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Abstract An electromagnetic particle-in-cell code is used to investigate self-consistent evolution of
the fast magnetosonic mode in a one-dimensional configuration along the radial direction in a dipole
background magnetic field. A previous observation of this wave mode is used to select the simulation
parameters. A partial shell velocity distribution of energetic protons with a moderate pitch angle anisotropy
is used to excite the waves self-consistently. Consistent with local linear theory analysis, wave growth occurs
only at exact harmonics of the local proton cyclotron frequency, Ωp. However, radial propagation quickly
removes the waves from the region where they can grow, leading to a time scale of wave amplification much
longer than that predicted by linear theory. In addition, radial propagation from multiple wave sources
makes the frequency spectrum measured at a single point much broader. The warm background plasma
plays an important role in two ways. First, it increases the phase speed of the fast magnetosonic mode; and
second, it causes the breakup of the extraordinary mode dispersion relation in the vicinity of the harmonics,
where the broken dispersion curves are connected with multiple ion Bernstein modes. In this case, the
waves propagating radially are absorbed at locations where their frequency reaches integer multiples of Ωp

and background protons experience perpendicular heating at those locations.

1. Introduction

Fast magnetosonic waves, also known as equatorial noise (Russell et al., 1970), are among the most frequently
observed plasma waves in the inner magnetosphere (Boardsen et al., 2016; Hrbáčková et al., 2015; Ma et al.,
2013; Meredith et al., 2008; Němec et al., 2005; Posch et al., 2015; Santolík et al., 2004; Tsurutani et al., 2014).
Observations show that fast magnetosonic waves are primarily confined to a narrow latitudinal range about
the magnetic equator and occur both inside and outside of the plasmapause at a wide range of radial dis-
tances (Boardsen et al., 2016; Hrbáčková et al., 2015; Němec et al., 2005, 2013; Posch et al., 2015; Santolík et al.,
2004). The polarization of the magnetic and electric field fluctuations, |𝛿B‖| ≫ |𝛿B⟂| and |𝛿E⟂| ≫ |𝛿E‖|,
indicate wave propagation very oblique/quasi-perpendicular to the background magnetic field, B0 (Boardsen
et al., 1992; Kasahara et al., 1994; Laakso et al., 1990; Perraut et al., 1982; Santolík et al., 2002), where 𝛿B and 𝛿E
denote the fluctuating magnetic and electric fields, respectively, and ⟂ and ‖ denote directions perpendic-
ular and parallel to B0, respectively. The frequency spectrum typically shows a series of spectral peaks, often
spaced at multiples of the proton cyclotron frequency (fcp), spanning from about fcp to about the lower hybrid
resonant frequency (Balikhin et al., 2015; Boardsen et al., 2016; Min et al., 2018). Linear theory and kinetic sim-
ulations suggest that proton ring/shell velocity distributions with ring/shell speed vr ≳ vA can drive growing
modes at fcp and its harmonics, where vA is the Alfvén speed (Boardsen et al., 1992; Chen et al., 2010; Gulelmi
et al., 1975; Horne et al., 2000; K. Liu et al., 2011; Perraut et al., 1982). Observations indeed show that the fast
magnetosonic waves are often associated with proton ring distributions in the inner magnetosphere (Balikhin
et al., 2015; Ma, Li, Chen, Thorne, & Angelopoulos, 2014; Min et al., 2018).

The fact that the electric field fluctuations are strongly longitudinal (i.e., k ⋅ 𝜹E ≈ k𝛿E) and the wave
normal directions are quasi-perpendicular to B0 allows observational determination of the propagation
direction (Santolík et al., 2002). Němec et al. (2013) analyzed 10 years of Cluster observations and showed
statistically that azimuthal propagation is dominant where the (total) plasma density is low (n0 ≲ 30 cm−3), as
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Figure 1. The dipole magnetic field line (black) and curvilinear grid
mapping (red) presented on a meridional plane.

occurs outside the plasmapause, but no preferential propagation direc-
tion is found where the density is high (n0 ≳100 cm−3), as occurs inside
the plasmapause. While the azimuthal direction may be the preferen-
tial direction of propagation outside the plasmapause where free energy
source is typically located (e.g., Chen et al., 2010), the presence of the
radial component in the propagation direction is believed to explain many
observational features including, but not limited to, the occurrence of
fast magnetosonic waves deep in the plasmasphere and off-harmonic fre-
quency spectrum of the electric and magnetic field fluctuations (Horne
et al., 2000; Perraut et al., 1982; Posch et al., 2015; Santolík et al., 2002, 2016;
Zhima et al., 2015). Santolík et al. (2002) analyzed the fluctuating electric
field to observationally confirm a radial component of the wave normal

vector. Ray tracing studies suggest that the plasma and magnetic field gradients (dominantly in the radial
direction) play an important role in trapping the fast magnetosonic mode (Chen & Thorne, 2012; Ma, Li, Chen,
Thorne, Kletzing, et al., 2014). Recently, X. Liu et al. (2018) carried out a full wave simulation in the radial
direction to explain the observational wave power truncated by fine-scale density structures.

The present study uses an electromagnetic particle-in-cell (PIC) code in a dipole magnetic field to provide a
first-principles description of the evolution of the fast magnetosonic mode. We first generalize the PIC code
of K. Liu (2007) to dipole geometry and then use this code to investigate the excitation and propagation of
the fast magnetosonic mode in a one-dimensional configuration. Similar to X. Liu et al. (2018), we only allow
radial variation. Unlike X. Liu et al. (2018), however, we assume a uniform background plasma for simplicity,
hence excluding the effects of a density gradient and the small-scale density variations that they examined.
But our code describes the fully kinetic self-consistent evolution of the waves.

Section 2 describes the PIC model, and section 3 presents the initial setup and local linear instability analysis.
Section 4 presents the simulation results and section 5 provides a summary and discussions.

2. Model Description

The electromagnetic PIC code developed by K. Liu (2007) is modified to use dipole geometry. The subsections
here describe some of the essential components for this generalization.

