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Regime transition of ion Bernstein instability driven
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Abstract Linear kinetic dispersion theory is used to investigate a regime transition of the ion Bernstein
instability driven by a proton velocity distribution with positive slopes with respect to the perpendicular
velocity, 𝜕fp(v‖∼0, v⊥)∕𝜕v⊥ > 0. The unstable waves arising from this instability are ion Bernstein waves
with proton cyclotron harmonic dispersion. However, in the inner magnetosphere, particularly inside of
the plasmapause where plasmas are dominated by a cold background, the instability leads to ion Bernstein
waves which approximately follow the cold plasma dispersion relation for fast magnetosonic waves
and are, therefore, fast magnetosonic-like. Subsequently, the relevant waves have been termed fast
magnetosonic waves and many studies have assumed the cold plasma dispersion relation to describe them.
On the other hand, how the dispersion properties of ion Bernstein waves become fast magnetosonic-like
has not yet been well understood. To examine this regime transition of the instability, we perform linear
dispersion analyses using a two-component proton model of fp(v) = fM(v) + fs(v), where fM is a Maxwellian
velocity distribution and fs is an isotropic shell velocity distribution. The results show that the unstable
waves are essentially ion Bernstein waves; however, when the shell proton concentration becomes
sufficiently small (less than 10%), the unstable waves approach the cold plasma dispersion relation for fast
magnetosonic waves and become fast magnetosonic-like. Although a reduced proton-to-electron mass
ratio of 100 has been used for convenience, which reduces the number of unstable modes involved by
lowering the lower hybrid frequency, this does not change the overall regime transition picture revealed in
this study.

1. Introduction

Originally called “equatorial noise” [Russell et al., 1970], enhanced electric and magnetic field fluctuations with
a series of spectral peaks spaced at multiples of the proton cyclotron frequency up to the lower hybrid fre-
quency have been observed within a few degrees of the geomagnetic equator between 2 and 8 RE [Russell
et al., 1970; Perraut et al., 1982; Santolík et al., 2002; Meredith et al., 2008; Ma et al., 2013; Balikhin et al., 2015].
These waves are driven by tenuous energetic proton velocity distributions with 𝜕fp(v‖ ∼ 0, v⊥)∕𝜕v⊥ > 0, where
fp(v‖, v⊥) is the proton velocity distribution function and v‖ (v⊥) denotes the velocity parallel (perpendicular)
to the background magnetic field [Horne et al., 2000; Chen et al., 2010]. In the inner magnetosphere, especially
within the plasmapause, these energetic protons are often immersed in a dense cold background plasma
[Chen et al., 2011; Thomsen et al., 2011; Ma et al., 2014]. Wave growth then occurs close to the oblique whistler
mode/fast magnetosonic mode branch of the cold plasma dispersion relation (referred to as cold plasma
magnetosonic dispersion hereinafter) with phase speeds (vph), especially at low harmonic frequencies, close
to the Alfvén speed (vA) [Gul’elmi et al., 1975; Perraut et al., 1982; McClements et al., 1994; Horne et al., 2000;
Chen et al., 2010]. Using the same parameters as in Horne et al. [2000], Chen [2015] presented a warm plasma
solution of fast magnetosonic waves (Figure 1 therein), showing that the dispersion relation is very close to
the cold plasma magnetosonic dispersion relation. Thus, the relevant waves have more recently been termed
“fast magnetosonic waves.”

