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In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D)
momentum-space picture of any charged particles collected with a velocity-map imaging system
from the two-dimensional (2D) projected image captured by a position-sensitive detector. The
method consists of fitting the measured image with the 2D projection of a model 3D velocity dis-
tribution defined by the physics of the light-matter interaction. The meaningful angle-correlated
information is first extracted from the raw data by expanding the image with a complete set of Leg-
endre polynomials. Both the particle’s angular and energy distributions are then directly retrieved
from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explic-
itly takes into account the pixelization effect in the measurement. Published by AIP Publishing.

https://doi.org/10.1063/1.5025057

l. INTRODUCTION

Among the various techniques available to study the
physics of the light-matter interaction, Velocity Map Imag-
ing (VMI) systems emerged as a first-choice option as they
simultaneously give access to the angular and energy distri-
butions of the particles (electrons or ions) emerging from an
interaction while retaining a high angular and energy resolu-
tion."> In addition, they also offer a 47 collection angle and
a very high count rate, which is adequate for many exper-
iments performed with relatively unstable light sources like
laser systems. On the basis of all these assets, VMI systems
have been extensively employed over the last three decades to
study fundamental aspects of a variety of physical and chem-
ical phenomena like photoionization, photodetachment, and
molecular photofragmentation dynamics.>

The technique consists of projecting the particles emerg-
ing from the light-target interaction onto a planar position
sensitive detector by means of an electrostatic lens, as shown
in Fig. 1. As they travel toward the detector, the particles
expand on the surface of a sphere (generally called a “New-
ton” sphere) whose increasing radius r is proportional to the
product of their initial velocity v and their time of flight. The
two-dimensional (2D) image P(x, z) formed by their impact
positions on the detector is then directly related to the ini-
tial three-dimensional (3D) distribution I(r(v), 6, ¢) of the
emission by the well-known Abel transform,*

S 1(r(v), 0, o)r
P(x,z) =2 —dr, 1
wo=2 [ SR v

where R = Vx2 + 72 is the radial position of a given point
in the projection and € and ¢ are the polar and azimuthal
emission angles of the particles, respectively. From a purely
mathematical point of view, the exact three-dimensional dis-
tribution I(r, 6, ¢) can be retrieved from the 2D projection
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P(x, z) through application of the inverse Abel transform,*
provided that the emission possesses a cylindrical symmetry
about an axis parallel to the plane of the detector, which is
generally the case when linearly polarized light and randomly
oriented targets are used in the experiment. However, because
the Abel inversion is highly sensitive to any noise, fluctua-
tions, or sharp features in the input data, this approach turns
out to be non-practical when applied to a set of experimen-
tal data as it often leads to a solution very different from the
true one.’

The literature is rich with studies reporting sophisticated
methods and strategies to circumvent the inverse Abel trans-
form. One elegant approach consists of imaging only a slice
of the 3D velocity image, which contains all the information
regarding the initial energy and angular distributions of the
physical system.®!! Nevertheless, such an approach is gener-
ally not suitable for low mass particles that have a short time of
flight such as protons or photoelectrons, as the response time
of the detection system is often too slow to ensure the proper
timing for the measurement. As a result, methods based on an
analytical or numerical analysis of the projection of the full
3D distribution onto the detector are still very popular in the
VMTI’s user community. A non-exhaustive list of widely used
techniques includes the Fourier-Hankel method,'%!3 which is
known to be computationally fast but also leads to an accu-
mulation of noise along the centerline of the resulting 3D
image, the onion-peeling technique'*2° which is simple to
implement and can be used (under certain conditions) in cases
where the particle’s emission does not possess a cylindrical
symmetry,”! and the forward convolution procedures such
as the iterative algorithm?” or the polar basis-set expansion
(p-BASEX) method®>** which are particularly successful
in handling low-quality images and produce smooth recon-
structed pictures where the noise accumulates at the center
spot. Despite the wealth of techniques available, the inversion
problem remains an ongoing subject of study?=! as algo-
rithms with improved accuracy, speed, and versatility are still
highly desirable.

