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Abstract Using linear dispersion theory and particle-in-cell simulations, we explore the ion Bernstein
instability driven by the shell-type ion velocity distribution which is related to the excitation of fast
magnetosonic waves in the terrestrial magnetosphere. We first demonstrate a novel idea to construct
the shell velocity distribution out of multiple Maxwellian ring-beam velocity distributions. Applying this
technique, we find that the convergence of the linear theory instability can be achieved with only a
moderate number of ring-beam components. In order to prove that such an approximation is legitimate and
the linear theory instabilities evaluated are indeed valid, we use the exact shell distribution to carry out a
number of one dimensional particle-in-cell simulations corresponding to multiple wave propagation angles
adjacent to the direction at which the most unstable waves are expected to grow. The agreement between
the linear dispersion analysis and the simulation results is generally very good: enhanced waves are
organized along the linear theory dispersion curves in the frequency-wave number space, and relative
wave amplitudes are ordered as the linear theory growth rates very well. However, the simulations show a
few extra branches that are not expected from the linear dispersion analysis. A close examination of these
extra branches suggests that they are not simulation artifacts and particularly related to the ring/shell-type
distributions with large ring/shell speed (v> ∼1.5 vA, where vA is the Alfvén speed). In addition, our results
show that substantial wave growth can occur at nonintegral harmonics of the proton cyclotron frequency
at wave normal angles substantially far away from the perpendicular direction, which may provide an
alternative explanation of the off-harmonic peaks of some fast magnetosonic waves observed in space.

1. Introduction
Fast magnetosonic waves in the magnetosphere, also called “equatorial noise” when first observed [Russell
et al., 1970], are characterized with enhanced field fluctuations peaked at harmonics of the proton cyclotron
frequency [Russell et al., 1970; Perraut et al., 1982; Santolík et al., 2002]. Theoretical studies showed that these
waves are driven by the proton distributions with 𝜕f (v‖ ≈ 0, v⊥)∕𝜕v⊥ > 0 [Gul’elmi et al., 1975; Perraut et al.,
1982; McClements et al., 1994; Horne et al., 2000; Chen et al., 2010; Gary et al., 2010], where f (v‖, v⊥) is the
velocity distribution function and v‖ (v⊥) denotes the velocity parallel (perpendicular) to the background
magnetic field. Such distributions, generally represented by the ring or shell distributions, are observed
in various plasma environments [Freund and Wu, 1988; Cottrell and Dendy, 1988; Dendy and McClements,
1993; Janhunen et al., 2003; Broughton et al., 2008; Meredith et al., 2008; Denton et al., 2010]. Here, the “ring”
distribution forms a ring of particles in the two-dimensional perpendicular velocity space, v⊥, but an island
in the v‖ − v⊥ space, and the “shell” distribution forms a spherical shell of particles in the velocity space,
where v⊥ = |v⊥| [Umeda et al., 2012].

Observations of the fast magnetosonic waves show that the magnetic field fluctuations are polarized
along the background magnetic field [Perraut et al., 1982] and the ratio of the electric field intensity to the
magnetic field intensity is in good agreement with the whistler-mode branch of the cold plasma dispersion
relation at wave propagation near the direction perpendicular to the background magnetic field [Boardsen
et al., 1992]. On the other hand, in plasma conditions substantially deviating from those in the terrestrial
magnetosphere where a cold dense background plasma is dominant, the waves occur away from the cold
plasma dispersion relation and are akin to ion Bernstein waves [Denton et al., 2010; Gary et al., 2010, 2011; Liu
et al., 2011]. To emphasize that the analyses herein are not limited to a specific plasma condition, the more
general term “ion Bernstein instability” is used to describe the instabilities driven by the proton velocity
distributions possessing 𝜕f (v‖ ≈ 0, v⊥)∕𝜕v⊥ > 0 throughout the paper and the term “fast magnetosonic
waves” is used to refer to the ion Bernstein waves occurring close to the cold plasma dispersion relation.

Linear dispersion analysis is a powerful tool to study plasma instabilities driven by free energy sources
possessed by the velocity distributions and provides essential guidelines to effectively carry out kinetic
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simulations and to interpret the simulated wave characteristics. To examine the linear instabilities arising
from 𝜕f∕𝜕v⊥ > 0, many studies have modeled the underlying velocity distributions with subtracted
Maxwellian distributions [Denton et al., 2010; Gary et al., 2010], loss cone distributions [Horne et al., 2000], or
Dirac delta (𝛿)-function distributions [Perraut et al., 1982] due to mathematical simplicity, well-established
formulation, and readily available dispersion solvers. These can, however, cover only a subset of the whole
parameter space. In contrast, ring and shell velocity distributions provide more flexibility to model the
underlying distributions and thus broaden the parameter space to be examined, but the dispersion analysis
for these distributions is numerically more demanding because there is no closed-form expression for
the integrals of ring and shell distribution functions over v⊥ involved in the dispersion relation [Umeda
et al., 2012].

