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Having accurate, detailed, and up-to-date information about the
location and behavior of animals in the wild would improve our
ability to study and conserve ecosystems. We investigate the abil-
ity to automatically, accurately, and inexpensively collect such
data, which could help catalyze the transformation of many fields
of ecology, wildlife biology, zoology, conservation biology, and
animal behavior into “big data” sciences. Motion-sensor “camera
traps” enable collecting wildlife pictures inexpensively, unob-
trusively, and frequently. However, extracting information from
these pictures remains an expensive, time-consuming, manual
task. We demonstrate that such information can be automatically
extracted by deep learning, a cutting-edge type of artificial intel-
ligence. We train deep convolutional neural networks to identify,
count, and describe the behaviors of 48 species in the 3.2 million-
image Snapshot Serengeti dataset. Our deep neural networks
automatically identify animals with >93.8% accuracy, and we
expect that number to improve rapidly in years to come. More
importantly, if our system classifies only images it is confident
about, our system can automate animal identification for 99.3%
of the data while still performing at the same 96.6% accuracy as
that of crowdsourced teams of human volunteers, saving >8.4 y
(i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2
million-image dataset. Those efficiency gains highlight the impor-
tance of using deep neural networks to automate data extraction
from camera-trap images, reducing a roadblock for this widely
used technology. Our results suggest that deep learning could
enable the inexpensive, unobtrusive, high-volume, and even real-
time collection of a wealth of information about vast numbers of
animals in the wild.

deep learning | deep neural networks | artificial intelligence |
camera-trap images | wildlife ecology

To better understand the complexities of natural ecosystems
and better manage and protect them, it would be helpful

to have detailed, large-scale knowledge about the number, loca-
tion, and behaviors of animals in natural ecosystems (2). Placing
motion-sensor cameras called “camera traps” in natural habi-
tats has transformed wildlife ecology and conservation over the
last two decades (3). These camera traps have become an essen-
tial tool for ecologists, enabling them to study population sizes
and distributions (4) and evaluate habitat use (5). While they
can take millions of images (6–8), extracting knowledge from
these camera-trap images is traditionally done by humans (i.e.,
experts or a community of volunteers) and is so time-consuming
and costly that much of the valuable knowledge in these big data
repositories remains untapped. For example, currently it takes 2–
3 mo for thousands of “citizen scientists” (1) to label each 6-mo
batch of images for the Snapshot Serengeti (SS) dataset. By 2011,
there were at least 125 camera-trap projects worldwide (6), and,
as digital cameras become better and cheaper, more projects will
put camera traps into action. Most of these projects, however,
are not able to recruit and harness a huge volunteer force as

SS has done to extract information of interest. Even if they are
able to extract the information they originally intended to cap-
ture, there may be other important data that could be extracted
for other studies that were not originally envisioned (e.g., infor-
mation on nonfocal animal species). Automating the informa-
tion extraction procedure (Fig. 1) will thus make vast amounts
of valuable information more easily available for ecologists to
help them perform their scientific, management, and protection
missions.

In this work, we focus on harnessing computer vision to auto-
matically extract the species, number, presence of young, and
behavior (e.g., moving, resting, or eating) of animals, which
are statistics that wildlife ecologists have previously decided are
informative for ecological studies based on SS data (9–12). These
tasks can be challenging even for humans. Images taken from
camera traps are rarely perfect, and many images contain ani-
mals that are far away, too close, or only partially visible (Fig.
2 A–C). In addition, different lighting conditions, shadows, and
weather can make the information-extraction task even harder
(Fig. 2D). Human-volunteer species and count labels are esti-
mated to be 96.6% and 90.0% accurate, respectively, vs. labels
provided by experts (1).