Published by AIP Publishing.
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In this article, we present a direct (non-iterative) algo-
rithm to retrieve the full three-dimensional velocity distribu-
tion of the emerging particles from its projected 2D image that
bears a similarity to the pBASEX method.?* Like pBASEX,
our method consists of fitting the experimental data with the
two-dimensional projection of a model 3D velocity distribu-
tion defined by the physics of the light-matter interaction.3%33
However, while pPBASEX uses a projection function result-
ing from a numerical integration of Eq. (1), our method is
based on a proper analytical representation of the projection,
which is expanded as a sum of Legendre polynomials. Both the
velocity and velocity-dependent angular distributions are then
directly retrieved from the resulting expansion coefficients by
using an analytical inversion procedure. Our method offers
two main advantages over pBASEX. First, it is less sensitive
to noise and/or background as the meaningful angle-correlated
information is extracted from the raw data by the Legendre
polynomial expansion before inversion. Second, it is com-
putationally much cheaper as the two-dimensional projection
function is evaluated analytically rather than numerically and
because the inversion procedure involves matrices of lower
dimension compared to those embedded in pBASEX. Over-
all, our algorithm is simple, easy to implement, and allows
on-the-fly inversion of measured images, which is well-suited
for experiments that require fast image-based feedback such
as coherent-control?® or pump-probe’*37 experiments. The
method is described here for the particular case of photoioniza-
tion with linearly polarized light, but it can be readily extended
to the case of photoionization with circularly or unpolarized
light.

Il. METHOD
A. The measured two-dimensional image

In a general photoionization experiment with linearly
polarized incoming light and randomly oriented targets, the
three-dimensional velocity-space distribution I(v) of any
emerging particles (electrons and ions) possesses a cylindri-
cal symmetry about the polarization’s direction (i.e., there
is no dependence on the azimuthal angle ¢). In addition,

J. Chem. Phys. 148, 194101 (2018)

FIG. 1. Schematic of the velocity map imaging tech-
nique. Photoions or photoelectrons emerging from the
interaction between a gas target and electromagnetic radi-
ation are extracted toward a position sensitive detector by
means of an electrostatic lens.

it can be written as the product of the particle’s velocity
distribution F(v) and its velocity-dependent angular distribu-
tion G(v, 0),

I(v) = I(vy, vy, ;) = 1(v,0) = F(v)G(v, 0), 2)

where v and (v, vy, v;) are the magnitude and components of
the particle’s velocity v, respectively, and 6 is the particle’s
angle of emission with respect to the polarization direction, as
defined in Fig. 1. By expressing the velocity-dependent angular
distribution G(v, 6) as a sum of Legendre polynomials,’>33
Eq. (2) becomes

2N
10,6) = F(0) ) Bu(0)Pu(cos ), 3)
n=0
where S, is the asymmetry parameter associated with the Leg-
endre polynomial P,(cos 8) of order n (with By = 1) and N is
the total number of photons absorbed by the target.

As the particles travel toward the detector, they expand
on the surface of the “Newton” sphere whose radius r is pro-
portional to the magnitude of their initial velocity v. At the
detector, the analytical representation of the 2D image formed
by their impact position is obtained by combining Eqs. (1)
and (3),

SR, @) = Z / F(r)'g ”(r)r P,(cosO)dr, (4
n=0

where (R, @) are the polar coordinates of a given point in the
2D image as defined in Fig. 1. By recognizing that cos 8 = R/r
cos @ and expressing P,(cos #) as a function of Pg(cos @),’8

Eq. (4) can be rewritten as

2N |n/2] max{k—1,0}

SR, a) = anl/ F(r)Bu(r)
n=0 k=0 1=0 R
X Ykt (rs R) drPy i (cos a), (%)
where k—~21+1
Coi = %anz (6)
with
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o (n—k+1—-1/2%n - k)n -2k +21—1/2)%
= QD2 —k+1—1/2)
1 S Q= 2k +1-p)2n . o
T Al — nk—l+p.p
Wl (o - pyH
1#0
and
R n—2k+21 R2 k—1-1/2
Ykt (1, R) = (—) (1 - —2) . 8)
r T

In practice, the 2D image formed by the particle’s impact posi-
tions on the detector is usually captured by a digital camera.
As a result, the measured 2D distribution Sy, corresponds to
the discretized version of the original continuous distribution
S(R, «) that can be represented by a matrix of Ng X N, reg-
ularly shaped pixels, where Ng and N, are the numbers of
radial and angular elements, respectively. The number of par-
ticles (S,,);; captured by a given pixel located at the discrete
coordinate (R;, «;) is obtained by integrating the continu-
ous distribution S(R, @) over the pixel area and applying the
inverse square law to account for the geometric dilution of the
particle’s density over distance,

1 (R
o« — / / SR, )R dR da, ©)
2 Jk, &

where Ri(R;) = R; + (-)AR/2, &j(d) = a; + (-)Aa/2, and
(AR, A) are the radial and angular pixel width, respectively.
By replacing the continuous integral of the unknown function
F(r)B,(r)in Eq. (5) with the corresponding Riemann sum and
after rearranging the order of the sums, Eq. (9) gives

