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Abstract We simulate whistler mode waves using a hybrid code. There are four species in the simulations,
hot electrons initialized with a bi-Maxwellian distribution with temperature in the direction perpendicular
to background magnetic field greater than that in the parallel direction, warm isotropic electrons, cold
inertialess fluid electrons, and protons as an immobile background. The density of the hot population is a
small fraction of the total plasma density. Comparison between the dispersion relation of our model and
other dispersion relations shows that our model is more accurate for lower frequency whistlers than for
higher frequency whistlers. Simulations in 2-D Cartesian coordinates agree very well with those using a full
dynamics code. In the 1-D simulations along the dipole magnetic field, the predicted frequency and wave
number are observed. Rising tones are observed in the one-fourteenth scale simulations that have larger
than realistic magnetic field spatial inhomogeneity. However, in the full-scale 1-D simulation in a dipole
field, the waves are more broadband and do not exhibit rising tones. In the 2-D simulations in a meridional
plane, the waves are generated with propagation approximately parallel to the background magnetic field.
However, the wavefronts become oblique as they propagate to higher latitudes. Simulations with different
plasma density profiles across L shell are performed to study the effect of the background density on
whistler propagation.

1. Introduction

Whistler mode waves are VLF emissions observed in the frequency range between the lower hybrid
resonance frequency and electron gyrofrequency, most often with minimum of wave power at 0.5 Ωce,
where Ωce is the electron gyrofrequency [Tsurutani and Smith, 1974; Burtis and Helliwell, 1976]. They are
excited by the temperature anisotropy of electrons with energy of several to many keVs at the magnetic
equator where the electron anisotropy is the largest and then propagate away to high latitudes. The
frequency-time spectrum can be either broadband or narrowband, and the narrowband whistler waves
are called chorus waves. One distinct feature of chorus waves is that they often display rising or falling
tones in the frequency-time structure, which may be related to strong nonlinear growth [Cully et al., 2011;
Helliwell, 1967].

Whistler mode waves have drawn increasing attention in the space science community. First, they play an
important role in both the acceleration and loss of electrons in the radiation belt in the inner magneto-
sphere [Thorne, 2010; Thorne et al., 2013, and references therein]. The lower energy electrons (a few keVs)
are responsible for chorus generation, and their temperature anisotropy is relaxed. Some of these electrons
will be scattered into the loss cone and precipitated to the ionosphere. On the other hand, electrons can be
accelerated by chorus waves through quasilinear diffusion and nonlinear wave-particle resonant interaction.
Thus, the whistler wave is a key factor in determining the balance of the electron flux in the radiation belt.
Second, a recent study shows that chorus is the driver of pulsating aurora [Nishimura et al., 2010] and diffuse
aurora [Thorne et al., 2010]. Third, a recent study using ray tracing shows that chorus waves may be the
source of hiss waves in the plasmasphere [Draganov et al., 1992; Bortnik et al., 2008]. Hiss waves play an
important role in scattering electrons into the loss cone in the slot region [Summers et al., 2008].

Recent observations discovered large-amplitude whistler waves [Cattell et al., 2008; Cully et al., 2008; Wilson
et al., 2011]. These waves have amplitude up to more than 240 mV/m, an order of magnitude larger than
previously observed. Most of these waves were observed inside the radiation belt and during magnetically
active periods. The wave vectors are up to 50◦ (mostly within 20◦) to the terrestrial magnetic field with a
large longitudinal (along the wave vector) electric field component [Wilson et al., 2011]. With the launch
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of the Van Allen Probes, fine structure in these waves has been observed. Santolík et al. [2014] analyzed a
large number of large-amplitude chorus packets with rising tones. They found that the instantaneous wave
vectors change by tens of degrees within a single rising tone element with the largest amplitude corre-
sponding to small wave angles. Besides large-amplitude whistler waves, Santolík et al. [2009] reported
observation in the source region of oblique propagation of whistler mode waves in the regimes of both
discrete chorus waves and shapeless hiss waves. Li et al. [2011b] presented a comprehensive statistical study
of properties of rising and falling tones using Time History of Events and Macroscale Interactions during
Substorms (THEMIS) data and found that rising tones tend to be quasi field aligned, whereas falling tones
are very oblique close to the resonance cone. Thus, simulations in 2-D dipole field are required to study
the generation of falling tones. While most previous work assumes that chorus propagates along the
background magnetic field, these discoveries require nonlinear theory and simulations in two dimensions
to explain their generation and propagation.

Several self-consistent models of chorus waves have successfully reproduced many features of chorus
waves. Using a Vlasov code with a seed wave, Nunn [1974] first showed that nonlinear trapping of electrons
can trigger the whistler instability. Trakhtengerts [1995] and Trakhtengerts et al. [2007] applied a generation
regime similar to the backward wave oscillator to the generation of whistler chorus emissions. Katoh
and Omura [2007] developed a one-dimensional electron hybrid code and presented a simulation that
self-consistently reproduces the rising tones from thermal noise. Omura et al. [2008] further investigated
the nonlinear theory and simulation of chorus generation. They emphasized the importance of temporal
frequency variation that leads to the formation of rising tones and derived a relation between the frequency
sweep rate and wave amplitude. The wave amplitude is amplified due to the spatial inhomogeneity of
the dipole magnetic field. Hikishima et al. [2009] then performed one-dimensional simulations of chorus
with rising tones using a full particle code. Their results support the previous nonlinear theory for chorus
generation and frequency sweep rates. Nunn and Omura [2012] reproduced a falling tone when their
inhomogeneity factor S is positive instead of negative as it is for a rising tone. Recently Tao [2014] presented
a new electron hybrid code to study the variation of wave intensity with respect to linear growth rate. He
demonstrated that a small increase in the linear growth rate will lead to a significant increase in the wave
intensity only when the waves are narrow band; thus, nonlinear theory is required to explain the modulation
of chorus wave intensity previously observed [Watt et al., 2011; Wu et al., 2013].

