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Abstract

The calculation of equilibrium conditions is a common task in
the study and modeling of magnetic-confinement experiments for con-
trolled nuclear fusion, in which a high-temperature plasma is confined
in a finite region of space by magnetic fields. Given the plasma shape,
for toroidal devices with axial symmetry, such as tokamaks, the equilib-
rium calculation reduces to the solution of an elliptic PDE. In several
circumstances, the plasma shape may not be known a priori, or one
may desire to also compute the magnetic fields in the volume surround-
ing the plasma through the calculation of a free-boundary equilibrium.
This requires either the coil currents or the magnetic poloidal flux on a
curve in the vacuum region to be known ab initio. It is well known how
to calculate both, but surprisingly until the introduction of the FREE-
FIX code no general tools were available in the fusion community for
this task. FREE-FIX is a general tool for calculating coil currents to
be used as the input for a free-boundary equilibrium. A new formula-
tion is presented, which considerably reduces the computational cost
of the calculation. FREE-FIX performs well for different geometries
and experiments. Some possible future applications are also suggested.

1 Introduction and Problem Definition

Equilibrium calculation is commonly the first task that needs to be per-
formed in the analysis of nuclear fusion experiments in the magnetic con-
finement field of research. Equilibrium calculations can be and are used,
both in experiment analysis and in the design phase, as a necessary input
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for evaluating properties such as transport and stability against macroscopic
and microscopic modes. In this context, the simplest physical model for the
analysis of equilibrium is the ideal magnetohydrodynamic (MHD) model.
In general, the properties of a magnetic confinement experiment will be in
MHD equilibrium during most of any discharge, highlighting the importance
of equilibrium calculations.

Tokamaks are the most advanced line of experiments for reaching con-
trolled nuclear fusion. One of the defining characteristic of the tokamak con-
cept is (with very good approximation) the symmetry of its geometry with
respect to the axis located at the geometrical center of the donut-shaped
device. Under the assumption of symmetry, the equilibrium problem can be
reduced to a two-dimensional elliptic PDE for the magnetic poloidal flux,
which can assume different forms depending on the details of the equilibrium
model. Small hyperbolic regions may be present in the plasma in special
circumstances, [1,2] which will not be discussed in this work. In many toka-
mak equilibrium calculations the plasma shape and the value of the mag-
netic poloidal flux (the main unknown of the problem) at the plasma edge
are assigned from input and one solves the equilibrium problem only in the
plasma region. We will indicate this type of calculation as “fixed-boundary”
equilibrium calculations.

Given a “fixed-boundary” equilibrium, one may be interested in deter-
mining a posteriori the magnetic fields in the vacuum region surrounding
the plasma. In principle, this could be accomplished by somehow extrapo-
lating the vacuum fields from the fixed-boundary equilibrium. We will not
consider this approach (numerically ill posed) in the present work. As an
alternative, one could solve the equilibrium problem again, but this time
in a region involving both the plasma and the vacuum surrounding it. In
this case, the plasma shape will need to be determined self-consistently as
part of the solution of the equilibrium problem. We will denote this type of
calculation as “free-boundary” equilibrium calculation in the remainder of
this work.

A different strategy, namely using the virtual casing principle [3,4], could
also be used to determine the vacuum field. The reason why this strategy
was not pursued in this work is that a virtual casing calculation requires the
accurate knowledge of the poloidal magnetic field on the plasma boundary.
Due to the Cartesian grid implementation of FLOW, [5, 6] (the code used
for equilibrium calculations in this work) no grid points are situated on the
plasma boundary and edge fields can be computed only with a lower accu-
racy than the fields inside the plasma. In a sense, the approach followed in
this work is the most universal approach, as it only requires knowledge of the
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magnetic fields and current density inside the plasma, i.e. of quantities that
any equilibrium code, regardless of the formulation and implementation, will
certainly be able to provide.

It is noted that the “fixed-boundary” and “free-boundary” names for
the equilibrium calculations described in this work are commonly used in
the fusion community. The names come from the fact that the boundary
between the plasma and vacuum regions is assigned (“fixed”) from input in
the first case and determined as part of the problem solution in the second.