(Sm)ij

2N |n/2] ¢ Ng max {k—1,0}
Swli = 2. Do | D FE)Butre) Y.
n=0 k=0 bti'>i 1=0

X Cog Ui (v Ri)AVAa]Pn—zk(COS aj) (10)
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with

I
nkl(rl ,R; ) = / Ynkl(riGR)RdR

1 R 2421-2k+n
2+21—2k+n(r_,-/)
1241k 1+l-k+2 R2\I®
X2F1< / n 2;_2)] (11)
2+41-k+3 ry )k

We note that the definite integral over the angular coordinate
a can be replaced by the corresponding Riemann sum with
negligible loss in accuracy, providing that the angular pixel
size A« is sufficiently small (~1°). On the contrary, because
the polynomial vy, (r, R) has a singularity at the position
r = R for k = [, the integral over the radial coordinates R is
evaluated analytically to prevent any significant approximation
error.

For the sake of clarity, Eq. (10) can be rewritten more
concisely in matrix form,

2N |n/2]

Sm = Z Z Mn,n—Zan ® Pn—Zk, (12)
n=0 k=0

where the column vectors F, and P,k represent the
unknown distribution F(r;)B,(ry) and the Legendre poly-
nomial P, i(cos a;), respectively, and My yk is an upper
triangular transformation matrix defined as

max {k—1,0}

DL Cwlw(r, R)ArAe. — (13)
1=0

(Mn,n—Zk ) it =

As an illustrative example, the analytic form of a few transfor-

mation matrix elements (for n = 0—4) is listed in Table I.
Finally, by rearranging the sums in Eq. (12), it follows

that the measured 2D image formed on the detector can be

TABLE I. Analytic form of the transformation matrix element (M,, ;5 );i» for n = 0—4. For the sake of clarity, we have set Ri =Rj+AR/2 and R; = R; — AR/2.

2ArAa < =
n=0 Moo)iir = p [,/r}, -R2 - ,/r}, —RL?]

n=1 My1)ir =

A R; R;
Ar a[ \/r, R2 R\/r —R2+r arcsm( )—rzarcsm( )]
rl rl

2AFA
n=2 (Man)ip = 228 a[,/ ~R22+R) - 2R (22 +R2]

(Mao)ir =

A A N
3rr3a[(ri2' _Riz)

ArA R;
n=3 (M33);r = : a[R,,/r %r +2R2 ,Jr - (3r +2R2 +3r arcsm( ) 3r§ arcsin(—')]
r, rir

3ArAa
8;’[‘3

R - R(

U

(M31)ir =

Myp)iir =

(Mao)iv = ——

n=4 (Maonr = 225 [\ = R (50 4203 4 30) = [ = R (s 4 422 438 |
( )= (7 -R?)
( ;- k)

)_(ri’

-ry +2R2

—<r,%+fe%>3”]

= R;
,/ Rlz( r + 2R2 + Ty arcsm( ) - r4 arcsm( )]
rl

3/2 M
(2} 438

i

1}

(
Y2212 —r%)]
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expressed as a sum of Legendre polynomials P,(cos @)

2N
Sm = 6, &Py, (14)
n=0

whose expansion coefficients 6,(R;) are given by

N-Tn/2]
6n = Mn+2k,nFn+2k . ( 1 5)
k=0

B. The original 3D distribution reconstruction

To reconstruct the original 3D distribution, both the
radial and asymmetry parameter distributions, F(R) and 3,,(R),
respectively, need to be retrieved. Equation (15) shows that the
product of these two distributions (F(R),(R)) can be directly
deduced from the coefficients ¢,(R), which can be determined
beforehand by expanding the measured 2D image in a sum of
Legendre polynomials. Knowing that 8(R) = 1, the radial dis-
tribution F(r) is directly obtained from the product F(R) 8o (R),
allowing, in turn, the determination of the asymmetry parame-
ter distributions 8, (R) from the product functions F(R)8,(R).
The complete inversion procedure is represented in Fig. 2 and
discussed in details below.

