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Hybrid simulation of mode conversion at the
magnetopause
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[1] Two‐dimensional hybrid simulations are used to investigate how fast‐mode
compressional waves incident on a magnetopause current layer mode convert both linearly
and nonlinearly to short wavelength (k?ri ∼ 1) kinetic Alfvén waves near the Alfvén
resonance surface. The background magnetic fields on both sides of the current layer are
parallel to each other and perpendicular to the magnetopause normal, corresponding to a
northward interplanetary magnetic field. The simulations are performed in a 2‐D plane
(xz), where x is normal to the magnetopause and z is tilted by an angle, �, relative to the
magnetic field. We examine how the mode conversion depends on wave frequency w0,
wave vector, Alfvén velocity profile (particularly the magnetopause width, D0), ion b in
the magnetosheath, electron‐to‐ion temperature ratio, and incident wave amplitude.
Kinetic effects resolve the resonance, and KAWs radiate back to the magnetosheath side of
the current layer. The compressional wave absorption rate is estimated and compared
with linear theory. Unlike the prediction from low‐frequency theory of the Alfvén
resonance, KAWs are also generated in cases with � = 0°, provided w0 > 0.1W0, with
W0 being the ion cyclotron frequency in the magnetosheath. As the incident wave
amplitude is increased, several nonlinear wave properties are manifested in the mode
conversion process. Harmonics of the driver frequency are generated. As a result of
nonlinear wave interaction, the mode conversion region and its spectral width are
broadened. The nonlinear waves provide a significant transport of momentum across the
magnetopause and are associated with significant ion heating in the resonant region.

Citation: Lin, Y., J. R. Johnson, and X. Y.Wang (2010), Hybrid simulation of mode conversion at the magnetopause, J. Geophys.
Res., 115, A04208, doi:10.1029/2009JA014524.

1. Introduction

[2] Transport of mass, momentum, and energy at the
magnetopause boundary drives much of the magnetospheric
dynamics and is therefore an important topic in magneto-
spheric physics. The coexistence of the solar wind and
magnetospheric populations in the magnetopause boundary
layer and the thickening of the magnetopause boundary
layer during periods of northward interplanetary magnetic
field (IMF) indicate the existence of efficient transport
processes across the magnetopause [Fujimoto et al., 1998;
Phan et al., 2000; Hasegawa et al., 2002a, 2002b;Wing and
Newell, 2002; Øieroset et al., 2003; Hasegawa et al., 2003;
Wing and Newell, 2003; Wang et al., 2007; Johnson and
Wing, 2009]. There is evidence that magnetosheath plasma
may enter the plasma sheet as the result of cusp reconnec-
tion [Song and Russell, 1992; Raeder et al., 1997; Le et al.,

1996; Øieroset et al., 2003, 2005; Lavraud et al., 2006] and
plasma mixing and/or reconnection in Kelvin‐Helmholtz
vortices [Ogilvie and Fitzenreiter, 1989; Thomas andWinske,
1991, 1993; Fairfield et al., 2000; Otto and Fairfield, 2000;
Nykyri and Otto, 2001; Nakamura and Fujimoto, 2002;
Fujimoto et al., 2003; Fairfield et al., 2003, 2007; Fujimoto
et al., 2003; Hasegawa et al., 2004, 2006; Nykyri et al.,
2006; Chaston et al., 2007]. Another source for plasma
entry results from wave‐particle diffusive processes in
large‐amplitude ultralow frequency waves that are fre-
quently observed at the magnetopause boundary [Anderson
et al., 1982; Tsurutani and Thorne, 1982; Rezeau et al.,
1986; Labelle and Treumann, 1988; Rezeau et al., 1989;
Engebretson et al., 1991b, 1991a; Lin et al., 1991;
Takahashi et al., 1991; Rezeau et al., 1993; Song et al.,
1993c, 1993b, 1993a; Anderson et al., 1994; Song, 1994;
Song et al., 1994; Phan et al., 1994, 1996a, 1996b]. One of
the more common spectral features at the magnetopause
boundary is the sharp transition in wave polarization from
compressional, e.g., because of foreshock waves of the
quasi‐parallel bow shock, to transverse waves from the
magnetosheath to the boundary layers [Johnson and Cheng,
1997; Johnson et al., 2001; Chaston et al., 2008, and
references therein]. It has been suggested that the mode
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conversion from compressional to Alfven modes provides a
source of Alfvén waves at the magnetopause, which can
efficiently transport plasma across the magnetopause
boundary [Hasegawa and Mima, 1978; Lee et al., 1994;
Johnson and Cheng, 1997; Chen, 1999; Johnson et al.,
2001; Chaston et al., 2008]. Multipoint measurements
have verified that the dispersion of the broadband waves is
consistent with the kinetic Alfvén waves [Chaston et al.,
2007, 2008]. Such mode conversion may lead to effective
heating and transport of plasma at the magnetopause
[Hasegawa and Mima, 1978; Johnson and Cheng, 1997;
Chen, 1999; Johnson and Cheng, 2001; Chaston et al.,
2008]. Kinetic Alfvén waves also provide a natural expla-
nation for the observed dawn‐dusk asymmetry in plasma
entry during northward IMF [Hasegawa et al., 2003; Wing
et al., 2005] because they result from mode conversion of
compressional foreshock waves, which typically bathe the
dawn flank for the typical Parker spiral configuration.
[3] According to linear theory, when an magnetohydro-

dynamic (MHD) fast mode compressional wave propagates
across in an inhomogeneous plasma, it is coupled with the
shear Alfvén wave at the local Alfvén resonance, where w =
kkVA [e.g., Tamao, 1965;Uberoi, 1972;Chen andHasegawa,
1974; Southwood, 1974; Hasegawa et al., 1983], with w
being the wave frequency and VA being the Alfvén speed.
This process can be very efficient when the fast wave pro-
pagates into a region where there is a sharp increase in the
Alfvén velocity such as at the magnetopause boundary
where the magnetic field increases and density decreases.
Typically, the Alfvén velocity across the magnetopause
increases by a factor of 10 such that an entire decade (in
frequency) of wave power can be captured and localized in
the boundary layer leading to massive particle transport. In
the MHD description, the coupling occurs where the
frequency matches the continuous spectrum and the wave
becomes singular corresponding to a pileup of compres-
sional wave energy [Chen, 2008].
[4] In a plasma with a 1‐D inhomogeneity in the back-

ground plasma parameters along the direction perpendicular
to the magnetic field, the linearized MHD equations can be
expressed in terms of dp1 = B0dBk + dp and dB? by a
coupled system of equations
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Singular behavior occurs at either the Alfvén resonance,
w2 = kk

2VA
2, or at the sound resonance, where the compres-

sional wave couples with the Alfvén or sound wave that
propagates only along the magnetic field. In higher fre-
quency cases, the Alfvén resonance condition is modified as
w2 = kk

2VA
2(1 − w2/Wi

2)2 because of the finite ion Larmor
radius effects [Stix, 1992], where Wi is the ion gyrofre-
quency. The Alfvén resonance singularity can be removed
by including non‐MHD effects such as electron inertia or
ion Larmor radius corrections in (2).

[5] Using two‐fluid theory, (2) can be replaced by
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which includes electron inertial effects le = c/wpe and
electron pressure effects on the ion acoustic Larmor radius
scale rs

2 = Te/miWi
2. The relative importance of electron

pressure versus electron inertial effects is determined by
rs/le, and the pressure effect is dominant if rs/le =
(4pnTe/B

2)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
> 1, which occurs when be/2 >ffiffiffiffiffiffiffiffiffiffiffiffiffi

me=mi

p
= 0.02. Near the magnetopause, electron inertial

effects are typically not important except at locations where
kk → 0 such as in a sheared field or reconnection geometry.
[6] Ion kinetic effects may also resolve the singularity

[Hasegawa and Chen, 1976; Johnson and Cheng, 1997;
Johnson et al., 2001]. In this case, equation (2) is modified
as
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and Zj is the plasma dispersion function of argument z j =
w/

ffiffiffi
2

p
kkvj, vj is the thermal speed, Gj(b) = Ij(b)e

−b with argu-
ment b = k?