2.1. Curvilinear Coordinates
The present study employs nonorthogonal curvilinear coordinates to naturally accommodate curved mag-
netic field geometry. In accordance with the diagram in Figure 1, we define spherical coordinates (𝜉, r, 𝜙)

⎛⎜⎜⎝
x
y
z

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝

r𝜉

r
√

1 − 𝜉2 cos𝜙

r
√

1 − 𝜉2 sin𝜙

⎞⎟⎟⎟⎠ , (1)

where −1 ≤ 𝜉 ≤ 1 is the sine of the latitude (𝜉 = sin 𝜆) and −𝜋 ≤ 𝜙 < 𝜋 is the azimuthal angle. The
corresponding unit vectors are given by

e𝜉 =
√

1 − 𝜉2ex − 𝜉 cos𝜙ey − 𝜉 sin𝜙ez

er = 𝜉ex +
√

1 − 𝜉2 cos𝜙ey +
√

1 − 𝜉2 sin𝜙ez

e𝜙 = − sin𝜙ey + cos𝜙ez,

(2)

and the scale factors are h𝜉 = r∕
√

1 − 𝜉2, hr = 1, and h𝜙 = r
√

1 − 𝜉2. The dipole magnetic field is B =
B0(

√
1 − 𝜉2e𝜉 − 2𝜉er)∕(1 − 𝜉2)3 and the field line equation is r = r0(1 − 𝜉2) (Roederer, 1970), where B0 is the

magnetic field magnitude at the equator (𝜉 = 0) of a field line and r0 is the equatorial distance to the field line
(field line label). Note that B0 is a function of r0 (B0 ∝ r−3

0 ).
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We choose the following curvilinear coordinates (q1, q2, q3):

⎛⎜⎜⎝
q1

q2

q3

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

r0,ref

Δ1
∫ (1 − 𝜉2)3d𝜉

r0,ref

3Δ2

r3
0

r3
0,ref

r0,ref

Δ3
𝜙

⎞⎟⎟⎟⎟⎠
, (3)

where r0,ref is the equatorial distance to a reference field line (used to determine the relative scales), andΔj with
j = 1, 2, 3 are the constant scale lengths of the corresponding coordinates. The q3 coordinate is essentially 𝜙

with a constant scale factor and is orthogonal to the other two coordinates. The q1 coordinate varies along
the dipole magnetic field line and is obtained by integrating

Δ1

r0,ref
dq1 =

ds∕r0

B∕B0
, (4)

where ds = r0

√
1 + 3𝜉2d𝜉 is the field line arc length (Roederer, 1970) and B ≡ |B| = B0

√
1 + 3𝜉2∕(1 − 𝜉2)3.

Equation (4) states that the field line arc length corresponding to a unit length in the q1 coordinate is pro-
portional to B for a given field line r0. Finally, the q2 coordinate varies along r0 and is obtained by integrating
Δ2dq2 = (r0∕r0,ref)2dr0. The r2

0 dependence ensures that the differential volume element dV is constant (inde-
pendent of position; more discussion in the next paragraph). The introduction of Δj is to factor out the scale
lengths from the curvilinear coordinates, qj , which are then dimensionless. In particular, the physical size cor-
responding to Δqj = 1 at 𝜉 = 0 and r0 = r0,ref is approximately Δj . When discretizing the grid space in the
simulations, we choose Δj to make the grid size unity (i.e., Δq1 ×Δq2 ×Δq3 = 1×1×1). Therefore in the simu-
lations, the difference qj

max − qj
min represents the number of grid points in the jth coordinate direction, where

qj
max and qj

min are the curvilinear locations of the maximum and minimum boundaries, respectively. Figure 1
displays the mapping of curvilinear grid space in a meridional plane.

The nonorthogonal curvilinear coordinates require a general vector analysis using a covariant and contravari-
ant formalism (Danielson, 1992). The covariant basis vectors and the contravariant basis vectors are given by
gj = 𝜕r∕𝜕qj and gj = ∇qj , respectively. These two sets of basis vectors are related to each other through
gi =

√
ggj × gk and gi = gj × gk∕

√
g, where i, j, and k are chosen cyclically from 1, 2, and 3, and

√
g =

g1 ⋅ (g2 × g3) = (g1 ⋅ (g2 × g3))−1. (Here g is the determinant of metric coefficients, gij = gi ⋅ gj , Danielson,
1992.) The contravariant and covariant basis vectors for the curvilinear coordinates of equation (3) may,
respectively, read

g1 = 1
Δ1

r0,ref

r
(1 − 𝜉2)7∕2e𝜉

g2 = 1
Δ2

(r0∕r0,ref)3

r∕r0,ref

[
2𝜉√

1 − 𝜉2
e𝜉 + er

]
g3 = 1

Δ3

r0,ref∕r√
1 − 𝜉2

e𝜙

(5)

and

g1 =
Δ1√

1 − 𝜉2

(r0∕r0,ref)3

r2∕r2
0,ref

[
e𝜉 −

2𝜉√
1 − 𝜉2

er

]

g2 =
Δ2√

1 − 𝜉2

r2
0,ref

r2
(1 − 𝜉2)7∕2er

g3 = Δ3
r

r0,ref

√
1 − 𝜉2e𝜙.

(6)

By definition, g1‖B and g2 ⟂ B. Also, it is straightforward to show that
√

g = Δ1Δ2Δ3. A salient feature of
the present curvilinear coordinates is that the differential volume element is independent of position, dV ≡√

gdq1dq2dq3. This is useful not only for differential geometry but also for loading and weighing simulation

particles (e.g., ∇ ⋅ u = 1√
g

𝜕(
√

guj)
𝜕qj = 𝜕uj∕𝜕qj and ∫ dV =

√
g ∫∫∫ dq1dq2dq3).

A vector u can be expressed in terms of the covariant basis vectors, u = ujgj , or of the contravariant basis
vectors, u = ujg

j , where the summation over the repeated indices is assumed. One can use the identity gi ⋅g
j =

𝛿
j
i to get jth contravariant (uj = u ⋅gj) and covariant (uj = u ⋅gj) vector components, where 𝛿

j
i = 1 for i = j and

0 otherwise (Danielson, 1992).
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2.2. PIC Scheme
The PIC code developed by K. Liu (2007) has been used to simulate whistler and fast magnetosonic/ion Bern-
stein plasma instabilities in a homogeneous plasma with a uniform background magnetic field (e.g., Fu et al.,
2014; Gary et al., 2011; K. Liu et al., 2006, 2011; Min et al., 2016, 2018). We limit the model description to those
relevant to the curvilinear coordinates and refer readers to K. Liu (2007) for many details of the PIC scheme
adopted here.