1. Cartesian to polar coordinate transformation

The measured 2D raw image, which is generally repre-
sented by a matrix of N, X N, pixels in a Cartesian coordinate
system, where N, and N, are the number of pixels along the x
and z axis, respectively, is first converted to a 2D density plot as
a function of both polar coordinates (R, a). Because the image
exhibits a mirror symmetry along the z direction, the polar
coordinate @ can run from O to either 7 or 27 depending on
whether the two independent measurements (x > 0 and x < 0)
of the 3D distribution are analyzed separately or not. The num-
ber of radial (Ng) and angular (N, ) pixels are typically chosen
equal to N,/2 (or N,/2) and 360 (or 180), respectively. The
pixel intensity at a given position (R;, ;) associated with the
Cartesian coordinates (x, z) is deduced from the original image
by performing a bilinear interpolation between the intensities
measured at the four pixels surrounding this particular (x, z)
coordinate.

2. Legendre polynomial expansion
of the angular component

In the second step, the angular distribution /g, (a;) for a
given radial position R; is expanded into a sum of Legendre
polynomials Pi(cosa). By using the orthogonality properties
of these polynomials, the expansion coefficients d;(R;) are
obtained from

No

Ok(R;) = L;l Z sin aj|Pr(cos ajlg,(a))Aa, (16)

j=1

where a; = 27j/N,, and A« is the angular pixel width.

3. Radial and asymmetry parameter
distributions’ retrieval

Finally, the distributions F(R;) and SBi(R;) are directly
determined from the expansion coefficients Ji(R;). By
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2D image: Cartesian representation
Ny Ny

Sm(x,2) = Z Z(Sm)uv

u=0v=0

Polar representation
NR Ng

1-Coordinates

transformation Sm(R, @) = Z Z(Sm)i j
i=1j=1

ooy y T 1
2-Angular i Legendre Polynomial expansion E
. . . 1 N 1
distribution | Sn(R,@) = ) 5 (R)P(cosar) :
decomposition = |
1 1

[ Product functions Fy(R) = F(R)Bx (R) retrieval ]

3-Radial and Fie(R) = Migt (8 (R) = ZI™ MisaticFera (R) )

i=1

Asymmetry 7
distributions F(R) = Fy(R)
retrieval

Asymmetry Parameter retrieval
Bi(R) = Fi(R)/Fo(R)

i 1
1 1
i ;
i 1
Parameter ] [ Radial distribution retrieval ] 1
| a
: :
i 1
1 1
1 1

3D distribution reconstruction

N
1r=R,0) = F(r) Z B ()P, (cosh)
n=0

FIG. 2. Flow chart representing the original 3D distribution reconstruction
procedure. The procedure consists of three steps: (1) the Cartesian to polar
coordinate transformation of the measured 2D raw image, (2) the expansion of
the angular distribution in a sum of Legendre polynomials, and (3) the radial
and asymmetry parameter distributions retrieval.

recognizing that Eq. (15) is equivalent to two triangular sys-
tems of linear equations associated with either even or odd
values of k,

a8 = MononFon

a7
02 = MonpFon + - - - + MgpFy + My F
00 = MonoFan + - - - + MyoFy + MyoF + MgoFy
and
0an-1 = Mon—128-1F2n-1
(18)

63 = Mon-13Fan-1 + - - + M33F;3
01 = Mon_1,1Fan-1 + - - - + M3 F3 + My Fy,

respectively, the product functions Fj can be determined
recursively by using the method of back-substitution,

IN=[k/2]
Fi = M| 6k - M2 kFia2i |- 19)

i=1

Knowing that Bo(R;) = 1, the radial and asymmetry
parameter distributions are finally deduced from Eq. (19),
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F(R;) = Fo(R)),

BulR) = 1. 0
lll. RESULTS

A. Inversion of model images

The performance of the algorithm was first tested on
model images generated from simulated experiments. A con-
ventional Monte Carlo procedure was used to mimic a three-
dimensional particle emission defined by a given distribution
I(r, 6, ¢). The spherical coordinates (r, #) were independently
selected according to the chosen radial (velocity) F(r)S,(r)
and angular P, (cos ) distributions, while the azimuthal angle
¢ was uniformly distributed. The simulated events were then
binned into a 1024 x 1024 two-dimensional array based on
their Cartesian coordinates x = r sin 6 cos ¢ and z = r cos 6 to
form the model image. The number of simulated events was
chosen between 10* and 10° depending on the desired image
quality.

1. One-photon ionization experiment

We first apply the reconstruction procedure on model
images resulting from a single-photon ionization experiment
with linearly polarized light. In such an experiment, the par-
ticle’s angular distribution can be expanded as a sum of the
Legendre polynomials Py and P,,%>

I(r,0) = F(r)[1 + B2(r)P2(cos 0)]. 2n

According to Egs. (14) and (15), the measured 2D image
can also be expressed as a sum of two even-order Legendre
polynomials,

Sn(Ri, aj) = 60(R)Po(cos a;) + 02(R)Pa(cos aj),  (22)
where
60(R;) = Moo F(R;) + Mo F(R;) B2(R),
02(R)=MnF(R;)B2(R)).