2 ri
2, ri is the ion Larmor radius. A useful approxi-

mationmay be obtained by employing the Pade approximation
(1 − G0)/b → 1/(1 + b) and high electron beta approxima-
tion, ze � 1 for which Z′e → −2, in which case the left‐hand
side of the equation becomes the kinetic Alfvén wave w2 =
kk
2VA

2[b/(1 − G0) + (Te/Ti)b] ’ kk
2VA

2[1 + (1 + Te/Ti)k?
2 ri

2]
(simplified by assuming z i � 1 such that Z′i→ 1/z i

2 � 1).
Ion Landau damping may be important when z i ∼ 1.
[7] At the resonance point, the fast wave solution is

coupled to the kinetic Alfvén wave solution, and trans-
versely polarized waves are expected to be generated and
radiate away from the mode conversion location. Because
the group velocity of these waves is much smaller than the
compressional wave, the amplitude of the transverse
fluctuations is typically much larger than the amplitude of
the compressional driver, consistent with magnetopause
observations [Johnson et al., 2001].
[8] While analytical solutions of the above‐mentioned

equations have been obtained for mode conversion at the
magnetopause [Johnson and Cheng, 1997; Johnson et al.,
2001], there has been no kinetic simulation addressing the
mode conversion at the magnetopause. Previously, we
conducted a three‐dimensional (3‐D) global hybrid simu-
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lation of the dayside magnetosphere associated with a quasi‐
parallel bow shock [Lin and Wang, 2005]. It was found that
as the compressional waves generated in the foreshock of
the bow shock propagate to the magnetopause, they lead to
strong surface perturbations and mode convert to shear
Alfvén waves in the magnetosphere. At the magnetopause,
wave energy builds up with wavelength l? ∼ ri, with a
strong local enhancement of the parallel electric field. These
waves excited in the magnetopause appear to be consistent
with KAWs, but the wave mode and its formation process
were difficult to identify in the global simulation. In order to
identify the KAWs in the complicated global system, it is
necessary to first understand the mode conversion process in
a simple current sheet geometry.
[9] In this paper, we carry out a two‐dimensional (2‐D)

hybrid simulation to examine the evolution of an incident
compressional fast mode wave at the dayside magnetopause.
The hybrid model solves fully kinetic equations governing
the ions and a fluid model for electrons including electron
pressure effects. The focus of this study will be on the
identification of the mode conversion and the excitation and
evolution of KAWs. For this study, we consider that locally
the background magnetic field can be approximated by a
slab geometry with one‐dimensional (1‐D) variation normal
to the boundary. We further restrict these simulations to a
northward IMF configuration such that the magnetic field
strength increases across the current layer, but the magnetic
field direction is constant. While the 3‐D physics is im-
portant in the mode conversion process, we intend to ad-
dress the problem in 2‐D first but allow an azimuthal
component of wave vector k perpendicular to the plane
defined by the background magnetic field and the magne-
topause normal. Two‐dimensional calculations (in space)
are sufficient to describe the linear mode conversion process
in the prescribed slab configuration. Our simulation results
will be compared with linear theories of mode conversion
[Hasegawa and Chen, 1976; Johnson and Cheng, 1997;
Johnson et al., 2001]. Basic nonlinear physics of the mode
conversion process will also be examined.
[10] The outline of this paper is as follows: The simulation

model is described in section 2. In section 3, we present the
simulation results of linear and nonlinear properties of mode
conversion process. Comparison with linear theory of the
mode conversion and resulting KAWs is also shown. A
summary and discussion is given in section 4.

2. Simulation Model

[11] The 2‐D hybrid model used in this paper was de-
veloped by Swift [1996] and adapted in simulations of the
magnetopause current layer [Lin and Xie, 1997]. In the
hybrid code, ions are treated as fully kinetic particles and
electrons are treated as a massless fluid. Quasi‐charge
neutrality is assumed.
[12] The simulation is performed in the xz plane, with x

being the direction normal to the magnetopause and z is the
direction of wave vector tangential to the magnetopause.
Initially, the magnetopause current sheet in slab geometry is
assumed to be centered at x = 0 in the middle of the sim-
ulation domain, separating two uniform plasma regions of
the magnetosheath (x < 0) with a high‐density and low‐
magnetic field strength and magnetosphere (x > 0) with a

low‐density and high‐magnetic field. The initial current
sheet is assumed to be a tangential discontinuity, with the
normal component of magnetic field Bx = 0. While the
direction of magnetic field can undergo an arbitrary rotation
from the magnetosheath to the magnetosphere, we focus on
the simplest geometry in which the magnetic fields in the
magnetosheath and magnetosphere are parallel to each
other, but the fields can have an arbitrary angle � = tan−1

(By/Bz) relative to the 2‐D simulation plane, which is
equivalent to allowing a nonzero, east‐west, azimuthal wave
vector under a northward IMF.
[13] In the calculation, the ion particles are advanced by

the ion equation of motion

mi
dvi
dt

¼ e Eþ vi � Bð Þ; ð8Þ

where vi is the ion particle velocity, E is the electric field, B
is the magnetic field, mi is the ion mass, and e is the ele-
mentary charge. The electric field can be obtained from the
massless electron momentum equation

E ¼ �Ve � B� 1=Neð ÞrPe; ð9Þ

where Ve and Pe are the flow velocity and thermal pressure
of the electron fluid, and N is the ion number density. The
electron fluid is assumed to be isothermal, with temperature

Te ¼ const ð10Þ

during the evolution, and thus rPe = TerN. The electron
flow speed is evaluated from Ampere’s law,

Ve ¼ Vi �r� B
�0Ne

: ð11Þ

The magnetic field is advanced in time from Faraday’s law

@B
@t

¼ �r� E: ð12Þ

[14] Let the subscripts “s” and “m” represent the quanti-
ties in the magnetosheath and magnetosphere, respectively.
The initial profile of the ion number density is given by

N xð Þ ¼ 1

2
Nm þ Nsð Þ þ 1

2
Nm � Nsð Þtanh x=Dð Þ; ð13Þ

where D0 is the halfwidth of the magnetopause current
sheet. The initial ion temperature Ti0 and the electron tem-
perature Te0 are assumed to be uniform everywhere, while the
ions are loaded with an isotropic, Maxwellian velocity dis-
tribution. For a given magnetosheath ion beta bis and Te0/Ti0,
the initial magnetic field B(x) is determined by the total
pressure balance

P xð Þ þ B xð Þ2=2�0 ¼ const ð14Þ
throughout the simulation domain, where the total thermal
pressure P = Pi + Pe. The Alfvén speed is then obtained from

V 2
A xð Þ ¼ B xð Þ2

�0miN xð Þ ¼
2

mi
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s=2�0 þ Ns Ti þ Teð Þ � N xð Þ Ti þ Teð Þ� �
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[15] In the simulation, the ion number density in the
magnetosheath is chosen to be Ns = 300 per cell and the
number density in the magnetosphere is Nm = Ns/10 = 30. In
order to maintain a good statistical sampling of the ion
distribution and a low‐noise level, the actual particle
numbers used for the magnetopause and the low‐density
magnetosphere regions are increased by a factor of 4. A
smaller particle weighting is then applied correspondingly
for these particles. The uniform grid size in the x direction is
chosen to be Dx = 0.5dis, where dis is the ion skin depth in
the magnetosheath, and the grid size in the z direction is
Dz = 2dis. For a KAW with dominant kx satisfying kxri ∼
0.4–1 around the magnetopause and ambient magnetosheath,
the grid resolution of Dx = 0.5dis is sufficient to resolve the
wave structure for bis ∼ 1 in most of the cases to be shown.
For a special case with bis = 0.05, the resulting KAWs are
found to have wavelengths > 4dis, and the applied grid
resolution is also adequate. The size of the simulation domain
is chosen around Lx × Lz = 200dis × 256dis. The time step is
Dt = 0.05Ws

