
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1029/2019JA026586 

 

© 2019 American Geophysical Union. All rights reserved. 

Lu Quanming (Orcid ID: 0000-0003-3041-2682) 

Ke Yangguang (Orcid ID: 0000-0002-2446-9511) 

Wang Xueyi (Orcid ID: 0000-0001-5533-5981) 

Liu Kaijun (Orcid ID: 0000-0001-5882-1328) 

Gao Xinliang (Orcid ID: 0000-0003-0767-2267) 

Chen Lunjin (Orcid ID: 0000-0003-2489-3571) 

 

Two-dimensional general curvilinear particle-in-cell (gcPIC) 

simulation of rising-tone chorus waves in a dipole magnetic field 

Quanming Lu1,2*, Yangguang Ke1,2, Xueyi Wang3+, Kaijun Liu4, Xinlian Gao1,2, Lunjin 

Chen5, and Shui Wang1,2 

1CAS Key Laboratory of Geospace Environment, Department of Geophysics and 

Planetary Science, University of Science and Technology of China, Hefei 230026, China 

2CAS Center for Excellence in Comparative Planetology, China 

3Physics Department, Auburn University, Auburn, Alabama, USA 

4Department of Earth and Space Sciences, Southern University of Science and 

Technology, Shenzhen 518055, China 

5Department of Physics, University of Texas at Dallas, Richardson, Texas, USA 

 

 

Corresponding Author: *Quanming Lu, Email: qmlu@ustc.edu.cn 

                   +Xueyi Wang, Email: xywang@physics.auburn.edu 

  

mailto:qmlu@ustc.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2019JA026586&domain=pdf&date_stamp=2019-05-20


 

 

© 2019 American Geophysical Union. All rights reserved. 

Abstract 

Rising-tone chorus waves have already been successfully produced in a mirror magnetic 

field with the use of one- and two-dimensional particle-in-cell (PIC) simulations. However, in 

reality, the background magnetic field in the inner Earth’s magnetosphere is a dipole magnetic 

field, unlike symmetric mirror fields. In this paper, with the two-dimensional (2-D) general 

curvilinear PIC (gcPIC) code, we investigate the generation of rising-tone chorus waves in the 

dipole magnetic field configuration. The plasma consists of three components: immobile ions, 

cold background and hot electrons. In order to save computational resource, the topology of 

the magnetic field is roughly equal to that at 0.6 EL R  , although the plasma parameters 

corresponding to those at 6 EL R  (
ER  is the Earth’s radius) are used. Whistler mode waves 

are first excited around the magnetic equator by the hot electrons with a temperature anisotropy. 

The excited whistler mode waves propagate almost parallel and anti-parallel to the background 

magnetic field in their source region, which is limited at | | 3    (where   is the magnetic 

latitude). When the waves leave from the source region and propagate toward high latitudes, 

both their amplitude and wave normal angle become larger. However, the group velocity of the 

waves is directed toward high latitudes almost along the magnetic field. During such a process, 

the waves have a frequency chirping, as shown by a rising-tone in the frequency-time 

spectrogram. To our best knowledge, it is for the first time that rising-tone chorus are generated 

in a dipole magnetic field with a PIC simulation. 
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1. Introduction 

Whistler mode waves, which play a pivotal role in controlling electron dynamics in the 

radiation belt through pitch angle and energy scattering, are the most fascinating plasma waves 

in the Earth’s magnetosphere [Horne et al., 2003; Bortnik and Thorne, 2007; Summers et al., 

2007; Thorne, 2010]. Satellite observations have shown that these waves generally propagate 

along the magnetic field [Santolik et al., 2014; Taubenschuss et al., 2016] and have a frequency 

range from 0.1 to 0.8
cef  (where 

cef  is the equatorial electron gyrofrequency) [Burtis and 

Helliwell, 1969; Tsurutani and Smith, 1974, 1977; Meredith et al., 2001; Li et al., 2012]. They 

are not only the primary mechanism to produce relativistic electrons in the radiation belt [e.g. 