In situations different from those found in the inner magnetosphere, the unstable waves driven by proton
velocity distributions with 𝜕fp(v‖ ∼ 0, v⊥)∕𝜕v⊥ > 0 are more generally described as ion Bernstein waves which
exhibit proton cyclotron harmonic dispersion as Bernstein modes, but do not necessarily follow the cold
plasma magnetosonic dispersion relation [Gary et al., 2010, 2011]. Using a simple model, Perraut et al. [1982]
suggested that more intense rings with a smaller ring speed than the Alfvén speed in the nightside injec-
tion region can excite waves with phase speed substantially less than the Alfvén speed. Janhunen et al. [2003]
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showed that the ion shell distribution observed in the ionosphere where plasma beta is usually very small can
excite ion Bernstein waves which are predominantly electrostatic. Denton et al. [2010] used the ion distribu-
tions of the plasma sheet boundary layer where plasma beta is of order unity to show the excitation of ion
Bernstein waves which are predominantly electromagnetic. Joyce et al. [2012] suggested that waves observed
in the solar wind could be interpreted as ion Bernstein waves in some cases, and Boardsen et al. [2015], using
an instability analysis similar to Denton et al. [2010] and Gary et al. [2010] and through propagation of the ion
Bernstein waves in a dipole field, suggested that compressional waves observed at Mercury could be inter-
preted as ion Bernstein waves. Denton et al. [2010] and Gary et al. [2010] further examined the dependence
of the ion Bernstein instability on proton beta (𝛽p). At 𝛽p ≪ 1, the waves are predominantly electrostatic. At
𝛽p ∼ 1, the waves become electromagnetic and the fluctuating magnetic field has components in both the
perpendicular and parallel directions, but the perpendicular fluctuations are larger. As 𝛽p increases further
beyond unity, the waves are still electromagnetic, but the magnetic field fluctuations become predominantly
compressional, hence, resembling the fast magnetosonic waves observed in the inner magnetosphere.

Since several studies of local excitation [e.g., Chen et al., 2010, 2011; Xiao et al., 2013; Ma et al., 2014] and prop-
agation [e.g., Boardsen et al., 1992; Horne et al., 2000; Xiao et al., 2013; Zhou et al., 2014] of ion Bernstein waves
in the inner magnetosphere assume the cold plasma magnetosonic dispersion relation for these waves, the
earlier theoretical studies [Perraut et al., 1982; Denton et al., 2010; Gary et al., 2010] raise the question of under
what plasma condition the ion Bernstein waves approach the cold plasma magnetosonic dispersion relation
and become “fast magnetosonic-like.” Liu et al. [2011] first recognized the importance of this aspect and sub-
sequently carried out fully electromagnetic particle-in-cell (PIC) simulations corresponding to two different
plasma conditions representative of the plasma sheet boundary layer and the inner magnetosphere, respec-
tively. They showed that a plasma entirely made of a single proton shell velocity distribution with a small shell
speed of vs∕vA ≈ 0.8 excites ion Bernstein waves with phase speeds substantially less than the Alfvén speed.
On the other hand, a plasma composed of a tenuous (10%) proton shell velocity distribution with a large shell
speed (vs∕vA = 2) and dense cold background protons excites ion Bernstein waves with phase speeds close
to the Alfvén speed. This suggests that the excited waves are fast magnetosonic-like. For distinction, we shall
describe the waves from the first case as “ion Bernstein-like.”

The contrast between the two cases examined by Liu et al. [2011] suggests a “regime transition” of the insta-
bility, from being ion Bernstein-like to being fast magnetosonic-like or vice versa, associated with the changes
of several key parameters of the shell velocity distribution, such as the relative concentration of the shell pro-
tons and the shell speed, effect of which has not been fully explored. Min and Liu [2015] recently developed
a dispersion solver that accepts a sum of Maxwellian ring beam distributions (equation (2)) as a particle
distribution and introduced a method to approximate a shell distribution with a finite series of the ring beam
distributions. With the new tool in hand, the present study aims to reveal a more comprehensive picture of
the regime transition of the ion Bernstein instability. In particular, we start from the general shell distribution
introduced by Liu et al. [2011], vary the shell concentration and shell speed while others are fixed, and seek the
parameter pairs that keep the maximum growth rates constant. The detailed description of the methodology
is given in section 2, and the results are presented in section 3.

Throughout the paper, we denote the jth species plasma frequency as 𝜔j ≡
√

4𝜋nje2∕mj , the jth species

cyclotron frequency as Ωj ≡ ejB0∕(mjc), the jth component thermal speed as 𝜃j ≡
√

2Tj∕mj , and the jth

component beta as 𝛽j ≡ 8𝜋njTj∕B2
0. The Alfvén speed is vA ≡ B0∕

√
4𝜋n0mp, the proton inertial length is 𝜆p ≡√

mpc2∕4𝜋n0e2, and the lower hybrid frequency is 𝜔lh = 𝜔p∕
√

1 + 𝜔2
e∕Ω2

e . Here n0 is the unperturbed total
plasma density, and B0 denotes the uniform background magnetic field. As in Liu et al. [2011], a two-species
plasma of protons (subscript p) and electrons (subscript e) is considered. Then the fully electromagnetic kinetic
dispersion equation is numerically solved for the complex frequency𝜔 = 𝜔r+ i𝛾 at given pairs of wave normal
angle 𝜓 and wave number k, where 𝛾 > 0 indicates a growing fluctuation [Min and Liu, 2015].