Significance

Motion-sensor cameras in natural habitats offer the opportu-
nity to inexpensively and unobtrusively gather vast amounts
of data on animals in the wild. A key obstacle to har-
nessing their potential is the great cost of having humans
analyze each image. Here, we demonstrate that a cutting-
edge type of artificial intelligence called deep neural networks
can automatically extract such invaluable information. For
example, we show deep learning can automate animal identi-
fication for 99.3% of the 3.2 million-image Snapshot Serengeti
dataset while performing at the same 96.6% accuracy of
crowdsourced teams of human volunteers. Automatically,
accurately, and inexpensively collecting such data could help
catalyze the transformation of many fields of ecology, wildlife
biology, zoology, conservation biology, and animal behavior
into “big data” sciences.
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Fig. 1. Deep neural networks (DNNs) can successfully identify, count, and
describe animals in camera-trap images. Above the image: The ground-
truth, human-provided answer (top line) and the prediction (second line)
by a DNN we trained (ResNet-152). The three plots below the image, from
left to right, show the neural network’s prediction for the species, number,
and behavior of the animals in the image. The horizontal color bars indicate
how confident the neural network is about its predictions. All similar images
in this work are from the SS dataset (1).

Automatic animal identification and counting could improve
all biology missions that require identifying species and count-
ing individuals, including animal monitoring and management,
examining biodiversity, and population estimation (3). In this
work, we harness deep learning, a state-of-the-art machine-
learning technology that has led to dramatic improvements in
artificial intelligence (AI) in recent years, especially in computer
vision (13). Here, we do not harness the data we automatically
extract to test a specific ecological hypothesis. Instead, we inves-
tigate the efficacy of deep learning to enable many future such

studies by offering a far less expensive way to provide the data
from large-scale camera-trap projects that has previously led to
many informative ecological studies (9–12).

Deep learning only works well with lots of labeled data, sig-
nificant computational resources, and modern neural network
architectures. Here, we combine the millions of labeled data
from the SS project, modern supercomputing, and state-of-
the-art deep neural network (DNN) architectures to test how
well deep learning can automate information extraction from
camera-trap images. We find that the system is both able to
perform as well as teams of human volunteers on a large frac-
tion of the data and identifies the few images that require
human evaluation. The net result is a system that dramatically
improves our ability to automatically extract valuable knowledge
from camera-trap images. Like every method, deep learning has
biases (discussed below) that must be kept in mind, corrected,
and/or accounted for when using this technology. Swanson et
al., 2016 (14) showed that the citizen-scientist approach also has
its own set of systematic biases, but that they can be adequately
corrected for.

Background and Related Work
Machine Learning. Machine learning enables computers to solve
tasks without being explicitly programed to solve them (15).
State-of-the-art methods teach machines via supervised learning
(i.e., by showing them correct pairs of inputs and outputs) (16).
For example, when classifying images, the machine is trained
with many pairs of images and their corresponding labels, where
the image is the input and its correct label (e.g., “buffalo”) is the
output (Fig. 3).

Deep Learning. Deep learning (17) allows computers to automat-
ically extract multiple levels of abstraction from raw data (Fig.
3). Inspired by the mammalian visual cortex (18), deep convolu-
tional neural networks (deep CNNs) are a class of feedforward
DNNs (17) in which each layer of neurons (to be “deep,” three
or more layers) uses convolutional operations to extract informa-
tion from overlapping small regions coming from the previous
layers (13). For classification, the final layer of a DNN is usu-
ally a softmax function, with an output between 0 and 1 per class
and with all of the class outputs summing to 1. These outputs
are often interpreted as the DNN’s estimated probability of the
image belonging in a certain class, and higher probabilities are
often interpreted as the DNN being more confident that the
image is of that class (19). DNNs have dramatically improved
the state of the art in many challenging problems (13), including
speech recognition (20–22), machine translation (23, 24), image
recognition (25, 26), and playing Atari games (27).

Related Work. There have been many attempts to automatically
identify animals in camera-trap images; however, many relied on

Fig. 2. Various factors make identifying animals in the wild hard even for humans (trained volunteers achieve 96.6% accuracy vs. experts).
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Fig. 3. DNNs have several layers of abstraction that tend to gradually con-
vert raw data into more abstract concepts. For example, raw pixels at the
input layer are first processed to detect edges (first hidden layer), then cor-
ners and textures (second hidden layer), then object parts (third hidden
layer), and so on if there are more layers, until a final prediction is made
by the output layer. Note that which types of features are learned at each
layer are not human-specified, but emerge automatically as the network
learns how to solve a given task.