It is implied in the definition of the problem that the plasma shape
obtained from the free-boundary equilibrium should match the shape defined
in the fixed-boundary equilibrium. It is also assumed that any interested
user will have access to an equilibrium code capable of solving the free-
boundary equilibrium problem.

The input required by a free-boundary solver will depend on the solver,
but can in general be reduced to two options: first, the value of the coil
currents for each coil surrounding the plasma, or second, the value of the
magnetic poloidal flux on a closed curve in the vacuum region. The FREE-
FIX code, described in this work, is written to solve the problem described
above, that is, calculate coil currents and vacuum magnetic flux on an as-
signed curve given a fixed-boundary equilibrium. The FREE-FIX code was
first introduced in a more compact for in Ref. [7]. Users can then use their
free-boundary equilibrium codes to calculate the free-boundary equilibrium.

A few points are worth mentioning before proceeding with the details of
the code implementation and results.

First, as posed above this is a standard problem that has been formally
solved in the past. However, no general tool exists in the fusion commu-
nity to obtain a numerical solution for the problem. That means that any
scientist needing a tool such as FREE-FIX needs to implement a solution,
uselessly multiplying research efforts. We hope that FREE-FIX will become
a universal useful tool for the calculation of coil currents and thus for equilib-
rium calculations. As detailed later, FREE-FIX also contains an innovative
solution approach that has not been considered before. As such, it is more
than a tool implementing a known solution to a problem of general interest
(which we believe to be of value on itself).

Second, FREE-FIX can be used in conjunction with any axisymmet-
ric equilibrium code, regardless of the model used to describe the plasma.
That is due to the fact that the equations governing the magnetic field
in the vacuum, which, as discussed later, are used in FREE-FIX are the
same regardless of the plasma model. Indeed, the development of FREE-
FIX was undertaken to provide the input for the equilibrium solver in the
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code HYM [8, 9], which includes energetic particles. Moreover, the equi-
librium code FLOW [5, 6], which includes macroscopic plasma rotation in
the magnetohydrodynamic (MHD) and kinetic models, was used for testing
during the code development.

Third, we believe that FREE-FIX may be of value to the community for
two additional application.

First, FREE-FIX could benefit real-time equilibrium reconstructions and
plasma shape and position control [10]. Typical control schemes assume that
the plasma evolves through a series of MHD equilibria [11]. Both position
and shape are determined by the coil currents, which are adjusted in real
time with feedback controls. Since the calculation speed is crucial for this
application, a faster processing of the current corrections given an input in
position or shape error, which can be obtained with FREE-FIX innovative
approach, will allow for better real-time control.

A second envisioned application has the coil shape and positions as un-
knowns. In the design of experiments, one needs to determine the positions
and currents of coils given, once again, a desired range of plasma shapes
and positions. This requires an optimization calculation, given constraints
such as the number of coils and their maximum currents. A fast tool for
calculating the necessary currents given a plasma shape and a guess for the
coil geometry could benefit this type of calculation. It is acknowledged that
the speed of calculation for design is not as important as for real-time con-
trol; however, a tool for accelerating any numerical calculation can only be
beneficial. Some modifications (e.g., modeling coils as finite-size conductors,
possibly with non-uniform current distributions, rather than wires, adding
probes and hardware of arbitrary shape to the model) would be required in
FREE-FIX, which would need to be used as a module for a larger optimiza-
tion code.

We will now proceed to define the numerical problem in detail (Section
2); in Section 3 the solution method, including details on FREE-FIX’s inno-
vative approach is presented; in Section 4 some sample and test calculations
are described; a discussion including possible applications and future work
is presented in Section 5 and conclusions are given in Section 6.

2 Problem Definition

The present work only considers axisymmetric geometries, i.e., geometries
symmetric with respect to rotation around the axis of a cylindrical (R,ϕ,Z)
system of coordinates. In this system of coordinates, it is customary to
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define the magnetic field as

B = Bp +Bϕêϕ, (1)

where the toroidal field Bϕ is in the direction of symmetry and the poloidal
field Bp is the remaining part of the magnetic field. Using the symmetry
assumption,

∂

∂ϕ
= 0 (2)

and the ∇ · B = 0 condition, the poloidal component of the magnetic field
Bp is written as

Bp = ∇ψ ×∇ϕ, (3)

where the poloidal magnetic flux ψ is related to the toroidal component
of the vector potential A by ψ = RAϕ. It is important to stress at this
point that Eq. (3) only requires the assumption of symmetry, but no other
assumption or specific form of the momentum equation governing force-
balance.