Though these simulations have successfully answered many key questions about chorus waves, they have
some limitations. First, the one-dimensional background magnetic field is approximated by an azimuthally
symmetric parabolic field. Second, due to the high computational cost, these simulations often assumed
a scaled-down system with the magnetic field spatial inhomogeneity larger than the real system. A
comparison between different scaled-down systems is important for understanding the effect of magnetic
field inhomogeneity on chorus waves [Katoh and Omura, 2013; Tao et al., 2014]. In addition, all of these
preceding simulations are one-dimensional along an inhomogeneous magnetic field; they thus assume that
the waves propagate only along the field. Two-dimensional simulations with a straight magnetic field have
also been performed to study wave excitation [Liu et al., 2011a, 2011b; Woodroffe and Streltsov, 2014, and
references therein]. While these simulations have important implications for magnetospheric whistlers, they
lack the spatial inhomogeneity in the background magnetic field which is essential for the generation of
rising tones. And to address the generation and propagation of oblique whistler waves, two-dimensional
simulations in a meridional plane are needed.

The propagation of whistler waves is a challenging topic. Ray tracing is an efficient technique to study
whistler propagation. The refractive index of whistler waves depends on both cold plasma density and the
background magnetic field as they control the wave dispersion relation [Gendrin, 1961; Helliwell, 1965; Inan
and Bell, 1977]. Chen et al. [2009] studied the whistler wave path in a three-dimensional magnetosphere with
azimuthal density variation including a plasmaspheric plume. They found that pronounced off-meridian
propagation is more effective inside the plasmasphere than outside due to internal reflection from the
plasmapause. These results suggest that outside the plasmapause, a two-dimensional simulation of whistler
waves in the meridional plane could be appropriate to investigate wave growth and propagation. Katoh
[2014] recently showed simulations of the propagation of chorus in a meridional plane. They showed how
chorus elements propagate on different raypaths depending on the density variation. In their simulations,
waves with rising tones are artificially inserted into the simulation domain.
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Figure 1. (a) Modified dipole coordinates (q, r) and (b) the mapping
to the Cartesian coordinates (z, x); x and z are the SM X and Z
coordinates in the noon meridional plane. The magnetic latitude of
the northern boundary is 𝜆i .

In this manuscript, we present simulations
of whistler mode waves using a hybrid
code in dipole coordinates. First, we
compare the dispersion relation in our
model with results form a local dispersion
relation solver. Then we present simulations
in 2-D Cartesian, 1-D dipole, and 2-D dipole
systems. In our simulations, waves are
excited by anisotropic electrons and grow
from thermal noise. We also perform
simulations in a way similar to Katoh [2014],
where we input a traveling whistler wave
into a meridional plane and investigate
wave propagation. Our simulations
reproduce many features of whistler mode
waves generation and propagation and are
to our knowledge the first self-consistent
first-principle simulations including
wave growth in a two-dimensional
meridional plane.

2. Model for Whistler Mode Waves

Our hybrid code has successfully simu-
lated two-dimensional electromagnetic ion
cyclotron (EMIC) waves [Hu et al., 2010]. In
such simulations, ions are treated as parti-
cles and the electrons as a cold fluid without
mass. We slightly modified the equations
in the hybrid code to allow simulation of

whistler waves. Whistler waves can be excited by temperature anisotropy of ring current electrons, just like
EMIC waves are stimulated by the temperature anisotropy of the ions [Kennel and Petschek, 1966].

2.1. Hybrid Code
Our hybrid code uses generalized orthogonal coordinates. Thus, we can test the simplest case of whistler
waves in Cartesian coordinates as well as simulate magnetospheric waves in dipole coordinates. We will use
the modified dipole coordinates (q, r, s) introduced by Hu and Denton [2009]. Simply put, the first coordi-
nate, q, is a measure of the distance along field lines; r is the L shell, normalized to the L value at the center
(r = 1); and s is the azimuthal angle. Figure 1 shows the modified dipole coordinates and the mapping to
Cartesian coordinates in the meridional plane where s = 0; q = 0 represents the equatorial plane and q= 1
represents the Northern Hemisphere ionospheric boundary. Note that our ionospheric boundary is not at
the real ionosphere but is at a higher latitude; it is specified by its magnetic latitude 𝜆i at r = 1. The modified
dipole coordinates have several advantages. We choose to make the spacing between grid points in the
q direction roughly proportional to the magnetic field B, which is proportional to the electron Alfvén speed
VAe. Then the spacing between grid points in real space is the largest close to the ionospheric boundary,
where B is large. This helps to ameliorate problems with the Courant condition (numerical stability condition
related to temporal resolution of waves) near the ionospheric boundary. Second, the number of particles
per cell will be roughly constant along the field line. This is because the area of a flux tube is proportional
to 1∕B and the length of the cell is proportional to B so that the grid cell volume is roughly constant along a
field line.

Our code can utilize various boundary conditions depending on the physical problem of interest. In the
simulation in 2-D Cartesian coordinates that aims to compare the results with linear theory, we used periodic
boundary conditions in both directions. In both 1-D and 2-D dipole coordinates, we performed simulations
only in the Northern Hemisphere (q> 0) to reduce the computational cost, and symmetry boundary
conditions are used at the magnetic equator. At other boundaries, perfect conductor boundary conditions
were used for the fields as discussed by Denton and Hu [2009], and particles were reflected as described by
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Table 1. Basic Equations Used in the Hybrid Codea

dxm
dt

= vm
dvm

dt
= −Em − vm × Bm − 𝜂Jm

𝜌t,i =
1

Hi
ΣmQmS

(
xi − xm

)
ne,c,i = nion,i − ne,t,i

Jt,i =
1

Hi
ΣmQmvmS(xi − xm)

𝜕Bi
𝜕t

= −∇ × Ei

Ji = ∇ × Bi

ue,c,i = − 1
ne,c

(Ji − Je,t,i)

Ei = −ue,c,i × Bi + 𝜂Ji

aThe subscripts m and i are the particle index and grid index,
respectively; t denotes thermal particles with mass; c denotes the
inertialess cold fluid species; and e is for electron.

Lee and Okuda [1978] and Naitou et al.
[1979]. We also added a resistive layer
and masking function at the boundaries
(except the magnetic equator) to reduce
the undesired waves (see section 2.3 in
Hu and Denton [2009]). These conditions
ensure total energy conservation if we
take into account the energy lost at the
resistive boundaries.