Nevertheless, several studies have employed numerical integration techniques to examine plasma
instabilities driven by the ring velocity distribution [McClements et al., 1994; Umeda et al., 2007; Umeda,
2007]. One of the most general formulations has been provided by Umeda et al. [2012] who, applying the
formulation to the analysis of electrostatic electron cyclotron harmonic waves driven by the ring distribution
of electrons, showed that the linear instabilities and simulated waves have excellent agreement. On the
other hand, the fully kinetic description of instabilities driven by the shell velocity distributions has only
been explored using the subtracted Maxwellian distributions [e.g., Gary et al., 2010; Liu et al., 2011] which
can model only moderately positive slopes in f (v‖ ≈ 0, v⊥) due to the requirement of the nonnegative
distribution function and does not allow independent adjustment of the shell speed and the thermal spread
[Liu et al., 2011]. The reason may be that unlike the ring distribution that can be separated into the parallel
and perpendicular components (i.e., fr = g(v‖)h(v⊥)), the dispersion relation for a shell distribution requires
a numerical integration along both v‖ and v⊥.

Inspired by the approach taken by Umeda et al. [2012] and aspiring to better understand detailed physics of
the recent simulation study of the ion Bernstein instability by Liu et al. [2011], we here employ a novel idea to
construct the shell velocity distribution out of multiple ring-beam velocity distributions. Subsequently, we
use the formulation given by Umeda et al. [2012] (referred to as Paper 1 hereinafter) for ring-beam distribu-
tions to construct a dispersion solver for shell distributions. Utilizing the new dispersion solver, we revisit the
study of Liu et al. [2011] (referred to as Paper 2 hereinafter) to examine the ion Bernstein instability driven by
the proton shell distribution.

Paper 2 carried out two 2-dimensional (2-D; two spatial dimensions but with three velocity components
retained) particle-in-cell (PIC) simulations, called Case I and Case II, respectively, to investigate the ion Bern-
stein instability arising, respectively, from two different shell velocity distributions. The velocity distribution
of Case I, which has a smaller shell speed and larger shell density, was modeled by a subtracted Maxwellian
velocity distribution. The corresponding linear dispersion analysis was performed using a well-established
dispersion solver based on bi-Maxwellian distributions developed by Gary [1993]. In contrast, the velocity
distribution of Case II, which has a larger shell speed and smaller shell density, could not be easily mod-
eled by the subtracted Maxwellian distribution due to the large shell speed and small thermal spread of the
shell, and consequently, they had to find the right simulation parameters by a trial-and-error approach and
examine the enhanced waves via the simulation only. In the present study, we will apply our newly devel-
oped dispersion solver to both Case I and Case II in Paper 2 to solve the fully kinetic dispersion equation. The
results will be validated against the results in Paper 2 as well as 1-D, high-spatial-resolution PIC simulations
corresponding to various propagation angles near the direction of the most unstable modes.

The paper is organized as follows. Section 2 describes how to construct a shell velocity distribution out of
multiple ring-beam distributions and, subsequently, the new dispersion solver developed. In section 3 we
calculate the dispersion relation for Case I and compare the result with that of Paper 2, and in section 4 we
calculate the dispersion relation for Case II and compare the result against the simulated waves for vari-
ous propagation angles. Section 5 summarizes the results and discusses a few unexpected aspects we have
encountered in this study.

2. Shell Velocity Distribution and the Dispersion Solver

The shell velocity distribution used for Case II in Paper 2 can be written as

fs(𝜃, vs, v) = 1
Cs

exp
(
−(v − vs)2

𝜃2

)
, (1)
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where vs and 𝜃 are the shell velocity and the thermal spread of the shell, respectively, and Cs is the
normalization constant

Cs = 𝜋𝜃3

[
2 exp

(
−

v2
s

𝜃2

)
vs

𝜃
+
√
𝜋

(
2

v2
s

𝜃2
+ 1

)(
1 + erf

(vs

𝜃

))]

such that ∫ ∞
0 4𝜋v2dvfs = 1. On the other hand, the Maxwellian ring-beam velocity distribution that is the

basis of the formulation in Paper 1 can be written as

fr

(
𝜃‖, vd, 𝜃⊥, vr, v‖, v⊥

)
= f‖ (𝜃‖, vd, v‖) f⊥
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,

(2)

where vd , 𝜃‖, vr , and 𝜃⊥ are the parallel drift velocity, parallel thermal spread, perpendicular ring
velocity, and perpendicular thermal spread, respectively, and the normalization constant Cr ensures
∫ ∞
−∞ dv‖ ∫ ∞

0 2𝜋v⊥dv⊥fr = 1.

It is important to note that any velocity distribution function can be represented by superposition of an
infinite number of 𝛿-functions:

fany(v‖, v⊥) = ∫
∞

−∞
dv′‖ ∫

∞

0
2𝜋v′

⊥
dv′

⊥
f𝛿
(

v‖, v⊥, v′‖, v′
⊥

)
fany(v′‖, v′

⊥
), (3)

where we have assumed that fany is gyrotropic and

f𝛿
(

vd, vr , v‖, v⊥
)
= 𝛿(v‖ − vd)

𝛿(v⊥ − vr)
2𝜋vr

. (4)

