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Definition of Function

> Afunction from aset X toaset y assigns to each element
of X exactly one element of v
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Using Simple Functions to Build Complex Ones

> Functions we learn in precalculus, calculus, etc
o polynomials

exponential

trigonometric

inverse

composite functions, etc
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Polynomial Functions

> Spline Interpolation
> Finite elements
> RelU activation function



Spline Basis

Let ¢; be the indicator function of [z;, ;1]

i) — {1, x € [x;, Tit1)

0, otherwise
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Spline Interpolation
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Finite Element Basis

> Finite elements method built on similar idea of spline basis
> Basis could be constant, linear, quadratic, or higher order piecewise poly

Piecewise-linear Basis Function ¢;
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Finite Element Approximation

> Goal is to solve boundary value problems, say
—V - (¢(z)Vu) = f(z), z €,
u=0, x € 0N
> Discretization of the form

n

Gz = Zc,;qb,-(:c), ¢i(x) € V"

is assumed, where y*, spanned by ¢;, is a finite dimensional
approximation of the unknown infinite dimensional space.

Differential Form == Weak Form == Discretization == Linear System




ReLU Activation

> The RelLU activation function is defined as

z, >0

¢(x) = max(0,z) = {

0, otherwise

> |t can create sufficient nonlinearities in neural network
layers to learn virtually any mapping



Neural Networks

> Made up of composition of affine functions with activations creating nonlinearity where
necessary

f(x) = (Lo ps0ps0n)(x)
¢i(z) = os(Wizx + by)

3 05 is one of sigmoid, tanh, ReLU, linear, etc
functions

O ¢ is mostly linear, sigmoid, softmax depending if a
regression, binary classification, or multiclass
classification problem

> (Can take any tensor input (CNN, RNN, VAE, etc)

Input Layer € Rs Hidden Layer € R® Hidden Layer € R4 Output Layer € R?

10




Trigonometric Functions

> Very well applicable in
o Fourier transform
o Activation functions (sinc)
o Anywhere periodicity is desired
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Exponential Functions

Exponential growth and decay

Density

Kernels (SVM, RKHS, covariance)
Activation functions (sigmoid, softmax)
Wavelets
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Inverse Functions

> Activation functions (arctan)
> Loss function (e.g. log in cross entropy, KL divergence)
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Function Discovery

Three main ways of discovering new functions

o Calculus of variations
o Statistics
o Differential equations

Calculus of variations date back to Euler and Lagrange, statistical methods
and differential equations have rich history as well, but part of state of the
art
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Calculus of Variations

> The Classical Isoperimetric Problem: petermine a curve with a length

of § that connects points A to B,

line segment AB,

ds B

such that when combined with the

forms the largest possible enclosed area.

Length of curve:

Area to be maximized:

A= [lb y(x)dx

maximize
yeF

/aby(x)dfv
8.t /ab V1+ () ’de =s
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Euler-Lagrange Equations

The maximizer of the constrained optimization is a section of
the circle

(@ =) +(y—ea)? =1?

which is a solution to the Euler-Lagrange (differential) equation

B 4 [0 —
a—yﬁ(x,y,y) - (8—y,£(w, Y,y )) =0

The isoperimetric problem is solved by a function.
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More on Calculus of Variations

The arclength problem
Brachistochrone problem
Fermat's principle

Shape of a hanging rope
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Statistical Methods

Find equation of the line which passes through the points: (0,0) and (2, 4x)

(slido only)
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Question (slido only)

As a mathematician, in one sentence, describe =«
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A Line Through 7 Points?

40

35

30

25

15

10

A\

Given a pencil, a ruler, and a pair
of compass
Draw many circles and measure
o the circumference (¢)
o the radius (z)
Whatis C'/x?
Before 7 was discovered,
nobody knew C'/zis constant
However, given a circle, one
could easily measure its radius
and circumference

=)

Abundance of Data
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Yes, Using Tools from Linear Algebra

=6 +&m ” 1 2

Y2 = &o + 102 - (5 _ 1 a9 £o
s s ‘ [ \&

Un =& +&1Tn Yn L @

m=) How to Solve Af = 1 ?
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Moore-Penrose Inverse (Newton Method)

> The Moore-Penrose Pseudo Inverse A+ = (AT A)~1 AT satisfies £ = ATy
as a minimizer of the optimization problem

minimize ||A¢ — y||*
£ER?