Using Egs. (19) and (20), the distributions F(R;) and SB2(R;)
can then be directly retrieved from the measured coefficients
60(R;) and 62(R;),

(23)

F(R;) =My} [0(R:) — MaoM53 62(Ry)
M3} 62(R;) (24)
My [So(R) = Mooy, 62(R;)|

Ba(R;) =

To evaluate the performance of our method, 3D emis-
sions having distinct radial (velocity) distributions and con-
stant asymmetry parameters [S8,(R) = 1] are first considered.
The radial distributions are composed of a series of Gaus-
sian peaks having various intensities [Fig. 3(c)] or widths
[Fig. 4(c)] as reported in Table II. Model images shown in
Figs. 3(a) and 4(a) were first generated by accumulating 10°
events and then converted to polar density plots (not shown).
Subsequently, the angular distributions at each radial position
R; were expanded as a sum of Legendre polynomials. Using

J. Chem. Phys. 148, 194101 (2018)
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FIG. 3. Experiment 1: (a) Simulated image for a linearly polarized one-
photon ionization experiment (10° events). The radial distribution of the
emerging particles is modeled as a series of Gaussian peaks, with each having
the same width and distinct intensities. (b) Legendre polynomial expansion
coefficients of the simulated image. (c) Reconstructed (green square) and
simulated (black line) radial distributions.

Egs. (24), the radial distributions were finally reconstructed
from the resulting expansion coefficients plotted in Figs. 3(b)
and 4(b). As can be seen in Figs. 3(c) and 4(c), there is an
excellent agreement between the reconstructed and simulated
distributions. The width, shape, and intensity of each peak are
retrieved almost perfectly, even in the case where the width of

TABLE II. Properties (radial distribution) of the one-photon simulations
shown in Figs. 3 and 4.

Experiment 1 (Fig. 3) Experiment 2 (Fig. 4)

Peak  Center FWHM  Intensity Center FWHM Intensity
1 64 20 04 128 60 1

2 128 20 0.2 192 4 1

3 192 20 0.7 256 100 1

4 256 20 0.4 384 4 1

5 320 20 1.0 448 20 1

6 384 20 0.2

7 448 20 0.8
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FIG. 4. Experiment 2: (a) Simulated image for a linearly polarized one-
photon ionization experiment (10° events). The radial distribution of the
emerging particles is modeled as a series of Gaussian peaks, with each having
the same intensity and distinct widths. (b) Legendre polynomial expansion
coefficients of the simulated image. (c) Reconstructed (green square) and
simulated (black line) radial distributions.

the peak becomes comparable to the pixel width, as shown in
Fig. 4(c) (see peaks #2 and #4). In addition, the level of noise
in the region of the reconstructed spectrum where the signal
is low (in-between the peaks) is unnoticeable. These observa-
tions show that the performance of the reconstruction does not
depend on the peak intensity or width providing that the image
quality is high enough.

To estimate the effect of the image quality on the goodness
of the reconstruction, we then vary the number of simulated
events accumulated in the model images. For simplicity, we
consider here a radial distribution made of a single Gaus-
sian peak located at the center of the distribution (R = 256
pixels) and having a FWHM equal to 5% of the full distribu-
tion range (25.6 pixels). The reconstructed radial distribution
as a function of the number of accumulated events is plot-
ted in Fig. 5(a). As expected, the quality of the reconstructed
distribution increased with the number of events. For a low
number of accumulated events (10°), the level of noise is quite
high compared to the original signal, making it difficult to

J. Chem. Phys. 148, 194101 (2018)
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FIG. 5. Effect of the image quality (represented by the number of simulated
events) on the goodness of the reconstruction: (a) reconstructed radial distribu-
tion, (b) relative standard deviation (RSD) of the radial distribution (square),
and (c) asymmetry parameter 3.

recognize the presence of a single Gaussian peak in the dis-
tribution (small lobes might be observed on each sides of the
peak). As the number of events increases, the level of noise
decreases rapidly. For a sufficiently high number of events
(109), the reconstructed and simulated distributions become
almost indistinguishable. To assess whether the deviation
between the reconstructed and simulated distributions is due to
statistical noise and not due to systematic departures from the
original distribution, we have evaluated the relative standard
deviation (RSD) of the reconstructed distribution according
to