Summers et al., 1998; Meredith et al., 2001; Horne et al., 2005; Xiao et al., 2009; Thorne et al., 

2013], but also can lead to the enhancement of electron precipitation into the Earth’s 

atmosphere [e.g., Lorentzen et al., 2001; Thorne et al., 2005; Ni et al., 2008, 2014, 2016; Thorne 

et al., 2010; Lam et al., 2010].  

Whistler mode waves in the radiation belt are considered to be originated around the 

magnetic equator [LeDocq et al., 1998; Lauben et al., 2002; Santolik et al., 2005; Li et al., 2009] 

and excited by anisotropic electrons, which are injected from the magnetotail [Kennel and 

Petschek, 1966; Tsurutani and Smith, 1977]. When leaving from the equatorial region and 

propagating toward high latitudes, they usually exhibit rising or falling tones in the frequency-

time spectrogram, which are known as chorus waves [Pope, 1963; Cornilleau-Wehrlin et al., 

1978; Koons, 1981; Santolik et al., 2009; Li et al., 2012; Gao et al., 2014]. Nonlinear 

interactions between resonant electrons and a coherent whistler mode wave are believed to be 

the reason for the formation of the frequency chirping [Nunn, 1974; Nunn et al., 1997; Omura 

and Matsumoto, 1982; Omura and Summers, 2006; Gao et al., 2016]. Omura et al. [2008] found 

that the trapping of resonant electrons by whistler mode waves results in an electromagnetic 

electron hole in the wave phase space. A resonant current is then formed when the background 

magnetic field is inhomogeneous, and chorus waves with a rising frequency are at last 

generated.  
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Particle-in-cell (PIC) simulations provide a powerful tool to study nonlinear interactions 

between resonant electrons and whistler mode waves, and the consequential generation of 

chorus waves with a frequency chirping. By performing one-dimensional (1-D) PIC 

simulations in a mirror magnetic field, Hikishima and Omura [2012] revealed the formation of 

electromagnetic electron holes due to the nonlinear trapping of resonant electrons by whistler 

mode waves excited by anisotropic electrons, and then rising-tone chorus waves are generated. 

The results are consistent with the prediction by Omura et al. [2008]. The optimum condition 

to generate chorus waves are also given in the simulations, and the larger spatial inhomogeneity 

of the background mirror field is found to increase the amplitude threshold to generate chorus 

waves. These predictions from 1-D PIC simulations are later supported by satellite observations 

[Gao et al., 2014]. However, all these simulations, which exhibited the generation of rising-

tone chorus waves, are performed in a one-dimensional mirror field [Katoh and Omura, 2006; 

Tao, 2014]. Recently, Ke et al. [2017] studied the generation of chorus waves in a mirror 

magnetic field with a two-dimensional (2-D) PIC simulation. They found that the wave normal 

angle is smaller than 250, and it becomes larger when the waves propagate toward the higher 

latitude regions. However, in reality, the background magnetic field in the radiation belt is a 

dipole field, rather than a mirror field that is symmetric about the central field line. In this paper, 

with a two-dimensional general curvilinear PIC (gcPIC) code, for the first time we study the 

generation of rising-tone chorus waves in a dipole magnetic field.  

2. Simulation Model 

In this paper, a 2-D gcPIC simulation code is used to study the generation of rising-tone 

chorus waves in a dipole magnetic field. In the simulation, electrons consist of cold and hot 

electrons, while ions are assumed to be immobile since the ion cyclotron frequency is much 

less than the frequency of the excited whistler mode waves. The background cold electrons are 

treated as a fluid to reduce computational costs, while hot electrons are modelled as particles 

including the relativistic effect. The motions of cold electrons are controlled by the following 

fluid equations: 

 c
c c

n
n

t


  


V ,                                            (1) 
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where 
cn  , 

cV   and 
cJ   are the number density, bulk velocity and current density of cold 

electrons. 
eq  is the electron charge, B  and E  are the magnetic and electric fields.  

The motions of hot electrons are governed by the Lorentz force: 

 
 h e

h

e

d q

dt m


  

v
E v B ,                                     (4) 

where 
hv   is the particle velocity of hot electrons and 

em   is the electron mass.  

 
2

1 1 h c   v  is the Lorentz factor (here c  is the light speed in vacuum).  