hand-designed features (8, 28) to detect animals, or were applied
to small datasets (e.g., only a few thousand images) (29, 30).
In contrast, in this work, we seek to (i) harness deep learning
to automatically extract necessary features to detect, count, and
describe animals; and (ii) apply our method on the world’s largest
dataset of wild animals (i.e., the SS dataset) (1). Reasons to learn
features from raw data include that doing so often substantially
improves performance (13, 25, 31); because such features can
be transferred to other domains with small datasets (32, 33);
because it is time-consuming to manually design features; and
because a general algorithm that learns features automatically
can improve performance on very different types of data [e.g.,
sound (20, 34) and text (23, 35)], increasing the impact of the
approach. However, an additional benefit to deep learning is that
if hand-designed features are thought to be useful, they can be
included as well in case they improve performance (36–40).

Previous efforts to harness hand-designed features to classify
animals include Swinnen et al. (8), who attempted to distinguish
the camera-trap recordings that do not contain animals or the
target species of interest by detecting the low-level pixel changes
between frames. Yu et al. (29) extracted the features with sparse
coding spatial pyramid matching (41) and used a linear sup-
port vector machine (16) to classify the images. While achieving
82% accuracy, their technique requires manual cropping of the
images, which requires substantial human effort.

Several recent works harnessed deep learning to classify
camera-trap images. Chen et al. (30) harnessed CNNs to fully
automate animal identification. However, they demonstrated the
techniques on a dataset of ∼20,000 images and 20 classes, which
is of much smaller scale than we explore here (30). In addition,
they obtained an accuracy of only 38%, which leaves much room
for improvement. Interestingly, Chen et al. found that DNNs
outperform a traditional Bag of Words technique (42, 43) if pro-
vided sufficient training data (30). Similarly, Gomez et al. (44)
also had success applying DNNs to distinguishing birds vs. mam-
mals in a small dataset of 1,572 images and distinguishing two
mammal sets in a dataset of 2,597 images.

The closest work to ours is Gomez et al. (45), who also
evaluate DNNs on the SS dataset: They perform only the species-
identification task, whereas we also attempt to count animals,
describe their behavior, and identify the presence of young.
On the species-identification task, our models performed far
superiorly to theirs: 92.0% for our best network vs. ∼57% (esti-
mating from their plot, as the exact accuracy was not reported)
for their best network. There are multiple other differences
between our work and theirs. (i) Gomez et al. (45) only trained

networks on a simplified version of the full 48-class SS dataset.
Specifically, they removed the 22 classes that have the fewest
images (SI Appendix, Fig. S8, bottom 22 classes) from the full
dataset and thus classified only 26 classes of animals. Here,
we instead sought solutions that performed well on all 48
classes, as the ultimate goal of our research is to automate
as much of the labeling effort as possible. (ii) Gomez et al.
(45) based their classification solutions on networks pretrained
on the ImageNet dataset (46), a technique known as transfer
learning (32). We found that transfer learning made very lit-
tle difference on this task when training on the full dataset (SI
Appendix, Transfer Learning), and we thus chose not to use it
for simplicity. We revisit the benefits of transfer learning on
smaller datasets below. We conduct a more detailed compari-
son with Gomez et al. (45) in SI Appendix, Comparing to Gomez
et al., 2016.

SS Project. The SS project is the world’s largest camera-trap
project published to date, with 225 camera traps running con-
tinuously in Serengeti National Park, Tanzania, since 2011 (1).
Whenever a camera trap is triggered, such as by the movement
of a nearby animal, the camera takes a set of pictures (usually
three). Each trigger is referred to as a capture event. The public
dataset used in this work contains 1.2 million capture events (3.2
million images) of 48 different species.

Nearly 28,000 registered and 40,000 unregistered volunteer
citizen-scientists have labeled 1.2 million SS capture events.
For each image set, multiple users label the species, number
of individuals, various behaviors (i.e., standing, resting, mov-
ing, eating, or interacting), and the presence of young. In total,
10.8 million classifications from volunteers have been recorded
for the entire dataset. Swanson et al. (1) developed a sim-
ple algorithm to aggregate these individual classifications into
a final “consensus” set of labels, yielding a single classification
for each image and a measure of agreement among individ-
ual answers. In this work, we focus on capture events that
contain only one species; we thus removed events containing
more than one species from the dataset (1.2% of the events).
Extending these techniques to images with multiple species is a
fruitful area for future research. In addition to volunteer labels,
for 3,800 capture events, the SS dataset also contains expert-
provided labels, but only of the number and type of species
present.