_ Ly L
RSD = m;[@r)i_()’s)i] [5s (25)

where y, and y; represent the intensities of the recon-
structed and simulated distributions, respectively, and
Vs = nFWHM/2VIn 2Ny is the average value of the Gaussian
distribution over the full spectrum range (Ng = 512). The rel-
ative standard deviation as a function of the number of events
is shown in Fig. 5(b). We can see that the relative standard
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deviation decreases nearly inversely with the square root of the
number of events, which indicates that the deviation between
the reconstructed and simulated distributions is governed by
Poisson statistics. From this observation, we can conclude that
the quality of the reconstructed spectrum is mainly determined
by the statistical noise, while the goodness of the recon-
struction is independent of the image quality. Perhaps more
surprising is that the statistical noise distribution accumu-
lates preferentially toward the low R values. The origin of
this effect lies in the relationship between the radial distribu-
tion and the measured coefficients d;. As shown in Eq. (19),
where the matrices M| k_kl are triangular, the fraction of the mea-
sured distribution ¢; used in the reconstruction of the radial
distribution increases as R decreases. As a consequence, the
statistical noise adds up increasingly in the reconstructed dis-
tribution toward the low R values. A similar effect has been
observed with other methods,”>?* which have reported an
accumulation of the noise toward the image center, and is
inherent to any 2D-to-3D inversion procedure in one way or
another.

Finally, the dependence of the goodness of the reconstruc-
tion on the image quality is further illustrated in Fig. 5(c),
where we have plotted the retrieved value of the asymme-
try parameter S, as a function of the number of accumulated
events (the parameter has been averaged over the peak width,
and the standard deviation from the mean value gives an esti-
mated error in the reconstruction). It can be seen that the
retrieved asymmetry parameter matches the simulated value
(B2 = 1) rather well for any number of accumulated events.
In addition, we have found that the deviation between the
retrieved and simulated values is due to statistical noise and
not due to a systematic error resulting from the reconstruc-
tion. These findings confirm our previous conclusion that the
performance of the reconstruction is independent of the image
quality.

2. Multi-photon ionization process

To further evaluate the ability of our procedure to accu-
rately retrieve asymmetry parameters, we now turn our atten-
tion to the case of a two-color two-photon experiment,
where the particle’s angular distribution can be expanded
as a sum of both odd- and even-order Legendre polynomi-
als.>**! The properties of the particle emission considered
here are given in Table III. The asymmetry parameters S,
were set to different values, while the radial distribution

TABLE III. Properties (radial distribution and SB-parameter) of the two-
photon simulation shown in Fig. 6.

Peak Center FWHM Intensity B B2 B3 Ba
1 64 20 1 0.5 1.5 075 05
2 128 20 1 0.75 1 125  0.75
3 192 20 1 1 0.5 1 1

4 256 20 1 1.25 1.5 0.75 1.25
5 320 20 1 1 1 1 0.5
6 384 20 1 0.75 0.75 0.75 0.88
7 448 20 1 0.5 0.5 1 1.25

J. Chem. Phys. 148, 194101 (2018)

is made of a series of Gaussian peaks with constant inten-
sities and widths. As before, a model image was first gen-
erated by accumulating 10° events and then converted to a
polar density plot. According to Egs. (14) and (15), the mea-
sured 2D image was then expanded as a sum of five Legendre
polynomials,

4

Su(Ri @) = D 5k (R)Py(cos a;), (26)
k=0

and both the radial distribution and the asymmetry parameters
were subsequently deduced from the resulting expansion coef-
ficients 0y, using Egs. (19) and (20). We note that compared
to the case of one-photon experiments, the radial distribu-
tion is now reconstructed from three expansion coefficients
(89, 02, and 04). In addition, the even-order asymmetry param-
eters (B> and B4) are retrieved from even-order expansion
coefficients only, while the odd-order asymmetry parame-
ters (81 and B3) are deduced from both odd- and even-order
coefficients.

The reconstructed radial distribution and retrieved asym-
metry parameters (averaged over the peak width) are shown
in Fig. 6. Again, it can be seen that there is an excellent
agreement between the reconstructed and simulated distribu-
tions. Both the intensity and width of the radial distribution
are reconstructed accurately, while the retrieved asymmetry
parameters are within only a few percent of the simulated
values. It is interesting to observe that the parameter 5 is
retrieved more accurately than any other parameter, as shown
by their margins of error. Due to statistical error propagation,
one would think that the uncertainty increases with the number
of coefficients 6 used in the reconstruction. However, Fig. 6(c)
suggests that the margins of error decrease with the order of
the asymmetry parameters indicating that this is not the case.
We do not yet have an explanation for this effect, but we have
observed that the level of statistical noise in the distribution
F(R)Bk(R) decreases with the order k. This implies that an
effect of self-compensation for the statistical error may occur.
Further investigation of this question would be a separate, and
very worthy, endeavor.

