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Evolutionary biologists, systematists, and paleontologists studying patterns of 
diversity represented by different taxa, both extinct and extant, have tended to 
develop deterministic explanations for certain distinctive patterns. For example, 
Peterson (1983) hypothesized that the evolution of a subdigital pad in anoline 
lizards, unknown elsewhere in the family Iguanidae, is probably a strong explana- 
tion for why anoline lizards are so diverse (currently at approximately 250 
species). The literature is replete with hypotheses of this kind. 

In a series of papers, a group of paleontologists (the "Woods Hole group") 
criticized the practice within their field of failing to consider null models in studies 
of diversity. They suggested that patterns of diversity might be due to chance 
alone and thus not require specific explanations (Raup et al. 1973; Raup and Gould 
1974; Schopf et al. 1975; Gould et al. 1977; Raup 1977). For example, Raup and 
Marshall asked "Did the order Creodonta die out because of the 'creodontness' of 
its genera (meaning small cranial volume and presumably low intelligence), or did 
the order die out just because all its genera went extinct through independent and 
widely varying causes?" (1980, p. 10). These and other approaches (Van Valen 
1973; Anderson and Anderson 1975; Raup and Marshall 1980; Stanley et al. 1981; 
Savage 1983; Gilinsky and Bambach 1984, 1986) to the problem of stochasticity in 
the evolution of diversity can be divided between qualitative and quantitative 
methods. Qualitative methods have compared the results of computer simulations 
(e.g., Raup et al. 1973) or Monte Carlo models (e.g., Anderson and Anderson 
1975) to real patterns of diversity without quantifying the probability of the 
outcomes. Quantitative approaches have tested real patterns of diversity against 
statistical null hypotheses. Generally, the quantitative approaches (e.g., Raup and 
Marshall 1980; Stanley et al. 1981) have tested the likelihood of fluctuations in 
absolute numbers of taxa within more-inclusive taxa under a null model incor- 
porating a statistically estimated parameter of average change for the group in 
question. These methods are hereafter referred to as absolute methods. We argue 
that quantitative relative methods, defined as methods that test the likelihood of 
the size of one group relative to a related group, are more appropriate. 

Raup et al. (1973), using a ground-breaking approach, developed a computer 
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simulation (the MBL program) to randomly produce artificial histories character- 
ized by integer-valued changes in the standing diversity (defined as the number of 
species extant at any given time) of "monophyletic groups" under the constraint 
of an equilibrium diversity. They found that the stochastic histories tended to 
resemble observed ones; their simulation produced diversity "explosions" as well 
as the complete extinction of taxa, patterns typically observed in the fossil record. 
Thus, they concluded that stochastic factors may play an important role in the 
genesis and extinction of diversity, and therefore, paleontologists should avoid 
idiographic explanations for the history of particular lineages. They argued that, 
instead, paleontologists should seek to create more-generalized, or "nomo- 
thetic," explanations for diversity histories. They suggested that each speciation 
and extinction had an antecedent cause but that the individual causes might be 
unrelated or unconnected, such that the observed pattern is the result of chance. 
In other words, individual determinism cannot be extrapolated to the level of the 
entire population (Schopf 1979). For example, consider a simple random walk 
generated by flipping a coin: each time a head occurs, a point on a Cartesian 
coordinate system is moved one unit upward on the y-axis; every time a tail is 
thrown, the point moves one unit down. The point often remains above or below 
the x-axis for many successive trials; yet we would never attempt to explain such 
behavior, which is the result of chance alone. Each head has a specific cause 
involving innumerable variables, but successive heads are not related or con- 
nected by their individual causes. This serves to illustrate another point, namely, 
that randomness does not imply disorder; surprisingly counterintuitive results can 
be generated from randomness (Raup 1977). Therefore, one has to exercise 
caution when creating deterministic explanations for apparent patterns. 

The approach of Raup et al. (1973) is an important one. However, for the 
following reasons, improvements are necessary. First and foremost, their method 
did not determine quantitatively whether real patterns of diversity could be 
distinguished from an expectation of randomness but, rather, noted that real 
patterns occasionally looked like computer-generated null models. Furthermore, 
the authors stated that the artificial groups generated by the MBL program are 
strictly monophyletic; yet, in reality, many are paraphyletic (in the sense of 
Hennig 1966). The use of non-monophyletic groups in analyses of the history of 
diversity introduces an element of arbitrariness (Patterson and Smith 1987). 
Lastly, the MBL program generates taxa between predetermined upper and lower 
bounds of size; such a routine introduces another element of arbitrariness. 