We denote the 𝜎th species plasma frequency as 𝜔𝜎 ≡
√

4𝜋n𝜎q2
𝜎
∕m𝜎 , the 𝜎th species cyclotron frequency

as Ω𝜎 ≡ q𝜎B∕m𝜎c, and the 𝜎th species plasma beta as 𝛽𝜎 ≡ 8𝜋n𝜎T𝜎∕B2, where c is the light speed, n𝜎 is the
number density, q𝜎 is the charge state, and m𝜎 is the rest mass of that species (cgs unit system). For the present
study, 𝜎 = e for electrons and p for protons. Internally, the following variables are used: Ξ⃗ ≡ (q0∕m0c)E for
the electric field (frequency units), Ω⃗ ≡ (q0∕m0c)B for the magnetic field (frequency units), ⃗ ≡ (4𝜋q0∕m0c)J
for the current density (units of frequency squared), and Π ≡ (4𝜋q0∕m0)𝜌 for the charge density (units of
frequency squared), where q0 and m0 are some reference charge and mass, respectively (those of protons in
the present study), and B in this subsection shall mean the total magnetic field including both the static and
perturbed parts. With these variables, Maxwell’s equations read

𝜕Ξ⃗
𝜕t

= c∇ × Ω⃗ − ⃗

𝜕Ω⃗
𝜕t

= −c∇ × Ξ⃗

c∇ ⋅ Ξ⃗ = Π

c∇ ⋅ Ω⃗ = 0,

(7)

and the (nonrelativistic) equation of motion of particles reads dv∕dt = (Ω𝜎∕|Ω⃗|)(c Ξ⃗ + v × Ω⃗).

The time evolution of electric and magnetic field fluctuations is described by solving the first two of
equations (7), which in the component form read (e.g., Eastwood et al., 1995)

𝜕Ξi

𝜕t
= c

𝜖ijk√
g

𝜕Ωk

𝜕qj
−  i

𝜕Ωi

𝜕t
= −c

𝜖ijk√
g

𝜕Ξk

𝜕qj
,

(8)

where 𝜖ijk is the Levi-Civita symbol. Equation (8) involves covariant vector components in the curl operation.
Conversion from the contravariant to covariant components of a vector u is given by ui = giju

j , where gij =
gi ⋅gj are the covariant metric coefficients (Danielson, 1992). Noting that the velocity vector is v = ẋex + ẏey +
żez = q̇jgj , the curvilinear coordinates of a particle are advanced by integrating dqj∕dt = v ⋅ gj (Swift, 2007).
On the other hand, it is simpler both numerically and mathematically to update velocities in the Cartesian
coordinate system (e.g., Bagdonat & Motschmann, 2002; Hu & Denton, 2009). Therefore, conversions from
the contravariant to Cartesian components are needed for the electric and magnetic fields before updating
particle velocities. Likewise, the Cartesian components of the current density are collected after updating
particle velocities and then converted to the contravariant components before updating the electric field.

For the present 1-D simulations in the radial (q2) direction at the magnetic equator (𝜉 = 0), we set 𝜕∕𝜕q1 =
𝜕∕𝜕q3 = 0 and only keep the q2 coordinate; however, all three velocity components are kept.

2.3. Boundary Conditions
The boundary conditions are perhaps the single most important factor for successful simulations. Similar to
earlier simulation studies (e.g., Hu & Denton, 2009; Ke et al., 2017), reflecting boundary conditions are used
for particles and open boundary conditions are used for waves.

Particles should be reflected not only to conserve the total energy but also not to generate any spurious
current at the boundary (Hu, 2010). We adopt the method described by Hu, (2010; in turn derived from Naitou
et al., 1979), which is summarized as follows. In the 2-D configuration on a meridional plane that these authors
considered, when a particle hits one of the q1 boundaries (the boundary surfaces roughly perpendicular to
the background magnetic field), the particle’s q1 coordinate is replaced with 2q1

min,max − q1 and the sign of
the velocity component parallel to the background magnetic field is flipped (v‖ → −v‖). When a particle hits
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Figure 2. Local linear theory solutions for k‖ = 0 (a) at the inner boundary, (b) at the center, and (c) at the outer
boundary (for the case with cooler background protons). (These locations correspond to 3.52, 3.7, and 3.86 RE ,
respectively.) The black and red curves show solutions for the real and imaginary parts of the complex frequency, and
the blue dashed curves show the real frequency from the cold plasma extraordinary mode dispersion relation.
Additionally, the regions where the imaginary part is positive are highlighted with red on the black curves. The
frequency quantities are normalized to the local proton gyrofrequency, Ωp, and the proton inertial length c∕𝜔pp is
independent of position. The lower hybrid frequencies at the inner boundary, at the center, and at the outer boundary
are 𝜔lh∕Ωp = 9.33, 9.49, and 9.60, respectively.

one of the q2 boundaries (the boundary surfaces parallel to the background magnetic field), the particle’s q2

coordinate is replaced with 2q2
min,max − q2 and the sign of both velocity components perpendicular to the

background magnetic field is flipped (v⟂ → −v⟂). Using the unit vector parallel to the background magnetic
field e1 ≡ g1∕|g1|, the velocity reflections can be achieved by v → v − 2(v ⋅ e1)e1 for the q1 reflection and
v → 2(v ⋅ e1)e1 − v for the q2 reflection. Note that the present 1-D simulations in the radial direction only
require the q2 reflection.

