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Definition of Function
➢ A function from a set      to a set       assigns to each element 

of     exactly one element of 



Using Simple Functions to Build Complex Ones
➢ Functions we learn in precalculus, calculus, etc

○ polynomials
○ exponential
○ trigonometric
○ inverse 
○ composite functions, etc
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Polynomial Functions
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➢ Spline Interpolation
➢ Finite elements
➢ ReLU activation function



Spline Basis
Let     be the indicator function of              . 
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Spline Interpolation
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Finite Element Basis
➢ Finite elements method built on similar idea of spline basis
➢ Basis could be constant, linear, quadratic, or higher order piecewise poly
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Finite Element Approximation
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➢ Goal is to solve boundary value problems, say 

➢ Discretization of the form 

is assumed, where      , spanned by     , is a finite dimensional  
approximation of the unknown infinite dimensional space.

Differential Form    Weak Form Discretization   Linear System



ReLU Activation
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➢ The ReLU activation function is defined as

➢ It can create sufficient nonlinearities in neural network 
layers to learn virtually any mapping



Neural Networks
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➢ Made up of composition of affine functions with activations creating nonlinearity where 
necessary

➢ Can take any tensor input (CNN, RNN, VAE, etc)

❏   is one of sigmoid, tanh, ReLU, linear, etc 
functions

❏  is mostly linear, sigmoid, softmax depending if a 
regression, binary classification, or multiclass 
classification problem



Trigonometric Functions
➢ Very well applicable in

○ Fourier transform
○ Activation functions (sinc)
○ Anywhere periodicity is desired
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Exponential Functions
➢ Exponential growth and decay
➢ Density
➢ Kernels (SVM, RKHS, covariance)
➢ Activation functions (sigmoid, softmax)
➢ Wavelets
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Inverse Functions
➢ Activation functions (arctan)
➢ Loss function (e.g. log in cross entropy, KL divergence)
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Function Discovery
➢ Three main ways of discovering new functions

○ Calculus of variations
○ Statistics
○ Differential equations

➢ Calculus of variations date back to Euler and Lagrange, statistical methods 
and differential equations have rich history as well, but part of state of the 
art 
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Calculus of Variations

A

B

Length of curve: Area to be maximized:
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➢ The Classical Isoperimetric Problem: Determine a curve with a length 
of   that connects points A to B, such that when combined with the 
line segment AB, forms the largest possible enclosed area.



Euler-Lagrange Equations
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➢ The maximizer of the constrained optimization is a section of 
the circle

which is a solution to the Euler-Lagrange (differential) equation

➢ The isoperimetric problem is solved by a function.



More on Calculus of Variations
➢ The arclength problem
➢ Brachistochrone problem
➢ Fermat’s principle
➢ Shape of a hanging rope
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Statistical Methods
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Find equation of the line which passes through the points:          and            
(slido only)



Question (slido only)
As a mathematician, in one sentence, describe     
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A Line Through       Points?

➢ Given a pencil, a ruler, and a pair 
of compass 

➢ Draw many circles and measure
○ the circumference 
○ the  radius 

➢ What is           ?         
➢ Before     was discovered, 

nobody knew           is constant  
➢ However, given a circle, one 

could easily measure its radius 
and circumference

Abundance of Data
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Yes, Using Tools from Linear Algebra

How to Solve ?
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Moore-Penrose Inverse (Newton Method)
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➢ A dual formulation of the minimization problem is 

the maximum likelihood estimate, where

and      has 1 in its first dimension. 

➢ The Moore-Penrose Pseudo Inverse                              satisfies                  
as a minimizer of the optimization problem



A Line Through       Points
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Moore-Penrose Inverse Sensitive to Outliers
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Methods of Solving Least Squares Problems
Linear Least Squares:

➢ Moore-Penrose Inverse
➢ Newton Method

Nonlinear Least Squares:

➢ Gradient Descent
➢ Gauss-Newton Method
➢ Levenberg-Marquardt method
➢ Stochastic Gradient Descent
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Remarks

➢ Parallax errors can be minimized by statistical averages, but pose 
uncertainties in measurements

➢ In heterogeneous media such as composites, geological media, gels, 
foams, and cell aggregates, these uncertainties could take any 
distribution, and in fact, could be undetermined useful material 
properties

➢ An accurate description of a measured value would as well characterize 
uncertainties in the obtained value
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➢ Errors encountered in      estimation are mostly parallax error



Differential Equations
➢ The Euler-Lagrange equation is a differential equation
➢ Rates are ubiquitous in day to day life

○ speed
○ acceleration
○ reaction rate
○ power 
○ inflation rate
○ tax rate
○ unemployment rate
○ birth rate
○ interest rate
○ marginal

➢ More rates from Newton’s laws and conservation laws in the natural and 
physical sciences
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Functions From Differential Equations
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➢ Consider the simple elliptic equation

where      could be 

○ Young’s modulus of a material
○ Absolute permeability of rocks



Data Driven Modeling
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➢ For any of these problems,      is never known but                    are easily, and 
in most cases, cheaply obtained 

➢ Finding         from data is called data driven modeling

➢ In certain community,     is discovered through inverse problems

➢ In general,                     may be heterogeneous



Regression
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➢ Close your eyes to the physical law and fit

where     ‘ s are elements of any suitable basis known to the researcher 
such as 

➢ Suffers 
○ inductive bias
○ futile adventure if solution lives outside the span of       ‘s
○ prior knowledge of physical laws are not exploited

➢ If solution lives in a subspace of the span of     ‘s, techniques such as PCA 
are used to handle collinearity and dimensionality reduction



Weak Form (FEM)
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➢ Let                 . Multiplying the differential form by     and integrating 
by parts gives 



Finite Element Approximation - Revisit
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➢ Let       be a finite dimensional subspace of           in which we seek an 
approximate solution of the form

➢ Within the Galerkin framework, we assume                       . So

simplifying to                 where                                      and                 



Numerical Experiments
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➢ With                                                                                             ,  the 
load                                   and 30 elements 



Neural Networks - Experiments
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➢ We train a network of 3 fully connected layers, at 1000 sampled points, ReLU activation at the first 
two layers, MSE loss

➢ Adam optimizer, learning rate of 0.0001



Convergence Requires High Epoch
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Summary
➢ We presented a brief trajectory of functions in mathematics, from 

Euler-Lagrange to the state of the art machine learning models
➢ Gave insight on where the “least of the leasts” are applied in day to day 

life
➢ Showed how functions are discovered from data via statistics and 

differential equations
➢ Made connections between statistics, differential equations and calculus 

of variation
➢ Whether you are interested in pure or applied mathematics, you are stuck 

with functions
➢ The next time you think of pressing a button to get you a cup of coffee, I 

challenge you to think about the function behind the scene, no functions, 
no automation



Thanks for your attention