Savage (1983) compared large numbers of four-, five-, six-, and seven-taxon 
trees taken from the literature with three models elucidated by Simberloff et al. 
(1981) predicting the expected proportions of the topological types possible given 
n taxa. He found that a randomly branching Markovian model best fit the empir- 
ical trees, thereby strengthening earlier arguments that speciation and extinction 
are largely stochastic with respect to which lineage will be next to diverge or 
disappear. A randomly branching Markovian model is a simple stochastic process 
whereby every branch in a growing tree has an equal probability of splitting 
(Bailey 1964). However, as we argue later, these results may apply to only small 
sets of closely related taxa. 
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Recent papers (Raup and Marshall 1980; Stanley et al. 1981; Gilinsky and 
Bambach 1984, 1986) have challenged the view that much of the history of 
diversity is stochastic. Using what they considered to be refined methods for 
studying diversity, they concluded that real diversity histories were not stochastic 
but displayed significant nonrandom order. Stanley et al. (1981), using an absolute 
method, argued that the MBL program of Raup et al. (1973) suffered from not 
using empirically scaled parameters (probabilities of branching, persistence, and 
extinction, and appropriate levels of standing diversity at time zero). They devel- 
oped a computer simulation and an analytic method for testing whether changes in 
the standing diversity of post-Cambrian Paleozoic orders of brachiopods could 
have occurred by chance. Their findings strongly supported the alternative hy- 
pothesis that clade expansions and contractions in post-Cambrian Paleozoic 
brachiopods did not occur by chance but had definite causes. We believe, how- 
ever, that their approach was flawed for several reasons. By testing changes in 
absolute numbers of taxa through time, two potentially deterministic phenomena 
were confused: the evolution of differences in the probabilities of speciation and/ 
or extinction among lineages, and nonrandom changes in numbers of taxa through 
time over many lineages. The former may result from the evolution within species 
of biological innovations ("key adaptations"), whereas the latter results from 
large-scale, extrinsic changes affecting many lineages simultaneously. For ex- 
ample, environmentally induced mass extinction is an example of a large-scale 
change affecting many lineages simultaneously. The two kinds of determinism are 
distinct and should be tested separately. We believe that large-scale determinism 
is best tested using an absolute quantitative method, whereas determinism result- 
ing in relative differences in the probabilities of speciation and/or extinction 
among lineages is best tested by the method we describe herein. The method of 
Stanley et al. (1981) fails to distinguish between the two types of change and, 
therefore, fails to test them separately. Furthermore, their method relies on the 
accuracy of the input-generating parameters, which are calculated as average 
rates. Using average rates, however, ignores the individual variation of taxa. 
Lastly, their method was applied to post-Cambrian orders of brachiopods; we 
wonder to what extent fluctuations in these orders are the result of differential 
sampling in the geologic record, differential preservation of brachiopods, or the 
inherent arbitrariness of taxonomy. These criticisms apply in general to absolute 
approaches to the problem of the stochasticity of evolution. In this paper, we 
focus only on the possible existence of intrinsic differences among lineages in 
probabilities of speciation and/or extinction (such as might occur as a result of an 
adaptation). 

Raup and Marshall (1980), in another absolute method, tested whether generic 
turnovers, defined as rates of genera origination and extinction in orders of 
mammals, varied significantly from one another, thereby demonstrating determin- 
istic differences in rates of speciation and extinction. Using a modified x2 test, 
they concluded that significant differences in generic turnover are a reality and 
coined the term "taxotely" for rates of turnover within lineages differing 
significantly from the rate of turnover among lineages. However, their findings 
could also have resulted from the same artifacts discussed in the preceding 
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paragraph, those of the pitfalls of using taxonomy and the sampling of the fossil 
record (see criticisms in Cracraft 1981). 