The total current density can be calculated by 

c e h hq n J J V ,                                              (5) 

where 
hn  and 

hV  are the number density and the bulk velocity of hot electrons, which can 

be calculated after we know the velocity and location of each individual hot electron. 

The magnetic and electric fields are updated by solving Maxwell equations 
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where   is the charge density. 
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The 2-D dipole field is used as the background magnetic field 
0B   in our simulation 

system. A modified 2-D dipole coordinate system  ,p q  is used in our simulation, which is 

based on the standard 2-D dipole coordinates  ,     For the standard dipole coordinate 

system, 

2

cos

r


   ,                                               (10) 

2sin 1

r L


   ,                                             (11) 

where r  is the distance to the Earth’s center,   is the colatitude, and L  is the distance of 

the field line of interest to the Earth’s center at the magnetic equator. The modified two-

dimensional dipole coordinate system is defined as, 

1
p L


  ,                                                 (12) 
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,           (13) 

where a  and b  are two constants, which are assumed to be 2

012a L (where 
0L  is the 

middle L  value in the simulation domain) and 2

01b L , respectively. It should be noted that 

the modified two-dimensional dipole coordinate system used in the paper is an orthogonal one. 

Initially, the cold electrons are distributed uniformly in the simulation domain. The 

velocity distribution of hot electrons is assumed to be bi-Maxwellian distribution with the 

perpendicular temperature larger than the parallel one. The hot electrons are initialized with a 

uniform parallel (perpendicular) temperature 
||eqT   ( eqT  ) and number density heqn   at the 

magnetic equator ( 0q  ). Then, according to parallel force balance [Chan et al., 1994], the hot 

electron pressure can be given by 

||

||

heq eqn T
p


 , and

2

heq eqn T
p





  ,                                 (14) 
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where   || 0 01+ 1 1eq eq eqT T B B    , 
0B  is the strength of the background magnetic field, 

and 0eqB   is its value at the equator. Based on conservation of energy and the magnetic 

moment, the number density of hot electrons is derived to be 

h heqn n  ,                                               (15) 

Therefore, the parallel and perpendicular temperatures of hot electrons off the equator are 

|| ||eqT T , and eqT T   ,                                    (16) 

At last, the distribution function of hot electrons can be described as 

 
 

2 2
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2 22

h h
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w ww w  






 
    

 

,             (17) 

where 
||eqw  and eqw  are the parallel and perpendicular thermal velocities of hot electrons at 

the equator, respectively.  

The parameters used in the simulation are the follows: the ratio of the number density of 

hot electrons to that of cold electrons at the equator is 
0 0.01heq cn n  , the ratio of cold electron 

plasma frequency to electron gyrofrequency is 
0 5pe e     (where 2

0 0pe c en e m    is 

the cold electron plasma frequency, and 0 0 ,e eq m eeB m    is the electron gyrofrequency 

defined on the background magnetic field at the outer boundary of the equator 0 ,meqB ), the 

temperature anisotropy of hot electrons at the equator is || 6eq eqT T  , and the parallel plasma 

beta at the outer boundary of the equator is  2

||eq,m || 0 , 02 0.01heq eq eq mn T B    . The 

simulation domain is a rectangle in  ,p q  space, which is divided into 64 4000p qn n    

uniform grids. The mapping of the simulation domain between (a) the modified dipole 

coordinates  ,p q  and (b) the Cartesian coordinates  ,x z  is shown in Figure 1. The vertical 

lines p  constant in Figure 1a correspond to the dipole field lines in Figure 1b. In the inner 

boundary 
01500 ep  (where 0 || 0/e eq ew   ), and the value of p  in the outer boundary is 
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1700
0e . According to the typical electron number density, electron temperature, and strength 

of magnetic field at 6 EL R  (
ER  is the Earth’s radius), we can estimate that the topology of 

the magnetic field in the simulation is roughly equal to that at 0.6 EL R . In this way, we can 

reduce the computation costs. In the simulation, we choose the range of q  as -0.4 0.4q   

in the modified dipole coordinate, corresponding to a latitude range of 
0 034 34   . The 

grid spacing along the field lines has the maximum value 0.68
0e , and the minimum value 0.26

0e . Across the field lines, the grid spacing has the maximum value 3.13
0e  at the equator, 

and the minimum value 1.28
0e  at the highest latitude. The time step is 

0e t  = 0.02. On 

average, there are 1000 superparticles per cell, and totally
82.56 10  particles are used in the 

simulation.  