The outgoing electric and magnetic field fluctuations are absorbed using the masking method described by
Umeda et al. (2001). For illustration, let us consider a 1-D domain in the x direction with length Lx +2LD, where
Lx is the length of the interior region and LD is the length of the masking region at each end (see Umeda et al.,
2001; Figure 3). The coordinate varies between −Lx∕2 − LD and Lx∕2 + LD. A masking function

fM(x, r) =

{
1 for |x| ≤ Lx∕2

1 −
(

r |x|−Lx∕2

LD

)2
for |x|> Lx∕2

(9)

Figure 3. Local linear theory solutions at the (a) inner and (b) outer boundaries for the case with warmer background
protons. The figure format is the same as in Figure 2. Additionally, the blue solid curves represent the MHD dispersion
relation with thermal correction.
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is applied at every update cycle to both the electric field and magnetic field as follows:

Ω⃗t+Δt∕2(x) = fM(x, rd)
[
Ω⃗t−Δt∕2(x) − Δt

(
c∇ × Ξ⃗t(x)

)
fM(x, rr)

]
Ξ⃗t+Δt(x) = fM(x, rd)

[
Ξ⃗t(x) + Δt

(
c∇ × Ω⃗t+Δt∕2(x) − 4𝜋⃗ t+Δt∕2(x)

)
fM(x, rr)

]
,

(10)

where 0 ≤ rd ≤ 1 and 0 ≤ rr ≤ 1 are the amplitude damping and phase retardation factors, respectively.
It is desirable to use LD as small as possible to maximize the use of the simulation domain (by reducing the
masking region). Umeda et al. (2001) suggests that in general, rd ∼ 0.1 and rr ∼ 1 result in the most effective
damping of the outgoing waves.

2.4. Particle Loading
The simulation particles should be loaded to have a kinetic equilibrium along the field line. If a velocity dis-
tribution is isotropic at the magnetic equator, the density and temperature (or pressure) shall be invariant
along the field line to satisfy equilibrium. If, on the other hand, the velocity distribution is anisotropic at the
equator, the density and the pressure should vary along the field line accordingly. For a bi-Maxwellian distri-
bution at the equator, the field line dependence of macroscopic quantities has been derived by Chan et al.
(1994). In addition, for an equatorial velocity distribution of the form f0 ∝ g(v0) sinl 𝛼0, Xiao and Feng (2006)
showed that the distribution along the field line has the form f ∝ (B0∕B)l∕2g(v) sinl 𝛼, where g(v) is a func-
tion of velocity magnitude, 𝛼 is the pitch angle, l is the pitch angle anisotropy index, B is the magnitude of
the local magnetic field, and the subscript 0 denotes equatorial values. Therefore, the pitch angle anisotropy

∫ 𝜋
0 sin3+l 𝛼d𝛼

2 ∫ 𝜋
0 sin1+l 𝛼 cos2 𝛼d𝛼

= (2 + l)∕2 is invariant and the density varies as (B0∕B)l∕2. This means that for an anisotropic

distribution with an excess of perpendicular temperature (i.e., l > 0), the density is maximized at the equator,
as also occurs for a bi-Maxwellian.

The present study uses a partial shell velocity distribution (Min et al., 2018, equation (1)) at the equator to drive
fast magnetosonic waves. According to Xiao and Feng (2006), the partial shell velocity distribution anywhere
along the field line is given by

fs =
ns,0(B0∕B)l∕2

𝜋3∕2𝜃3
s C(vs∕𝜃s)

e−(v−vs)2∕𝜃2
s sinl 𝛼, (11)

where ns,0 is the number density at the equator, vs is the shell speed, 𝜃s is the thermal spread of the shell, and

C(b) =
[

be−b2 +
√
𝜋
(1

2
+ b2

)
erfc(−b)

] Γ(1 + l∕2)
Γ(1.5 + l∕2)

. (12)

Here erfc(x) is the complementary error function and Γ(x) is the gamma function. Note that vs, 𝜃s, and l are
invariant along a field line (thus dropping subscript 0), but the density is given by ns = ns,0(B0∕B)l∕2. The
Maxwellian distribution is recovered when l = vs = 0.

Equation (11) does not in general ensure a magnetohydrodynamics (MHD) equilibrium when spatial varia-
tions other than those in the parallel direction are considered (Hu & Denton, 2009). To ensure pressure balance,
one may use the approach of Hu et al. (2010) to initialize simulation particles and the background magnetic
field. There, an anisotropic MHD model is solved to obtain the total particle pressure and the magnetic field
that are in equilibrium. Then the initial background magnetic field is the magnetic field from the MHD solu-
tion. The pressure from the MHD solution is assigned to each particle population to load simulation particles
accordingly. (See Hu et al., 2010, section 2.3 for details.) This will be implemented in a future iteration.

3. Initial Setup and Local Instability Analysis

The simulation domain is centered at the reference field line. The wave event presented by Min et al. (2018) is
used to select the necessary parameters. Because the wave length of the fast magnetosonic mode is typically
scaled by the proton inertial length 𝜆p = c∕𝜔pp, the ratio of r0,ref to 𝜆p is an important parameter determin-
ing the size of the simulation domain and the inhomogeneity of the dipole magnetic field. The observations
showed that the maximum wave power occurred at a radial distance of about 5.6 RE and near the magnetic
equator, where RE ≈ 6378 km is the Earth’s radius. Also from the observed total plasma number density of
n0 = 24 cm−3, the proton inertial length is 𝜆p ≈ 0.00727RE . Therefore, the realistic ratio is r0,ref∕𝜆p ≈ 770. The
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present simulations, however, use a ratio 1.5 times smaller (i.e., r0,ref∕𝜆p = 513.3) so that fewer grid points can
be used to represent the same range of magnetic field magnitudes relative to the reference value. Tests sug-
gest that Δ2 = 0.05𝜆p with 960 grid points in the q2 coordinate direction is sufficient to resolve a wide wave
number spectrum of the fast magnetosonic mode (see next paragraph for plasma parameters). The back-
ground magnetic field strength at the inner and outer boundaries are 1.16B0,ref and 0.877B0,ref, respectively. If
the same number density (or equivalently inertial length) as the observations is assumed, the reference field
line is at 3.7 RE and the length of the simulation domain is about 0.35 RE . This situation may occur during
disturbed geomagnetic conditions when the plasmapause has been pushed inward and additionally, fresh
injections have provided free energy.