In the limit of vanishingly small thermal spread, the Maxwellian ring-beam distribution of equation (2)
converges to a 𝛿-function of equation (4) since lim𝜃‖→0 f‖(𝜃‖, vd, v‖) = 𝛿(v‖ − vd) and lim𝜃⊥→0 f⊥(𝜃⊥, vr , v⊥) =
𝛿(v⊥ − vr)∕(2𝜋vr) [e.g., Arfken et al., 2013, p. 84]. This suggests that one can approximate fany by replacing the
integrals in equation (3) with summations and f𝛿 with fr , giving the following approximation:

fany(v‖, v⊥) ≈
∞∑

p=−∞

∞∑
q=0

𝜂p,qfr

(
𝜃‖, pΔv′‖, 𝜃⊥, qΔv′

⊥
, v‖, v⊥

)
,

𝜂p,q = ΔVfany

(
pΔv′‖, qΔv′

⊥

)
,

(5)

where ΔV = 2𝜋qΔv′‖Δv′2
⊥

is a finite volume element at v′‖ = pΔv′‖ and v′
⊥
= qΔv′

⊥
. Note that 𝜂p,q represents

the relative contribution of an individual Maxwellian ring-beam component. Furthermore, one can use the
fact that

∑
p,q 𝜂p,q =1 to get

𝜂p,q =
fany

(
pΔv′‖, qΔv′

⊥

)
Cr(𝜃⊥, qΔv′

⊥
)∑

r,s

fany

(
rΔv′‖, sΔv′

⊥

)
Cr

(
𝜃⊥, sΔv′

⊥

) .
Since 𝜃‖ and 𝜃⊥ determine the width of the ring-beam, they can be chosen to be near Δv′‖ and Δv′

⊥
,

respectively. Assuming that fany approaches zero at and beyond some finite velocity v‖,max and v⊥,max such
that fany(|v‖| ≥ v‖,max, v⊥) = fany(v‖, v⊥ ≥ v⊥,max) = 0 for any v‖ and v⊥, one can terminate the summations in
equation (5) at p = ±pmax and q = qmax, resulting in the following approximation:

fany(v‖, v⊥) ≈
pmax∑

p=−pmax

qmax∑
q=0

𝜂p,qfr

(
𝜃‖, pΔv′‖, 𝜃⊥, qΔv′

⊥
, v‖, v⊥

)
, (6)

where pmax and qmax may be chosen to be the nearest integers to v‖,max∕Δv′‖ and v⊥,max∕Δv′
⊥

, respectively.
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Equation (6) indicates that the Maxwellian ring-beam distribution of equation (2) can potentially serve as
the basis of all types of velocity distributions. Unfortunately, equation (6) is not practically useful due to the
large number of the ring-beam components involved (∼2pmaxqmax). Note that the order of computational
cost is proportional to the number of the ring-beam components multiplied by the cost originated in the
numerical approach employed in Paper 1. A preliminary examination shows that at least 2000 ring-beam
components are needed to represent the shell distribution in Case II with Δv′‖ = Δv′

⊥
= 0.1vA, where vA is

the Alfvén speed.

In contrast to the direct approach as suggested by equation (6) which involves a two-dimensional summa-
tion, constructing the shell velocity distribution of equation (1) can be done with only a one-dimensional
summation. By requiring 𝜃‖ = 𝜃⊥ = 𝜃 and v2

d + v2
r = v2

s , fs in equation (1) can be approximately
represented by

fs ≈ f (N)s ≡ 𝜋3∕2𝜃3

NCs

N+Q∑
j=−Q

Cr

(
𝜃, vs sin( jd𝜙)

)
fr

(
𝜃, vs cos( jd𝜙), 𝜃, vs sin( jd𝜙), v‖, v⊥

)
, (7)

where d𝜙 = 𝜋∕N and Q is an “overshoot” factor explained later in this section. In equation (7), the shell
velocity distribution has been effectively approximated by a series of ring-beam distributions evenly spaced
in pitch angle space. Still, smaller 𝜃 and larger vs values require larger N for better accuracy. One can deter-
mine the maximum number of ring-beam components Nmax such that limN→Nmax

|f (N)s − fs|∕fs ≤ 𝜖 is satisfied
with 𝜖 being a small number set by the desired accuracy. Of more practical importance is of course the rela-
tive contribution of each Maxwellian ring-beam component in equation (7). Letting the contribution of the
jth Maxwellian ring-beam be 𝜂j and using the fact that fr is scaled by 1∕Cr , it is straightforward to deduce

𝜂j =
Cr

(
𝜃, vs sin( jd𝜙)

)
N+Q∑

j′=−Q

Cr(𝜃, vs sin( j′d𝜙))

. (8)

Then fs ≈
∑

j 𝜂jfr(𝜃, vs cos( jd𝜙), 𝜃, vs sin(jd𝜙), v‖, v⊥).

With the same shell parameters, vs = 2vA and 𝜃 = 0.45vA, as Case II in Paper 2, Figure 1 displays comparison
between the exact (equation (1)) and approximate (equation (7)) shell velocity distributions when N = 9
(left column) and N =18 (right column). Note that only the first quadrant (i.e., for 0∘≤ 𝛼≤90∘, where 𝛼 is the
pitch angle) is displayed since both fs and f (N)s are an even function of v‖. It appears from the figure in the first
row that f (9)s is already a reasonable approximation and the difference between fs and f (18)

s is indistinguish-
able. The figures at the bottom row show f (N)s at the speed of v = vs (i.e., along the crest of the shell). For the
N=9 case (red-dashed curve in Figure 1c) the regularly-spaced ripples are visible due to the coarsely spaced
ring-beam components (gray-thin curves represent individual contributions of the Maxwellian ring-beams),
but for the N = 18 case, these ripples vanish (red-dashed curve in Figure 1d), indicating convergence.