There are two types of boundary conditions in our simulation. Absorbing boundary 

conditions are used for waves and reflecting boundary conditions are employed for particles. 

For the reflecting boundary conditions, the particles are reflected in a way described in Hu and 

Denton [2009].  

3. Simulation Results 

Figure 2 shows the initial distribution of number density and temperature anisotropy of 

hot electrons. Both the temperature anisotropy and density reach their maximum values at the 

equator, which gradually decrease toward the polar region. In general, such temperature 

anisotropy can excite whistler mode waves. Figure 3 shows the perpendicular magnetic 

fluctuations 
1B
 (the component perpendicular to the simulation plane) at 

0e t = (a) 400, (b) 

600, (c) 800, and (d) 1000, respectively. The magnetic fluctuations 
1B
 begin to appear around 

0e t  =400, which is concentrated around the magnetic equator. Then, these fluctuations 

propagate toward higher latitudes, and their amplitude firstly increases and then saturates after 

they reach a sufficiently high magnetic latitude. This can be identified more clearly if we follow 
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the same wave pack in Figure 3(b), (c) and (d) (circled by the while solid lines in the figure). 

We can also find that this wave packet moves almost along the same magnetic field line (the 

black line denoted by “J”), although the oblique wave normal with respect to the field line can 

be seen at high latitudes in Figure 3c and 3d (also see movies s1 and s2). The characteristics of 

the magnetic fluctuations will be described in detail later. 

In order to verify that the excited magnetic fluctuations belong to whistler mode waves, 

we calculate the power spectra of the magnetic fluctuation 
1B
 in the ( , ||k ) space by spatial 

and temporal Fourier transformation of the magnetic fluctuation 
1B
 along the magnetic field 

line 
01600 eL    with 1 1      , and the time period is 

0300 555e t    . During this 

time period, the magnetic fluctuations just begin to appear around the magnetic equator. We 

expect the linear theory should work near the equatorial region because the wave amplitude is 

small and inhomogeneity is small, as demonstrated below. The power spectra in the ( , ||k ) 

space obtained from the simulation are shown in Figure 4, and the dispersion relation of 

whistler mode waves based on the linear theory, which is calculated with the WHAMP software 

package [Ronnmark, 1982], is also plotted in the figure for comparison. When we calculate the 

dispersion relation based on the linear theory, we use the plasma parameters at the 

corresponding magnetic equator, and assume that the plasma is uniform. The calculated power 

spectra of the magnetic fluctuations from the simulation lie on the dispersion relation of the 

whistler mode waves, which confirms that the magnetic fluctuations in the simulation belong 

to whistler mode waves excited by the anisotropic hot electrons. Also, we compare the 

maximum growth rate from the simulation with that from the linear theory. In the simulation, 

the maximum growth rate is about -2

01.4 10 e    at  
0 0( , ) (0.4 ,0.68 )e ek    , while the 

linear theory predicts that the maximum growth rate is -2

01.3 10 e    at  

0 0( , ) (0.44 ,0.76 )e ek    . With the excitation of whistler mode waves, we observed the 

typical relaxation of the electron temperature anisotropy around the equator (not shown).  

Figure 5 exhibits (a) the frequency-time spectrogram of the magnetic power spectra 

density (PSD), (b) the wave normal angle  , and (c) the parallel component of Poynting vector 



 

 

© 2019 American Geophysical Union. All rights reserved. 