To date, we feel that the debate about stochasticity versus determinism in the 
evolution of diversity has not been adequately resolved because a quantitative 
method based purely on the topology of phylogeny has not been employed. The 
basic premise of our paper is that analysis of macroevolutionary patterns must be 
based on knowledge of relationships (Cracraft 1982). Much speciation and extinc- 
tion among closely related species is probably stochastic (relative to which taxon 
speciates or goes extinct), as suggested empirically by Savage (1983), but stochas- 
ticity of large-scale patterns remains to be demonstrated. Earlier quantitative 
attempts to test the stochasticity of the pattern of diversity (Raup and Marshall 
1980; Stanley et al. 1981; Gilinsky and Bambach 1984, 1986) suffered from not 
considering phylogeny as a specific topology. Herein we synthesize the work of 
others with some of our own to create a quantitative null model based on topology 
to test the randomness of large-scale pattern. Unlike the model of Stanley et al. 
(1981), our null model reflects only relative changes in the probabilities of specia- 
tion and extinction among lineages. Furthermore, phylogenetic topologies are 
independent of the artifacts discussed in the previous paragraphs. Our null model 
is an analytic model based on the mathematics of a simple, Markovian dichoto- 
mous-branching process (Harding 1971). The application of such a model has 
appeared before in studies of both phylogeny (e.g., Raup et al. 1973; Savage 1983) 
and vicariance biogeography (Simberloff et al. 1981; Simberloff 1987). 

Our null model hypothesizes that the processes generating patterns of diversity 
(extinction and speciation) occur randomly among taxa and, therefore, that very 
large or very small organismal radiations, as compared with related taxa, are the 
result of chance. Morphological or genetic change is ignored (except to the extent 
that species are delimited by morphological or genetic criteria) because our model 
deals exclusively with the branching process of evolution reflected in the topology 
of a phylogeny. Because of the problems that arise from testing phylogenies of 
entirely extinct taxa, our null model is applicable only to the relationships of 
contemporaneous species. When extinct lineages are used, relative differences in 
extinction can no longer be tested; instead, only differential speciation can be 
considered. However, if significant differences are found, they could be the result 
of certain lineages' having slightly more extinct taxa than others and, therefore, 
fewer chances through time for speciation. Testing phylogenies of modern organ- 
isms avoids the artifacts associated with data based on the fossil record. 

Our treatment of this subject differs from that of earlier papers (Raup et al. 
1973; Anderson 1974; Raup and Gould 1974; Anderson and Anderson 1975; 
Schopf et al. 1975; Gould et al. 1977; Raup and Marshall 1980; Stanley et al. 1981; 
Gilinsky and Bambach 1984, 1986) in the following ways: (1) our conceptualiza- 
tion of the evolution of diversity is a topology resulting from a branching process 
(phylogeny) rather than an integer-valued process of change in total diversity; 
(2) extinct taxa are not included in phylogenies to be tested, and our method 
is therefore independent of the problems inherent in sampling the fossil record; 
(3) species rather than supraspecific taxa are the units of analysis (see Stanley 
et al. 1981), thereby eliminating the subjectivity of higher taxonomy (as discussed 
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above, earlier papers-e.g., Raup and Marshall 1980; Stanley et al. 1981-have 
suffered from using methods sensitive to the artifacts resulting from taxonomy); 
(4) no unnecessary assumptions, such as equilibrium in the number of coexisting 
species (Raup et al. 1973), are made; and (5) our model is independent of the 
temporal effects on probabilities of extinction and/or speciation. 

PHYLOGENETIC TREES 

Our approach is based on a probabilistic study of large phylogenetic trees. We 
make only the following assumptions with respect to phylogenies. 

1. The phylogeny of a set of contemporaneous species can be represented by a 
rooted tree comprising branches and nodes. The latter are divided between 
interior and terminal nodes; interior nodes are branching points, whereas terminal 
nodes are species. Such a tree is purely dimensionless in that no inferences about 
time of divergence or relative morphological change are possible; only relation- 
ships of common ancestry are shown. 

2. All branching points are dichotomous; that is, they give rise to only two 
descendant branches. This common assumption in phylogenetic studies is not 
always accurate; however, we believe that polychotomous speciation is rare. 

3. All species occupy only terminal positions, as they would if they were 
contemporaneous. In other words, no modern species is considered an ancestor of 
another. 

4. Hybridization between species is considered a rare form of speciation and, 
therefore, is ignored in our treatment. 

5. Allochronic speciation, or the formation of new species simply through 
sufficient anagenetic evolution along a lineage, is ignored. New species form only 
by the splitting of lineages. 