The dotted black curves in Figures 1c and 1d, respectively, represent f (9)s and f (18)
s with Q= 0 in equation (7).

Without the overshoot factor, an artificial loss cone is introduced, effect of which can be significant. The
appearance of the loss cone is due to vsd𝜙 < ∼2𝜃s for both cases, especially for larger N. Therefore, the
missing, nonnegligible contributions to 𝜙 = 0∘ (or 𝜙 = 180∘) from the outskirts of the ring-beams
immediately below 0∘ (or above 180∘) should be compensated by adding extra ring-beam components with
negative ring speeds (doing so is physically nonsense but does not invalidate mathematics). Here, we have
simply defined the factor Q = RND(2

√
log 2𝜃∕(vsd𝜙)) to be the ratio of the full width at half maximum of the

Maxwellian ring-beam to the spacing of two adjacent ring-beam peaks along the crest of the shell, where
RND is the rounding function. The Q values for N = 9 and N = 18 are in this case 1 and 2, respectively.

The dispersion solver used here is a direct implementation of the formulation provided by Paper 1, which
is not only appropriate for the model with the bi-Maxwellian distributions but is also generalized to the
Maxwellian ring-beam distributions of equation (2). We shall refer interested readers to Paper 1 for the
detailed derivation and guidance to the implementation. For the rest of the paper, by “dispersion solver” we
shall, if not explicitly stated, mean the computer program that solves the fully kinetic dispersion equation
for Maxwellian ring-beam distributions combined with, as a pre-process, the approximation procedure of
a shell distribution as a finite series of Maxwellian ring-beam components. Note that the approximation

MIN AND LIU ©2015. American Geophysical Union. All Rights Reserved. 2742
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Figure 1. Comparison of the convergence of the approximate shell distributions from equation (7) between (left) N = 9
and (right) N = 18 cases. Top panels show two dimensional contours of the exact (solid contours) and approximate
(dashed contours) shell distributions. (bottom) One-dimensional cut of the approximate (dotted and dashed curves)
shell distributions along a quarter of the circle v2‖ + v2

⊥
= 4. The solid curves represent contributions from the individual

ring-beam components.

procedure is not part of the program, so we apply equation (8) to the shell distribution in advance and use
the superimposed ring-beam distributions as inputs to the program.

3. Validation for Subtracted Maxwellian Velocity Distribution

As a first step, we calculate the fully kinetic linear instability driven by the subtracted Maxwellian velocity
distribution using the same parameters as Case I of Paper 2. The purpose of this section is twofold: (1) to
verify the newly implemented dispersion solver against the well-established dispersion solver based on
bi-Maxwellian velocity distributions [Gary, 1993] and (2) to establish a quantitative comparison analysis
between the linear theory dispersion relation and the simulated waves. Then in section 4 the same
comparison analysis will be used to verify the calculation of the ion Bernstein instability driven by the
general shell velocity distribution of Case II.

For vr = 0, the Maxwellian ring-beam velocity distribution in equation (2) reduces to the well-known
bi-Maxwellian velocity distribution. Case I of Paper 2 used a subtracted Maxwellian proton velocity distribu-
tion of the form fI=𝜂1fr(𝜃‖,1, 0, 𝜃⊥,1, 0)−𝜂2fr(𝜃‖,2, 0, 𝜃⊥,2, 0) with the parameters: 𝜂1=6.3, 𝜃‖,1=𝜃⊥,1=√0.8vA,

𝜂2 = 5.3 and 𝜃‖,2 = 𝜃⊥,2 =
√

0.9𝜃‖,1. Electrons had a Maxwellian distribution with 𝜃e∕𝜃‖,1 = 0.1, where 𝜃e is
the electron thermal speed. We here adopt the same parameters, including the reduced proton-to-electron
mass ratio of 100 and the relatively small proton plasma-to-cyclotron frequency of 𝜔pp∕Ωcp = 15, to be
consistent with simulations in Paper 2 as well as to reduce the simulation cost in the present study.

Figure 2 displays the linear theory growth rate as a function of wave normal angle (𝜓 ) and wave number
(k) normalized to the proton inertial length (𝜆p = c∕𝜔pp), where c is the speed of light, and can be directly
compared with Figure 3 of Paper 2. As will be shown in Figure 5, there are a number of dispersion surfaces,
most of which are heavily damped (𝛾 <−0.1Ωcp). Therefore, in order to construct the 2-D map of growth
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Figure 2. Linear theory growth rate (𝛾) as a function of the wave num-
ber (k) and the wave normal angle (𝜓 ) for Case I. The thin red contours
represent real frequencies at 1Ωcp and 2Ωcp. The thick green contours
represent the 𝛾 = 0.03Ωcp level.

rate in Figure 2, we have picked the
maximum growth rate across all possi-
ble dispersion surfaces for each wave
number bin of width Δk𝜆p = 0.02,
representing the maximum growth rate
among all identified dispersion sur-
faces. Our result shows that, for waves
of the first harmonic (𝜔 ≈1Ωcp; the dark
patch at smaller k), 𝛾max = 0.044Ωcp

(local maximum growth rate) at
k𝜆p = 4.9 and 𝜓 = 86.1∘, and for waves
of the second harmonic (𝜔≈ 2Ωcp; the
dark patch at larger k), 𝛾max = 0.035Ωcp

at k𝜆p =9.1 and 𝜓 = 86.8∘, which are in
excellent agreement with the result of
Paper 2.