Min et al. (2018) showed that fast magnetosonic waves observed by the Van Allen Probes were driven by a
tenuous partial shell distribution of energetic protons with ns,0∕n0 = 0.05, l = 1, vs = 1.7vA,ref , and 𝜃2

s =
0.185v2

A,ref
, where vA,ref denotes the Alfvén speed at the reference field line. We simulate fast magnetosonic

waves using the same partial shell distribution. But we use a single Maxwellian to represent the remaining 95%
of protons for simplicity. At first, the background protons have small but finite temperature so that the plasma
beta of this Maxwellian population is 𝛽b = 0.00475. As will be shown, the corresponding temperature is
sufficiently small that the cold plasma extraordinary mode dispersion relation provides a good approximation.
Later, we increase 𝛽b by a factor of 10 to investigate the warm plasma effects on the evolution of the fast
magnetosonic mode. The last species is the charge-neutralizing electrons with 𝛽e = 0.005. We assume that
this three-component plasma is uniformly distributed in the simulation domain (across q2) for simplicity. To
facilitate the computations, we use a reduced ratio of the proton to electron mass, mp∕me = 100, and a
reduced ratio of the light to Alfvén speed, c∕vA,ref = 30. The integration time step is ΔtΩp,ref = 0.001, where
Ωp,ref is the proton cyclotron frequency at the center of the simulation domain. The number of simulation
particles per cell is 100,000 for the partial shell protons, and 50,000 for the background protons and electrons,
respectively. The number of wave masking grid points is 30 (corresponding roughly to one inertial length) at
both boundaries with rd = 0.2 and rr = 1. The simulations were run using 32 cpu cores and the simulation
with the longest time evolution took about 22 days.

Linear kinetic dispersion relations (Min et al., 2018) are solved for complex frequencies at k‖ = 0 using the local
quantities measured at both boundaries and at the center. Figure 2 shows the results for the case with cooler
background protons. Overall, the real part of the solutions closely follows the cold plasma extraordinary dis-
persion relation, indicating that the cold plasma approximation may be appropriate to describe the dispersion
properties of the fast magnetosonic mode for the parameters assumed. But deviations start to appear as the

frequency gets close to the lower hybrid frequency, 𝜔lh = Ωp∕
√

v2
A∕c2 + me∕mp, where Ωp is the local proton

cyclotron frequency and the local Alfvén speed is vA∕vA,ref = B∕B0,ref for the present case (uniform density).
Note also that 𝜔lh∕Ωp varies over the simulation domain (𝜔lh∕Ωp = 9.33, 9.49, and 9.60 at the inner bound-
ary, at the center, and at the outer boundary, respectively), leading to a variation in the wave numbers where
the high-frequency unstable modes appear.

The third harmonic mode appears to be stable near the inner boundary but becomes unstable somewhere
between the inner boundary and the center region. (The harmonic is defined in terms of Ωp.) This can be
explained as follows. Although the absolute ring/shell speed and the thermal spread of the partial shell are
held constant over the simulation domain, the values relative to vA are an increasing function of the radial
distance since vA∕vA,ref = B∕B0,ref for the present setup. According to Boardsen et al. (1992), Horne et al. (2000),
and Chen et al. (2010), the larger the ring/shell speed relative to local vA, the smaller the harmonic number
where the instability can grow. Finally, the maximum growth rate normalized toΩp decreases with q2 (or radial
distance). This means that the decrease of the maximum growth rate normalized to Ωp,ref with respect to the
radial distance is even greater. It is important to note that there is no appreciable damping in between the
harmonics. Therefore, as far as the propagation exactly perpendicular to B is concerned, the fast magnetosonic
mode will experience little damping once it leaves the source region.

Figure 3 shows the linear theory results for the case with warmer background protons at the inner and outer
boundaries. Apparently, the cold plasma dispersion relation (blue dashed curves) is no longer valid at least for
𝜔r∕Ωp ≳ 5. Instead, the MHD dispersion relation with thermal correction (blue solid curves) better represents
the increased phase speed of the kinetic solutions. The MHD dispersion relation at propagation perpendicular
to the background magnetic field (e.g., K. Liu, 2007, equation (2.89)) is given by 𝜔2∕k2

⟂ = c2
s + v2

A∕Q, where
cs =

√
(5∕3)𝛽bvA is the sound speed and Q = 1 + (me∕mp)k2

⟂𝜆
2
p. Therefore, the phase speed is an increasing
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Figure 4. Compressional component (𝛿B‖) of the fluctuating magnetic field as a function of time and radial distance in
the (a) uniform and (b) dipole background magnetic fields. The color scale represents 𝛿B‖ normalized to the maximum
value, which is labeled in each panel.

function of
√
𝛽b. The instability appears to cease as one moves outward; the solutions at the center region

did not show any positive instability growth (not shown). It is worth noting from Figure 3b that the dispersion
curves immediately above and below are no longer connected at the integer harmonic frequency. In fact, the
separation of the curves increases with the temperature. The same is true without the partial shell component,
in which case there are no growing modes (not shown). This indicates that wave propagation may be affected
when the normalized frequency reaches one of the integer harmonics.

4. Simulation Results

First, we present the simulation results for the case with cooler background protons. For comparison, a sim-
ulation with a uniform background magnetic field is also carried out. For this, we simply set r0,ref∕𝜆p = 106

(sufficiently large so that the background magnetic field is essentially uniform within the simulation domain)
but otherwise kept all other parameters identical. Figure 4 shows a side-by-side comparison of the compres-
sional component (𝛿B‖) of the fluctuating magnetic field as a function of time and radial distance for the two
simulations. (The masking regions where the outgoing waves are absorbed are located outside of the plot.)
Note that the time scale is different. The simulations were terminated at tΩp,ref = 150 and 300 for the uni-
form and dipole cases, respectively. The very different time scale of the evolution may be explained as follows.
There is roughly the same amount of free energy in both systems, but radial propagation in the dipole mag-
netic field (Figure 4b) quickly removes the waves from the region where they can grow (that is, where their
frequency becomes harmonics of Ωp). Consequently, it takes much longer to use up the free energy in the
dipole system. (Later in this section, the time scale for wave amplification will be shown.) At first glance, the
radial gradient clearly introduces asymmetry between the inward and outward traveling waves and results
in a more complex pattern of propagation. In addition, wave enhancement appears slightly earlier near the
inner boundary and subsequently extends toward the outer boundary. This feature appears to be consistent
with the local instability growth where the growth rate is an increasing function of the background magnetic
field strength (see Figure 2 and related discussion in section 3).
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Figure 5. Frequency-wave number spectrum of 𝛿B‖ corresponding to Figure 4 using the entire time series and spatial
domain excluding the masking region. The positive (negative) frequency region corresponds to outward (inward)
propagating modes. In panel (a), the dashed curve is the cold plasma extraordinary mode dispersion relation. In panel
(b), the three dashed curves are the cold plasma dispersion relations at the inner boundary (left), at the center of the
domain (middle), and at the outer boundary (right), respectively. The tiny dots are placed on the curves to indicate
harmonic numbers from 3 to 8 on those locations. The lower hybrid frequencies at the inner boundary, at the center,
and at the outer boundary are 𝜔lh∕Ωp,ref = 10.75, 9.49, and 8.48, respectively.