Trees of this nature-that is, trees in which the terminal nodes are labeled and 
the interior nodes are hypothetical, unlabeled points-are the type of trees most 
commonly used in modern phylogenetic studies of contemporaneous organisms. 
When the interior nodes are constrained to be dichotomous, the total number of 
distinguishable rooted trees possible, D(n), is a function of n taxa: 

D(n) = (2n - 3)!/2'-2(n - 2)! (1) 

(Felsenstein 1978), where n ? 2. 
Consider five taxa; from equation (1) there are 105 ways in which five taxa can 

be interrelated. These trees sort into three topological types (fig. 1). The number 
of topological types is simply the number of distinct trees that would exist if the 
taxon labels were deleted. Another way to understand topological types is to 
consider the result of deleting interior nodes: if the basal node of tree B in figure 1 
were deleted, it would result in two subtrees of two and three taxa. Thus, it differs 
from trees A and C, each of which has a basal node connected to subtrees of one 
and four taxa. Trees A and C can be distinguished from each other by the next 
interior node up from the basal node. Topological types are important to our 
treatment because probabilities can be associated with them (see below). The 
number of such topological types, N(n), can be found using a recursive formula 
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A B C 

FIG. 1.-The three distinct topological types on five taxa. 

given by Wedderburn (1922): 

N(n) = L 2 N(k)N(n-k) + E(n), (2) 

where 

E(n) 12N(nl2) if n is even 
10 if n is odd 

and where N(1) = 1. 
The number of ways in which n taxa can be interrelated, L(T), within a 

topological type T is given by a pair of recursive expressions (Harding 1971, p. 
72). If deletion of the basal node (root) partitions the topological type, T, into two 
subtrees R and S, of size r and s, respectively, such that r c s, then 

L(T) = (n )L(R)L(S) if R =# S (3) 

or 

L(T) = (2 ()L(R)2 if R = S, (4) 

where L(T) = I for n = 1. 

PROBABILITIES OF TREES 

Simberloff et al. (1981), in considering the probability under the null model of 
replicating trees as applied to the testing of vicariance biogeography, discussed 
several alternatives: (1) each topological type is equiprobable; (2) every distin- 
guishable tree, as given in equation (1), is equiprobable; or (3) each topological 
type occurs in the proportions predicted by a randomly branching Markovian 
model. The implicit assumption in many previous works (e.g., Rosen 1978) has 
been that every individual tree is equally probable. If true, then trees A, B, and C 
of figure 1 would occur randomly in the proportions 60/105, 30/105, and 15/105, 
respectively (the numerators are simply the number of trees for that topological 
type as given by eqs. 3, 4). But as Simberloff et al. (1981) argued, no logical 
justification exists for this assumption; why, they asked, should the topological 
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1 2 3 4 5 6 

FIG. 2.-A diagrammatic representation of the process of lineage-splitting leading to four 
taxa. 

type of tree A in figure 1, for example, occur in direct proportion to the number of 
distinct combinations among its terminal species? This hidden assumption is 
derived from the assumption that all trees, the number of which is given by 
equation (1), are equiprobable. They argued that one of the two alternatives listed 
above (2 or 3) is more plausible. The former seems entirely arbitrary; Savage 
(1983), using trees taken from the literature, found that the topological-types-are- 
equiprobable hypothesis is a poor predictor of observed tree proportions, but that 
the Markovian model is a good predictor of observed tree proportions. 

Under the Markovian model, the probability of speciation is equally distributed 
along all branches in a growing phylogeny. To generate all possible outcomes in a 
Markovian framework, we need a different perspective on phylogeny than the one 
offered by equation (1), which gives the number of ways in which n named taxa 
can be interrelated. Instead, we need to view the process of phylogeny from the 
perspective of an ancestral species splitting to give rise to distinct descendant 
species. Figure 2 is a diagrammatic representation of the process by which lineage 
splitting leads from one ancestral species to four. As shown, there are six possible 
ways to generate four species from such a process: initially, an ancestral species 
splits to give two distinct species; depending on which of the two species splits, 
two possibilities exist (fig. 2, step A); depending on which of the three species 
splits in each of the diagrams in step A, six possibilities result (fig. 2, step B). 
Harding (1971, p. 63) has shown that the number of such trees possible, P(n), from 
a simple lineage-splitting process is 

P(n) = (n - 1)!. (5) 