|| /S S  of the excited whistler mode waves at five different locations  = 0 , 5 , 10 , 15 , 

and 30  along the same magnetic field line denoted by “I” in Figure 3a. The wave normal 

angle is estimated by the singular value decomposition (SVD) method based on magnetic field 

waveforms [Santolik et al., 2003]. Around the magnetic equator (Figure 5f and 5g), the excited 

whistler mode waves propagate quasi-parallel to the background magnetic field, and the wave 

normal angles of most whistler modes are smaller than 20 . The corresponding parallel 

component of Poynting vector 
|| /S S  can vary from -1.0 to 1.0 at the equator (Figure 5k), 

which means that the waves propagate both parallel and anti-parallel to the background 

magnetic field. The wave normal angles become larger and larger when they propagate away 

from the equator (Figure 5h, 5i, and 5j). The wave normal angles can attain about 50  at 

=30   (Figure 5j). For the magnetic latitude   larger than about 3 , the parallel components 

of Poynting vector 
|| /S S  become close to 1.0 (Figure 5i-5o), meaning the wave energy 

propagates toward the polar region almost along the background magnetic field. This is 

consistent with the evolution of the wave pack identified in Figure 3. From the frequency-time 

spectrogram of the PSD, we can find that the whistler mode waves have a frequency chirping 

(increasing frequency with the time) when the magnetic latitude   is larger than about 3  

(Figure 5b-5d). Such frequency chirping is one of the key characteristics of rising-tone chorus 

waves, which have been widely observed by satellites in the magnetosphere [eg. Santolik et al., 

2009; Li et al., 2012; Gao et al., 2014], and have been also produced by one- or two-

dimensional PIC simulations in a mirror magnetic field [Hikishima and Omura, 2012; Tao, 

2014; Ke et al., 2017]. Nonetheless, from the simulation, we also find that there is no clear 

frequency chirping for the magnetic latitude   larger than 25  (Figure 5e). 

The characteristics of rising-tone chorus waves are further examined in Figure 6 and 7. 

Figure 6 shows the average values of (a) the intensity of the fluctuating magnetic field 

2 2

0 ,/w eq mB B , (b) the wave normal angle  , and (c) the parallel component of Poynting vector 

|| /S S  as a function of latitudes along the magnetic field lines denoted by “H”, “I”, “J”, and 

“K” in Figure 3a. Here, 
2 2 2 2

|| 1 2wB B B B      , where ||B   and 
2B

  are the parallel and 
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another perpendicular component of magnetic fluctuations. These average values are calculated 

over the time period 
00 3000e t    . Besides,   and 

|| /S S  are average values 

weighted by PSD ( , t ). When the whistler mode waves propagate away from the equator, 

their intensity firstly enhances and then decays, reaching a maximum value around 10    

(Figure 6a). But their wave normal angles increase with the growth of the latitude (Figure 6b). 

Also, the average parallel component of Poynting vector 
|| /S S  is small at the equator due 

to both parallel and anti-parallel whistler mode waves (Figure 5k), but increases rapidly around 

3   . Then it increases gradually and reaches a saturation value close to 1.0 (Figure 6c). 

Therefore, in the region with 3   , the group velocity of the waves is directed toward the 

polar region almost along the background magnetic field. 

In Figure 7a-d, we plot the frequency-time spectrogram of the magnetic power spectra 

density (PSD) at 
06    along the magnetic field lines at p 

01540 e , 
01562 e , 

01612 e  

and 
01646 e , respectively. The frequency chirping with a rising-tone can be clearly identified. 

In the figure, we use the dotted line to fit the chorus elements with clear rising-tone signature 

by the linear least square method, and the slope of the dotted line is evaluated as the chirping 

rate  . The chirping rate   tends to increase with p . In Figure 7e, we show the calculated 

frequency chirping rate    (black dots) at 
06    along the magnetic field lines at p 

01540 e , 
01562 e , 

01612 e  and 
01646 e , respectively. The chirping rates increase from 

about 4 2

06.0 10 e

   at p =
01540 e  to about 4 2

08.0 10 e

   at p =
01646 e . In Figure 7f, we 

show the averaged wave amplitude 0 ,/ eq mB B  over 
0 0 1500e t    at equator as a 

function of distances from the Earth’s center. The wave amplitude increases with the distance. 

According to Eq. (50) of Omura et al. [2008], we can also calculate the theoretical prediction 

of the chirping rate based on the wave amplitude (black dots in Figure 7f), which is plotted in 

Figure 7e. The theoretical prediction is consistent with the simulation results. 