The entire time series and spatial domain (excluding the masking region) of 𝛿B‖ is used to perform a
fast Fourier transform (FFT). A hamming window function is applied prior to the FFT. Figure 5 shows the
frequency-wave number power spectrograms corresponding to Figure 4. The cold plasma extraordinary
mode dispersion relations at the boundaries and the center of the simulation domain are superimposed with
the dashed curves. In addition, for the dipole case, tiny dots are placed on the curves to mark the harmonic
numbers from 3 to 8. (Only the dots on the middle curve line up with integer values of𝜔r∕Ωp,ref.) The negative
and positive frequency regions correspond to waves propagating radially inward and outward, respectively. In
the uniform case, the enhancement occurs at exact harmonics and closely follows the cold plasma dispersion
relation. This is exactly what is expected from the linear theory analysis. For the dipole case, the enhancement
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Figure 6. Compressional component (𝛿B‖) of the fluctuating magnetic field in the dipole case filtered in the frequency
ranges as labeled.

is bounded by the two outermost dispersion curves. This is an expected result because we know from the
uniform case that the excited waves should closely follow the cold plasma dispersion relation. [The leakage
of spectral power to smaller k⟂ (inward of the inner boundary) in the 𝜔r < 0 region may be caused by the FFT
on nonperiodic data.]

The horizontal striations of the enhanced power in Figure 5b suggest that the frequency is indeed conserved
as the waves propagate from the source region. For example, by looking at the fourth harmonic mode excited
from near the inner boundary (𝜔r ≈ 4.5Ωp,ref) and propagating radially outward (𝜔r > 0 region), the enhanced
power is stretched all the way to the outer dispersion curve where the frequency roughly corresponds to the
fifth harmonic number there. Because the frequency normalized to Ωp barely traveled one harmonic number
and because there should be no wave growth in between these two harmonic numbers according to the
local instability analysis, the fourth harmonic mode excited near the inner boundary region should be the sole
contributor to this particular frequency (with sign). The same logic can be applied to the waves propagating
inward. The L-shaped boundary of power for 𝜔r < 0 near the outer boundary and the left-right-reflected
L-shaped boundary of power for 𝜔r > 0 near the inner boundary is the evidence that wave growth is absent
in between the harmonics.

It is as though a particular frequency is tuned to a particular location or locations in space. This may allow us
to better understand the source region and how the excited wave emanates from it by picking out a particular
frequency. The procedure is as follows: The simulated 𝛿B‖ at each point in space is transformed into frequency
space, the transformed data are then band-pass filtered to a narrow frequency band of 0.2Ωp,ref in the vicinity
of the tuning frequency, and finally, the masked data are transformed back to real space. Apparently, all integer
values of 𝜔r∕Ωp,ref should correspond to the location at r0 = r0,ref. And the values slightly below and above
should be mapped to the regions of r0 > r0,ref and r0 < r0,ref, respectively. This is indeed what is shown in
Figure 6, where we tuned to 𝜔r∕Ωp,ref = 4.7, 5, and 5.3. It is easy to locate the source location(s) by looking at
the wave propagation pattern. The source region is finite (Δr0 ≲ 5𝜆p) because of the finite frequency width
that we used for the frequency filtering and perhaps because the growth rate also has a finite frequency width
(Figure 2). Figure 6c is an example of two source locations. The first is at r0 − r0,ref ≈ −10𝜆p corresponding to
𝜔r∕Ωp = 5 and the second is at r0 − r0,ref ≈ 20𝜆p corresponding to 𝜔r∕Ωp = 6. (Inward propagation from the
second source is not clearly seen due perhaps to the smaller growth rate and/or the close proximity to the
simulation boundary.)

MIN ET AL. FAST MAGNETOSONIC WAVES 7433

 21699402, 2018, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2018JA

025666 by A
uburn U

niversity L
ibraries, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Space Physics 10.1029/2018JA025666

Figure 7. Comparison of the time scales of wave amplification between the uniform and dipole cases with cooler
background protons. Each panel shows the power of 𝛿B‖ integrated within the wave number range as labeled. The
wave number ranges, (a) 4 ≤ |k⟂|𝜆p ≤ 5, (b) 5.5 ≤ |k⟂|𝜆p ≤ 6.5, (c) 7 ≤ |k⟂|𝜆p ≤ 8.5, and (d) 9 ≤ |k⟂|𝜆p ≤ 11, represent
the harmonic modes from 4 and 7, respectively (Figure 5). The blue and red curves are for the integrated power from
the uniform and dipole cases, respectively, and the black solid lines represent approximate fits to the linear growth
phases of the uniform case. The estimated growth rates are 𝛾est ≈ 0.075, 0.06, 0.075, and 0.07Ω0,ref from the fourth to
seventh harmonic modes, respectively.

Figure 7 compares the time scales of wave amplification between the uniform and dipole cases. We chose
the harmonic modes from 4 and 7 for the comparison. For the uniform case (Figure 5a), these harmonic
modes are well contained within the following wave number ranges: 4 ≤ |k⟂|𝜆p ≤ 5, 5.5 ≤ |k⟂|𝜆p ≤ 6.5,
7 ≤ |k⟂|𝜆p ≤ 8.5, and 9 ≤ |k⟂|𝜆p ≤ 11, respectively. For the dipole case (Figure 5b), however, it is hard to
isolate these harmonic modes. But we still use the same wave number ranges to represent the correspond-
ing harmonic modes, understanding that, on the one hand, the given harmonic mode can stretch outside the
wave number range specified, and on the other hand, the adjacent harmonic modes can also pollute the har-
monic mode of interest. We Fourier transform 𝛿B‖ in space at every time step and add all the power within
the wave number ranges mentioned above. Propagation in both directions is taken into account in the cal-
culation. For each harmonic mode, the linear growth rate for the uniform case is estimated as shown with the
black solid lines. The estimated growth rates are 𝛾est ≈ 0.075, 0.06, 0.075, and 0.07Ω0,ref from the fourth to
seventh harmonic modes, respectively. In comparison, the corresponding maximum growth rates from linear
theory at the center (Figure 2b) are 𝛾lin = 0.087, 0.08, 0.081, and 0.075Ω0,ref, respectively, which are in qualita-
tive agreement with the simulation results. In comparison with the uniform case, the growth rates are smaller,
the saturation levels are lower, and the linear phase of wave amplification is less clear for the dipole case. We
attribute this to the ineffective amplification of the fast magnetosonic mode during radial propagation, as
discussed earlier.