We found that 75% of the capture events were classified as
empty of animals. Moreover, the dataset is very unbalanced,
meaning that some species are much more frequent than others
(SI Appendix, Improving Accuracy for Rare Classes). Such imbal-
ance is problematic for machine-learning techniques because
they become heavily biased toward classes with more examples.
If the model just predicts the frequent classes such as wilde-
beest or zebra most of the time, it can still get a very high
accuracy without investing in learning rare classes, even though
these can be of more scientific interest. The imbalance problem
also exists for describing behavior and identifying the presence
of young. Only 1.8% of the capture events are labeled as con-
taining babies, and only 0.5% and 8.5% of capture events are
labeled as interacting and resting, respectively. We delve deeper
into this problem in SI Appendix, Improving Accuracy for Rare
Classes.

The volunteers labeled entire capture events (not individual
images). While we do report results for labeling entire capture
events (SI Appendix, Classifying Capture Events), in our main
experiment, we focused on labeling individual images instead
because if we ultimately can correctly label individual images,
it is easy to infer the labels for capture events. Importantly,
we also found that using individual images resulted in higher
accuracy because it allowed three times more labeled training
examples (SI Appendix, Classifying Capture Events). In addition,
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training our system on images makes it more informative and
useful for other projects, some of which are image-based and not
capture-event-based.

However, the fact that we took the labels for each capture
event and assigned them to all of the individual images in that
event introduced noise into the training process. For exam-
ple, a capture event may have had one image with animals,
but the remaining images empty (Fig. 4). Assigning a species
label (e.g., hartebeest; Fig. 4A) to all these images (Fig. 4 B
and C) added some noise that machine learning models had to
overcome.

Experiments and Results
We found that a two-stage pipeline outperformed a one-step
pipeline (SI Appendix, One-Stage Identification): In the first stage,
a network solved the empty vs. animal task (task I) (i.e., detecting
if an image contains an animal); in the second information-
extraction stage, a network then reported information about the
images that contain animals. We found that 75% of the images
were labeled empty by humans; therefore, automating the first
stage alone saves 75% of human labor.

The information-extraction stage contains three additional
tasks: task II, identifying which species is present; task III,
counting the number of animals; and task IV, describing addi-
tional animal attributes (their behavior and whether young are
present). We chose to train one model to simultaneously perform
all of these tasks—a technique called multitask learning (47)—
because (i) these tasks are related, therefore they can share
weights that encode features common to all tasks (e.g., features
that help recognize animals); learning multiple, related tasks in
parallel often improves the performance on each individual task
(48); and (ii) doing so requires fewer model parameters vs. a sep-
arate model for each task, meaning we can solve all tasks faster
and more energy-efficiently, and the model is easier to transmit
and store. These advantages will become especially important
if such neural network models run on remote camera traps to
determine which pictures to store or transmit.

Datasets. In this work, we only tackled identifying one instead of
multiple species in an image [i.e., single-label classification (16)].
Therefore, we removed images that humans labeled as contain-
ing more than one species from our training and testing sets
(1.2% of the dataset). The training and test sets for the informa-
tion extraction stage were formed from the 25% of images that
were labeled as nonempty by humans.

If there are overly similar images in the training and test
sets, models can just memorize the examples and then do not

generalize well to dissimilar images. To avoid this problem, we
put entire capture events (which contain similar images) into
either the training or test set. From a total of 301,400 cap-
ture events that contained an animal, we created a training set
containing 284,000 capture events and two test sets. The expert-
labeled test set contains 3,800 capture events with species and
counts labels. The volunteer-labeled test set contains 17,400 cap-
ture events labeled by volunteers, and it has labels for species,
counts, behaviors, and the presence of young. The dataset con-
tains images taken at day and at night, but we found this
had little effect on performance (SI Appendix, Day vs. Night
Accuracy).