Although not necessary, the same reduced proton-to-electron mass ratio of mp∕me = 100 and relatively small
light-to-Alfvén speed ratio of c∕vA = 15 (equivalently 𝜔e∕Ωe = 1.5) as in Liu et al. [2011] are used throughout
the paper. (The lower hybrid frequency is then 𝜔lh ≈ 8.3Ωp.) With the realistic mass ratio and the typical
value of c∕vA ∼ 400 (or 𝜔e∕Ωe ∼ 10) in the inner magnetosphere, there are potentially about 42 harmonic
modes (𝜔lh ∼ 42Ωp) that can be simultaneously unstable. Finding numerical solutions of all harmonics is time
consuming due to the increasing number of cyclotron order sums with the increasing harmonic frequency
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Figure 1. Schematic of the vs-𝜂s space of the proton shell
distribution models examined. Red-circled numbers denote
locations of the (vs, 𝜂s) pairs resulting in 𝛾m ∼ 0.08Ωp . “Case-I”
and “Case-II” denote the shell parameters examined by
Liu et al. [2011].

[e.g., Gary et al., 2011] and numerous disper-
sion surfaces [e.g., Min and Liu, 2015, Figure 11]
that should be identified and distinguished.
While previous studies [Denton et al., 2010; Gary
et al., 2010, 2011] focused on the first 10 or so
harmonics, we instead cover all harmonics by
effectively reducing the lower hybrid frequency.
Although the detailed instability properties may
vary with the choice of mp∕me and c∕vA, we
expect that the main physics driving the regime
transition will remain the same.

2. Methodology

The linear dispersion analyses in the present
study use a two-component proton model
of fp(v) = fM(v) + fs(v), where fM(v) represents
a Maxwellian thermal component and fs(v)
represents an isotropic shell velocity distribu-

tion as a function of v ≡ |v| = √
v2‖ + v2

⊥
. The

isotropic shell distribution [Liu et al., 2011] is
represented with

fs(v) =
𝜂s

𝜋3∕2𝜃3
s Cs

e−(v−vs)2∕𝜃2
s , (1)

where 𝜂s, vs and 𝜃s are the shell concentration, the shell speed, and the thermal spread of the shell, respec-
tively, and Cs = (2∕

√
𝜋)(vs∕𝜃s)e−v2

s ∕𝜃
2
s + (2v2

s ∕𝜃
2
s + 1)(1 + erf(vs∕𝜃s)) is the normalization factor (here erf(x) ≡

(2∕
√
𝜋)∫ x

0 e−t2
dt). The Maxwellian distribution is represented with fM(v) = 𝜂Me−v2∕𝜃2

M∕(𝜋3∕2𝜃3
M). Note that 𝜂s

and 𝜂M are the relative concentrations so 𝜂M + 𝜂s = 1. We choose 𝜃M∕vA = 0.045 and 𝜃s∕vA = 0.45 as fixed
parameters, but 0.1 ≤ 𝜂s ≤ 1 and 0.8 ≤ vs∕vA ≤ 2 are left as free parameters (Figure 1). The upper and
lower limits of 𝜂s and vs are determined from the two cases examined by Liu et al. [2011] (denoted as cases
I and II in Figure 1). Electrons form a Maxwellian distribution with Te∕TM ≈ 0.089. Except for varying 𝜂s and
vs, the parameters chosen are fully consistent with case II of Liu et al. [2011] (corresponding to model 1 in the
present study).