Table 1 gives P(n), D(n), and N(n) for up to 15 taxa. Given an equal probability of 
speciation along every branch in a growing phylogeny, every tree in figure 2 is 
equiprobable. The topological type represented by trees 1, 2, 5, and 6 occurs four 
times, whereas the topological type represented by trees 3 and 4 occurs twice; 
therefore, the probabilities of these types are 4/6 and 2/6, respectively. Harding 
(1971, p. 64) gave a pair of recursive equations for calculating the Markovian 
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TABLE 1 

THE NUMBER OF POSSIBLE TREES OF THREE TYPES FOR UP TO FIFTEEN TAXA 

n P(n) N(n) D(n) 

1 1 1 1 
2 1 1 1 
3 2 1 3 
4 6 2 5 
5 24 3 105 
6 120 6 945 
7 720 11 10,395 
8 5,040 23 135,135 
9 40,320 46 2,027,025 

10 362,880 98 34,459,425 
11 3,628,800 207 654,729,075 
12 39,916,800 451 13,749,310,575 
13 479,001,600 983 316,234,143,225 
14 6,227,020,800 2,145 7,905,853,580,625 
15 87,178,291,200 4,816 213,458,046,676,875 

NOTE.-P(n) is the number of phylogenies resulting from a simple lineage-splitting process leading 
to n species and is given by equation (5) in the text. N(n), the number of topological types of the 
phylogenies P(n) and D(n), is given by equation (3). D(n), the number of ways that n taxa can be 
interrelated, is given by equation (1). 

probability p(T) for each topological type T on n taxa: 

p(T) = 2(n - 1-lp(R)p(S) if R #& S (6) 

or 

p(T) = (n - 1)-lp(R)2 if R = S, (7) 

where n - 2 and p() = 1 for n = 2 or 3. Table 2 gives the Markovian probabilities 
for up to eight taxa. 

To find the probability of an individual tree with labeled taxa, one divides the 
probability of its topological type by the number of such trees within that type (as 
found by eqs. 3, 4). For example, the Markovian probability of the topological 
type represented by tree B in figure 1 is ?/2; the probability of any tree within this 
type, say (((A,B)C)(D,E)), where parentheses surround monophyletic groups, 
would be 0.5/30 = 0.017. It is interesting to note that a tree of type B in figure 1 is 
more than twice as probable as a tree of type A; this asymmetry of probabilities is 
an inherent characteristic of the Markovian model of tree probabilities. Harding 
(1971, p. 73) gave a recursive equation relating the probability of a specific labeled 
tree, TI, within T: 

p(TI) = 2[r!(n - r)!]p(Rl)p(Sl)I(n - l)n! (8) 

for both R $ S and R = S, where p(TI) = I for n = 1. 
We feel that a Markovian process of random branching is the proper null model 

for testing the stochasticity of phylogenies. But to make any consideration of the 
evolution of diversity realistic, one must consider extinction. Many extant taxa 
probably have experienced the extinction of some of their subtaxa in the past; 
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TABLE 2 

THE RANDOM PROBABILITIES OF ALL TOPOLOGICAL TYPES FOR UP TO EIGHT TAXA 

Type Probability Type Probability Type Probability 

1 1 73 = 1 + 63 1/15 88 = 1 + 78 1/63 
2 1 74 = 1 + 64 4/45 89 = 1 + 79 1/21 
3 = 1+2 1 75 = 1 + 65 2/45 810 = 1 + 710 4/63 
41 = 1 + 3 2/3 76 = 1 + 66 1/15 81, = 1 + 71, 2/63 
42 = 2 + 2 1/3 77 = 2 + 51 1/9 812 = 2 + 61 4/105 
51 = 1 + 41 1/3 78 = 2 + 52 1/18 813 = 2 + 62 2/105 
52 = 1 + 42 1/6 79 = 2 + 53 1/6 814 = 2 + 63 2/35 
53 = 2 + 3 1/2 710 = 3 + 41 2/9 815 = 2 + 64 8/105 
61 = 1 + 51 2/15 711 = 3 + 42 1/9 816 = 2 + 65 4/105 
62 = 1 + 52 1/15 81 = 1 + 71 4/315 817 = 2 + 66 2/35 
63 = 1 + 53 1/5 82 = 1 + 72 2/315 818 = 3 + 51 2/21 
64 = 2 + 41 4/15 83 = 1 + 73 2/105 819 = 2 + 52 1/21 
65 = 2 + 42 2/15 84 = 1 + 74 8/315 80o = 3 + 53 1/7 
66 = 3 + 3 1/5 85 = 1 + 75 4/315 821 = 41 + 41 4/63 
71 = 1 + 61 2/45 86 = 1 + 76 2/105 822 = 41 + 42 4/63 
72 = 1 + 62 1/45 87 = 1 + 77 2/63 823 = 42 + 42 1/63 

NOTE.-Data from Harding 1971, p. 66. Notation for topological types is based on a recursive 
system with subscripts denoting the specific type. 