To further validate the linear dispersion analysis results, a series of 1-D PIC simulations using the same sim-
ulation code as Paper 2 have been performed. As illustrated in Figure 3, the 1-D simulation domain is along
the y axis which is nearly perpendicular to the background magnetic field lying in the x-y plane. Accordingly,
the system only allows waves propagating along the y axis with a prescribed wave normal angle 𝜓 . Since
waves are expected to grow in the wave normal angle range between 83∘ and 88∘ as suggested by Figure 2,
we here carry out six individual simulations corresponding to six equally-spaced wave normal angles
between 83∘ and 88∘. The other simulation parameters are: simulation domain size Ly =126𝜆p, 4800 cells,
48,000 simulation particles per cell per species, and the simulation time step of ΔtΩcp = 0.001. Compared to
the 2-D simulation setup in Paper 2, the 1-D simulations here allow a much better spatial resolution. This is
desired as waves across a wide range of wave numbers are expected to grow.

Figure 4a shows the electric and magnetic field energy evolution for 𝜓 = 86∘ for which the first harmonic
mode is most unstable. The picture of exponential growth up to tΩcp ≈110 followed by saturation and
weak damping is consistent with the energy evolution of the 2-D simulation result of Paper 2 (Figure 4
therein). Any minor difference may be due to the different simulation domain setups (1-D versus 2-D).
Throughout the paper, we use the x-component of the simulated magnetic field fluctuations (Bx) for
analyses because the electric field fluctuations have increasing noise with increasing k. Note for 𝜓 ≥ 80∘
that Bx is a good proxy to the compressional component of the magnetic field fluctuations (B‖) which
dominates the transverse components [e.g., Gary et al., 2010].

Figure 3. A schematic diagram of the 1-D (along the
y axis) simulation domain. The black solid line and red
dashed curve represent the background magnetic
field vector and wave propagation (along the y axis),
respectively.

Figure 5 (top) displays the power spectrum of the
simulated waves (B2

x ) as a function of the real frequency
and wave number for 𝜓 = 86∘, and superimposed on
that is the linear theory real frequency. To calculate
the wave spectrum, we choose the simulated field
fluctuations between tΩcp = 20 and tΩcp = 140, which
corresponds to the linear growth and early steady state
phase (Figure 4a), to perform fourier transform. As stated
earlier, 𝜓 = 86∘ roughly corresponds to the local
maximum growth rate of the first harmonic mode. The
linear dispersion analysis shows that there are numerous
dispersion surfaces evidenced by many dispersion
curves, although damping is dominant for most of
the surfaces (dotted curves versus solid curves). The
enhanced wave power from the simulation is aligned
excellently with the linear theory dispersion curves that
have weak damping or positive wave growth. Especially,
waves near the first and second harmonic frequencies
are most pronounced and, compared to the cold plasma
dispersion relation for fast magnetosonic waves (blue

MIN AND LIU ©2015. American Geophysical Union. All Rights Reserved. 2744



Journal of Geophysical Research: Space Physics 10.1002/2015JA021041

Figure 4. Simulated electric (blue) and magnetic (red) field energy evolution shown in the linear scale for (a) Case I and
(b) Case II, corresponding to the wave normal angles of 𝜓 = 86∘ and 𝜓 = 89∘, respectively.
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60 t 110; 86.°

20 t 140; 86.°

Figure 5. Results for 𝜓 = 86∘ of Case I. (top) Comparison between the linear theory real frequencies (red dotted and
solid curves) and simulated wave power (grayscale image) as a function of the real frequency and wave number. The blue
dashed curve represents the cold plasma dispersion curve for fast magnetosonic waves. The red solid (dotted) curves cor-
respond to growth (damping). (bottom) Comparison between the linear theory growth rate (dashed curve with linear
scale on the right axis) and the simulated wave power (solid curve with logarithmic scale on the left axis) as a function of
the wave number.
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Figure 6. Same as Figure 5, but for 𝜓 = 87∘ .

dashed curve), have much smaller phase speeds (𝜔∕k). The bottom panel shows the comparison between
the linear theory growth rate (red dashed curves) and time-averaged wave power (gray solid curve) during
the end of the linear growth phase (60 ≤ tΩcp ≤ 110). As expected from the top panel, two peaks of the
enhanced waves appear at the wave numbers predicted by the linear theory instability and the widths of
the peaks are remarkably consistent with those of the growth rates of the two harmonic modes. The first
harmonic (𝜔 ≈1Ωcp) which has the strongest wave power appears at k𝜆p ∼4.9, while the second harmonic
(𝜔 ≈ 2Ωcp) appears at k𝜆p ∼7.8.