For a given set of model parameters, the shell distribution of equation (1) is approximated with a finite series
of ring beam distributions

fr(v‖, v⊥) =
𝜂r

𝜋3∕2𝜃‖𝜃2
⊥

Cr

e−(v‖−vd)2∕𝜃2‖ e−(v⊥−vr )2∕𝜃2
⊥ (2)

following the procedure described by Min and Liu [2015]. Here, vd , 𝜃‖, vr , and 𝜃⊥ are the drift speed, par-
allel thermal spread, ring speed, and perpendicular thermal spread, respectively, and Cr = exp(−v2

r ∕𝜃
2
⊥
) +√

𝜋(vr∕𝜃⊥) erfc(−vr∕𝜃⊥) is the normalization constant (here erfc(x) ≡ 1 − erf(x)). The number of ring beam
components needed for convergence depends upon the vs∕𝜃s ratio (but not on 𝜂s). For the parameters con-
sidered here, we find that as few as 10 ring beam components for vs∕vA = 0.8 and as many as 17 ring beam
components for vs∕vA = 2 are sufficient. We have rigorously verified the linear theory results against the
results of several one-dimensional PIC simulations as in Min and Liu [2015] (supporting information).

As illustrated in Figure 1, the parameter space is discretized with vs∕vA ranging from 0.8 to 2 in steps of 0.2 and
𝜂s from 0.1 to 1 in steps of 0.15. Min and Liu [2015] showed that the maximum growth rate for model 1 is about
0.08Ωp. Therefore, starting from model 1, we walk one step at a time toward the lower right corner in the 𝜂s-vs

space and seek the model parameters that maintain the maximum growth rate of ∼ 0.08Ωp. The locations
of those parameters in the 𝜂s-vs space are numbered in sequence in Figure 1, and we will respectively label
them as models 1, 2, etc. Hereafter, the linear theory results corresponding to these seven models at the wave
normal angles that contain the most unstable harmonic mode are presented and discussed. From model 1 to
model 7 these angles are, respectively, 88.4∘, 88.5∘, 88.5∘, 88.75∘, 89∘, 88.8∘, and 88.7∘with an uncertainty of
less than 0.2∘(which is the wave normal angle step size used in the dispersion solver).
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Figure 2. From top to bottom, linear theory results of models 5, 6, and 7, respectively. (left column) Linear theory
dispersion relation. The red solid (gray dashed) curves correspond to growing (damping) modes, and the blue dashed
curves correspond to the cold plasma dispersion relation for fast magnetosonic waves. The corresponding wave normal
angle 𝜓 is labeled at the bottom right corner. (middle column) Ratios of vph∕vph,c for the growing modes (𝛾 > 0) as a
function of k𝜆p . The colored dots denote locations of the local growth rate peaks of the individual harmonic modes and
the color represents harmonic number as labeled at the top. (right column) Linear growth rate as a function of real
frequency.

3. Results

We first present the linear theory results that demonstrate the regime transition of the instability discussed in
section 1. Figure 2 displays, from top to bottom, several properties of the instability corresponding to mod-
els 5, 6, and 7, respectively. The real frequency as a function of the wave number is shown in Figure 2 (left
column), with the red solid (gray dashed) curves representing the 𝛾 > 0 (𝛾 < 0) segments. For model 7, the
unstable waves are far from the cold plasma magnetosonic dispersion curve (blue dashed curve) and clearly
ion Bernstein waves. However, as the model parameters shift back toward model 5 (i.e., 𝜂s decreases and
vs increases), the unstable waves gradually approach the cold plasma magnetosonic dispersion curve and
become fast magnetosonic-like. This shift of the instability is quantitatively shown in Figure 2 (middle col-
umn) where the ratios of the phase speed of the unstable modes to the corresponding phase speed from the
cold plasma magnetosonic dispersion relation (vph∕vph,c) are plotted. The closer vph∕vph,c is to unity, the more
fast magnetosonic-like the unstable waves are. For model 7, the ratios are below 0.5 for all harmonics, but for
model 5, they are close to 0.9. Figure 2 (right column) demonstrates the harmonic nature of the instability in
the real frequency space.

It may be more appropriate to investigate the properties of the instability at local growth rate maxima since
the most unstable waves at each harmonic should eventually dominate over other modes. Figure 3 (top)
shows from left to right the wave number, vph∕vph,c and growth rate as functions of model number for all
seven proton distribution models shown in Figure 1. As in Figure 2 (middle column), the same colored dots
are used to indicate the local growth rate peaks of the individual harmonic modes.