We initialized the plasma with an
anisotropic MHD code [Hu et al., 2010],
such that the initial state of the simula-
tion is nearly MHD equilibrium. Unde-
sired wave modes due to nonequilibrium
oscillations are thus removed from our
system, and the noise is reduced. The
adjusted magnetic field lines are nearly
though not exactly dipolar.

The full set of basic equations is listed in Table 1. Each quantity is normalized as described in Table 2. The
fluid velocity of the cold electrons is ue,c =−

(
J −

∑
s Js

)
∕(ne,ce), where Js is the current of particle species

and J=∇ × B is the total current. The immobile ions have zero current. We then make the approximation
that the cold electrons are able to short out the parallel electric field and undergo E × B drift, providing an
explicit equation for E, i.e., E = −ue,c × B. In Table 1, the subscript e indicates electrons, m and i represent the
particle index and grid index, respectively, Qm is the charge of the mth super particle, Hi = h1ih2ih3i is the
product of the scale factors of the ith grid cell, and S(xi − xm) is the shape function of super particles.

2.2. Model for Whistler Mode Waves
In our simulations of whistler waves, we include four species. Energetic anisotropic electrons (ring current
electrons) are treated as particles to stimulate the instability. These electrons only make up a small fraction
of the total electron population. Warm particle electrons are included to make the dispersion relation
more accurate by increasing the fraction of particles with mass. These electrons are initially isotropic. Cold
inertialess electrons are treated as a fluid. Finally, the ions are represented as fixed background positive
charge density. With these assumptions, our model has some advantages as well as limitations. Because we
use the drift motion of cold inertialess electrons to obtain the electric field, we exclude the displacement
current, eliminating light waves from the simulation. We also assume that there is a large population of cold
electrons so that fpe exceeds fce, where fpe is the plasma frequency and fce is the electron gyrofrequency.

Table 2. Normalizations in the Hybrid Code

Quantity Normalized to

Mass m0 = me

Charge q0 = e

Magnetic field B0

Velocity VAe0 = B0∕
√

4𝜋mene0

Time t0 = Ω−1
e0

Length x0 = c∕𝜔pe0

Number density n0 = ne0

Charge density 𝜌0 = ne0e

Current density J0 = ne0eVAe0

Electric field E0 = VAe0B0∕c

Resistivity 𝜂0 = 4𝜋V2
Ae0∕(c

2Ωe0)

Temperature T2
0 = B2

0∕(4𝜋ne0)

Pressure p0 = B2
0∕(4𝜋)

Then in the real system, the parallel
electric field E∥ would be small. In our
simulation, the inertialess electrons
move freely along the magnetic field to
exactly cancel E∥. In this way, Langmuir
wave is eliminated from the system, but
its effect on E∥ is included. The approx-
imation E∥ = 0 is valid in the limit of
large fpe∕fce for 𝜃kB < 90o, where 𝜃kB is
the angle between the wave vector and
background magnetic field. Because the
electron inertia makes the dispersion
surface asymptote to 𝜔=Ωce and
the inertia is less important for low
frequencies, our results will also be more
accurate for lower band chorus than for
upper band chorus (see Figure 2 in later
discussions). But lower band chorus is
dominant in the space observations,
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Figure 2. Comparison of the dispersion relation of our model (1) and WHAMP for 𝜃kB = 0◦ (red color) and 𝜃kB = 25◦

(blue color). The figure shows normalized frequency versus normalized wave vector. Solid lines represent WHAMP with
realistic mass electrons, while dashed lines represent results with inertialess electrons. Circles denote the model used in
the hybrid code. For this comparison, the particle electrons that always have realistic mass are 16% of the total electron
population and the parallel temperature is 20 keV.

for example, the statistical study from THEMIS [Cully et al., 2008]. For these reasons we will focus on lower
band chorus.

Equation (1) is the cold plasma dispersion relation derived using the equations listed in Table 1.

n̄2
c𝜔̄

4 − 𝜔̄2(1 + (1 − n̄c)k̄2(1 + cos2 𝜃kB) + k̄4 cos2 𝜃kB) + k̄4 cos2 𝜃kB = 0, (1)

where n̄c is the density of cold inertialess electrons normalized to the total electron density ne, 𝜔̄ ≡ 𝜔∕Ωce,
and k̄ ≡ kc∕𝜔pe. In various limits, (1) reduces to familiar relations. For example, if there is only a cold
population in our simulation (n̄c = 1), (1) becomes

k̄k̄∥ = 𝜔̄, (2)

which is the cold dispersion relation for whistler waves in the low-frequency limit, where k̄∥ = k̄ cos 𝜃kB is the
parallel component of k̄. If there is no inertialess population (n̄c = 0), a case which our hybrid code cannot
run because of numerical instability, (1) reduces for parallel propagation (𝜃kB = 0) to

k̄2
∥ = 𝜔̄

1 − 𝜔̄
, (3)

the cold dispersion relation for whistler waves including the resonance at the electron gyrofrequency. For
purely parallel propagation with electrons both with and without mass, (1) becomes

k̄2
∥ = (1 − n̄c)

𝜔̄

1 − 𝜔̄
+ n̄c𝜔̄. (4)

The first term on the right-hand side of (4) is the contribution from the particle electrons with mass in the
high-frequency regime (when 𝜔̄ is very small, this term becomes similar to the second term), while the
second term is from the inertialess distribution. Note that if we solve (1) for 𝜔2 as a function of k, we get two
solutions. For one solution 𝜔̄ is between 0 and 1 representing the whistler wave. For the other solution, 𝜔̄
goes from 1 to infinity, representing an artificial wave due to the inertialess electrons (see later discussion).
These two branches are analogous to ion cyclotron wave with multiple species, where different dispersion
curves approach the gyrofrequency of different species. In our model, the whistler branch approaches
the electron gyrofrequency, while the artificial branch approaches the gyrofrequency of the inertialess
electrons, which is infinite.
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We compared (1) with dispersion surfaces calculated using the electromagnetic dispersion code WHAMP
(Waves in Homogeneous, Anisotropic Multicomponent Plasmas), originally developed by Kjell Ronnmark
[Ronnmark, 1983]. Figure 2 shows the dispersion curves for the parameters used in our simulations. The
values of k̄ range from 0.1 to 10, which is the relevant regime for whistler waves. All the red curves denote
results for parallel propagating whistler waves, while the blue curves are for 𝜃kB = 25o. The solid curves
are for WHAMP for all electrons with realistic mass, while the dashed curves are for WHAMP with electron
mass for the fluid component equal to 10−10 me (me is the mass of electrons), which is effectively zero, and
the circles represent results from (1). The fraction of the particle electrons that always have mass is 16%,
which is a typical value for our simulation. The parallel temperature of the particle population is 20 keV.
Note that all the curves asymptote to a resonance at the electron gyrofrequency. With more realistic mass
electrons (as denoted by the two solid curves), the frequency is lower at any k̄ and the frequency approaches
the gyrofrequency at larger k̄. The difference in k̄ between (1) and WHAMP with all realistic mass electrons
for 𝜃kB = 25o is about 17.5% at 𝜔̄= 0.4. Third, the four curves with inertialess electrons are very close to
each other, indicating that our model agrees very well with WHAMP with inertialess electrons. In addition,
there is not much difference between the dispersion curves for parallel and oblique propagation when most
electrons are inertialess, while the difference is clear when all electrons have realistic mass comparing the
two solid curves. Figure 2 demonstrates that our model is more accurate for low frequency for which the
inertia becomes less important.