Figure 6, displaying the same quantities as Figure 5 but for 𝜓 = 87∘, further confirms the excellent
agreement between the linear dispersion analysis and the simulation. 𝜓 = 87∘ roughly corresponds to the
local maximum growth rate of the second harmonic. Compared to Figure 5, the enhanced waves at the first
and second harmonics moved to larger wave numbers for 𝜓 = 87∘, deviating further away from the cold
plasma dispersion curve. This is also apparent from Figure 2. From the bottom panel, the first and second
harmonics of the simulated waves for 𝜓 = 87∘ appear at k𝜆p ∼5.8 and k𝜆p ∼9.6, respectively, consistent
with the linear theory growth rates. The widths of the two harmonic modes are also consistent, although the
simulated waves for the second harmonic mode is slightly more spread, likely due to the larger noise level
at the larger wave number. The consistent picture of the comparisons for 𝜓 = 86∘, 𝜓 = 87∘ and other wave
normal angles not shown suggests that the calculations and simulations are in excellent agreement.

4. Full Dispersion Relation for General Shell Velocity Distribution

In this section, we calculate the fully kinetic linear instability driven by the shell velocity distribution using
the same parameters as Case II of Paper 2. Here, the subtracted Maxwellian distribution cannot be used. As
described in section 2, this shell distribution is approximated with multiple ring-beam distributions using
equation (7). To prove such an approximation is legitimate and results in valid instability estimates, we
perform a series of 1-D PIC simulations as in the previous section.
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Figure 7. Linear theory growth rate (𝛾) as a function of the wave number
(k) and the wave normal angle (𝜓 ) for Case II. The filled green circle denotes
the maximum growth rate of 𝛾 = 0.081Ωcp located at 𝜓 = 88.6∘ and
k𝜆p =3.35. The filled green square denotes the second local maximum
growth rate of 𝛾 = 0.059Ωcp located at 𝜓 = 82∘ and k𝜆p = 3.75. Two arrows
indicate the growth rate gaps for the 𝜔 ∼ 7Ωcp mode.

The proton populations used in
Case II consist of tenuous (𝜂1 = 0.1)
energetic protons forming a shell
distribution of equation (1) with the
shell speed vs,1 = 2vA and the thermal
spread of the shell 𝜃1 = 0.45vA, and
dense (𝜂2 = 0.9) cold background
protons forming the Maxwellian
distribution with the thermal speed
𝜃2 = 0.045vA. In other words, the
proton velocity distribution has the
form of fII = 𝜂1fs(𝜃1, vs,1) + 𝜂2fs(𝜃2, 0).
Electrons form the same Maxwellian
velocity distribution as in Case I.

The tenuous shell proton distribution
is approximated using equation (7)
with N = 18, and Figure 7 displays the
linear theory growth rate in the same
format as Figure 2 (comparison with

the N = 9 case is discussed in section 5). Here, the wave normal angle spans from 80∘ to 89.8∘ in steps of
0.2∘. The maximum growth rate is 0.081Ωcp appearing at k𝜆p ≈ 3.35 and 𝜓 ≈ 88.6∘ (filled green circle) with
𝜔 =2.96Ωcp, and the second local maximum growth rate is 0.059Ωcp at k𝜆p ≈ 3.75 and 𝜓 ≈ 82∘ (filled green
square) with 𝜔 = 3.60Ωcp. Note also that the maximum growth rate for Case II is roughly twice as large as
that of Case I. Compared to Figure 2, the overall growth rate pattern is much more complex than Case I and
there are more than two harmonic modes at a given wave normal angle that are unstable. One noticeable
feature is that the single peak of growth rate appearing at, for example, k𝜆p ≈ 5 (4th harmonic mode) and
𝜓 ≈ 89.6∘ immediately splits into two local peaks at both sides of k𝜆p ≈ 5 as 𝜓 decreases. The two peaks

Figure 8. Same as Figure 5, but for 𝜓 = 89∘ of Case II.
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Figure 9. Same as that in Figure 8 (top), but for nine other wave normal angles.

correspond to frequencies below and above 4Ωcp, forming a local minimum of the growth rate as a function
of frequency at 4Ωcp. The same growth rate pattern of splitting peaks appears at higher harmonics as will
be further discussed in section 5 (Figure 13). Furthermore for each wave mode, there exist narrow damping
gaps (two at most) at intermediate wave normal angles (e.g., refer to the arrows), as opposed to the
monotonic increase followed by the monotonic decrease of growth rate with wave normal angle for Case I.
To the best of our knowledge, such complexity in the instability pattern driven by the shell distribution have
not been previously reported.

To confirm the linear dispersion analysis results, a series of 1-D PIC simulations are carried out. We keep
all other simulation parameters identical to the runs for Case I, except that only 5000 simulation particles
per cell are used to represent the energetic shell protons, the background protons, and the electrons,
respectively. Fewer simulation particles per cell have been used for these runs, associated with the larger
linear theory growth rate than that of Case I (see Figures 2 and 7). In addition, as the analysis suggests that
waves can be driven substantially unstable for wave normal angles as low as 80∘, we accordingly carry out
10 simulations corresponding to the wave normal angles equally spaced between 80∘ and 89∘. Figure 4b
shows the electric and magnetic field energy evolution for 𝜓 = 89∘. Note that the maximum growth rate
occurs for 𝜓 = 88.6∘. Compared to Case I, the waves saturate at larger amplitude but at an earlier time.