Figures 3a and 3b demonstrate the condition in which the regime transition occurs. When 𝜂s is small (models
1 through 5; 𝜂s = 0.1), wave growth occurs fairly close to the cold plasma magnetosonic dispersion relation
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Figure 3. (top) Linear theory dispersion properties and (bottom) dimensionless ratios of various fluctuating fields at
local growth rate maxima for all seven proton distribution models. Figure 3 (top) shows (a) k𝜆p, (b) vph∕vph,c , and
(c) 100 × 𝛾∕Ωp , and Figure 3 (bottom) shows the ratios of (d) |𝛿Ek|2∕|𝛿E|2, (e) |𝛿E|2∕|𝛿B|2, and (f ) |𝛿B‖|2∕|𝛿B|2, as a
function of model number. Colors differentiate individual harmonic modes as labeled at the top.

(i.e., vph∕vph,c ∼ 1), although the vph∕vph,c ratios decrease slightly with decreasing vs. The unstable waves
are therefore fast magnetosonic-like. However, the vph∕vph,c ratios fall sharply (or equivalently k𝜆p increases
sharply) beyond model 5 when 𝜂s starts to increase. So the unstable modes thereafter move away from the
cold plasma magnetosonic dispersion relation and departs from being fast magnetosonic-like. It is worth
emphasizing that the decrease of the phase speed with increasing 𝜂s (and thereby increasing 𝛽p) discussed
above contradicts the behavior of the fast magnetosonic mode in magnetohydrodynamic theory for a ther-
mal proton-electron plasma because the phase speed of the fast magnetosonic mode only increases with
increasing 𝛽p (more discussion in section 4). Figure 3c shows the local maximum instability growth rates as a
function of model number. When vs decreases while 𝜂s is fixed to 0.1 (models 2 through 5), the harmonic num-
ber corresponding to the maximum growth rate increases, which is consistent with the previous theoretical
analyses [e.g., Horne et al., 2000; Chen et al., 2010].

Linear dispersion theory also predicts dimensionless ratios of quadratic combinations of the various fluc-
tuating field components of a specific mode [e.g., Gary, 1993, chapter 5]. Three of these ratios that further
characterize the regime transition are shown in Figures 3d–3f as a function of model number for all seven
proton distribution models examined. In all cases, the electric field fluctuations (Figure 3d) are predominantly
electrostatic (|𝛿Ek|2∕|𝛿E|2 > 0.92) and the magnetic field fluctuations (Figure 3f ) are predominantly compres-
sional (|𝛿B‖|2∕|𝛿B|2 > 0.88). There are, however, subtle but nonnegligible changes. The |𝛿Ek|2∕|𝛿E|2 ratios
approach unity with increasing harmonic number and, more interestingly, the ratios all converge very close
to unity as the model parameters change from model 1 to model 7. The magnetic field fluctuations exhibit
stronger compressional component for lower harmonic modes. As vs∕vA decreases from 2 to 1.2 for fixed
𝜂s = 0.1 (i.e., from model 1 to model 5), the |𝛿B‖|2∕|𝛿B|2 ratio remains relatively unchanged for lower harmonic
modes but monotonically increases for higher harmonic modes. Then, the ratios all fall sharply as 𝜂s increases
from 0.1 to 0.55 for vs∕vA ∼ 1 (i.e., from model 5 to model 7). In contrast, the ratio of electric energy to mag-
netic energy (Figure 3e) varies in a broader range as a function of harmonic number (0.01 < |𝛿E|2∕|𝛿B|2 < 5).
The fluctuations become more electromagnetic (i.e., |𝛿E|2∕|𝛿B|2 ≪ 1) with decreasing harmonic number
and, for individual harmonic modes, tend to become more electrostatic (i.e., |𝛿E|2∕|𝛿B|2 ≳ 1) as the model
parameters vary from model 1 to model 7. Again, the sharp transition occurs beyond model 5.