4. Conclusions and Discussion 
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In this paper, with a two-dimensional gcPIC simulation code, we investigate the 

generation of rising-tone chorus waves in a dipole magnetic field. The results show that 

whistler mode waves are firstly excited by an anisotropic electron distribution around the 

magnetic equator, with coexisting parallel and anti-parallel propagation along the background 

magnetic field. After they leave away from the source region, the waves can only propagate 

toward the polar region when the magnetic latitude   is larger than about 3 . Their 

amplitude and wave normal angle become larger during the poleward propagation, and the 

intensity saturates around 
010  . However, although the phase velocity of the waves is 

oblique to the background magnetic field, the group velocity is almost along the background 

magnetic field. Furthermore, the waves have a frequency chirping with a rising-tone over a 

limited latitude range. The chirping appears when the magnetic latitude   is larger than about 

3 , while the chirping starts to disappear when the magnetic latitude   is around 25 . 

Rising-tone chorus waves have been studied by 1-D and 2-D PIC simulations in a mirror 

magnetic field. However, in reality, the earth’s inner magnetosphere has a dipole magnetic field. 

Wu et al. [2015] has also performed 2-D hybrid simulations to study the generation of whistler 

mode waves in a dipole magnetic field, but these waves have no obvious frequency chirping. 

To our best knowledge, our simulation for the first time reproduces rising-tone chorus waves 

in a 2-D dipole magnetic field. The whistler mode waves are first excited by an anisotropic 

electron distribution around the magnetic equator ( 0| | 3  ,). Such latitudinal range is 

consistent with previous satellite observations [Santolik et al., 2004; Teng et al., 2018]. After 

the whistler mode waves leave the source region and obtain a sufficiently large amplitude, they 

begin to have a frequency chirping and evolve into rising-tone chorus waves. Rising-tone 

chorus waves have been thoroughly studied by THEMIS and Van Allen Probes [eg. Li et al., 

2009, 2011, 2012, 2016; Gao et al., 2014; Li et al. 2017]. Our simulation also find that the 

frequency chirping will disappear when the waves reach high latitude region. This is consistent 

with satellite observations [Tsurutani and Smith, 1977], which show statistically that chorus 

waves only exist in the lower latitude region of the magnetotail.  We also notice that several 

conjugate ground-spacecraft observations of rising-tone chorus waves indicated that chorus 
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waves can propagate to the high latitude region [Manninen et al., 2012; Demekhov et al., 2017]. 

These chorus events can be accounted for by propagation due to a density duct. As described 

by Demekhov et al. [2017], when chorus waves were observed by satellite, the satellite was 

passing a duct with a density enhancement with a transverse scale about 600 km, and the chorus 

waves propagate almost parallel to the background magnetic field in the duct to the ground. 

Because of the parallel propagation, wave damping is also reduced, which makes high latitude 

chorus possible. Because the present satellites, like THEMIS and Van Allen Probe, only cross 

the low latitude region of the inner magnetosphere, this prediction needs to be verified using 

the plasma wave data obtained from Arase satellite with a higher inclination than that of 

THEMIS and Van Allen Probe in the future. 

Our simulation describes how rising-tone chorus waves propagate toward the polar region: 

the group velocity or the Poynting vector is almost directed toward the polar region along the 

background magnetic field, although the wave normal angles tend to increase during their 

poleward propagation. Both satellite observations and ray-tracing calculations have found that 

the wave normal angles of chorus waves become larger in the higher latitude region [Bortnik 

et al., 2011; Breuillard et al., 2012; Chen et al., 2012, 2013; Artemyev et al., 2016; Agapitov 

et al., 2018]. Based on 6 years of THEMIS observations, Taubenschuss et al. [2016] found that 

Poynting vectors of whistler mode waves are almost parallel to the background magnetic field. 