Besides using a population of inertialess electrons, our model also assumes that E∥ is equal to zero. If fpe is
smaller than fce, E∥ will not be shorted out on the timescale of whistler waves. However, most observations
find that the typical ratio of fpe to fce is 4 to 7. Also, for 𝜃kB almost equal to 90o, the electrons will not be able
to move freely along the magnetic field, and thus E∥ cannot be canceled in this case either. Our model will
fail to be valid if the parallel component of the wave electric field E∥ becomes a large fraction of E. The fact
that Cattell et al. [2008] found E∥ ∼ 0.1E suggests that our model may be sufficient for an approximate
description of their results.

3. Simulation Results
3.1. Parameters
The Geospace Environment Modeling Radiation Belts and Wave Modeling focus group chose a set of param-
eters for a comparison study, or challenge. We used the same parameters as this challenge except that we
used 10 times larger hot electron density. For the hot electrons, nhot = 0.33 cm−3, Thot = 20 keV, T⊥∕T∥ = 3.
The warm population have nwarm = 0.55 cm−3, Twarm = 0.01 keV, and T⊥∕T∥ = 1. For the cold inertialess fluid
electrons, ncold = 4.62 cm−3. The total plasma density ne is hence 5.5 cm−3. The background magnetic field
B0 is 250 nT. Hence, the parallel plasma beta of the hot population is 𝛽∥,hot = 0.04. With these parameters, the
most unstable mode propagates in the parallel direction. Equation (1) predicts that for the most unstable
mode, 𝜔̄= 0.4, 𝛾̄ = 0.03, k̄∥ = 0.68, and the normalized wavelength 𝜆̄∥ = 9.24. For such parameters WHAMP
predicts that 𝜔̄= 0.36, 𝛾̄ = 0.02, k̄∥ = 0.76, and 𝜆̄∥ = 8.27. The normalizing factors are Ωce = 4.4 × 104 rad/s
(fce = 7 kHz), 𝜔pe = 1.3 × 105 rad/s (fpe = 21 kHz), and c∕𝜔pe = 2.27 km.

We performed simulations with different geometry and density variation. First, we simulated the waves in
2-D Cartesian coordinates (run 1) and compared the results with those of a full dynamics particle-in-cell
simulation to examine the validity of our model. Then we ran two simulations in 1-D dipole geometry, one
in full-scale system (run 2) and one in a scaled-down system (run 3). Finally, we ran simulations in 2-D dipole
geometry with different plasma density profiles across L shell (runs 4–6) and compared the results with cold
plasma simulations (runs 7–9). The parameters of each simulation are listed in Table 3.

3.2. Two-Dimensional Test Simulation in Cartesian Coordinates
To test the validity of our model, we first performed a two-dimensional simulation in Cartesian coordinates.
The background magnetic field is constant in the z direction. The simulation size is 10𝜆̄∥ times 10𝜆̄⊥, where
𝜆̄∥ and 𝜆̄⊥ are the normalized wavelengths in the parallel and perpendicular directions based on predictions
from WHAMP. The strongest instability for k is in the parallel direction for which 𝜆̄⊥ would be infinity. We
chose k̄⊥ such that the growth rate is half of the maximum growth rate, and the corresponding k̄⊥ is 0.37;
thus, 𝜆̄⊥ is 16.98. Hence, the normalized length in z is 92 and that of x is 170. We compared the results with a
full dynamics simulation using the 2-D electromagnetic particle-in-cell code in Liu et al. [2011a, 2011b]. The
full dynamics code includes physics that is absent in our model, for example, the displacement current and
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Table 3. Summary of the Settings and Key Parameters of the Simulationsa

Run Nq Nr NP 𝜆i L0𝜔pe∕c Density Variation

1 256 256 3000 na na na
2 10001 1 400 23◦ 14031 na
3 953 1 400 23◦ 1000 na
4,7 953 151 560 23◦ 1000 constant
5,8 953 151 560 23◦ 1000 L−4

6,9 953 151 560 23◦ 1000 L−8

aNq and Nr are the number of grid points in q and r, respectively. NP is the
number of particles per cell. The magnetic latitude of northern ionospheric
boundary is 𝜆i . L0𝜔pe∕c is the normalized value of L shell at the middle of the
simulation.

realistic mass for all electrons. To do the comparison, we performed the simulations with the same parame-
ters for the hot population and warm population. To approximate the cold inertialess electrons in our hybrid
code, Liu’s model used a particle electron population with temperature equal to 0.01 eV. In both simulations,
the grid size was 256 × 256. In the hybrid code, there were 3000 particles per grid cell in total for the two
particle populations, while in the full particle code, there were 1000 particles per grid cell representing each
of the three electron populations. Periodic boundary conditions were used in both directions.