−1, where Ws is the ion gyrofrequency in the
magnetosheath.
[16] Periodic boundary conditions are assumed at z = 0

and z = Lz. Free boundary conditions are used at x = Lx/2 on
the magnetospheric side. The solar wind wave perturbations
are imposed from the incoming boundary at x = −Lx/2 in the
magnetosheath and are assumed to be a sinusoidal wave
with a single frequency, w = w0. For each case, the quantities
kz, a ≡ w0/(kk0VAs), and dVi of the incident wave are pre-
scribed, where kk0 = kz cos(�) is the initial parallel wave
number, VAs is the magnetosheath Alfvén speed, and dVi is
the wave amplitude in the flow velocity. Initially, the cur-
rents are assumed to be carried solely by ions. The imposed
incident wave is assumed to satisfy the MHD fast mode
dispersion relation [Swanson, 1989], which under the given
a results in the following expression for wave propagation
angle a ≡ tan−1 (k?/kk):

cos2 � ¼ a2 C2
s =V

2
A þ 1

� �� C2
s =V

2
A

a4
; ð16Þ

where Cs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	P=miN

p
is the sound speed, with g = 5/3. The

perturbations dB/Bs, dVi/VAs, dN/Ns, and dTi/Ts are calcu-
lated from the set of the ideal MHD equations. Note that for
given bi and Te/Ti, Cs

2/VA
2 = gbi(1 + Te/Ti)/2. In the simu-

lation, it is found that the most crucial parameters to set up
the initial wave are w0 and kk0.
[17] In this paper, we show the results for a = 1.5 and 2.0

and kz equivalent to 3–8 complete wavelengths in the z
direction, which correspond to w0 ’ 0.1Ws–0.4Ws and k0 ’
0.1/dis–0.3/dis (or wavelength ’ 20dis–60dis). The wave
amplitude is assumed to range within dVi ’ 0.01VAs −
0.3VAs, to address the basic physics of mode conversion.
Note that as the wave propagates into the simulation domain
from x = −Lx/2, it evolves self‐consistently in the electro-
magnetic field, and the prescribed fast wave solution
according to the ideal MHD may be modified to deviate
from the MHD approximation because of the ion kinetic
effects.
[18] In the presentation below, the time is normalized to

Ws
−1. The magnetic field is expressed in units of Bs, the ion

number density in units of Ns, and the temperature in units
of Bs

2/(m0Ns). The velocity is normalized to the magne-

tosheath Alfven speed VAs, and the spatial coordinates are
normalized to dis.

3. Simulation Results

3.1. Generation of KAWs by Mode Conversion and
Comparison With Linear Theory

[19] We begin our discussion with case 1, in which � = 0°,
bis = 0.5, and Te0/Ti0 = 0.4 for the background magnetic
field and plasma, and w0 = 0.392, a = 2.0, and dVi = 0.04 in
the incident compressional wave. The half‐width of the
magnetopause current layer is D0 = 7.5, equivalent to 10ri.
The three thin solid lines in Figure 1 show profiles of the
Alfvén speed VA(x)/VAs and the normalized background
magnetic field strength B(x) and ion density N(x) as functions
of x, before the magnetopause is perturbed by the incident
wave. The thick solid line plots (VA(x)/VAs)(1 − w0

2/Wi(x)
2).

The horizontal dashed line indicates the value of a =
w0/(kk0VAs) of the incident wave. The vertical dashed line
marks the position x = Xr ’ 4.0 in the magnetopause
boundary, where the horizontal dashed line intersects the
thick solid curve and thus the Alfvén resonance condition
w = kkVA(1 − w0

2/Wi
2) is satisfied.

[20] Figure 2a depicts contours of magnetic field com-
ponents Bx and Bz, ion density N, ion flow component Vix,
and the Ey component of electric field in partial domain
around the magnetopause, obtained in case 1 at an early time
t = 80 when the incident compressional wave just reaches
the edge of the magnetopause boundary near x = −5 from
the left. The incident wavefronts are tilted, with kx0 = k?0 =
0.262 and kz0 = kk0 = 0.196. No other waves are present.
[21] At later time t = 240, as shown in Figure 2b for

various quantities after the interaction of the incident wave
with the magnetopause transition layer, reflected waves are
found on the magnetosheath side, propagating across the
incident waves. Meanwhile, larger‐amplitude, short wave-
length waves have clearly formed in the transition layer
because of the interaction, where the density and magnetic
field have a large gradient. In these waves, the shear com-
ponents By and Viy, Ex, and the parallel current density Jk are
well correlated. The parallel wavelength, and thus kz, remains
nearly unchanged, while the perpendicular wavelength has
decreased significantly. On the right edge of the newly
formed waves, the enhanced perpendicular wave vector kx
has reversed direction from kx > 0 in the incident wave to
kx < 0, as seen from the tilt angle of the wavefronts. These
short wavelength waves appear to radiate back to the mag-
netosheath, leading to structures with even larger k? = kx in
the boundary layer. Strongly enhanced parallel electric field
Ek is present in the resulting waves. Meanwhile, wavy
perturbations in local ion temperature Ti are also observed,
correlated with the variations in By. In the case with a larger
dVi = 0.15, to be shown later in case 4, strong enhancement
in Ti is obtained around the resonance point.
[22] To illustrate the detailed structure of the short‐

wavelength waves generated in the magnetopause boundary
layer, Figure 3a shows spatial cuts of the three magnetic
field components and the parallel electric field Ek along x
through the central region of the domain at t = 240, where
the background Bz has a gradient, at z ’ 128. In addition to
the long‐wavelength incident waves, coherent waves are
seen to be excited apparently in By and Ek, with wavelength
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∼ 3.15–7.35 in the x direction, corresponding to k?ri ∼
0.4–1.0. The vertical dashed line in Figure 3a indicates the
position x = Xr = 4.0. The strongest wave excitation is
clearly coincident with the predicted Alfvén resonance
position Xr, and upstream radiation of the waves is seen to
some spatial extent. The excitation of these waves, at t > 90,
is illustrated in Figure 3b, which shows the time variations
of magnetic field components and Ek at x = Xr. The oscil-
lations are dominated by frequency of the incident wave,
w = w0 = 0.392.
[23] The excitation of waves at the Alfvén resonance point

is consistent with the mode conversion to KAWs. Away
from the Alfvén resonance point at x = 4.0, waves satisfy the
kinetic Alfvén wave dispersion relation. For example, near
x = 0, w2/kk

2VA
2 ’ 1.78, k?ri ’ 0.72, and b = k?

2 ri
2 ’ 0.52.

The KAW dispersion relation requires

!2

k2kV
2
A

¼ 1:78 � b

1� �0 bð Þ þ
Te
Ti

b

� �
’ 1þ 1þ Te

Ti

� �
b

� �

¼ 1:73: ð17Þ

Therefore, the dispersion relation of KAWs is satisfied in
these excited waves in the magnetopause. On the left side
of the resonance point, the Alfvén speed is smaller. The
perpendicular wavelength appears shorter with enhanced
b = k?