Figure 8 shows the frequency power spectra of 𝛿B‖ in the simulations with the uniform and dipole magnetic
fields, respectively. For the dipole case, 𝛿B‖ is sampled near the center region. Comparing with the uniform
case, superposition of the waves from multiple sources clearly smooths out the discrete harmonic peaks.
According to Chen et al. (2016), the minimum radial extent of the source region that results in a continuous,
broadband frequency spectrum is related to the harmonic number, Δr0∕r0 = 1∕(3j), for the dipole magnetic
field, where Δr0 is the radial extent of the source region and j = 𝜔r∕Ωp. Using values of Δr0 ≈ 45𝜆p and
r0 = 513.3𝜆p, we get 𝜔r∕Ωp ≈ 3.8. Consistent with this estimation, the distance in frequency space between
two dots (marking the local harmonics of Ωp) at the innermost and outermost dispersion curves shown in
Figure 5b becomes Ωp approximately at the fourth harmonic frequency. Now looking at Figure 8, it appears
to be indeed the fourth harmonic frequency that divides the continuous spectrum from the discrete one
for the present simulation setup; the third harmonic mode clearly exhibits an isolated peak, whereas fifth
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Figure 8. Comparison of frequency power spectra of 𝛿B‖ for the simulations with (a) uniform and (b) dipole magnetic
fields. For the dipole case, 𝛿B‖ is sampled near the center region.

harmonic and above are broadbanded. Figure 8 supports the idea that a broadband frequency spectrum from
observations may result from radial propagation (Chen et al., 2016; Perraut et al., 1982; Posch et al., 2015).
On the other hand, it is worth noting that Chen et al. (2016) showed that local instability can also produce a
broadband spectrum when the growth rate is sufficiently large. In addition, Shklyar and Balikhin (2017) sug-
gested that wave amplification during radial propagation can reproduce the wave phenomenon reported by

Figure 9. Frequency-wave number spectrum of 𝛿B‖ corresponding to the
simulation with warmer background protons. The real parts of the linear
theory solutions at the inner (left) and outer (right) boundaries shown in
Figure 3 are superimposed.

Balikhin et al. (2015) where the spectral intensity below exact cyclotron
harmonics is much higher than above.

We only briefly show the simulation results for the case with warmer
background protons because of the low saturation level of the fast magne-
tosonic mode. Figure 9 shows the frequency-wave number spectrogram
of the simulated 𝛿B‖. The aperiodic (𝜔r = 0) mode, which is most likely
caused by the pressure imbalance that our simulation does not enforce
initially, dominates because of the relatively low amplitudes of the fast
magnetosonic mode. However, the enhanced power of the fast magne-
tosonic mode is clearly bound by the warm plasma dispersion curves at
the boundaries and the horizontal striations are also seen.

To better understand the effects of warm plasma wave dispersion on wave
propagation, we pump a prescribed wave into the system, similar to X.
Liu et al. (2018). We also remove the partial shell component to sup-
press the self-consistent wave excitation. To highlight wave absorption at
harmonic(s) of Ωp and consequent proton heating, we present one rep-
resentative case, where a wave with frequency 𝜔r = 7.31Ωp,ref (between
sixth and seventh harmonic) was pumped at r0 − r0,ref = −20𝜆p for about
tΩp,ref = 50. (We obtained similar results for combinations of 𝜔r∕Ωp ≈ 4.5
and 6.5 and r0 − r0,ref = ±20𝜆p.) Figure 10 shows the spatiotemporal evo-
lution of wave energy in the cases with the cool (𝛽b = 0.005) and warm
(𝛽b = 0.05) proton populations. While no damping is seen in the cooler
plasma as the waves propagate to larger r0, there is clear absorption of
wave energy in the warmer plasma near the location where the wave fre-
quency matches the seventh harmonic at r0 − r0,ref = −7.5𝜆p. The partially
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Figure 10. Propagation of wave energy (|𝛿B‖|2) pumped at r0 − r0,ref = −20𝜆p with 𝜔r = 7.31Ωp,ref in the cool
(a: 𝛽b = 0.005) and warm (b: 𝛽b = 0.05) plasmas. The top horizontal axes denote 𝜔r normalized to the local proton
cyclotron frequency, Ωp. The two vertical dashed lines are drawn at the seventh and eighth harmonics.

transmitted wave appears to reach the eighth harmonic near r0 − r0,ref = 15𝜆p, but it is not clear from this
simulation whether the absorption also occurs there. Corresponding to the wave energy, Figure 11 shows the
azimuthal component of proton kinetic energy normalized to the initial value. The azimuthal component is
chosen to diagnose the perpendicular heating because the sloshing motion of background protons—a linear
response to the pumping wave—occurs predominantly in the direction of spatial variation (i.e., radial direc-
tion for the present case) (e.g., Sun et al., 2017, Figure 9). Corresponding to the wave absorption, the heating
appears to occur near the seventh harmonic at tΩp,ref ≳ 40 in the warmer plasma. A much weaker signal of
heating is also visible near the seventh harmonic in the cooler plasma, although the wave absorption was
hard to identify from Figure 10a.