Figure 3 plots the perturbed magnetic energy versus time in both models. The perturbed magnetic energy
is defined as < |𝛿B|2 > ∕B2

0, where B0 is the amplitude of background magnetic field and 𝛿B is the
perturbed magnetic field, and <> indicates an average over the grid. The red curve denotes results from
the hybrid code, while the black curve is for the full particle code. In both models, the energy undergoes
equilibration of modes to the noise level followed by a linear growth stage and then followed by a nonlinear
growth stage. Note that, with the same number of particles per cell with the hybrid code, the full dynamics
particle code yields a lower noise level due to the fact that it uses the quiet start technique to initialize par-
ticles with a reduced thermal fluctuation level. For the full dynamics code, the growth rate is around 0.02 as
predicted by WHAMP, while in the hybrid code, it is 0.03. The normalized magnetic field energy saturation
level is comparable, 0.0027 for the hybrid code, 0.0024 for the full dynamics code. The hybrid code yields a
slightly higher saturation level due to larger growth rate.

Figure 4 compares the out-of-plane component By of the wave magnetic field and the power spectrum in k
space just after the waves are saturated. Note that in Figures 4a and 4b, the x axis is compressed relative to
the z axis. Looking at Figures 4a and 4b, we see that in the z direction, there are about nine peaks (darkest
red) and nine troughs (darkest blue). Thus, the wavelength is about one ninth of the distance across z,
which is very close to the prediction of linear theory. In fact, at an earlier stage of the simulation, when the

Figure 3. Perturbed magnetic energy versus time for the hybrid code
(red curve) and full dynamics code (black curve).

electron parameters have not evolved
much from the initial values, there are
10 wavelengths in the parallel direc-
tion. Thus, the dominant wave energy
has shifted slightly to smaller k (inverse
cascade) associated with the evolution
of the electron parameters in the simula-
tion. The anisotropy of the hot electron
population decreases as the instability
develops, which, according to linear dis-
persion theory, shifts the most unstable
wave mode toward smaller k or longer
wavelength. So there will be fewer
and fewer wavelengths in the parallel
direction later in the simulation. In the
perpendicular direction, there are about
four wavelengths in both simulations.
After performing a Fourier transform on
the magnetic field in Figures 4a and 4b,
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Figure 4. At the top, a snapshot of the out-of-plane component By of wave magnetic field just after saturation for
(a) the hybrid code and (b) the full dynamics code. At the bottom, the wave number power spectra of the out-of-plane
magnetic field component in logarithmic scale (gray scale) for (c) the hybrid code and (d) the full dynamics code.

we find the power spectrum that we display in Figures 4c and 4d. For both simulations, most of the wave
power is in the parallel direction corresponding to k̄⊥ = 0. The wave power is mostly between k̄∥ = 0.5 and
1, which agrees with the prediction by WHAMP. Again, the largest power is not at k̄∥ = 0.7 as predicted by
WHAMP but smaller due to the fact that k decreases as the anisotropy decreases. The maximum power in
Figure 4c is slightly greater (the color is slightly darker). The greatest difference is in the k range of instability.
Figure 4d shows that the full dynamics simulation has a larger unstable region in k∥. But our model agrees
qualitatively very well with the full dynamics code.

We then analyzed the power spectrum in 𝜔-k space. To do this, we Fourier transformed the complex field
S = Bx + iBy . Then positive frequency corresponds to right-hand polarized modes, while negative frequency
corresponds to left-hand polarized modes. The waves propagate in the positive direction of a coordinate j
if the sign of kj matches that of 𝜔. Figure 5 shows the power spectrum for the Cartesian simulations using
the hybrid code when tΩ is between 300 and 400. There are three branches. The middle branch, in which
𝜔̄ goes from 0 to 1, is the whistler dispersion surface; most of the wave power in this branch is between
𝜔̄ = 0.25 and 0.75. The positive frequency indicates that these waves are right-hand polarized. The surface
approaches 𝜔̄ = 1 due to the resonance of the particle electrons. The upper branch, where 𝜔̄ goes from 1
to higher values, represents the artificial surface due to inertialess electrons as discussed in the previous
section. Finally in the lowest branch, the frequency is negative. These waves are left-hand polarized and
combine with the corresponding right-hand polarized waves to form waves that are nearly but not
completely right-hand polarized. In all three branches, the wave power is almost evenly distributed between
positive and negative k∥ because the waves are traveling in both directions (the simulation system is
symmetric). The power of the upper and lower branch is much smaller than that of the middle branch (The
color bar spans about 5 orders of magnitude). Note that there is some very small power in the two lower
corners, which is due to the aliasing of the high frequencies.

WU ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1915



Journal of Geophysical Research: Space Physics 10.1002/2014JA020736

k
//
c/ωpe

ω
/Ω

ce

log
10

(Power in  B
0
2/mode)

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−9

−8

−7

−6

−5

−4

Figure 5. Wave power versus k̄∥ on the horizontal axis and 𝜔̄ on the
vertical axis for the time range tΩce = 300 to 400. Positive (negative)
frequency denotes waves with right (left)-hand polarization. If the sign
of k̄∥ matches that of 𝜔̄, the waves propagate in the positive direction
of the parallel direction z.

Overall, our results agree very well with
Liu et al.’s model, and the comparison
shows that our model is capable of
representing the physics needed for
whistler wave generation.

3.3. One-Dimensional Simulations in
Dipole Geometry
We simulated waves with the parameters
listed in the previous section in
dipole geometry in both full-scale
and scaled-down systems. For both
simulations, q goes from 0 to 1, with 1
corresponding to the northern boundary
at magnetic latitude (MLAT) = 23◦.
In reality, the wavelength of the most
unstable mode is 18.77 km for our
parameters. Hence, there are about 340
wavelengths in 1 Re, where Re = 6370 km
is the Earth radius. At L= 5, MLAT at

1 Re is about arctan(1∕5) = 11.3◦. Going up to 23◦ is sufficient for whistler simulation as the wave power is
mostly confined within low magnetic latitudes [Li et al., 2011a]. For the full-scale simulation, we simulated a
distance of about 2 Re, so there are about 680 wavelengths. We used 10,001 grid points in the q direction to
resolve these modes. Then on average, there are about 15 grid points for each wavelength, which is enough
to resolve the waves. The magnetic field strength increases by a factor of 2 at q= 1 from the equatorial
value at q = 0. The middle L value is L0𝜔pe∕c = 14031. The scaled-down simulation is one-fourteenth scale,
so value of L0𝜔pe∕c is 1000. Subsequently, the gradients of the equilibrium quantities in the scaled-down
system are 14 times larger than realistic.