2 ri
2. The dispersion relation for KAW is again nearly

satisfied.
[24] The linear growth and saturation of the KAW can be

seen from the time variations of By and Ek for a short
wavelength Fourier mode, k?ri = 1.0, shown in the left two
columns of Figure 4. This mode starts to grow at t ’ 137
and is saturated within a time duration of Dt ∼ 32.5. The
right plot of Figure 4 depicts the ratio ∣dEk∣/∣dEx∣ at x ’ 4 in
the strong KAW, which originates from the Alfvén reso-
nance point, with k?ri ’ 0.4, as a function of Te0/Ti0. A

nearly linear correlation is found, consistent with the rela-
tionship between the amplitude ratio d∣Ek∣/d∣Ex∣ and Te0/Ti0
for KAWs, on the basis of linear two‐fluid theory with
gyrokinetic closure for the ion pressure [Hasegawa and
Chen, 1976; Streltsov et al., 1998; Cheng and Johnson,
1999]

j�Ekj ¼ j�Exj k?�ið Þ kk�i
� �

Te=Tið Þ= 1þ k2?�
2
i

� �
: ð18Þ

The slope of the straight line obtained from the hybrid
simulation is quite consistent with the theoretical prediction
of ∼0.03. Note that at the resonance point, VA ’ 2.2VAs, and
thus bi ’ bs/4.8 = 0.1. For w/kkVA ’ 1.0 at this point, z i =
w/

ffiffiffi
2

p
kkvi ∼ 3.2. Therefore, no ion Landau damping correction

is necessary for (18). On the other hand, in high b plasmas,
the density perturbations associated with the kinetic Alfvén
wave may lead to significant magnetic field compressions.
The mirror force associated with the compressions may lead
to a reduction in the parallel electric field [Cheng and
Johnson, 1999].

3.2. Wave Absorption Rate in the Mode Conversion
and Comparison With Linear Theories

[25] One conclusion we can draw from case 1 is that the
mode conversion from compressional waves to the KAWs
takes place even for tilt angle � = 0°, i.e., without a com-
ponent of k? transverse to both the magnetic field and the
magnetopause normal. This result is not expected on the
basis of low‐frequency theory of mode conversion [Tamao,
1965; Uberoi, 1972; Chen and Hasegawa, 1974;
Southwood, 1974], in which the compressional and
transverse waves are found to be completely decoupled when
� = 0°.
[26] In our simulation, the mode conversion is found for

cases with various angle � of the background magnetic field,

Figure 1. Three thin solid lines show Alfvén speed VA and the normalized background B(x) and N(x) as
functions of x across the unperturbed magnetopause in case 1. The horizontal dashed line indicates a =
w0/(kk0VAs) of the incident wave. The thick solid line plots (VA(x)/VAs)(1 − w0

2/Wi(x)
2). The horizontal dashed

line indicates the value of a = w0/(kk0VAs) of the incident wave. The vertical dashed line marks the mode
conversion position x = Xr, where the Alfvén resonance condition w = kkVA(1 − w0

2/Wi
2) is satisfied.
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incident wave frequency w0, half‐width D0 of the initial
magnetopause current layer, and the temperature ratio Te0/Ti0.
As the KAWs are excited in the boundary layer, the incident
wave power is absorbed due to the Alfvén resonance. The
dependence of the wave absorption rate A on various
parameters is plotted in Figure 5. Because there are no
transmitted waves that propagate on the magnetospheric
side of the magnetopause current layer, the absorption rate
can be estimated by measuring the difference between the
x‐components of the Poynting flux at x = −25 on the
magnetosheath side before and after fthe mode conversion.
[27] The cross signs in the left plot of Figure 5 depict A as

a function of � obtained in the simulation for w0 = 0.147, a =
2.0, D0 = 7.5, bis = 0.5, Te0/Ti0 = 0.2, and dVi = 0.04. The
absorption rate increases quickly with �, and the wave is
completely absorbed with A ’ 100%, as � > 30°, i.e., when

a moderate perpendicular wave vector exists in the plane
perpendicular to B and x.
[28] The dependence of A on w0 obtained in the simulation

is shown by the crosses in the middle plot of Figure 5, for
� = 0° and the same a, D0, bis, Te0/Ti0, and dVi as given
above. The absorption rate A has a sensitive dependence on
w0, increasing to a peak value of ∼0.5 around w0 = 0.3 and
then decreasing at higher frequencies. It is seen that A = 0
for w0 < 0.1, recovering the results based on low‐frequency
theories for � = 0°. However, for w0 > 0.1 the mode conver-
sion occurs even for cases with � = 0°. Our results indicate
that finite frequency effects can remove the decoupling
between the compressional and transverse waves as origi-
nally noted by Karney et al. [1979].
[29] In addition, the right plot of Figure 5, showing A

versus D0 under w0 = 0.147 and � = 30°, indicates that the

Figure 2. Contours of various quantities in partial domain around the magnetopause obtained in case 1
for (a) at an early time t = 80 and (b) t = 240. Short wavelength, coherent waves are generated by inter-
action between the incident wave and the magnetopause.
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generation of KAWs and the associated absorption rate have
a very weak dependence on the current sheet thickness. The
rate A ’ 0.78 for D0 = 3.0, while A ’ 0.80 for a wider
current sheet with D0 = 7.5, and a ’ 0.94 for D0 = 12.5.
Note that a case with D0 = 1 is also performed, but the
current sheet quickly evolves to a sheet with D0 ’ 3 before
the incident wave arrives. On the other hand, the absorption
rate is found to be nearly independent of Te0/Ti0, suggestive
again that ion Landau damping is not playing a role for the
parameter space that has been investigated.

[30] Some features of the wave absorption can be simply
understood using a cold, fluid approach. In a cold plasma
description, the Alfvén resonance is a singularity of the
compressional wave equation. The compressional wave
equation may be solved by analytic continuation around the
Alfvén resonance singularity in which case there is a loss of
Poynting flux at the resonance and wave energy is absorbed.
Alternatively, a kinetic description of the mode conversion
process involves two propagating modes (the compressional
wave and the dispersive kinetic Alfvén wave), which couple

Figure 3. (a) Spatial cuts of the magnetic field components and parallel electric field at t = 240 along x
through the central region of the domain at z ’ 128 in case 1. The vertical dashed line indicates the res-
onance position x = Xr = 4.0. (b) Time variations of the quantities at x = Xr show dominated frequency of
the incident wave, w = w0 = 0.392.

Figure 4. Time variations of (left) By and (middle) Ek for Fourier mode k?ri = 1.0 show linear growth
and saturation of the KAW. (right) The ratio ∣dEk∣/∣dEx∣ in a strong KAW mode shows a linear correlation
with Te0/Ti0.
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near the resonance location. Although in this case there is no
wave energy loss, the amount of wave Poynting flux
transferred to the mode converted kinetic Alfvén wave is
basically the same as the amount of Poynting flux absorbed
in the fluid description. This result is fairly typical in a cool
plasma, but as the temperature of the plasma increases the
Doppler shift will spread the resonance leading to a more
extended coupling region. For the cases that we have
examined, it appears as if the ion Landau damping may not be
playing a dominant role, therefore, it would not be unusual to
find our results in agreement with a cold fluid result.
[31] To proceed, we consider a cold plasma magnetopause

slabmodel with equilibriumplasma variation in the x‐direction
as in the simulation model. The perturbed fields are assumed
to vary as � = F(x)exp[i(kuu + kkz − wt)] where the
coordinates (x, u, z) are a set of Cartesian coordinates with z
along the magnetic field direction (not to be confused with
the z coordinate in the hybrid simulations) and u in the b̂ × x̂
direction. In terms of the coordinate system of the simula-
tions, kz

2 = ku
2 + kk

2, kk = kz cos�, and � = tan−1 (ku/kk). Wave
propagation in the cold, fluid model can be described by
Mawell’s equations combined with fluid equations for ions
and electrons. Using the form of perturbations described
above, a simple set of wave equations [Swanson, 1989] can
be obtained by ignoring electron inertial effects and back-
ground gradients related to diamagnetic drift and density
compressions,
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with n = kc/w and R, L, S, and D being the Stix functions. In
general, these equations have a singularity at the location
where nk