3. DAVIS vs pBASEX

‘We now compare the level of performance of our method
and the pBASEX technique?* for inverting model images. To
that purpose, one-photon absorption induced emissions hav-
ing distinct radial (velocity) distributions and non-constant
asymmetry parameters are considered. The radial distributions
are composed of a series of peaks having either Gaussian or
Lorentzian shapes with the properties reported in Table IV.
Model images were first generated by accumulating 10° events
and then inverted using both methods. The number and width
of Gaussian basis functions used in the pBASEX inversion
were set equal to 256 and V2, respectively, while the number
of Legendre polynomials was defined by the physics of the
photoionization process.

As can be seen in Fig. 7, both methods lead to almost iden-
tical reconstructed distributions and asymmetry parameters.
The width, shape, and intensity of each peak match perfectly,
even in the case where the peak intensity is low (see peaks #2
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FIG. 6. Case of a two-color two-photon experiment: (a) simulated image (10° events), (b) reconstructed (green square) and simulated (black line) radial
distributions, and (c) retrieved (square) and simulated (dotted line) asymmetry parameters 3.

and #4). This shows that both methods offer a similar level of
performance in terms of accuracy in the absence of any noise
or background, providing that the number of Gaussian basis
functions used in pPBASEX is large enough to reproduce the
features of the 3D distribution.*?

B. Inversion of experimental data

To test the robustness of the procedure in the presence of
experimental noise and background, our algorithm has been
applied to experimental images formed by collecting the pho-
toelectrons generated from one-photon ionization of argon
atoms with an attosecond pulse train. The experiment was
performed with a setup that combines a Ti:sapphire laser deliv-
ering 35-fs 800-nm pulses, an attosecond pulse source, and a

TABLE IV. Properties (radial distribution and S-parameter) of the one-
photon simulation shown in Fig. 7.

FWHM
Peak Center Gaussian Lorentzian Intensity B2
1 80 20 5 0.8 1.5
2 130 15 3.75 0.1 1
3 240 80 20 1 0.5
4 330 15 3.5 0.1 1.5
5 400 60 15 0.6 1

home-made velocity-map imaging system.** Attosecond pulse
trains made of odd harmonics of the fundamental 800-nm field
were generated in argon via high harmonic generation. The
pulse trains were then filtered to remove harmonics below
the 11th order and finally focused into an ultra-high vacuum
chamber where the velocity-map imaging system was located.
Images were captured with a CMOS camera (1000 x 1000
pixels) that recorded the photoelectron’s impact positions on
a MCP/phosphor position sensitive detector.

A typical image is shown in Fig. 8(a). This image was
formed by collecting photoelectrons produced by roughly 10°
pulse trains, and its center was determined using a proce-
dure reported recently.* Each ring observed in the image
corresponds to the photoionization of the 3p electrons of
argon by a given odd harmonic (11th-21th). Their width is
directly related to the attosecond pulse train duration, which
has been estimated around 15 fs. On the other hand, the ghost
features appearing in the image in the form of inclined par-
allel lines are attributed to photoelectrons generated from
the residual gas (mainly argon) along the direction of prop-
agation of the pulse trains inside the velocity-map imaging
spectrometer.

The radial distributions reconstructed with both our algo-
rithm (DAVIS) and the pBASEX technique* are shown in
Fig. 8(b). Overall, the reconstructed distributions are quite
similar. Both methods retrieve the main components of the
distribution and lead to comparable results for both the posi-
tion and the width of each peak. The most notable difference
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observed between these distributions is the peak intensities.
The intensities retrieved with DAVIS are somewhat lower than
those obtained with pBASEX. Such a difference is directly
related to the image noise and/or background propagating into
the reconstructed radial distributions. With DAVIS, most of the
image noise and background is first filtered out from the mean-
ingful angle-correlated signal by the Legendre polynomial
expansion before inversion. On the other hand, pPBASEX does
not prefilter the measured image before inversion. As a result,
the image noise (background), like the ghost lines observed in
Fig. 8(a), eventually contributes to the peak intensity, as can
be seen in Fig. 8(b).