Architectures. Different DNNs have different architectures,
meaning the type of layers they contain (e.g., convolutional lay-
ers, fully connected layers, pooling layers, etc.) and the number,
order, and size of those layers (13). In this work, we tested
nine different modern architectures at or near the state of the
art (Table 1) to find the highest-performing networks and to
compare our results to those from Gomez et al. (45). We only
trained each model one time because doing so is computationally
expensive and because both theoretical and empirical evidence
suggests that different DNNs trained with the same architecture,
but initialized differently, often converge to similar performance
levels (13, 17, 51).

A well-known method for further improving classification
accuracy is to use an ensemble of models at the same time
and average their predictions. After training all of the nine
models for each stage, we formed an ensemble of the trained
models by averaging their predictions (SI Appendix, Prediction
Averaging). More details about the architectures, training meth-
ods, preprocessing steps, and the hyperparameters are in SI
Appendix, Preprocessing and Training. To enable other groups
to replicate our findings and harness this technology for their
own projects, we are publishing the software required to run
our experiments as freely available, open-source code. We are
also publishing the final DNNs trained on SS so that others
can use them as is or for transfer learning. Both the code and
the models can be accessed at https://github.com/Evolving-AI-
Lab/deep learning for camera trap images.

Task I: Detecting Images That Contain Animals. For this task, our
models took an image as input and output two probabilities
describing whether the image had an animal or not (i.e., binary
classification). We trained nine neural network models (Table
1). Because 75% of the SS dataset is labeled as empty, to avoid
imbalance between the empty and nonempty classes, we took all

A B C

Fig. 4. While we train models on individual images, we only have labels for entire capture events (a set of images taken one after the other within
approximately 1 second, e.g., A, B, and C), which we apply to all images in the event. When some images in an event have an animal (e.g., A) and others are
empty (B and C in this example), the empty images are labeled with the animal type, which introduces some noise in the training-set labels and thus makes
training harder.

Norouzzadeh et al. PNAS | vol. 115 | no. 25 | E5719
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Table 1. Performance of different deep learning architectures

Architecture No. of layers Short description

AlexNet 8 A landmark architecture for deep learning winning ILSVRC
2012 challenge (31).

NiN 16 Network in Network (NiN) is one of the first architectures
harnessing innovative 1 × 1 convolutions (49) to provide
more combinational power to the features of a convolutional
layers (49).

VGG 22 An architecture that is deeper (i.e., has more layers of
neurons) and obtains better performance than AlexNet
by using effective 3 × 3 convolutional filters (26).

GoogLeNet 32 This architecture is designed to be computationally efficient
(using 12 times fewer parameters than AlexNet) while offering
high accuracy (50).

ResNet 18, 34, 50, 101, 152 The winning architecture of the 2016 ImageNet competition
(25). The number of layers for the ResNet architecture can be
different. In this work, we try 18, 34, 50, 101, and 152 layers.

25% (757,000) nonempty images and randomly selected 757,000
empty images. This dataset was then split into training and
test sets.

The training set contained 1.4 million images, and the test set
contained 105,000 images. Since the SS dataset contains labels
for only capture events (not individual images), we assigned the
label of each capture event to all of the images in that event. All
of the architectures achieved a classification accuracy of >95.8%
on this task. The VGG model achieved the best accuracy of
96.8% (Table 2). To show the difficulty of the task and where the
models currently fail, several examples for the best model (VGG)
are shown in SI Appendix, Results on the Volunteer-Labeled Test
Set, and SI Appendix, Fig. S10 shows the best model’s confusion
matrix.

Task II: Identifying Species. For this task, the corresponding out-
put layer produced the probabilities of the input image being
one of the 48 possible species. As is traditional in the field of
computer vision, we reported top-1 accuracy (is the answer cor-
rect?) and top-5 accuracy (is the correct answer in the top-5
guesses by the network?). The latter is helpful in cases where
multiple things appear in a picture, even if the ground-truth
label in the dataset is only one of them. The top-5 score is also
of particular interest in this work because AI can be used to
help humans label data faster (as opposed to fully automating
the task). In that context, a human can be shown an image and
the AI’s top-5 guesses. As we report below, our best techniques
identified the correct animal in the top-5 list 99.1% of the time.
Providing such a list thus could save humans the effort of find-
ing the correct species name in a list of 48 species >99% of the
time, although human-user studies will be required to test that
hypothesis.