> A dual formulation of the minimization problem is

maximize p(y|&, x)
EER?

the maximum likelihood estimate, where

y=&a+e e~N(0,0%

and & has 1 in its first dimension.
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A Line Through 7 Points
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Moore-Penrose Inverse Sensitive to Outliers
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Methods of Solving Least Squares Problems

Linear Least Squares:

> Moore-Penrose Inverse
> Newton Method

Nonlinear Least Squares:

Gradient Descent
Gauss-Newton Method
Levenberg-Marquardt method
Stochastic Gradient Descent

VYVY
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Remarks

> Errors encountered in m estimation are mostly parallax error

>

>

Parallax errors can be minimized by statistical averages, but pose
uncertainties in measurements

In heterogeneous media such as composites, geological media, gels,
foams, and cell aggregates, these uncertainties could take any
distribution, and in fact, could be undetermined useful material
properties

An accurate description of a measured value would as well characterize
uncertainties in the obtained value
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Differential Equations

> The Euler-Lagrange equation is a differential equation

> Rates are ubiquitous in day to day life
o speed

acceleration

reaction rate

power

inflation rate

tax rate

unemployment rate

birth rate

interest rate

marginal

> More rates from Newton's laws and conservation laws in the natural and
physical sciences

O 0O o0 o o o o0 o o
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Functions From Differential Equations

> (Consider the simple elliptic equation

—d‘;((x)@) (). xesz=[a,b]}

y(a) = ya, y(b) = s

where ¢ could be

o Young's modulus of a material
o Absolute permeability of rocks
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Data Driven Modeling

For any of these problems, ¢ is never known but {(z:,y:)}, are easily, and
in most cases, cheaply obtained

Finding y(z)from data is called data driven modeling

In certain community, ¢ is discovered through inverse problems

In general, £ = £(z,y) may be heterogeneous
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Regression

Close your eyes to the physical law and fit
y(x) = & i)
i=0

where ¢, s are elements of any suitable basis known to the researcher
such as {1,z,z%,--- ,z"}
Suffers

o inductive bias
o futile adventure if solution lives outside the span of ¢; ‘s
o prior knowledge of physical laws are not exploited

If solution lives in a subspace of the span of ¢, s, techniques such as PCA
are used to handle collinearity and dimensionality reduction
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>

Weak Form (FEM)

Let v € H(Q). Multiplying the differential form by ¢ and integrating
by parts gives

/ E(z)y vdr = / fodz for all v € H'(Q)
0 Q

H™(Q) :={ue L*(Q): d'ue L*(Q) forall iec[m]}
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Finite Element Approximation - Revisit

> Let V" be a finite dimensional subspace of H'(2) in which we seek an

approximate solution of the form
k

y(z) = y(e) = ) cidilz)
i=0
> Within the Galerkin framework, we assume v = ¢, € V*h . SO

k
;%/ﬁf(m)qﬁicﬁjd:c = /qubjda: vV j € [k]

simplifyingto Ac =b where a; = [{@)¢i¢idz and b; = [, fo;da
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Numerical Experiments

> With Q = (-1,1) £(x) = 1+ 0.5z, y(-1) = 0, y(1) = 2 the
load f(x) = —(2.5+2z) and 30 elements
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Neural Networks - Experiments

> We train a network of 3 fully connected layers, at 1000 sampled points, ReLU activation at the first
two layers, MSE loss

> Adam optimizer, learning rate of 0.0001
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— yx) N -
197 .
\\
P o
X
=
Input Layer € R? Hidden Layer € R1° Hidden Layer € R1° Output Layer € R?
0.5 -
Net (
0.0- (fcl): Linear(in
(fc2): Linear(i
‘ , ’ . . . . ‘ . (fc3): Linear(in
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 )
X

34




2.0~

10 -

y(x)

0.5 -

0.0 -

=0.5'~

Convergence Requires High Epoch

Epoch 2501

-1.00

-0.75

-0.50

-0.25

0.00
X

0.25

0.50

2.0-

15~

yix)

0.5 -

0.0 -

0.75

-1.00

1.00

-0.75

Epoch 2505

20-

10-

y(x)

0.5 -

0.0 -

=0.5-" 0 v ' v ] ) . i
-1.00 =0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

0.‘50 0.‘75 1.(I)0 35



Summary

We presented a brief trajectory of functions in mathematics, from
Euler-Lagrange to the state of the art machine learning models

Gave insight on where the “least of the leasts” are applied in day to day
life

Showed how functions are discovered from data via statistics and
differential equations

Made connections between statistics, differential equations and calculus
of variation

Whether you are interested in pure or applied mathematics, you are stuck
with functions

The next time you think of pressing a button to get you a cup of coffee, |
challenge you to think about the function behind the scene, no functions,
no automation



Thanks for your attention