Figure 6 shows the results along the 1-D dipole field. Figures 6a and 6b show the azimuthal component of
the magnetic field B𝜙 versus q at tΩce = 150 in the full-scale and scaled-down systems, respectively, runs 2
and 3. Figures 6c and 6d show the power spectrum along q for the same runs in the time range between
tΩce = 100 and 200. Looking at Figure 6a, the wave amplitude is the greatest in the region between q= 0
and q = 0.2 near where the waves are generated and gradually decreases with q. At later times this wave
packet propagates to higher q and the wave amplitude continues to grow. If we plot B𝜙 at a later time,
then the greatest amplitude is at an off-equator position rather than near the equator (similar to Figure 6b).
Between q = 0.9 and 1, the magnitude of B𝜙 is nearly zero because of the resistive layer near the boundary.
The amplitudes of the waves in the two simulations are quite close. These plots show that the wave power
is mostly between 𝜔̄ = 0.3 and 0.6. The detailed structure of the power spectrum, however, is hard to see
due to the huge number of grid points. This structure is more obvious in run 3. In Figure 6b, there are several
wave packets. These are generated continuously at the magnetic equator. Zooming in to the region near
the equatorial plane, we find that the normalized wavelength (not shown here) is about 0.025. Based on the
linear theory, there should be about 48 wavelengths in the one-fourteenth scaled system in the distance
of about 2 Re and the wavelength should be 0.021, so the wavelength obtained from Figure 6b agrees well
with our linear estimation. In Figure 6d, the power is the strongest between q = 0.2 and 0.4, corresponding
to the peak in amplitude between q = 0.2 and 0.3 in Figure 6b. The power in this wave packet is greatest
near 𝜔̄ = 0.4. There is a second prominent wave packet near q = 0 corresponding to the peak in amplitude
near q = 0 in Figure 6b.

Figure 6d displays a negative frequency gradient along q in the power spectrum. The waves are propagating
to the right away from the magnetic equator where they are generated. At a fixed position in space, for
example, at q= 0.4, the waves with lower frequency will be observed first, then the waves with higher
frequency. Thus, a rising tone is expected [Katoh and Omura, 2007], and, though not shown here, we
observed a rising tone in the frequency-temporal structure near the magnetic equator (not shown). The
frequency of the rising tone goes from 0.32Ωce to 0.57Ωce in a time period of tΩce = 40. The frequency
sweep rate is thus 6.25 × 10−3 Ω2

ce, which is greater than that of realistic chorus waves by about 2 orders of
magnitude. The huge difference may be due to the large amplitude. Omura et al. [2008] gives an equation
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Figure 6. Simulations in 1-D dipole geometry in the (a and c) full-scale system and (b and d) scaled-down system. Figures 6a and 6b show the azimuthal compo-
nent of the magnetic field at tΩce = 150 versus q, and Figures 6c and 6d show the wave power versus q on the horizontal axis and 𝜔̄ on the vertical axis for the
time range tΩce = 100 and 200.

for the estimation of frequency sweep rate and shows that the sweep rate is proportional to the normalized
wave amplitude. We estimated the frequency sweep rate in our simulation based on equation (50) in Omura
et al. [2008]. For our parameters, we obtained a relation between frequency sweep rate and wave amplitude:

𝜕𝜔

𝜕t
= 0.1064

Bw

B0
Ω2

ce, (5)

where Bw is the wave amplitude. Based on Figure 6b, Bw is around 0.05; thus, the frequency sweep rate
should be 5.32 × 10−3 Ω2

ce, so the sweep rate we obtained from the simulation agrees with this estimation
(6.25 × 10−3 Ω2

ce) very well. However, in the full-scale simulation, we did not find a rising or falling tone. The
structure of the power spectrum along q in run 2 is much more broadband, and it is hard to find a similar
negative gradient of frequency with respect to position in this case.

3.4. Two-Dimensional Simulations in a Meridional Plane
We then extended the simulation to a meridional plane. All the 2-D simulations have the same simulation
size. The magnetic latitude of the northern ionosphere boundary at q = 1 for the middle L shell is 23◦. For
the middle L shell L0𝜔pe∕c = 1000. The r boundaries are 0.92 and 1.08, corresponding to a range of 0.16 ×
1000 c∕𝜔pe = 363.2 km. Note that we are simulating a very narrow range in L shell. There are 953 grid points
in q and 151 grid points in r. The r grid spacing is 1.05 c∕𝜔pe, while the cyclotron radius is 1.43 c∕𝜔pe. This
resolution is sufficient to resolve the wavelength and gyromotion of particle electrons. The total number of
simulation particles used to represent the hot and warm electron populations is 560 per grid cell.

The plasma density controls the dispersion relation of whistler waves and hence the wave propagation. To
study the wave propagation with respect to L shell in different plasma density profiles, we set the plasma
density constant or varying as L-4 or L-8. The plasma density at the central L shell (r = 1) is set to be 5.5 cm−3,
as mentioned previously.

Figure 7 shows the out-of-plane component of wave magnetic field versus q and r at tΩce = 100 (a–c),
tΩce = 200 (d–f ), and tΩce = 300 (g–i). The different columns show the results for different plasma density
profiles, as indicated at the top of each column. Note that we trimmed the r boundaries to show only the
region without the resistive layers (the region plotted is from r = 0.936 to 1.064). Within the resistive layers,
the amplitude is almost zero and the plot yields little information. Looking at Figures 7a, 7d, and 7g (run 4),
we can see that the waves are generated near the equatorial plane and propagate toward larger q (higher
latitude). The amplitude grows slightly as the waves propagate as can be seen by comparing the color bars
on the right. The direction of k also changes. Note that k is perpendicular to the wavefronts. In Figures 7a–7c,
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Figure 7. Two-dimensional simulations in dipole geometry with waves self-consistently driven by a hot anisotropic
electron population. The figure shows the out-of-plane (azimuthal) component of B. (a, d, and g) The results for plasma
density ne = constant at the times indicated at the right of each row, (b, e, and h) results for ne varying as L−4, and
(c, f, and i) results for ne varying as L−8. Only the r range without wave damping is shown here.

k is pointing parallel to q. In Figures 7d–7f, away from the magnetic equator, k starts to turn away from the
q direction (vertical in the figure). Note that at q = 0 the background magnetic field is exactly along the q
direction; at q > 0, the background magnetic field direction is close to though not exactly the same as the q
direction. Finally, in the last row, k becomes very oblique near the boundaries. The greatest angle between
the wavefront and B is about 45◦.