Measured on the expert-labeled test set, the model ensemble
had 94.9% top-1 and 99.1% top-5 accuracy (SI Appendix, Fig. S11
shows its confusion matrix), while the best single model (ResNet-
152) obtained 93.8% top-1 and 98.8% top-5 accuracy (Fig. 5,
Upper). The results on the volunteer-labeled test set along with
several examples (like Fig. 1) are reported in SI Appendix, Results
on the Volunteer-Labeled Test Set.

Task III: Counting Animals. There are many different approaches
for counting objects in images by deep learning (52–54), but
nearly all of them require labels for bounding boxes around dif-
ferent objects in the image. Because this kind of information is
not readily available in the SS dataset, we treated animal count-
ing as a classification problem and left more advanced methods
for future work. In other words, instead of actually counting ani-
mals in the image, we assigned the image to one of the 12 possible

bins; each represented 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11–50, or +51
individuals, respectively. For this task, in addition to reporting
top-1 accuracy, we also reported the percentage of images that
were correctly classified within ±1 bin (1).

For this task, the ensemble of models on the expert-labeled
test set got 63.1% top-1 accuracy, and 84.7% of predictions
were within ±1 bin. SI Appendix, Fig. S10 shows the ensem-
ble’s confusion matrix. The same metrics for the best single
model (ResNet-152) were 62.8% and 83.6%, respectively (Fig.
5, Lower). The results on the volunteer-labeled test set along
with several examples are reported in SI Appendix, Results on the
Volunteer-Labeled Test Set.

Task IV: Additional Attributes. The SS dataset contains labels
for six additional attributes: standing, resting, moving, eating,
interacting, and whether young are present (Fig. 1). Because
these attributes are not mutually exclusive (especially for images
containing multiple individuals), this task is a multilabel clas-
sification (55, 56) problem. A traditional approach for multil-
abel classification is to transform the task into a set of binary
classification tasks (55, 57). We did so by having, for each
additional attribute, one two-neuron softmax output layer that
predicted the probability of that behavior existing (or not) in the
image.

The expert-labeled test set does not contain labels for these
additional attributes, so we used the majority vote among the
volunteer labels as the ground truth label for each attribute.
We counted an output correct if the prediction of the model
for that attribute was >50% and matched the ground-truth
label.

Table 2. Accuracy of different models on task I: Detecting
images that contain animals

Architecture Top-1 accuracy, %

AlexNet 95.8
NiN 96.0
VGG 96.8
GoogLeNet 96.3
ResNet-18 96.3
ResNet-34 96.2
ResNet-50 96.3
ResNet-101 96.1
ResNet-152 96.1
Ensemble of models 96.6

The bold font indicates the top-performing architecture.
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Fig. 5. (Upper) Top-1 and top-5 accuracy of different models on the task of identifying the species of animal present in the image. Although the accuracy
of all of the models are similar, the ensemble of models is the best with 94.9% top-1 and 99.1% top-5 accuracy. (Lower) Top-1 accuracy and the percentage
of predictions within ±1 bin for counting animals in the images. Again, the ensemble of models is the best with 63.1% top-1 and 84.7% of the prediction
within ±1 bin.

We report traditional multilabel classification metrics, specif-
ically, multilabel accuracy, precision, and recall (56). Pooled
across all attributes, the ensemble of models produced 76.2%
accuracy, 86.1% precision, and 81.1% recall. The same met-
rics for the best single model (ResNet-152) were 75.6%, 84.5%,
and 80.9%, respectively. More results for predicting additional
attributes are reported in SI Appendix, Results on the Volunteer-
Labeled Test Set. For this and all previous tasks, we provide
examples of correct predictions in Fig. 6 and incorrect network
predictions in Fig. 7.

Saving Human Labor via Confidence Thresholding
One main benefit of automating information extraction is elim-
inating the need for humans to have to label images. Here,
we estimated the total amount of human labor that could be
saved if our system is designed to match the accuracy of human
volunteers.