4. Conclusions and Discussion

The regime transition of the ion Bernstein instability from being ion Bernstein-like to being fast
magnetosonic-like is studied using linear kinetic dispersion theory. The positive slopes of the proton velocity
distribution with respect to the perpendicular (to the background magnetic field) velocity (𝜕fp∕𝜕v⊥ > 0) are
modeled with an isotropic shell velocity distribution. Then the properties of unstable waves are obtained by
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Figure 4. Comparison of the fully kinetic dispersion relation (red solid and gray dashed curves) with the thermal
(green curves) and cold (blue curves) fast magnetosonic wave dispersion relations in magnetohydrodynamic theory.
(a)–(c) Models 5–7, respectively, at specific wave normal angles as labeled. Note that the fully kinetic and cold fast
magnetosonic wave dispersion relations are identical to Figure 2 (left column).

numerically solving the full kinetic dispersion relation for the complex frequency given the real wave number
and wave normal angle. While having the thermal spread of the proton shell distributions fixed, the shell con-
centration and the shell speed are varied, and pairs of those parameters resulting in the constant maximum
growth rate are sought. The results clearly demonstrate the regime transition of the instability as the shell
concentration varies. When the shell concentration becomes less than 10%, the dispersion relations of the
unstable waves, which are essentially ion Bernstein waves, approach the cold plasma dispersion relation for
fast magnetosonic waves. Although the shell velocity also changes the dispersion properties of the unstable
waves, its influence on the regime transition of the instability is minor.

The phase speed decrease of the unstable waves with increasing 𝜂s as demonstrated by Figure 2 clearly con-
tradicts the behavior of the fast magnetosonic mode in magnetohydrodynamic theory. To show this, we
solve the low-frequency dispersion relation (LFDR) derived from the linearized fluid equations for a thermal
proton-electron plasma [Swanson, 2003, p. 90]:(

1 − 𝜔2

k2v2
A

− 𝜔2|Ωe|Ωp
+

k2c2
s sin2 𝜓

𝜔2 − k2c2
s

)(
cos2 𝜓 − 𝜔2

k2v2
A

− 𝜔2|Ωe|Ωp

)
= 𝜔2 cos2 𝜓

Ω2
p

, (3)

where cs ≡
√
(𝛾eTe + 𝛾pTp)∕(me + mp) is the ion acoustic speed and 𝛾j is the ratio of specific heats for species

j. The fast magnetosonic mode corresponds to the solution with the largest phase speed. Since in the present
paper Te∕Tp ≪ 1 is assumed, c2

s ∕v2
A ≃ 𝛾p𝛽p. With 𝛾p = 5∕3, Figures 4a–4c display the fast magnetosonic

mode solutions of LFDR (green curves) for models 5–7, respectively. While it is difficult to precisely define 𝛽p

of the two-component proton model, here it is obtained simply from the effective temperature of the shell
3Ts∕mp = ∫ ∞

0 4𝜋v4fs(v)dv, and thus 𝛽p = 2((1 − 𝜂s)TM + 𝜂sTs)∕(mpv2
A). Accordingly, proton betas for the three

models are 𝛽p ≈ 0.13, 0.25, and 0.41, respectively. For comparison, the solutions of the cold plasma dispersion
relation (blue curves) and the full kinetic dispersion relation (gray dashed and red solid curves) from Figure 2
(left column) are also plotted. The apparent difference between the dispersion relation of the unstable waves
(red curves) and the thermal fast magnetosonic wave dispersion relation (green curves) further confirms that
these waves are essentially ion Bernstein waves. Only when the shell proton concentration becomes suffi-
ciently small (less than 10%), do the unstable waves approach the cold plasma dispersion relation for fast
magnetosonic waves and become fast magnetosonic-like.

Finally, recent studies suggest that fast magnetosonic waves (i.e., equatorial noise) in the inner magneto-
sphere can substantially affect dynamics of radiation belt electrons via resonant and nonresonant interactions
with the waves [Horne et al., 2007; Bortnik and Thorne, 2010; Shprits, 2009] and have since received growing
attention. Statistical studies [Meredith et al., 2008; Ma et al., 2013] show that these waves can occur in and/or
reach up to L ≈ 8 with substantial occurrence rates even though they are concentrated in L ≲ 6. Interestingly,
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average intensity of the waves occurring outside of the plasmapause is larger than those within the plasmas-
phere [Ma et al., 2013], indicating that the waves occurring in a plasma with a less dense cold background can
have more significant effect on the radiation belt electrons. Considering the sizable proportion of the events
outside of the plasmapause, our results as well as previous studies [Denton et al., 2010; Gary et al., 2010; Liu
et al., 2011] suggest that one should be more cautious in assuming the cold plasma dispersion relation for fast
magnetosonic waves throughout the inner magnetosphere.
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