To fix ideas, the simplest equilibrium model for tokamak plasmas, which
is governed by the Grad-Shafranov (GS) equation, [12,13] is briefly discussed.
If one assumes that the axisymmetric plasma is described by static ideal
MHD equations, the momentum equation is written as

∇p = J ×B, (4)

where p is the plasma pressure and J = (∇ × B)/µ0 the electric current
density. A short manipulation gives the GS equation:

∆∗ψ ≡ R ∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −µ0R

2 dp

dψ
− F dF

dψ
= −RJϕ, (5)

where F (ψ) = RBϕ and the pressure p(ψ) are functions of the poloidal mag-
netic flux ψ that need to be assigned from input. Notice that the left hand
side of Eq. (5) is the toroidal component of the current density as obtained
from Maxwell’s equations and will be the same regardless of the equilibrium
model and that the poloidal magnetic field is completely determined once
the poloidal flux ψ is known. On the other hand, the right hand side of
Eq. (5) will depend on the equilibrium model (including e.g. macroscopic
rotation, multi-fluid or multi-species effects, gravity) and may assume many
different forms. It will be assumed in the remainder of this work that, re-
gardless of the equilibrium model, in the vacuum region the poloidal flux is
obtained from

∆∗ψ = 0, (6)

5



i.e. that no toroidal current flows in the vacuum region.
In order to calculate ψ in a free-boundary equilibrium calculation, one

needs to assign (1) the input necessary to calculate the right hand side of
Eq. (5) inside the plasma and (2) either the currents in the coils around
the plasma or the value of ψ, which is determined from Maxwell’s equations
once the currents in the coils are known, on a closed curve surrounding the
plasma (the computational boundary). The calculation of the coil currents
and vacuum ψ on the computational boundary is the purpose of FREE-
FIX. The methods implemented for this calculation are described in the
next section.

3 Solution Method, Old and New

The calculation of coil currents and vacuum ψ on the computational bound-
ary is based on the Green’s function method. The problem has in fact a
well-known solution, which is discussed in detail e.g. in Ref. [14][p111]. The
starting point of the method is to determine the Green’s function of the ∆∗

operator introduced in Eq. (5). The expression of the Green’s function is
found in the literature [14]:

G(R,Z;R′, Z ′) =
1

2π

√
RR′

k

[(
2− k2

)
K(k)− 2E(k)

]
, (7)

where E(k) and K(k) are complete elliptic integrals [15] and

k2 ≡ 4RR′

(R+R′)2 + (Z − Z ′)2
. (8)

In this work, Green’s functions are calculated using the Numerical Recipes
[16] routines rf, elle and ellf. Then, if the position of the coils, the coil
currents Ii and the plasma shape and current density are known, ψ can be
expressed at any point in the vacuum as

ψ(R′, Z ′) =

∫
P
G(R,Z;R′, Z ′)Jϕ(R,Z)dRdZ +

Nc∑
i=1

G(Rc
i , Z

c
i ;R′, Z ′)Ii, (9)

where the integral is taken over the plasma region, the sub- or super-script
“c” indicates the Nc coils, which have been represented as wires of infinites-
imal cross section for simplicity.

In order to calculate the coil currents, Eq. (9) is applied to points on
the (prescribed) plasma boundary, under the reasonable assumption that
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no singular currents are present on the plasma boundary. The integral in
Eq. (9) is evaluated with a simple mid-point integration, which proved to be
sufficient for our purposes. Since the plasma boundary is defined by a curve
Γ over which ψ = const. (assumed to be ψ = 0 in this work as is standard
practice in equilibrium calculations), Eq. (9) evaluated in any (R′, Z ′) point
on the plasma boundary becomes a linear equation in the Nc unknowns
corresponding to the coil currents.

Intuitively, one may try to calculate the Nc unknowns by evaluating
Eq. (9) on Nc distinct point on the plasma boundary Γ. We will call this
the “direct method”. This method is implemented in FREE-FIX using the
Numerical Recipes [16] routines ludcmp and lubksb and is included mainly
for reference, as it invariably fails to return appropriate values for the coil
currents. Indeed, free-boundary equilibria calculated using the coil currents
obtained with the direct method produce plasma shapes very different from
the prescribed one.