We created a two-stage pipeline by having the VGG model
from the empty vs. animal experiment classify whether the image
contained an animal and, if it did, having the ensemble of models
from the second stage label it. We can ensure the entire pipeline
is as accurate as human volunteers by having the network classify
images only if it is sufficiently confident in its prediction.

Harnessing this confidence-thresholding mechanism, we can
design a system that matches the volunteer human classifica-
tion accuracy of 96.6%. For task I, detecting images that contain
animals, we did not have expert-provided labels and thus did
not know the accuracy of the human volunteers, so we assumed
it to be the same 96.6% accuracy as on the animal identifi-
cation task (task II). Because the VGG model’s accuracy is
higher than the volunteers’, we can automatically process 75%
of the data (because 75% of the images are empty) at human-
level accuracy. For task II, identifying species, thresholding at
43% confidence enabled us to automatically process 97.2% of
the remaining 25% of the data at human-level accuracy. There-
fore, our fully automated system operated at 96.6% accuracy on
75%× 100%+25%× 97.2%=99.3% of the data. Applying the

same procedure to task III, counting animals, human volunteers
were 90.0% accurate, and to match them, we thresholded at 79%.
As a result, we can automatically count 44.5% of the nonempty
images and therefore 75%× 100%+25%× 44.5%=86.1% of
the data. For more details and plots, refer to SI Appendix, Con-
fidence Thresholding. We could not perform this exercise for
task IV, additional attributes, because SS lacks expert-provided
labels for this task, meaning human-volunteer accuracy on it is
unknown.

Note that to manually label ∼5.5 million images, nearly 30,000
SS volunteers have donated ∼14.6 y of 40-h-a-week effort (1).
Based on these statistics, our current automatic identification
system would save an estimated 8.4 y of 40-h-per-week human
labeling effort (> 17,000 h) for 99.3% of the 3.2 million images
in our dataset. Such effort could be reallocated to harder images
or harder problems or might enable camera-trap projects that are
not able to recruit as many volunteers as the famous SS project
with its charismatic megafauna.

Helping Small Camera-Trap Projects via Transfer Learning
Deep learning works best with many (e.g., millions) labeled data
points (here, images) (13). Many small camera-trap projects
exist that do not have the ability to label a large set of images.
Deep learning can still benefit such projects through transfer
learning (32, 33, 58), wherein a network can first be trained
on images available in other large datasets (e.g., large, public
datasets like SS) and then further trained on a different, smaller
dataset (e.g., a small camera-trap project with just a few thousand
labeled images). The knowledge learned on the first dataset is
thus repurposed to classify the second, smaller dataset. We con-
ducted experiments validating this approach for the identifying-
species task (tasks I and II), which gives a sense of how well
smaller projects can expect to do with various amounts of
labeled data.

Because we are not aware of any other publicly available
labeled camera-trap datasets, to conduct this experiment, we
simulated camera-trap projects of various sizes by randomly
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Fig. 6. Shown are nine images the ResNet-152 model labeled correctly. Above each image is a combination of expert-provided labels (for the species type
and counts) and volunteer-provided labels (for additional attributes), as well as the model’s prediction for that image. Below each image are the top guesses
of the model for different tasks, with the width of the color bars indicating the model’s output for each of the guesses, which can be interpreted as its
confidence in that guess.

creating labeled datasets of different sizes from SS data. To con-
duct transfer learning, we first trained on the ImageNet dataset
(59) and then further trained the network on a small simu-
lated camera-trap dataset. ImageNet has 1.3 million labeled
images for 1,000 categories (from synthetic objects such as bicy-
cles and cars to wildlife categories such as dogs and lions). This

dataset is commonly used in computer vision research, includ-
ing research into transfer learning (32). Training on images from
the real world can be helpful, even if the classes of images
are dissimilar, because many lower-level image features (e.g.,
edge detectors of different orientations, textures, shapes, etc.)
are common across very different types of images (32, 33, 58).
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Fig. 7. (A–I) Shown are nine images the ResNet-152 model labeled incorrectly. Above each image are a combination of expert-provided labels (for the
species type and counts) and volunteer-provided labels (for additional attributes), as well as the model’s prediction for that image. Below each image are
the top guesses of the model for different tasks, with the width of the color bars indicating the model’s output for each of the guesses, which can be
interpreted as its confidence in that guess. One can see why the images are difficult to get right. G and I contain examples of the noise caused by assigning
the label for the capture event to all images in the event. A, B, D, and H show how animals being too far from the camera makes classification difficult.