2 = S. For low frequency, this is the Alfvén resonance
(w = kkVA) and for higher frequency it is the so‐called per-
pendicular ion cyclotron resonance (w = kkVA(1 − (w/Wci)

2))
[Karney et al., 1979; Winglee, 1982; Stix, 1992].
[32] The low‐frequency limit of these equations is given

by R = L = S = c2/VA
2 and D/S = O (w/Wi) such that we obtain
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with a resonance condition at �(x) = 0 where
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In the low‐frequency limit when ku, w → 0,

M !
0 1

n2k � c2=V 2
A 0
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and the singularity disappears from the equations as in the
MHD approximation. However, when w ∼ Wi, the equations
are singular even when ku = 0 (� = 0).
[33] The higher‐frequency (w/Wi) effects on magnetosonic

mode conversion described by (21) were first discussed by
Karney et al. [1979], where it was recognized that there is a
cutoff‐resonance‐cutoff triplet (allowing a small region of
propagation on the high Alfvén velocity side of the reso-
nance). Karney et al. [1979] estimated the fractional power
absorbed using an approximate version of (21) (using line-
arized spatial dependence in the coefficients) with the
method of matched asymptotic expansion consistent with
the approximation of small ku/kk = tan � � (kzLn)

1/3.
Although they found significant absorption even when ku = 0,
they emphasized that it would be possible to control para-
meters so as to minimize such damping at higher frequency.
By retaining additional terms proportional to kuw/W,
Winglee [1982] extended the result to larger wavelength
using matched asymptotic expansions, which provided a
better estimate of the peak absorption.
[34] Majeski et al. [1994] later examined mode conversion

from magnetosonic waves to the slow ion Bernstein wave

Figure 5. Cross signs show dependence of wave absorption rate A on (left) � for w0 = 0.147, a = 2.0,
D0 = 7.5, bis = 0.5, Te0/Ti0 = 0.2, and dVi = 0.04, (middle) w0 for � = 0°, and (right) D0 for w0 = 0.147
and � = 30° obtained from the simulation. The solid curves show the corresponding results on the basis
of the cold fluid theory as presented in Figure 6.
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for the case of the ion‐ion hybrid resonance and obtained the
following equation using (21) in the case with multiple ion
species with the approximation ku = 0:

d2�

dx2
¼ c2

!2

n2k � L
� �

n2k � R
� �

n2k � S
� � �: ð25Þ

The dispersion relation for this case is topologically equiv-
alent to the perpendicular Alfvén‐ion cyclotron resonance
with a cutoff‐resonance‐cutoff triplet when the wave pro-
pagates from low field to high field. This work focused on
the importance of the high‐field cutoff and demonstrated
that wave interference results in a standing wave pattern
between the resonance and high‐field cutoff leading to an
oscillatory behavior of the absorption coefficients. Ram and
Bers [1996] examined the ion‐ion hybrid resonance in fur-
ther detail, suggesting that this resonator effect could lead to
100% mode conversion efficiency.
[35] To investigate wave absorption in our simulations,

we solve (19) and (21) for the same magnetopause back-
ground profile prescribed in section 2 without making any
local approximations for the coefficients. In order to isolate
the dependence of the absorption on w and � from the
dependence on background gradient, we fix the mode con-
version location to be at the center of the current layer by
prescribing that nk

2 = S for a given frequency (i.e., nk
2 =

S(w, x = 0)), and we then compute the absorption as a
function of ku or equivalently � = tan−1 (ku/kk) for a given
frequency. Note that � is identical to the tilt angle used in the
hybrid simulations.
[36] To obtain the wave absorption, we solve the wave

equations subject to suitable wavescattering boundary con-
ditions, i.e., there is an incoming wave with unit Poynting
flux from the magnetosheath and no incoming wave from
the magnetosphere. These boundary conditions are adequate
to determine the Poynting fluxes of the reflected wave, R,

and the transmitted wave, T. Generally, for most parameters
the compressional wave decays on the magnetospheric side
of the resonance so that there is no transmitted wave. The
wave absorption is obtained from the lost fraction of wave
energy A = 1 − R − T. The wave solution is obtained by
integrating the differential equation on a contour that is
deformed in the complex plane around the singularity
[Johnson, 1992]. Two linearly independent solutions are
obtained and superposed in such a way as to satisfy the
boundary conditions above. The wave solutions generally
consist of a wave propagating from the magnetosheath to a
cutoff and decaying into a resonance location. The wave
sometimes has a region of propagation beyond the resonance
before it is cutoff again and decays into the magnetosphere.
[37] The solutions are shown in Figure 6 as a function of

frequency and �. At low frequency, the MHD result is
obtained with a maximum absorption around 10%. For � = 0
appreciable absorption occurs for w/Wi > 0.1 maximizing
around w/Wi = 0.3. Above w/Wi = 0.5, there is no absorption
as well as beyond 50°. The reduction in absorption typically
occurs as the cutoff retreats from the magnetopause toward
the magnetosheath leaving an extended damping region
such that the wave cannot leak to the resonance. Above
w/Wi = 0.5, the compressional wave cannot propagate in the
sheath. Unlike the Budden tunneling problem [Budden,
1961], which has a maximum of 25% absorption for
waves that approach a resonance through an evanescent
region, the absorption maximizes at � ∼ 25° and w/Wi ∼ 0.3
with nearly 100% efficiency. The reason for the difference
from Budden tunneling is that the wave is also cutoff on the
magnetospheric side of the resonance so that the transmitted
wave energy is reflected back into the resonance where it
can be totally absorbed. In this case, wave interference
effects do not lead to oscillations in the absorption coefficient
because the distance between the resonance and the high‐
field cutoff is small compared with the wavelength.
[38] The theoretical absorption rates are also shown by

solid lines in the left and middle plots in Figure 5, for
comparison with the simulation results. The monotonic
increase of A at � < 35° obtained in the simulation is rather
consistent with the theory, and the peak of A near � = 35°
also agrees with the theory. Moreover, the overall trend
of the simulated A as a function of w is consistent with
the theoretical curve, which is based on a cold plasma
assumption.
[39] It is also interesting to consider whether it is rea-

sonable to neglect terms related to the diamagnetic drift
(background pressure gradients), which can be appreciable
at the high‐b magnetopause. These effects become impor-
tant when the drift frequency, wd = k · b × r logP/Wi,
becomes the order of the wave frequency, wd/w ∼ kyvi(ri/D0)/
kkVA ∼ tan �

ffiffiffiffiffiffiffiffi
�=2

p
(ri/D0) ∼ 1. For � < 50°, b = 1, and

ri/D0 ∼ 0.1, we find that wd/w < 0.08, which justifies
neglecting the perturbed currents related to gradients in the
background magnetic field and pressure.