The known successful method uses a minimization approach, evaluating
Eq. (9) in a number of points on the plasma boundary Nfit � Nc and find-
ing the Nc currents that minimize the difference between the calculated and
prescribed values of ψ on the Nfit points. Both a least square fit (LSF) and
a singular value decomposition (SVD) method were implemented in FREE-
FIX. The Numerical Recipes [16] routines lfit, gaussj and svdfit, svdcmp,
svbksb were used for the LSF and SVD solution respectively. Direct calcu-
lation shows that there is no noticeable difference between the LSF and the
SVD solution. If enough points are used for the minimization both methods
succeed in providing the input, i.e. the set of coil currents, needed to repro-
duce the desired plasma shape. In the cases tested in this work, which have
a number of coils Nc ∼ 10− 15, a few tens to ∼ 100 points were needed for
satisfactory results.

Even though the method does in general return satisfactory results, not
every desired plasma shape can be reproduced with the same set of coils and
the method may still fail if the desired shape is experimentally unfeasable.

The work described so far amounts to creating a universal tool for the
community, which solves a known problem with known techniques. The
innovative part of this work is in the new method, which allows the solution
of the numerical problem considered in this work with a reduced amount of
computational cost.

We start by observing that the methods described above impose (in an
exact or least-square fit sense) the calculated ψ = 0 curve Γc to intersect
the desired curve Γ in a finite number of points. A stronger condition is
to require Γc to be tangent to Γ. This was implemented in FREE-FIX,
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resulting in a method, which imposes two conditions in each selected point
on Γ, namely that for the calculated ψ first ψ = 0 on Γ and second ∇ψ be
perpendicular to Γ. The second condition is assigned by calculating the unit
vector τ̂ tangent to Γ and imposing

∇ψ · τ̂ = 0. (10)

An advantageous property of Eq. (10) is seen by observing that

∇′ψ(R′, Z ′) =

∫
P
∇′G(R,Z;R′, Z ′)Jϕ(R,Z)dRdZ+

+

Nc∑
i=1

∇′G(Rc
i , Z

c
i ;R′, Z ′)Ic

(11)

and that the necessary derivatives of the Green’s function are given by

∂G

∂R′
=
√
R

(
∂k

∂R′
R′(4K + k(2(E − 2K) + k(−kK +K + E))− 4E)

−2(k − 1)k
(
k2K − 2K + 2E

))/(
4π(k − 1)k2

) (12)

and

∂G

∂Z ′
=
√
R

(
E((k(k + 2)− 4)

∂k

∂R′
R′ − 4(k − 1)k)− (k − 1)((

k2 + 4
) ∂k
∂R′

R′ + 2k
(
k2 − 2

))
K

)/(
4π(k − 1)k2

)
,

(13)

where the argument k has been omitted from the elliptic integrals E and
K for brevity. Remarkably, no derivatives of the equilibrium quantities are
needed and the only elliptic integrals that need to be evaluated are the same
elliptic integrals that are needed in the calculation of the Green’s function
used in Eq. (9). This is especially useful because most of the computational
cost in the calculation of the unknown coil currents Ic is in the evaluation
of the elliptic integrals E and K. Thus, by imposing the two conditions
ψ = 0 and Eq. (10) in each of Nfit points on Γ one needs about half the
computational cost needed to impose ψ = 0 in 2Nfit points.

The FREE-FIX implementation proved that the method just described
allows to reproduce the desired plasma shape with a number of fit points
much smaller than what is needed by the standard approach. In fact, a
number of points smaller than the number of unknowns (i.e. of coil currents)
can be sufficient.
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The positioning of the fit points on the boundary influences the mini-
mum number of points needed to obtain a good approximation of the desired
shape. Two different strategies were found to produce similarly good results.
First, the “equal distance” approach, which requires that the distance be-
tween two consecutive points be the same for any couple of consecutive
points. The distance d between two points is simply defined as

d ≡
√

(R1 −R2)2 + (Z1 − Z2)2, (14)

where the subscripts 1 and 2 refer to any two consecutive points. Second,
the “equal arc length” approach, which requires consecutive points to be
equally spaced in the length of the curve surrounding the plasma (meaning
that the distance between any two consecutive points measured along the
curve surrounding the plasma is the same). If the number of test points
is sufficiently large, typically a few tens, differences between the various
strategies often become negligible. A summary of the different methods and
options used in this work is contained in B.