That said, transfer learning from the ImageNet dataset to SS
likely underestimates what performance is possible with transfer
learning between camera-trap-specific datasets, because it has

been shown that the more similar the classes of images are
between the transfer-from and transfer-to datasets, the better
transfer learning works (32). Transferring from the SS dataset to
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other wildlife camera-trap projects could thus provide even bet-
ter performance. SI Appendix, Transfer Learning has additional
details for these experiments.

The main takeaway is that a substantial fraction of the data
can be automatically extracted at the same 96.6% accuracy level
of citizen-scientists, even if only a few thousand labeled images
are available. Accuracy, and thus automation percentages, fur-
ther improves as more labeled data are provided during training.
With 1.5 thousand (1.5k) images, >41% of the entire pipeline
can be automated. Assuming a conservative 10 s per image, label-
ing these 1.5k images takes only 4.2 h. With only 3k images
(8.3 h), that number jumps to >50%. With 6k, 10k, and 15k
images (16.7, 27.8, and 41.7 h), 62.6%, 71.4%, and 83.0% of the
data can be automatically labeled, respectively. With 50k images
(138.9 h), 91.4% of the entire pipeline can be automated. Thus,
sizable cost savings are available to small camera-trap projects of
various sizes, and, especially at the low end, investing in labeling
a few more thousand images can provide substantial perfor-
mance improvements. SI Appendix, Transfer Learning provides
full results, including more dataset sizes and the model’s accu-
racy for task I, detecting images that contain animals, and task
II, identifying species.

Discussion and Future Work
There are many directions for future work, but here we men-
tion three particularly promising ones. The first is studying
the actual time savings and effects on accuracy of a system
hybridizing DNNs and teams of human volunteer labelers. Time
savings should come from three sources: automatically filter-
ing empty images, accepting automatically extracted information
from images for which the network is highly confident in, and
by providing human labelers with a sorted list of suggestions
from the model so they can quickly select the correct species,
counts, and descriptions. However, the actual gains seen in prac-
tice need to be quantified. Additionally, the effect of such a
hybrid system on human accuracy needs to be studied. Accuracy
could be hurt if humans are more likely to accept incorrect sug-
gestions from DNNs, but could also be improved if the model
suggests information that humans may not have thought to con-
sider. A second, but related, promising direction is studying

active learning (60, 61), a virtuous cycle in which humans label
only the images in which the network is not confident, and then
those images are added to the dataset, the network is retrained,
and the process repeats. The third is automatically handling mul-
tispecies images, which we removed for simplicity. While our
current trained pipeline can be applied to all images, for images
with multiple species, it provides only one species label. In 97.5%
of images, it correctly listed one of the species present, providing
useful information, but the impact of missing the other species
should be kept in mind and will depend on the use case. How-
ever, one could train networks to list multiple species via a variety
of more sophisticated deep-learning techniques (47, 62, 63), a
profitable area for future research.

Conclusions
In this work, we tested the ability of state-of-the-art computer
vision methods called DNNs to automatically extract informa-
tion from images in the SS dataset, the largest existing labeled
dataset of wild animals. We first showed that DNNs can perform
well on the SS dataset, although performance is worse for rare
classes.

Perhaps most importantly, our results show that using deep-
learning technology can save a tremendous amount of time for
biology researchers and the human volunteers that help them
by labeling images. In particular, for animal identification, our
system can save 99.3% of the manual labor (>17,000 h) while
performing at the same 96.6% accuracy level of human volun-
teers. This substantial amount of human labor can be redirected
to other important scientific purposes and also makes knowledge
extraction feasible for camera-trap projects that cannot recruit
large armies of human volunteers. Automating data extraction
can thus dramatically reduce the cost to gather valuable infor-
mation from wild habitats and will thus likely enable, catalyze,
and improve many future studies of animal behavior, ecosystem
dynamics, and wildlife conservation.
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