerful and handy in this regard

e In progress, we are looking to leverage the
expressive power of Deep Neural Networks in
constructing transport maps

Contact Information

o Web:
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