3.3. Decay of Compressional and Transverse Waves in
the Magnetosphere

[40] As predicted by the linear theory [Hasegawa and
Chen, 1976], the waves decay on the magnetospheric side
of the Alfvén resonance point. Wave power for each of the
magnetic field components for the w = w0 mode is shown in

Figure 6. Theoretical solutions of wave absorption rate A
as a function of frequency and � on the basis of a cold fluid
description.
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Figure 7 as a function of distance (Dx)r ≡ x − Xr (indicated by
the symbol “x”) for case 2 with � = 30°, bis = 0.5, Te0/Ti0 =
0.2, w0 = 0.149, a = 2.0, dVi = 0.1, and D0 = 7.5, where the
resonance point Xr = 3.0. The parallel wave number kk0 = kz0
cos 30° = 0.074. The dashed lines represent exponential fits
to the power variations, ∼exp[−(Dx)r/l]. The exponential

decay begins at about (Dx)r = 2, a distance of 2dis on the
right side of the resonance point. On basis of the exponential
fits of the wave powers ∣Bx(w0)∣2 and ∣Bz(w0)∣2, the decays
of ∣Bx(w0)∣ and ∣Bz(w0)∣, dominated by the compressional
modes, are found to correspond to an e‐folding distance of
l = 12.4. On the other hand, the exponential decay length of
the compressional wave can be estimated theoretically from
l2 = −1/kx2. From the fast mode dispersion relation,

!2 ’ k2 V 2
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2
S ; ð26Þ

which results in
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For the fast mode with � = 30°, and b = bi + be = 0.15
around the resonance point in case 2, and noting kz = kk/cos �
and (1 + CS

2/VA
2) = (1 + gb/2), we have
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At the decay location, the perturbed Alfvén speed is esti-
mated to be dVA/VA ’ 0.25, which leads to l ’ 15.3.
Therefore, the decay distance obtained from the simulation is
roughly that from the theoretical Wentzel‐Kramers‐Brillouin
approximation.
[41] The decay of the ∣By(w0)∣2 wave power is different

from the decay of the ∣Bx(w0)∣2 and ∣Bz(w0)∣2 wave power in
that it appears to possess two scales: a steep decay in ∣By∣
followed by a slower exponential decay with l = 12.4. The
steeper decay in ∣By∣ is due to the combined effects of KAW
excited at the resonance point and compressional mode,
while the slower part is consistent with that of Bx and Bz,
corresponding to the decay of the compressional mode. For
the KAW, kx � ky′ ≡ kztan �, and thus the perturbation in By

is dominant over that in Bx and Bz. Note that in this case
with � ≠ 0°, the compressional mode has a finite polarization
in By. On basis of the the linear theory [Hasegawa and
Chen, 1976], the KAW in the Airy region decays with a
steeper exp(−2z3/2/3), where z = Dx/(ri

2D0)
1/3, which is not

quite exponential.

3.4. Nonlinear Effects: Generation of Harmonics in the
Mode Conversion

[42] At the magnetopause, it is usually the case that
magnetic field fluctuations are large, dB?/B0 ∼ 1, such that
nonlinear effects should be considered [e.g., Rezeau et al.,
1986; Song et al., 1993a, 1993b; Phan et al., 1996b]. To
examine nonlinear effects on the mode conversion process,
we increase the amplitude of the driver in a systematic
manner (controlled by the velocity perturbation, dVi) and
examine the resulting wave structure and spectral properties.
We find a number of interesting nonlinear properties: passive
generation of harmonics for weak nonlinear driving wave
breaking in the upstream compressional wave evidenced by
upstream generation of nonlinear harmonics, and general
broadening of the wave spectrum such that there is a

Figure 7. Wave powers of magnetic field components for
the w = w0 mode as a function of distance (Dx)r ≡ x − Xr,
shown by crosses obtained from case 2. The dashed lines
represent exponential fits to the power variations.
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broadening of the resonant region to encompass the entire
Alfvén‐cyclotron continuum across the magnetopause.
[43] For weak nonlinear driving, we find that in addition

to the primary mode with w = w0, multiple harmonics of w0

are generated in the region of mode conversion. Figure 8a
shows the 2‐D contours of various quantities in case 3,
which is similar to case 2 except for � = 0° and dVi = 0.04.
The incident fast wave has only three full wavelengths
within the domain length Lz, with kx0 = 0.102, kk0 = kz0 =
0.074, and thus a low frequency of w0 = 0.149 for a = 2.0.
Note that this incident wave is close to being in the MHD
regime. Again, short wavelength KAWs are present at the
center of the domain because of the mode conversion from
the incident compressional wave.
[44] By plotting the Fourier spectra in w space at the

resonance point x = Xr = 3.0, we show in Figure 8b the
frequency spectra of Bx, By, Bz, and ion density N. The three
vertical dashed lines in Figure 8b mark the three harmonics
at w = w0, 2w0, and 3w0. Not only the primary harmonic
mode with w = w0 is present, higher order harmonics are also
excited in all the transverse and compressional field com-
ponents, as well as in the density. The powers of these
modes decrease with the order of the harmonics, with the
primary harmonic mode w = w0 being the strongest and
dominant. Correspondingly, harmonics of the incident kk0
also appear.
[45] Note that the weak peak of power near w = 0 is due to

the slow motion of the magnetopause boundary layer as the
incident wave continuously impinges upon it. No w = 0
mode is found in the simulation. The source of the harmonic
generation in case 3 is within the local region of the mode
conversion in the magnetopause boundary. Subsequently,

multiple harmonics are also seen in the reflected wave
spectrum on the magnetosheath side.
[46] Such nonlinear harmonic mode generation is seen at

all amplitudes of incident waves. The top and bottom plots
in Figure 9 show the decay of ∣Bx(w)∣2 with distance (Dx)r
for the primary (w = w0) and secondary (w = 2w0) harmonic
modes, respectively, for cases similar to case 3 but with
three different incident wave amplitudes dVi = 0.04 (plotted
with ×s), 0.1 (stars), and 0.15 (squares). For both modes, the
decay constants remain nearly unchanged for the different
wave amplitudes. The decay of the higher harmonic modes,
however, is much faster than that of the primary mode. The
decay constant l = 8.4 for ∣Bx(w)∣ in the second harmonic
mode, while l = 12.4 in the primary mode, similar to those in
Figure 6. Let kk = 2kk0, the theoretical decay length obtained
from (28) for the second harmonic mode is 7.6, again close
to l = 8.4 measured in the simulation. This linear decay of
the individual modes suggests that the generation of the
harmonics occurs primarily in the region of linear mode
conversion (the dissipative region for an MHD description)
and that the harmonics radiate away from the resonance
regions as uncoupled linear modes.
[47] Theoretically, as the amplitude of the driver wave is

increased, it is expected that the wave should, indeed, first
become nonlinear near the resonance location, where the
wave solution is singular in MHD and has large amplitude
in a kinetic description consistent with a small group velocity
across the magnetic field. Dmitrienko [1997], Clack et al.
[2009], and Clack and Ballai [2009] have discussed the
weakly nonlinear interaction of fast magnetosonic waves in
a 1‐D planar plasma using an MHD description. They
derived a hierarchy of equations considering the MHD

Figure 8. (a) Contours of various quantities and (b) frequency spectra of various quantities at the
resonance point x = Xr = 3.0 obtained from case 3. The three vertical dashed lines in Figure 8b mark
w = w0, 2w0, and 3w0.
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singular variablesBy andVy as large and the other components
as higher order. Based on this hierarchy, they found that the
governing equation for the second‐order terms was the same
as for the first‐order terms in the singular region with the
addition of nonlinear terms involving products of first‐order
terms. However, at the resonant surface, the driving forces
associated with perpendicular velocity and magnetic field
nonlinearly cancel each other [Dmitrienko, 1997; Clack et
al., 2009], suggesting that nonlinear effects would mostly
lead to radiation of second‐order compressional waves
[Clack et al., 2009]. However, in a kinetic description the
resonant region is broadened by wave dispersion, such that
the large‐amplitude second‐order nonlinear perpendicular
magnetic field and velocity response associated with the
kinetic Alfvén wave does not cancel in the region of small‐

scale structure, leading to the generation of second‐order
harmonic structure in the dispersive kinetic Alfvén waves
seen near resonance.
[48] Likewise, the third‐order equation involves nonlinear

terms that are products of first‐order and second‐order
terms and so forth. Consequently, if the first order solution
has the typical behavior discussed previously, dB?

(1) = g(1)(x)
exp(i(kz − wt)), products of the first‐order solutions would
behave like exp(2i(kz − wt)) implying that dB?