Figure 8 displays the dispersion analysis and simulation comparison for 𝜓 = 89∘ in the same format as
Figure 5. In Figure 8 (top), fluctuations are visible in at least three distinct branches (labeled as upper, main,
and lower branches in the figure), while the dispersion analysis only predicts the main branch. The cold
plasma dispersion curve, represented by the blue dashed curve, is now located very close to the unstable
segments of the linear theory dispersion curves and the main branch with only slight deviation. In Figure 8
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Figure 10. Same as Figure 8 (bottom), but for all the even wave normal angles simulated. Arrows denote the peaks that
are dominantly contributed by fluctuations in the upper branch and do not match the linear theory growth rate peaks.

(bottom), the linear theory growth rates and the simulated wave power are compared. Despite the fact
that the solutions for the two other branches are not found, the agreement is fairly good. This is because
the simulated waves in the main branch dominate. Note though that the contribution of the upper branch
above the fourth harmonic mode is noticeable. This picture is different for the other propagation angles as
will be shown in the next paragraph. In addition, the simulation shows the strongest third harmonic waves,
consistent with the growth rate calculation. Finally, it is worth mentioning that the simulation noise
becomes significant for the small amplitude waves at larger k.

Figure 9 displays the linear theory real frequencies superimposed on the simulated wave power spectra
for all other wave normal angles and demonstrates how the wave dispersion relations vary with the wave
normal angle. Our linear theory calculation consistently predicts the main branch of the simulated waves at
all other wave normal angles, but none of the other two branches. The other two branches gradually merge
into the main branch as the wave normal angle decreases. Figure 9 also shows that, as the wave normal
angle decreases, the disconnected dispersion surfaces once present at the large wave normal angles merge
into a continuum starting from large k, similar to the result of Horne et al. [2000].

Figure 10 displays comparison between the simulated wave power and linear theory growth rate for the
even wave normal angles simulated. The agreement is fairly good for the first four growth rate peaks (up
to the fifth harmonic frequency), but beyond that the waves of the upper branch become significant. The
arrows in the figure denote the peaks with substantial contributions from the upper branch. In the next
section, we further explore the unexpected upper and lower branches.
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Figure 11. Linear theory comparison of the complex frequency between N = 9 (solid curves) and N = 18 (dashed curves)
cases for (left) 𝜓 = 84∘ and (right) 𝜓 = 89∘. (top) Real and (bottom) complex parts as a function of the wave number.

5. Summary and Discussions

We have developed a fully kinetic dispersion solver which approximates a shell velocity distribution using
multiple Maxwellian ring-beam velocity distributions for which numerical calculation of the full dispersion
relation has been developed [Umeda et al., 2012]. Applying this technique to the two proton shell distribu-
tions examined by Liu et al. [2011], we have validated the new dispersion solver against first a dispersion
solver based on bi-Maxwellian distributions and then PIC simulations. Particularly for Case II in Liu et al.
[2011], we have shown that the approximate shell distribution converges between N = 9 and N = 18 (equiv-
alently, between 12 and 23 ring-beam components). To further test the convergence of the linear theory
instability, we have performed the same calculation for N = 9. Figure 11 compares the linear theory instabili-
ties between the N = 9 (solid curves) and N = 18 (dashed curves) cases for the selected wave normal angles,
84∘ and 89∘. As is clear from the comparison, the complex frequencies are nearly identical, except for some
small deviation in the imaginary parts above k𝜆p ≈ 8. Thus, the linear theory instability already converges
with N = 9 with reasonable accuracy. We have further compared the linear theory instability with simulated
waves from 1-D simulations using the exact shell distribution. On the one hand, our dispersion analysis has
excellent agreement to the main branch of the simulated waves. On the other hand, the simulations show
two extra branches of fluctuations, for which our new dispersion solver could not find any solution.

The two extra branches revealed by the simulations in section 4 are unlikely to be simulation artifacts.
Instead, they start to emerge at a later phase of wave growth (tΩcp ∼70) and become stronger during the
saturation and weak damping phase, perhaps a result of nonlinear interactions. We have carefully repeated
these simulations with different simulation parameters. We have varied the simulation domain size, the
number of grids, the number of simulation particles, and the simulation time step while keeping other
parameters fixed, but the extra branches persistently appear in the simulation results (not shown). These
extra branches seem to be a unique feature related to the shell-type velocity distributions instead. We have
carried out a number of simulations with different shell parameters and even with different types of dis-
tributions. We present only three cases for the propagation angle of 89∘. In the first run (1), we replaced
the shell component with a Maxwellian distribution of the same effective temperature (i.e., plasma beta
𝛽1 = 4𝜂1). In the second run (2), we reduced the shell speed vs,1 from 2vA to 1.4vA and increased the shell
concentrations 𝜂1 from 0.1 to 0.2. In the last run (3), we replaced the shell component with a non-drifting
single Maxwellian ring whose ring speed and concentration are 2vA and 0.05, respectively (the concentra-
tion of 0.05 keeps the linear instability growth rate in the same order as Case II). Figure 12 shows the results
of the three runs in the same format as that in Figure 5 (top). For 1, the two extra branches disappear and
the simulated fluctuations are organized along the predicted dispersion curves (note that the system is
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Figure 12. Three simulation runs with different energetic proton distributions for 𝜓 = 89∘ to further explore the unex-
pected upper and lower branches shown in Figure 8a (the conditions of cases 1, 2 and 3 are described in the text).
The figure format is same as that in Figure 5 (top).

stable in this run evidenced by no positive growth rate). For 2, i.e., with the reduced shell speed, the lower
branch is almost completely suppressed, the upper branch (denoted by arrows) is weakened substantially,
and the main branch follows the linear theory dispersion curves. For 3, there appear a strong upper branch
and weak lower branch. Interestingly, these features are similar to Case II examined (Figure 8), although the
relative amplitudes are different. Again, the main branch follows the predicted dispersion curves. According
to these results, it appears that the waves following the extra branches are not simulation artifacts but rather
related to the ring- and shell-type distributions with a large ring and shell speed. Future investigation is
certainly needed to examine the origin of these extra wave branches.