By comparing the plots in different columns, we can see the effects of the background plasma density
gradient on the wave propagation. At tΩce = 100, the waves look very similar in Figures 7a–7c; in all the
cases the waves form near the magnetic equator with wave vector approximately parallel to B (wavefronts
normal to B). At tΩce = 200, the wave vector remains approximately field aligned for ne ∝ L−8 (Figure 7f ),
but the waves that have propagated away from the magnetic equator to q≈ 0.3 are more oblique for
ne ∝ L−4 (Figure 7e) and even more oblique for constant ne (Figure 7d). At tΩce = 300, these differences
are even clearer. Another difference is that the wave patches of the three simulations are located at different
positions in the simulation domain. In Figures 7a, 7d, and 7g (constant ne), the waves are located mainly in
the region of larger r, and the wave vector is more oblique for large r than for smaller r. In Figures 7b, 7e, and
7h, the waves are less oblique and centered around r = 1. In Figures 7c, 7f, and 7i, waves occupy the whole
simulation region, and the wave vectors are everywhere almost parallel to the background magnetic field.

In all three simulations, the plots of magnetic energy growth from the three cases are quite similar (not
shown), and the waves saturate near tΩce = 350. For run 4, the maximum magnetic energy is about
1.87 × 10−4; for run 5, it is 2.72 × 10−4; and for run 6, it is 3.98 × 10−4 in normalized units. The initial growth
of the waves is almost identical in each case. However, in run 4, the waves reach the boundary at r = 1 earlier
than those in runs 5 and 6; these waves are then damped. In contrast, the waves in run 6 occupy the entire
simulation domain, and less wave power gets damped at the boundaries.

To better understand these results, we performed similar simulations of whistler wave propagation in a
cold plasma using the same hybrid code. The particle electron species are the same as in previous simula-
tions except that the temperature of all particles is set to zero. We initialize these simulations with an initial
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Figure 8. Like Figure 7, but for a cold plasma with an initial whistler wave perturbation.

whistler wave perturbation. Based on the fact that the waves in our hot plasma simulations have maximum
instability in the parallel direction, the initial perturbations had k parallel to B. To do that, we needed to
specify the wave frequency and amplitude. Based on the parameters simulated in previous sections, the
wave frequency was chosen to be 𝜔0 = 0.4Ωce and the amplitude was 0.01B0. We construct a parallel
propagating plane wave with an envelope in q and r as described in Appendix A. Such initial perturbations
form a traveling wave in the parallel direction with fixed frequency. We then let the wavefields and particle
velocities evolve with time. This full wave approach gives us similar results to that of a ray tracing code.

Similar to the simulations with hot electrons, we performed three simulations with all cold plasma for the
three different plasma density profiles. Figure 8 shows the results of these simulations. The plots are laid
out in the same way as in Figure 7. Comparing Figure 8 with Figure 7, there are significant similarities in the
wave propagation. The negative density gradient keeps the wave vector from turning outward. To under-
stand the difference quantitatively, we then Fourier transformed the magnetic wavefield in k space. For
tΩce = 300 (Figures 7g–7i), we obtained k̄⊥ and k̄∥ at which the wave power is maximum and calculated the
angle between background magnetic field and wave vector 𝜃kB. For run 7, 𝜃kB is 20.1◦ in Figure 8d and 42.6◦

in Figure 8g; for run 8, 𝜃kB is 19.7◦ in Figure 8e and 24.1◦ in Figure 8h; finally for run 9, 𝜃kB is almost 0◦ at
any time.

Note that the waveform in Figure 8 is a single smooth Gaussian traveling wave packet, while in Figure 7
there are many self-coherent wave packets. Coherence length of chorus waves is still a subject
under investigation.

4. Discussion and Summary

We presented self-consistent simulations of whistler mode waves in 2-D Cartesian, 1-D dipole, and 2-D
dipole coordinate systems. Our model used anisotropic electrons as particles to excite whistler waves,
additional warm particles to provide inertia and a cold inertialess electron fluid. The ions are immobile. We
derived a dispersion relation for this model and compared with WHAMP. We found that the error between
our model and WHAMP for the parameters used in all of our simulations is around 17.5%. The frequency and
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wave vector obtained from the simulation in 2-D Cartesian coordinates agree with predictions by WHAMP,
and the comparison with a full dynamics model validates our model.

One-dimensional simulations in a dipole field were performed for both a full-scale system and a
one-fourteenth scaled-down system. Both simulations show that the waves are generated near the
magnetic equator and propagate to higher latitudes. The waves grow as they propagate. The waves are
right-hand polarized near the generation region. In the scaled-down system, a rising tone is observed
along the magnetic field line. The frequency sweep rate obtained from the simulation is 6.25 × 10−3 Ω2

ce,
which agrees very well with the estimation of frequency sweep rate in equation (50) of Omura et al. [2008].
However, the frequency sweep rate is about 2 orders of magnitude greater than that observed. The huge
difference can be explained by the large wave amplitude in our simulation. The frequency sweep rate is
proportional to the wave energy saturation level. Due to limited computational resources, we used
parameters for whistler waves that yield a much stronger instability than normally observed; thus, the
wave amplitude is much greater, leading to a much greater frequency sweep rate. However, in the full-scale
simulation, rising tones are not observed. Katoh and Omura [2013] investigated the effect of background
magnetic field inhomogeneity on the generation process of chorus waves. With smaller inhomogeneity
(background gradients), the threshold of wave amplitude for nonlinear growth is smaller. Thus, it should be
easier to observe the rising tones with smaller inhomogeneity. However, Katoh and Omura [2013] reported
that in the simulation with smallest inhomogeneity, the wave spectrum is broadband similar to that of hiss
waves. These broadband waves consist of a group of waves with rising tones that emerge easily in the
equatorial region. This may be an explanation for the character of the wave spectrum observed in our
full-scale simulation. The inhomogeneity of run 2 is the same as that of the Earth’s dipole field which is very
small compared to that of most nonlinear simulations in the literature. Thus, in the scaled-down simulation,
we observed chorus waves with discrete elements and rising tones, and the broadband whistler waves we
observed in run 2 are possibly a group of chorus elements. In order to observe chorus waves in the full-scale
simulation, we should probably use a smaller plasma beta that would lead to weaker whistler instability
such that the discrete whistler elements would probably be more distinct.