(2) = g(2)(x) exp
(2i(kz − wt)) with amplitude that scales with the square of
the driver amplitude. Similarly the nth harmonic would scale
with the nth power of the amplitude. These properties are
seen qualitatively in Figure 7b in that harmonics are generated
having decreasing amplitude with increasing harmonic order.
[49] For larger frequency and/or amplitude of the com-

pressional wave driver (or if the ion bi is small), harmonics
of w0 can be generated in the incident compressional wave
before it reaches the magnetopause, because of nonlinear
steepening. The left column of Figure 10a shows the Fourier
spectra of the incident wave in case 4, taken at x = −65.0 on
the magnetosheath side during early time interval of t =
0–120 before the arrival of the reflected waves from the
mode conversion region. In this case, � = 0°, D0 = 7.5, kk0 =
0.196, k?0 = 0.326, the frequency w0 = 0.392, which is
much larger than that in case 3, and the wave amplitude is
also larger with dVi = 0.15. A cold plasma with bi = 0.05
and Te = Ti is assumed. Multiple harmonics at w = 2w0 and
3w0 are seen in the incident compressional component Bz, in
addition to the primary w = w0. Meanwhile, the incident
wave has steepened from the initially presumed sinusoidal
structure. The steepened wave is of a nondispersive nature,
with all the harmonic modes still satisfying the same fast
mode dispersion relation. The harmonics of k0 are generated
correspondingly. Different from the results in Figure 8b, the
wave powers do not necessarily decrease with the order of
harmonics.
[50] As the wave steepens, the wave power is also present

in the transverse component By, whose oscillation modes
appear not only at the harmonics of w0 but also in between
the harmonics. The nonlinear self‐evolution of the incident
wave has resulted in the formation of weak transverse Alfvén
modes in the incident wave.
[51] The middle and right columns of Figure 10a depict

the power spectra analyzed for data from the entire simu-
lation run of case 4 from t = 0–200, at x = 5.0 inside the
magnetopause boundary and x = 35 on the magnetosheath
side, respectively. Harmonics are again seen in the mode
conversion region, because of the mode conversion from
multiple incident modes shown in the left column of
Figure 10a. Unlike the results in Figure 8b for case 3, in
which no multiple harmonics exist in the incident wave, the
powers of harmonics do not decrease with the harmonic
order. The harmonics obtained in the right column has
included the contributions from both the incident and
returned waves.
[52] Spatial structures of various quantities in the xz plane

obtained in case 4 are shown in Figure 10b. Around the
Alfvén resonance point, where waves in Viy and Jk are
present, the ion temperature peaks strongly, with Ti
enhanced by a factor of 2, correlated with the increases in
the ion density. The heating is seen predominantly in the
perpendicular directions. Moreover, strong momentum

Figure 9. Decay of ∣Bx(w)∣2 with distance (Dx)r for the
(top) primary (w = w0) and (bottom) secondary (w = 2w0)
harmonic modes for cases with incident wave amplitude
dVi = 0.04 (crosses), 0.1 (stars), and 0.15 (squares).
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transport to the magnetosphere is seen in the ion bulk flow
component Vix. Note that the larger amplitude of the incident
wave has also caused the magnetopause to gradually shift to
the right. According to the linear theory [Hasegawa and
Chen, 1976], the perpendicular wavelength of the KAWs
generated from the mode conversion process is related to ri
in the magnetosheath and D0 of the magnetopause scale
length as l? ∼ (ri

2D0)
1/3 near the resonance location and

l? ∼ ri away from the resonance, which results in k?ri
ranging from ∼(ri/D0)

1/3 to ∼1. Colder magnetosheath ions
would be consistent with shorter wavelengths for the KAW
solutions with respect to di, but smaller k?ri. In case 4 with
bi = 0.05, the wavelength l? of the resulting KAW at the
resonance point is indeed smaller than that in case 1 with
bi = 0.5 by a factor of (ri

2/ri′
2)1/3 = (Ti/Ti′)

1/3(Wi′/Wi)
2/3 ∼

(2bi/bi′)
1/3(B′/B)2/3 ∼ (2 × 0.1)1/3(1.25/1.05)2/3 ∼ 0.7, where

the quantities with and without the prime indicate those of
case 1 and case 4, respectively. Note that a factor of 2 in
the temperate enhancement at the resonance point in case 4
has been considered in the estimate.

3.5. Nonlinear Effects: Broadening of the Mode
Conversion Region

[53] At low frequency, the appearance of paired harmo-
nics would not alter the resonance location for the harmonic
waves because w0/kk0 = 2w0/2kk0 = … = nw/nkk0 = VA, so
that the nonlinear resonant wave structure should be local-
ized at the primary resonance. Moreover, because all the
harmonics have the same phase speed along the field, it
might be expected that there would be little wave breaking
for Alfvén waves propagating along the field. On the other
hand, as discussed previously, higher frequency effects on
the Alfvén resonance condition imply that the resonance
occurs at w = kkVA(1 − w2/Wi

2). In this case, higher harmo-
nics would require a larger VA to satisfy the resonance
condition, and the nonlinear wave structure should shift
toward the region of increasing VA. In this manner, the
generation of harmonics near the fundamental resonance
could lead to a spreading of the resonant wave structure in
the direction of increasing VA. However, the resonance

Figure 10. Simulation results of case 4. (a) Fourier spectra of (left) the incident wave during early times
at x = −65.0 in the magnetosheath and resulting waves at (middle) x = Xr = 5.0 in the magnetopause
boundary and (right) x = 35 on the magnetosheath side during the entire simulation time. (b) Spatial struc-
tures of various quantities in the xz plane.
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condition itself may only be satisfied for a limited range of
frequency, which satisfies nk

2 = S between the primary res-
onance and the maximum Alfvén velocity on the right side
of the domain. The harmonic number n is bounded by the
relation

n2 <
�i

!0

� �2

� VA0

VAmax

�i

!0

� �2

�1

" #
ð29Þ

so that more harmonics would be allowed if w0/Wi is smaller
and/or if the Alfvén velocity increases significantly from the
resonance location to the magnetosphere. In the simulations,
the broadening of the resonance is more pronounced at
lower frequency, consistent with this argument.
[54] In the simulations, it also appears that nonlinear

wave‐wave interaction results in (a) broadening of the
spectral bandwidth in w and (b) the appearance of large
amplitude waves within the Alfvén continuum. Neither the
broadened modes nor the continuum modes appear as har-
monics of the primary wave driver. The appearance of the
continuum modes is most obviously seen in case 5 shown
below, in which a = 1.5, w0 = 0.294, � = 0°, bis = 0.5, Te0/Ti0 =
0.4, dVi = 0.04, D0 = 7.5, and kk0 = 0.196.
[55] Figure 11 shows the spatial structure of By as a

function of x around z = 128 at t = 150, 200, and 400. The
vertical dashed lines indicate the resonance point at x = Xr =
−1.0. The broadening of the Alfvén resonance region is
evident at t = 150, when the wavy structure of By is seen
throughout the region from x = Xr to x ’ 9 on its right, with
a larger amplitude at x = Xr. At t = 200, the waves at x = Xr1

become predominant, while weaker perturbations are still
seen on its right. At t = 400, the peak at x = Xr has obviously
shifted to the right, and the perturbations occupy a broad

area. Again, strong KAWs with larger k? also radiate into
the magnetosheath on the left side of x = Xr.
[56] A close examination shows that on the right side of