One drawback of our approach is the computational cost as briefly stated in section 2. There are two factors
contributing to this. First, numerical integration to evaluate integrals involving the ring-beam velocity distri-
bution functions is costly. Second, this numerical integration has to be done with the individual ring-beam
components used in equation (7) (N + 2Q + 1 = 23 components for the analysis in section 4). For instance,
calculation of the dispersion relation with Δk𝜆p = 0.01 for a single wave normal angle (e.g., Figure 8) took
near an hour, compared to several tens of minutes for Case I (e.g., Figure 5), on a single core of 3.2 GHz clock
speed of a quad-core desktop. Note that there are many more dispersion branches in Case I.

MIN AND LIU ©2015. American Geophysical Union. All Rights Reserved. 2751



Journal of Geophysical Research: Space Physics 10.1002/2015JA021041

Figure 13. Linear theory growth rates as a function of the real frequency for (top) Case I and (bottom) Case II. The three
curves in each panel correspond to growth rates for three different wave normal angles as denoted by the legends.

One comparison that is of particular interest to the observational studies of fast magnetosonic waves is
given in Figure 13 which displays growth rates as a function of frequency for the two cases examined. For
Case I (top), two peaks occur nearly at the first two harmonics of Ωcp (0.99Ωcp and 1.92Ωcp, respectively)
almost independent of the wave normal angles. This is clearly shown in Figure 2 where two local maxima
of growth rates are aligned very well with the 𝜔 = 1Ωcp and 2Ωcp contours. But for Case II (bottom), the
peaks appear at the integer multiples of Ωcp only if the propagation direction is nearly perpendicular to the
background magnetic field. At 𝜓 = 88.6∘, growth rates start to be slightly suppressed at 4Ωcp, 5Ωcp and 6Ωcp

(the feature of splitting peaks discussed in section 4), and as a result, two local maxima appear at both sides
of each integer harmonic frequency. This picture is very different from instabilities driven by the nondrifting
Maxwellian ring velocity distribution examined by McClements et al. [1994] (Figure 4 therein) whose analyses
showed that around each harmonic there exists only a single local maximum of growth rate for all wave
normal angles examined. Indeed, our dispersion analysis for a nondrifting single Maxwellian ring as in 3
discussed above gives similar results as in McClements et al. [1994]. More interestingly at 𝜓 = 82∘, the peaks
not only occur far from the integer multiples of Ωcp but are somewhat irregularly spaced (i.e., the frequency
spacings slightly vary for every pair of the nearby peaks). Since the peak near 3.6Ωcp at 𝜓 = 82∘ is the
second largest (also shown in Figure 7), this wave mode is likely to grow as strongly as the ones occurring at
the integer harmonics of Ωcp at more perpendicular propagation angles. This result is somewhat different
from the conventional view of fast magnetosonic wave excitation, whereby strong magnetosonic waves are
excited at the harmonics of the proton cyclotron frequency at the propagation direction nearly perpendicu-
lar to the background magnetic field [e.g., Chen et al., 2010] and any waves with spectral peaks not located
at the exact harmonics of the proton cyclotron frequency may have been propagated radially from other
locations where they are excited [e.g., Perraut et al., 1982; Santolík et al., 2002; Ma et al., 2014]. Thus, our result
suggests another possibility that waves can locally grow at frequencies away from integer harmonics of the
proton cyclotron frequency (at wave normal angles sufficiently away from the perpendicular direction).

The appearance of the growth rate peaks at the nonintegral harmonics of Ωcp for oblique propagation
sufficiently away from the perpendicular direction is also presented for the Maxwellian ring velocity distri-
bution in McClements et al. [1994] (Figure 4 therein) and these authors explained that this is due simply to
the differential Doppler shift introduced by the finite parallel velocity spread of the ring. It is likely that the
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complex structure of growth rates shown in Figure 7 is due to the same reason, but what makes the
structure more complicated than that of the Maxwellian ring distribution presented in McClements et al.
[1994] is the extended parallel velocity spread and nonmonotonic 𝜕fs(v‖, v⊥)∕𝜕v‖ due to the shell structure
with the large shell velocity.

The unstable waves in Case I are far away from the cold plasma dispersion curve as shown in Figures 5
and 6. These waves are clearly ion Bernstein waves. In Case II, however, the unstable waves are close to the
cold plasma dispersion curve (Figures 8 and 9). The waves then become fast magnetosonic like. The contrast
between the two cases reveals a regime transition of the instability associated with several parameters of
the shell velocity distribution, such as the relative density of the shell ions and the shell speed. This regime
transition has been briefly discussed in Liu et al. [2011], but the investigation was limited because there was
no dispersion solver for shell velocity distributions available. The new dispersion solver developed here will
enable us to closely examine the regime transition.
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