Finally, the robustness of our method in the presence of
noise (background) is further demonstrated in the measure-
ment of the asymmetry parameters . The retrieved param-
eters obtained with both DAVIS and pBASEX are shown in
Fig. 8(c). The parameters have been averaged over the peak
width, and the standard deviation from the mean value gives
an estimated error in their measurement. The results of a pre-
vious study,*® where the 3 parameters were obtained by direct
measurement of the angular distribution using a rotatable elec-
tron analyzer, are also plotted. Overall, there is good agreement
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FIG. 8. (a) Experimental image obtained for the one-photon ionization of
argon by a linearly polarized attosecond pulse train made of odd har-
monics, (b) reconstructed radial distributions obtained with DAVIS and
pPBASEX,?* and (c) asymmetry parameters retrieved with DAVIS (blue
square) and pBASEX (red point), and previously measured by Houlgate
et al.*3 (black square).

between the 8 parameters retrieved with both DAVIS and pBA-
SEX and those measured by Houlgate et al. However, we can
see that the parameters retrieved with pPBASEX are consis-
tently lower than those obtained with DAVIS. This results from
the fact that the image noise and background do not contribute
equally to the reconstructed radial distribution associated with
each Legendre polynomial (i.e., Py and P;). In fact, we have
observed in the reconstruction with pBASEX that the noise
(background) contributes more to the radial distribution asso-
ciated with Py, which consequently leads to lower values for
the asymmetry parameters.

C. Retrieval time

To conclude this study, it is worth devoting a few words
to the computation time needed to reconstruct the 3D distri-
butions from the 2D images. Our algorithm has been imple-
mented in LABVIEW 2017 on a computer equipped with a
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3.3 GHz Intel Core i5-4590 processor, 8 GB RAM, and a 64-bit
Windows operating system. The dependence of the reconstruc-
tion time on the image resolution, defined by the number of
pixels N X N, is shown in Fig. 9. It can be readily seen that
the method is computationally fast, as it only takes around
0.4 and 1.4 s to invert a 1000 x 1000 image resulting from a
one-photon and a two-photon experiments, respectively. As
a comparison, it takes about 3 s for the pPBASEX method”*
to invert an image with the same resolution that results from
a one-photon experiment [assuming that the time-consuming
matrix calculation (~11 h) and inversion (~2 min) have been
performed beforehand]. Such a difference in the reconstruc-
tion times results from the fact that our procedure uses matrices
of lower dimension (Ng X Ng) compared to those embedded
in pBASEX (NI% X NiN;, where N, and N; are the number of
radial and angular basis functions used in the reconstruction,
respectively).

More specifically, the reconstruction time is dominated
by the computation time needed to retrieve both the radial dis-
tribution and the asymmetry parameters from the expansion
coefficients ¢,,. This is because the matrix calculations and the
subsequent operations involved in this step of the procedure are
relatively slow. We note that the number of matrices involved
in the procedure increases with the number of coefficients,
which explains the difference between the one-photon and

J. Chem. Phys. 148, 194101 (2018)

two-photon reconstruction times. By comparison, the compu-
tation time needed to expand the image as a sum of Legendre
polynomials is very short (around 1 ms) and only slightly
increases with the number of terms in the expansion. On the
other hand, the computation time required for transforming the
image from a Cartesian to polar representation, which only
depends on the total number of pixels Ng X N, in the den-
sity plot, is on the order of tens of milliseconds. In addition,
we have found that the computational speed of our method
nearly scales as N 2 which is somewhat faster than other
methods. %2

IV. CONCLUSIONS

In this work, we have developed a novel procedure, called
DAVIS (Direct Algorithm for Velocity-map Imaging Sys-
tem), to reconstruct the 3D momentum distribution of the
charged particles (photoelectrons and photoions) collected
with a velocity-map imaging system. The method consists
of fitting the measured image with the 2D projection of a
model 3D velocity distribution defined by the physics of the
light-matter interaction, much like the pBASEX technique
does. Both methods show a similar level of performance in
terms of accuracy for inverting high quality images with a
low level of noise or background. However, our method offers
two main advantages over pBASEX. It is computationally
faster as the 2D projection function is evaluated analytically
rather than numerically and because the procedure involves
matrices of lower dimension compared to those embedded
in pBASEX. In addition, it is less sensitive to noise and/or
background as the meaningful angle-correlated information
is extracted from the raw data before inversion by expand-
ing the image with a complete set of Legendre polynomi-
als. Overall, our algorithm is simple, easy to implement,
and explicitly takes into account the pixelization effect in
the measurement. Due to its high computational speed, it
is well-suited for experiments that require fast image-based
feedback.
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