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DEOLOCLETTIRS
Ecology Letters, (2017) doi: 10.1111/ele.12877
E m b ryo S cee Recurrent sublethal warming reduces embryonic survival,

inhibits juvenile growth, and alters species distribution
projections under climate change

* Are particularly sensitive

Abstract

- Michael A. Carlo,"* (5 The capacity to tolerate climate change often varies across ontogeny in organisms with complex
to e nVI ro n m e nta I Eric A. Riddell," () life cycles. Recently developed species distribution models incorporate traits across life stages;
ofir Lew? ([%) and however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine
Michael W. Sears' (%5 impacts of recurrent sublethal warming on development and survival in ecological projections of
. , climate change. We reared lizard embryos in the laboratory under temperature cycles that simu-
d I St u r b a n C e Department of Blological Sciences lated contemporary conditions and warming scenarios. We also artificially warmed natural nests
Clemson University Clemsan, SC to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic
29634, UsA survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribu-

*school of Life Sciences Arizona

e e tion model reduced annual survival by up to 24% compared to models that did not incorporate
L population growth
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Experimental Design — Mag, Freq, Age
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Embryo Survival

e Survival ~ Mag + Freq + Age



Embryo Survival

e Survival ¥ Mag + Freq + Age + Interactions
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e Survival ¥ Mag + Freq + Age + Interactions

independent ___

Magnitude 5.79 0.02
Frequency 1 0.001 0.99
Age 1 0.44 0.51



Embryo Survival

e Survival ¥ Mag + Freq + Age + Interactions

independent |DF P

Magnitude 1 5.79 0.02
Frequency 1 0.001 0.99
Age 1 0.44 0.51
Mag:Freq 1 0.05 0.82
Mag:Age 1 0.23 0.66
Freq:Age 1 1.35 0.24
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Embryo Survival

e Survival ~ Frequency + Age



Embryo Survival

* Survival ~ Frequency + Age + Frequency:Age
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* Survival ~ Frequency + Age + Frequency:Age

independent __

Frequency 0.46
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independent ___
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Age 1 0.41 0.52



Embryo Survival

* Survival ~ Frequency + Age + Frequency:Age

independent ___

Frequency 0.46 0.50
Age 1 0.41 0.52
Frequency:Age 1 5.14 0.023
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* Frequency (how often?)
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* Lowers survival
* Increased frequency closes
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Thermal Extremes

* Older embryos less robust
(oxygen demand)

* Age likely interacts with
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