Figure 12 shows the wave and particle energies for the driven simulations in Figures 10 and 11. First, we
describe the energy evolution of the case with the cooler plasma. Figure 12a shows the wave energy (blue),
particle kinetic energy (red), and the total energy (black). (The initial value is subtracted from the particle
kinetic energy). All curves start to increase from tΩ0,ref = 3 when we started pumping the wave. The increase
rate is then reduced by half at about tΩ0,ref = 13 (first dashed line) when the first wave propagating inward

Figure 11. Spatiotemporal evolution of the azimuthal component of proton kinetic energy in response to the pumping
wave in Figure 10. The kinetic energy is normalized to the initial value.
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Figure 12. Wave and particle energies for the driven simulations in Figures 10 and 11. Left panels are for 𝛽b = 0.005 and
right panels are for 𝛽b = 0.05. The lines in the top panels correspond to electromagnetic wave energy (EM, blue), and
proton and electron kinetic energy (KE, red), and the total energy (TE, black). The initial value has been subtracted from
the particle kinetic energy. The lines in the bottom panels correspond to electron kinetic energy (KEe , black), proton
bulk flow energy (mpU2∕2, blue), and proton thermal energy (mpv2

th
∕2, red). Again, the initial values have been

subtracted from the electron kinetic energy and proton thermal energy. Each energy is spatially averaged and divided
by 10−4B2

0,ref
∕8𝜋.

has reached the inner boundary. The energy curves continue to climb up at a reduced rate until the external
current source has been turned off at about tΩ0,ref = 51 (third dashed line). Note that the first wave reached
the seventh harmonic mark at about tΩ0,ref = 35 (second dashed line). After the external source of energy is
turned off, the energy curves exhibit a steep decline until about tΩ0,ref = 59 (last dashed line) when the last
wave propagating inward has reached the inner boundary. Note that the total energy gradually decreases
afterward even though the wave propagating outward has not reached the outer boundary; this is because
the system continuously loses energy through the absorbing boundaries. The evolution of the wave and par-
ticle energy is very similar, and the particle energy increase is about twice that of the wave energy. Figure 12b
shows the electron kinetic energy (black), the proton bulk flow energy (due to the sloshing motion; blue), and
the proton thermal energy (red). (Again, the initial values are subtracted from the electron kinetic and pro-
ton thermal energy.) Apparently, the sloshing motion of protons dominates the proton kinetic energy. (The
same is true for electrons). The thermal heating of protons is minor, but unlike the bulk flow energy, the ther-
mal energy continuously increases (perhaps corresponding to the heating signature in Figure 11a near the
seventh harmonic mark).

Now we describe the energy evolution for the case with the warmer plasma. Figure 12c shows the wave
energy, particle kinetic energy, and the total energy. All but the second vertical dashed line mark the same
temporal locations as those in Figure 12a. For this case, the first wave reached the seventh harmonic mark
at about tΩ0,ref = 25 indicated by the second dashed line. Whereas the particle energy has a trend quite
similar to that of the cooler plasma, the wave energy, unlike the previous case, exhibits a plateau between
tΩ0,ref = 35 and 51. Looking at Figure 12d, this period corresponds to a rapid increase of the thermal energy of
protons, which surpassed the bulk flow energy at about tΩ0,ref = 41. Note that the rapid increase of the ther-
mal energy actually started when the first wave reached the seventh harmonic mark (second dashed line). The
protons were heated further until the total energy curve flattened out after about tΩ0,ref = 70, approximately
when the last wave reached the seventh harmonic mark (Figure 10b). This is the evidence that the reddish
blob in Figure 11b is indeed the result of heating by wave absorption at the seventh harmonic. In contrast,
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the evolution of the proton bulk flow energy and the electron kinetic energy is very similar to that of the wave
energy, an indication of the linear response to the pumping wave.

5. Summary and Discussions

A new electromagnetic PIC code has been developed to investigate self-consistent evolution of the fast mag-
netosonic mode in a dipole magnetic field. As a first step, we examined the case of one-dimensional variation
in the radial direction at the magnetic equator, thus taking into account the radial gradient of the dipole mag-
netic field. The wave event studied by Min et al. (2018) was used to derive the simulation parameters. We used
a simulation scale size reduced by a factor of 1.5 to facilitate the computations. This means that if the plasma
density is the same as the observed value, the L shell of the center of the simulation domain corresponds to 3.7
RE ; this may occur during disturbed geomagnetic conditions when the plasmapause has been pushed inward.
The free energy source that drives the fast magnetosonic waves was determined from the observations. Min
et al. (2018) showed that a tenuous (5%) partial shell distribution of energetic protons with a ring/shell speed
at 1.7 times the Alfvén speed was the source of free energy. A single Maxwellian was used to represent the
remaining protons for simplicity. Two cases were considered, one with cool temperature (𝛽b ≈ 0.005) and
another with warm temperature (𝛽b ≈ 0.05). Both the free energy source and the background protons were
uniformly distributed. As a result, the wave excitation was not localized in space and the effects of the plasma
density gradient such as trapping (e.g., X. Liu et al., 2018; Ma, Li, Chen, Thorne, Kletzing, et al., 2014) were not
taken into account.

Our main findings are as follows. (1) Linear theory showed that increased background plasma temperature
has two effects. First, the phase speed of the fast magnetosonic mode increases due to the increasing contri-
bution from the sound speed; and second, the dispersion curves immediately above and below the integer
harmonics separate. (2) Consistent with the prediction of linear theory, the wave excitation only occurred at
exact harmonics of the local proton cyclotron frequency,Ωp. Because of the magnetic field gradient, the abso-
lute frequencies corresponding to the exact harmonic numbers continuously varied with the radial distance.
Consequently, the time scale of wave amplification got much longer than that predicted by linear theory and
radial propagation from multiple sources led to a broad frequency spectrum of the fast magnetosonic waves
observed at a single location. (3) Wave energy propagating in the warmer plasma was absorbed when the
wave frequency normalized to Ωp reached an integer value, where the separation of the dispersion curves
occurs. This energy was converted to thermal motion of background protons in the direction perpendicular
to the background magnetic field.

The present results set the stage for further investigations of the fast magnetosonic mode beyond the 1-D
configuration of the present simulations. In fact, a more effective way to amplify a fast magnetosonic mode
is to allow propagation in the azimuthal direction, for which the background magnetic field and thus the
normalized frequency remain constant (Boardsen et al., 2016). On the other hand, the inhomogeneity of
the background magnetic field (and the plasma density) in general prevents the wave from staying on this
optimal path (Chen & Thorne, 2012). Therefore, an immediate next step may be to allow azimuthal vari-
ation in addition to the radial variation. This may explain why the observed electric field associated with
the fast magnetosonic mode outside the plasmapause is preferentially polarized in the azimuthal direction
(Němec et al., 2013).
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