Our simulation also shows that as latitude increases, the intensity of chorus waves firstly 

enhances and then decays, with a peak value reached around 
010  . This is consistent with 

the synthetic observation study of chorus waves based on combined Van Allen Probes and 

Cluster data by Agapitov et al. [2018]. In their study, chorus wave intensity has a peak between 

05   and 150 during periods of quiet or moderate activity at 4 6 EL R   on the dawnside 

and decreases by a factor of ~5-10 at 
030  . The attenuation of chorus waves in the high 

latitude is considered to be caused by Landau damping due to increasing wave normal angle 

[Chen et al., 2013]. Although our simulation provides consistent results on the propagation of 

chorus waves in the inner magnetosphere, extra caution should be excised when interpreting 

magnetic latitude in the simulation and making quantitative comparison with that in the actual 
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magnetospheric region of chorus generation, because the topology of the magnetic field 

roughly around 0.6 EL R  is used in the simulation in order to reduce computational cost. 
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Figure 1. Mapping of the simulation domain between (a) the modified dipole coordinates 

 ,p q  and (b) the Cartesian coordinates  ,x z . The vertical lines p   constant in Figure 

1a correspond to the dipole field lines in Figure 1b. The latitude   is 34  for the middle field 

line in the simulation domain. The background magnetic field at the outer boundary of the 

equator is 0 ,meqB . 
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Figure 2. (a) Initial distribution of the hot electron number density /h heqn n  and (b) the 

anisotropy of hot electrons ||/T T  in the simulation domain. 
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Figure 3. Spatial profiles of the perpendicular magnetic fluctuations 1 0 ,/ eq mB B  at 0e t = 

(a)400, (b)600, (c)800 and (d)1000, respectively. These different-coloured curve lines 

represent different magnetic field lines denoted by “H”, “I”, “J” and “K”. And four locations 

(marked by e-h) at  = 5, 10, 15 and 20  along the field line “I” are denoted by symbols “*”. 

The same wave packets at 0e t = 600, 800 and 1000 are circled by the white solid lines. 
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Figure 4. The power spectra of magnetic fluctuations  1 || 0 ,, / eq mB k B  by  Fourier 

analysis of 1B  in the region ( 01600 eL  , 1 1     ) during the time period 

0300 555e t   . The dotted line denotes the 
||k   dispersion relation of whistler mode 

waves under the plasma condition at 01600 eL   and 0  , which is calculated with the 

WHAMP software package. 

  



 

 

© 2019 American Geophysical Union. All rights reserved. 

 

Figure 5. Frequency-time spectrogram of (left) the power spectral density (PSD) of 

magnetic fluctuations, (middle) wave normal angle   and (right) parallel component of 

Poynting vector 
|| /S S  of the excited whistler mode waves at five different locations  = 00, 

50, 100, 150 and 30  along the same field line denoted by “I” in Figure 3a.  
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Figure 6. The average values of (a) the intensity of the fluctuating magnetic field 

2 2

0 ,/w eq mB B (here 2 2 2 2

1 2wB B B B     ), (b) wave normal angle  , and (c) parallel 

component of Poynting vector 
|| /S S  of whistler mode waves versus the latitude   along 

the magnetic field lines denoted by “H”, “I”, “J” and “K” in Figure 3a. Besides,   and 

|| /S S  are average values weighted by PSD ( , t ). Here, the average values are calculated 

over the time period 
0 0 3000e t   . 
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Figure 7. (a-d) Frequency-time spectrogram of the magnetic power spectra density (PSD) at 

6     along field lines p = 1540 0e , 1562 0e , 1612 0e  and 1646 0e , respectively. The 

clear chorus element is fitted by the dotted line by using the linear least square method, and the 

frequency chirping rate   is obtained from the slope of the dotted line. (e) Distribution of the 

chirping rates   over different field lines. The black dots represent the chirping rates 

calculated from our simulation (Figure a-d). The blue dots are theoretical predictions of the 

chirping rates based on Eq. (50) of Omura et al. [2008]. When we use this equation, ( ,k  ) are 

the values when wave mode at equator obtains the maximum growth rate based on the linear 

theory, and the amplitude of whistler mode waves is the averaged amplitude in Figure7f 

(denoted by black dots). (f) The averaged amplitude 0 ,/ eq mB B  of the whistler mode waves 

integrated over 
00.1 e     to 

00.5 e   over 
0 0 1500e t    at equator as a function of 

distances from the Earth’s center. 