A B C D E F G A B C D 

FIG. 3.-A phylogeny with extinct lineages depicted as dashed lines (left), and the phy- 
logeny as it would appear if only extant taxa were considered (right). 

such taxa, in a study of modern organisms, are "invisible" (see fig. 3). It can 
easily be shown analytically that the Markovian equations presented above still 
apply when extinction is incorporated, as long as the probability of extinction is 
equal among all branches in a growing phylogeny. Therefore, our null model tests 
whether probabilities of speciation and/or extinction differ significantly among 
lineages. The two factors are inextricable; determining which of the two causes 
was responsible for particular patterns is impossible. 

TESTING THE NULL MODEL: THE METHOD 

Because Savage (1983) showed that small (four-, five-, six-, and seven-taxon) 
empirical trees follow a simple stochastic Markovian distribution, we assumed 
earlier that the processes of speciation and extinction among closely related taxa 
are essentially stochastic. This seems reasonable, since one might expect closely 
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related species to be biologically similar. Therefore, one species is probably no 
more prone to speciation or extinction than a closely related species. Thus, a 
Markovian model is the appropriate null model to apply to studies such as 
vicariance biogeography (see Simberloff 1987) that generally compare small phy- 
logenies. However, we do not think that stochasticity necessarily can be ex- 
trapolated to larger patterns, that is, larger phylogenies (n >> 7). Given enough 
time, a branch in a growing phylogeny might evolve differences in biology that 
predispose that branch and its descendants to increased and/or decreased rates of 
speciation and/or extinction. If the evolution of such features occurs infrequently, 
then random sampling of small portions of the overall phylogeny of life would 
reveal a stochastic pattern; in most cases, the sampled phylogenies would be too 
small to reflect the infrequent occurrences of these features. Thus, the large-scale 
nonrandom pattern that might be the reality of phylogeny would be masked. The 
evolution of innovations (adaptations) predisposing certain lineages to increased 
and/or decreased rates of speciation and/or extinction, if they occur, would be 
analogous to synapomorphies (in the sense of Hennig 1966) and can be mapped on 
phylogenetic trees. 

Testing whether or not such shifts in the probabilities of speciation and extinc- 
tion really occur requires sampling large phylogenies (n >> 7) and testing them 
quantitatively for their fit to the Markovian null model. By sampling large phy- 
logenies, especially ones postulated to represent nonrandom pattern, the probabil- 
ity is increased of including one with an evolutionary shift in rates of speciation 
and/or extinction. However, by sampling clades hypothesized to represent non- 
random patterns, one biases toward rejection of the null model; even a stochastic 
model predicts apparently nonrandom outcomes (i.e., one should not test the 
randomness of phylogeny by choosing apparently nonrandom phylogenies). This 
can be obviated by testing the distribution of several to many large phylogenies 
chosen randomly, rather than just one phylogeny, against the null model. A 
rejection of the null model establishes only that deterministic diversity evolution 
occurs, not whether individual phylogenies require deterministic explanations; we 
will probably never know whether the radiation of anoline lizards represents 
nonrandom evolution. In this sense, our null model is nomothetic; it can only 
establish whether the evolution of diversity behaves randomly in a statistical 
sense. 

To test the distribution of phylogenies, we first need a means of assessing the 
probabilities of individual phylogenies in a relative framework, since our null 
model seeks to test whether clades are too large or too small, as expected by 
chance, compared to related taxa. This can be done by extending our equations on 
the probabilities of trees to include sister groups. A sister group is the group of 
organisms most closely related to a specified taxonomic group; they are the rooted 
subtrees that remain when an interior node is deleted (fig. 4). Any member of a 
sister group is more closely related to any member of the other sister group than to 
any taxon lying outside the clade defined by the two sister groups. Sister groups 
are especially well suited to our analysis because, by definition, sister groups are 
of equal age (Cracraft 1981) and therefore represent historical equivalents. Thus, 
sister groups are the appropriate units for comparison in testing whether rates of 
speciation and/or extinction vary significantly between lineages (Cracraft 1981). 
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A B C D E F G H 

FIG. 4.-A representation of a phylogeny for which the taxa A, B, C, D, E, and F are the 
sister group to taxa G and H. 