To our knowledge, this is the first first-principle 2-D self-consistent simulation of whistler waves in a dipole
field. First, we set the background plasma density to be constant along r so that the inhomogeneity is solely
due to the dipole magnetic field (run 4). We found that the waves are generated with the wave vector
parallel to the background magnetic field near the equatorial plane. The frequency range is within the
predictions by WHAMP. As the waves propagate, the wave vector turns outward to greater L shell. The waves
are more oblique at higher magnetic latitudes.

We then varied the total plasma density with respect to L to investigate the effect of a gradient in plasma
density along L on chorus propagation. Two simulations were performed, run 5 with the total plasma
density varying as L-4 and run 6 with density varying as L-8. The waves are generated near the magnetic
equator in the same fashion as run 4, and the wave power spectra look very similar. However, as the waves
propagate to higher magnetic latitudes, the wave vector becomes less oblique when the density decreases
with respect to r. In run 6, the wave vector remains roughly parallel along the center L shell. An even more
dramatically decreased density than run 6 could lead to a wave vector turning inward toward the Earth.

To better understand the results from runs 4 to 6, we ran cold plasma simulations initialized with a whistler
wave packet. The results from runs 7 to 9 are similar to those of runs 4 to 6, showing that the wave
propagation can be explained based on cold plasma theory. Based on the calculation of 𝜃kB for runs 7–9, the
maximum angle between the wave vector and background magnetic field is within 45◦. Note, however, that
runs 7–9 assume a single coherent whistler mode wave packet, while in runs 4–6 we observe several chorus
patches with self-maintained coherence.

Features of Figures 7 and 8 agree with results from whistler ray tracing [Inan and Bell, 1977; Chen et al.,
2009, and private communication]. The wave vector k turns toward the direction of the density gradient,
but away from the gradient of the magnetic field. The resulting turning of k is a balance between these
two tendencies. With a constant plasma density, the wave vector will rotate toward greater L shell. As the
density gradient increases (Figures 7b, 7e, and 7h; 7c, 7f, and 7i; 8b, 8e, and 8h; and 8c, 8f, and 8i), this
rotation decreases and stops. Presumably the rotation would be inward for an even larger gradient.
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Our model excludes E∥. This is adequate for 1-D simulations for which the waves propagate parallel to
the background magnetic field. However, E∥ becomes more important for wave excitation in two dimen-
sions. With our parameters, WHAMP predicts that the most unstable mode is in the parallel direction near
the equatorial region, which is favorable for our model. But neglecting E∥ has modified the whole unsta-
ble region in k space as can be seen from Figure 2 (there is a difference between the results from WHAMP
and our model for oblique propagation.). In addition, neglecting E∥ leads to the fact that there is no Lan-
dau damping in our system. Also, Omura et al. [2009] suggests that E∥ might be essential for damping of
whistler waves at 0.5Ωce. The effect of E∥ is an important subject that will be addressed in future studies.
While our model has this limitation, overall our simulations agree very well with observations and results of
other models.

Appendix A: Initialization of a Traveling Whistler Wave Packet

Assuming that the perturbation has a plane waveform propagating in the q direction with a Gaussian
envelope in both q and r directions, the real parts of the perturbed velocity of particles in the r and s
directions at t = 0 are

ṽr,m = ṽ0 cos𝜙me
−
(

qm−q̃0
w̃q

)2

e
−
(

rm−r̃0
w̃r

)2

, (A1a)

ṽs,m = −ṽ0 sin𝜙me
−
(

qm−q̃0
w̃q

)2

e
−
(

rm−r̃0
w̃r

)2

, (A1b)

where m is the particle index, ṽr,m (ṽs,m) is the velocity perturbation of particles in the r (s) direction,
ṽ0 = 0.01 is the amplitude of the perturbation, qm (rm) is the position of the mth particle in the q (r) direction,
q̃0 (r̃0) is the center of the Gaussian perturbation in the q (r) direction, w̃q (w̃r) is the width of the Gaussian
perturbation in the q (r) direction, and 𝜙m is the phase of the perturbation at the particle position, which
depends on qm. To get 𝜙m, we first calculate the wave phase at the grid points, 𝜙i , where i is the grid index
in the q direction, and then interpolate the values on the grid to the particle position. At all r values, we use
the phase for grid points calculated at the central field line (r = r̃0) so that the initial waves are parallel prop-
agating. We integrate 𝜙i from grid point i to grid point i + 1, based on the WKB approximation that the scale
of spatial variation is greater than the wavelength so that the wave number can be considered constant
between adjacent grid points, using these equations (in normalized units):

𝜙i+1 = 𝜙i + k∥,midh1,midΔq, (A2)

where

k∥,mid =

√
(1 − n̄c)𝜔0

Bmid(1 − 𝜔0∕B0,mid)
+

n̄c𝜔0

Bmid
, (A3a)

Bmid = 0.5 ∗ (Bi,jmid
+ Bi+1,jmid

), (A3b)

h1,mid = 0.5 ∗ (h1,i,jmid
+ h1,i+1,jmid

), (A3c)

jmid is the index of the center L shell and h1 denotes the curvilinear scaling factor for q [Hu and Denton, 2009].
The quantity k∥,mid is the local wave number at the particle position given the constant wave frequency
based on (4). Based on (A1), the perturbation in the magnetic field on the grid is as follows:

B̃r,i,j = k∥,i(1 − Bi,jmid
∕𝜔0)ṽ0 cos𝜙i,jmid

e
−
(

qi−q̃0
w̃q

)2

e
−
(

rj−r̃0
w̃r

)2

, (A4a)

B̃s,i,j = k∥,i(1 − Bi,jmid
∕𝜔0)ṽ0 cos𝜙i,jmid

e
−
(

qi−q̃0
w̃q

)2

e
−
(

rj−r̃0
w̃r

)2

. (A4b)
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