the resonance point x = Xr, the wave spectral width in w is
significantly broadened in the way that modes with fre-
quencies other than w0 are also excited at k = kk0. Figure 12
depicts the powers of Bx and By in the kk‐w plane at x = Xr =
−1.0 and x = 9.0. Discrete harmonic modes (kk0, w0) and
(2kk0, 2w0) are present clearly in all the three field compo-
nents (Bz not shown) at the resonance point x = −1.0. At x =
9.0 on the magnetospheric side, however, broad spectra with
Dw ’ 0.9w0 appear predominantly in Bx and By at kk = kk0,
in addition to the mode near (kk0, w0). Continuous spectral
curves are also shown across the kk‐w space, which are
found to be the normal modes that also exist under a random
perturbation of the boundary layer without the incident
coherent waves and in principle could also be excited by the
numerical noise. In fact, the dominant mode in By appears at
(kk0, 1.9w0), coincident with the curvy continuous spectrum
at kk0, whereas the power in Bx is still dominated by the
primary (kk0, w0).
[57] In addition to the shifted resonance locations due to

the presence of harmonic modes, the broadening of the
mode conversion region shown in Figure 11 may also be
associated with the broadening of w spectrum at kk = kk0.
Because of the presence of compressional wave power in the
broad band of wave frequency, the Alfvén resonance condi-
tion can be satisfied in a broad area of the density gradient
layer, although the waves are weaker beyond the primary
resonance point x = Xr. Such an effect implies that transport
processes can occur over a wider region encompassing most
of the magnetopause. Consequently, it is expected that dif-
fusive processes would be more efficient in that they operate
over a wider spatial region.
[58] The excitation of modes in the continuum could

result from a number of possible mechanisms. One possi-
bility is that nonlinear effects broaden the wave spectrum
near the primary resonance location as seen in the spectrum
shown in Figure 8b. The frequency broadened waves could
satisfy the resonance condition at a different location. Such
waves could leak energy from the primary resonance loca-
tion to the location where their shifted frequency matches
the continuum frequency, leading to a pileup of energy at
the shifted resonance location. The nonlinear wave‐wave
interaction and the conditions for the occurrence of a broad
mode conversion region require further investigation
beyond the scope of this study.

4. Summary

[59] In this paper, a 2‐D hybrid simulation is presented for
the interaction between an incident fast mode compressional
wave with the magnetopause. Mode conversion from the
compressional to KAWs as a results of the interaction is
investigated.
[60] As the compressional wave reaches the magneto-

pause boundary from the magnetosheath, strong KAWs are
excited at the location where the Alfvén resonance condition
w = kkVA(x)(1 − w2/Wi

2) is satisfied. These KAWs are short
wavelength waves, with k?ri ∼ 1 and wave number kx along
the magnetopause normal reversing its direction into the
magnetosheath. Strong enhancement of By, Viy, Jk, Ex, and

Figure 11. Spatial cuts of By as a function of x around z =
128 at t = 150, 200, and 400 show the broadening of the Alf-
vén resonance region in case 5. The vertical dashed lines in-
dicate the resonance point at x = Xr1.
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parallel electric field Ek are present in the KAWs, in which
the density and magnetic field strength are also perturbed.
While the KAWs radiate into the magnetosheath, the com-
pressional waves and KAWs undergo a spatial decay on the
magnetospheric side of the Alfvén resonance point.
[61] The simulation results are compared with the linear

theory of mode conversion, for the location of the mode
conversion and the wave properties of the resulting KAWs.
The absorption rate of the incident wave because of the
mode conversion is estimated as functions of w0, �, D0, and
Te0/Ti0. The simulation results are found to agree well with
the absorption rate obtained from a theoretical model that
solves an analytic solution of the full fluid wave equations in
a system containing an equilibrium structure of the magne-
topause. According to our study, the absorption rate A
increases with �, but is nonzero even at � = 0° as long as
w0 > 10% of the ion cyclotron frequency Ws in the magne-
tosheath. The absorption varies significantly with w0,
peaking near w0 ∼ 0.3Ws. The efficiency of the mode con-
version process can be greatly enhanced over the MHD limit
and for a broad range of frequency, and angle of propagation
can capture most of the wave power in the magnetopause
boundary layer where it is converted into kinetic Alfvén
waves. On the other hand, it has weak dependence on D0

and Te0/Ti0.
[62] In addition to the linear physics, several nonlinear

properties of the mode conversion have been obtained from
cases with wave amplitude dVi ∼ 0.01–0.3. The second,
third, and higher harmonics of w0 are found to be generated
in the mode conversion process, in addition to the primary
w0 of the incident wave. The spatial decay of harmonic

modes is faster than that of the primary mode. Moreover, the
harmonics can also be generated in the incident wave in the
nondispersive manner as the wave steepens before it inter-
acts with the magnetopause.
[63] Nonlinear wave‐wave interaction that develops near

the primary resonance point can lead to a broadening of the
spectrum at the resonance location because the dispersion
depends on frequency. In addition, on the high VA side of
the resonance, peaks occur at the local continuum frequency
having kk = kk0 (as well as its harmonics in many cases).
Although a broad range of continuum normal modes satis-
fying w = kkVA(x)(1 − w2/Wi

2(x)) are weakly excited by
simulation noise at each location, x, there is a strong peak of
the wave spectrum satisfying w = kk0VA(1 − w2/Wi

2). This
continuum mode might be excited by a nonlinear process
that broadens the frequency spectrum near the primary
resonance (perhaps from wave‐particle trapping effects), by
parametric excitation of the continuum mode from the large
amplitude driver wave, or by some other nonlinear process
that has not yet been identified. Regardless of the cause, we
have found that nonlinear interactions driven by a mono-
chromatic compressional wave driver lead to a broadened
resonant region (basically exciting the entire continuum and
not just the primary resonance) in a significantly different
manner than the broadening that would result if the incident
wave packet had a frequency spectrum with a spectral
width. Although, the effects of the broad incident spectral
width on the mode conversion are not discussed in this
paper, in reality, such effects and the nonlinearity coexist.
[64] Correlated with perturbations in the transverse mag-

netic field, wavy variations in the ion temperature are also

Figure 12. Powers of Bx and By in the kk‐w plane at x = Xr = −1.0 and x = 9.0 obtained in case 5.
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present in the KAWs. Strong temperature enhancement is
found in cases with a relatively large wave amplitude,
although the ion heating is not a focus of investigation in
this paper. Generation of harmonics could be important for
ion heating. Above a threshold wave amplitude, ions can be
heated perpendicular to the magnetic field by nonlinear
resonance between the polarization drift and gyromotion
[Johnson and Cheng, 2001; Chen et al., 2001]. The heating
efficiency increases with increasing frequency [White et al.,
2002]. Heated ions are commonly seen at the magnetopause
in conjunction with waves that satisfy the threshold condi-
tion for chaotic ion heating [Chaston et al., 2008]. There-
fore, the nonlinear excitation of harmonics could increase
the efficiency of ion heating and particle transport.
[65] It should be noted that the ion transport due to KAWs

cannot be examined with the present hybrid model. The
assumption of the quasi‐charge neutrality results in Vix =
Vex, and thus a zero net plasma flux along the magnetopause
normal, Gx = 0. By tracing the particle positions in the
simulation, the mean square positions of ions relative to the
electron fluid elements are found to be virtually zero,
although the ions exhibit a displacement in the normal
direction as the magnetopause oscillates or shifts position in
response to the incident waves. Given that in the hybrid
model the electron fluid is frozen in the magnetic field, a
null crossfield diffusion of ions would be obtained.
[66] It should also be noted that our model does not

include plasma flow in the magnetosheath, so it is more
appropriate for the subsolar magnetopause. Plasma flow
modifies compressional wave propagation in the sheath and
introduces a source of free energy that can also drive Kelvin‐
Helmholtz instabilities unstable. As a future topic, it would
also be interesting to examine the mode conversion process
that would occur at the flanks and how the free energy from
the plasma flow couples with the Alfvén resonance and the
associated plasma transport. It would also be useful to
include electron Landau damping in the model, which can
be important for particle transport.
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