Consider the tree of figure 4. The probability that an ancestral species would 
split into two sister species, of which each would subsequently give rise to six 
species and two species, respectively, would simply be the sum of the Markovian 
probabilities of all topological types possible given the partition of the tree into 
two subtrees of size six and two, represented as 2,6 (herein, the notation r,s is 
used to denote the situation in which the root of a tree or subtree gives rise to two 
descendant subtrees of size r and s, respectively; it does not indicate an ordered 
pair). The number S(r, s) of all topological types given a partition r, s is 

S(r,s) = N(r)N(s) if r - s (9) 

or 

S(r,s) = N(r) + (N(r)) if r = s, (10) 

where N(r) and N(s) are given by equation (2). 
The partition of the tree in figure 4, 2,6, corresponds to six distinct topological 

types. The probability of this partition would then be the sum of the probabilities 
of each of these individual topological types. The probability p(r, s) of any parti- 
tion r, s can be represented as 

S(r,s) 

p(r, s) = Ejp(Ti), (11) 

where Ti denotes the ith topological type. The quantity p(r, s) can be found by 
calculating the probabilities of each individual topological type from equations (6) 
and (7) and summing them. Obviously, this becomes tedious for large numbers of 
species. The right-hand terms of equations (6) and (7), however, sum to unity over 
all S(r, s), thereby transforming equations (6) and (7) from recursive formulas to 
simple equations (see the Appendix for proof): 

p(r,s) = 2(n- 1)-i if r # s (12) 

or 

p(r,s) = (n - 1)-i if r= s. (13) 
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This simplifies calculations of the Markovian probabilities for very large sister- 
taxa comparisons. From equations (12) and (13), the probability of the partition 
represented by the tree in figure 4 is 2/7. One important characteristic of these 
equations is that for any number of taxa, n, the distribution of probabilities for all 
[n/2] values of r, s (where Lx] is a function that assigns to every value of x the 
greatest integer not greater than x) is nonmodal: p(r = 1, s = n - 1) = p(2, n - 2) 
= . . . = p([n/2], [n/2J + 1 if n is odd, or 2p(nl2, n/2) if n is even). This surprising 
characteristic of the Markovian model predicts that unbalanced sister taxa will 
occur fairly frequently. That is, a Markovian randomly branching process inher- 
ently produces apparently nonrandom patterns. This results because there are 
more possible component topological types for unbalanced partitions. For ex- 
ample, the partition 1, 14 corresponds to 2145 possible types, whereas the more- 
balanced 7,8 corresponds to just 253 possible topological types. The fact that 
sister taxa of disparate sizes are, in fact, relatively probable underscores the need 
for statistical testing of the kind described in this paper; it is untenable to assume 
that any pair of sister taxa differing in size require some sort of specific hypothesis 
to explain that disparity. 

The cumulative probability of a partition pc(r, s) can be calculated by summing 
the probabilities of all partitions more extreme plus p(r,s). For 6,2, pc(r,s) is 
p(6,2) + p(7, 1) = 4/7. This has the effect of "locating" the partition within the 
distribution of partitions. Equations (12) and (13) can be modified to give pc(r, s): 

pc(r,s) = 2r(n - 1)1 for r #& s 

and where r < s (14) 

or 

pc(r,s) = 1.0 for r = s. (15) 

A specific example to illustrate the use of equations (14) and (15) is the large 
radiation of anoline lizards of the family Iguanidae distributed throughout subtrop- 
ical and tropical regions of the Caribbean Basin, Central America, and North and 
South America. Anoles, with approximately 250 species, are commonly thought 
to represent an example of nonrandom evolution requiring some kind of deter- 
ministic explanation. Anoles are most closely related to the Cuban genus 
Chamaeleolis (Guyer and Savage 1986), comprising only three species (Schwartz 
and Henderson 1985). The cumulative probability of an ancestral species splitting 
to eventually yield sister groups of 3 and 250 species is p(3,250) + p(2,251) + 
p(1,252) = 0.024. 

To test the distribution of large phylogenies, many should be chosen in an 
unbiased fashion (i.e., without respect to disparity in size of sister groups) and 
compared with the predictions of the null model. The distribution of values for 
pc(r, s) (generated by eqs. 14, 15) over different numbers of taxa, n, is continuous 
and nonmodal. If we arbitrarily delimit probability classes from 1.0 to 0, say 1.0 to 
0.9, 0.9 to 0.8, . . . , 0.1 to 0, then the theoretical distribution of cumulative 
probability values (over different numbers of taxa) falling within these classes will 
be nonmodal when a large number of phylogenies is sampled; that is, each class 
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will contain approximately equal numbers of entries. Hence, it is a straightfor- 
ward matter to statistically test the null hypothesis by a x2 or some other 
goodness-of-fit test. If C classes are delimited, into which are distributed the 
empirical observations, then the expected number of observations per class will 
be K/C, where K is the overall number of phylogenies sampled. If the above 
procedure leads to rejection of the null model, it suggests that too many sister-taxa 
observations are falling into certain classes and thus that the evolution of diversity 
cannot be characterized as purely random. This kind of testing is a prerequisite 
before deterministic explanations can be created for taxonomic patterns. If deter- 
minism is ultimately found to be a reality, it could result from intrinsic and/or 
extrinsic causes. Intrinsic causes would include adaptations that predispose taxa 
to increased rates of speciation or decreased rates of extinction. Extrinsic causes 
might include phenomena such as a taxon's developing an increased rate of 
speciation because of tectonic activity over its range. 

SUMMARY 

Evolutionary biologists, systematists, and paleontologists commonly have in- 
voked deterministic explanations for certain patterns of diversity. However, few 
authors have considered the null model that the factors generating diversity may 
behave stochastically and that "pattern" therefore results from chance and does 
not require a deterministic explanation. We have developed a quantitative null 
model based on a randomly branching Markovian process to test the stochasticity 
of patterns of diversity as represented by phylogenies of contemporary organisms. 
The model allows one to consider real phylogenies containing large numbers of 
taxa and to determine whether the observed topology of those phylogenies might 
be explained by chance alone. We believe that our null model represents an 
improvement over earlier models. The simplicity of our null model makes feasible 
the testing of large numbers of phylogenies for stochasticity. 
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APPENDIX 
The following is a proof for the transition of equations (6) and (7) to equations (12) and 

(13). 
For r $ s.-The problem of calculating p(r, s) for r $ s is one of finding the probability of 

a topological type given r taxa, multiplying it by the probability of any topological type 
given s taxa, and multiplying the result by 2 (n - 1)- '. This is done for all topological types 
on s taxa and then repeated for all topological types on r taxa; the results are summed to 
give p(r, s). The individual probabilities for all topological types given r taxa can be denoted 
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as XI, X2, . XN(r), and the individual probabilities for all topological types given s taxa 
can be denoted as XN(r)?, 1 XN(r)+2 . . . XN(r)+N(s). Using equation (6), 

p(r,s) = 2(n - 1)-lXIXN(r)+l + 2(n - 1)Y-XIXN(r-)+2 + * * - 

+ 2(n - 1)-IX2XN(Z)+I + 2(n - 1) 1X2XN(r)+2 + 

+ 2(n - 1) -1XN(r)XN(r) + N(s) 

N(r) N(r) + N(s) 

=2(n - 1)- I E X ixj. 
i=l j=N(r)+1 

Given that the two sets of probabilities always sum separately to 1.0, the double sum in 
the above equation will always sum to 1.0. Thus, p(r,s) = 2(n - 1)'- for r =$ s. 

For r = s.-In this situation, the two sets of topological types on r and s taxa and their 
probabilities are identical. Hence, some topologies given r, s will be symmetrical (R = S), 
whereas others will be asymmetrical (R =$ S), necessitating calculation of p(r, s) using both 
equations (6) and (7). There will be exactly c[N(r), 2] (the binomial coefficient) topologies 
where R =$ S and N(r) topologies where R = S. Using equations (6) and (7), 

N(r) 

p(r,s) = 2(n - i-' E XjX, + (n - 1)-i X2 

isi i=1I 
N(r) 

= (n - 1) (2 j xix +- 

Given that the right-hand term will always equal 1.0 as long as the sequence Xi sums to 1.0, 
p(r,s) = (n - 1)-1 for r = s. 
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