Before proceeding with testing the performance of the various methods,
it is useful to define a quantitative measure of the difference between the
desired and calculated curve.

Given the desired and calculated curves Γ and Γc, both of them can
be parametrized with the same angle θ, defined as a standard angular co-
ordinate measured from the horizontal axis, with the axis origin fixed at
geometric the center of the desired plasma shape. For any value of θ, the
distance

δ =
√

(RΓ −RΓc)
2 + (ZΓ − ZΓc)

2, (15)

is taken as a local error measure for the assigned value of θ. A normalized
value δ̂ is obtained dividing by the (desired) local minor radius of the plasma,
r(θ), which is simply the distance between the point on Γ and the geometric
center of the plasma, R = R0, Z = Z0 (Z0 = 0 in this work, as is common
in tokamak calculations). We define the < L2 > and < L̂2 > norms as
the average values of δ and δ̂ over a number of points uniformly distributed
in θ. Similarly, the L∞ and L̂∞ norms are given by the maximum values
of δ and δ̂ over the same test points. These norms will test for both the
shape and position of the plasma and may return somewhat pessimistic
results because of the way the parametrization is defined. This will happen
for example in case of a slight horizontal shift of the top or bottom of the
calculated boundary with respect to the desired one, which will cause a
larger mismatch in the vertical direction. An example is shown in Fig. 1,
where three different plasma shapes are plotted. The original plasma shape
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Figure 1: Left: original plasma shape (black) and shifted plasma shapes
(colors); center: radius vs. θ; right: zoom of radius vs. θ.

is shown in black, the same shape shifted by 1 cm to the right is in green
and still the same shape, but shifted by 2 cm to the right in red. Shapes are
shown on the left, radii r(θ) in the center and a zoom of r(θ) around the
maximum value of r on the right. The plot on the right in particular shows
how a small horizontal mismatch in the plasma shape can cause a larger
difference in radius for a given θ, since the segment connecting the point on
the top of the plasma to the plasma center is close to vertical.

Before proceeding with testing FREE-FIX for actual tokamak equilib-
rium calculations, another few considerations are necessary.

First, it is observed that the plasma shape in experiments can be mea-
sured only with a finite amount of precision and error bars of the order
of a cm are typically included when the plasma shape is measured in an
experiment [17, 18]. Thus, inaccuracies in the plasma shape obtained from
free-boundary calculations of the order of the experimental uncertainties are
not going to be particularly meaningful for the problem considered in this
work.

Second, it should be recognized that any inaccuracies in free-boundary
calculations can be due to errors in the coil currents calculated by FREE-FIX
or errors in the equilibrium calculations themselves, which depend on the
equilibrium code and not on the input provided by FREE-FIX. The equilib-
rium calculations presented in this work were performed using an extension
of the code FLOW [5] developed to calculate free-boundary equilibria. Since
no other equilibrium solvers were available to us at the time of this study, it
was not possible to evaluate the accuracy of the free-boundary solver imple-
mented in FLOW. A detailed description of FLOW is contained in Ref. [5],
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but a brief summary of its numerical solver is included in Appendix A for
completeness.

All calculations presented in this work were performed with uniform
Cartesian grids with 128 point in each direction. Increasing the spatial
resolution to 512 points in each direction does not produce any noticeable
variation in plasma shape or errors as defined by the norms introduced
above.

4 Sample Application

FREE-FIX was used to calculate the input for free-boundary equilibria of
two of the major US tokamaks, NSTX [19] and DIII-D [20,21]. For each of
the equilibria shown in this section, a fixed-boundary equilibrium with an
assigned boundary shape was computed first. The calculated equilibrium ψ
was then used as an input for FREE-FIX to produce the value of ψ on a
closed “box” around the plasma needed as boundary condition by FLOW
in the fashion described in section 3. A new free-boundary equilibrium was
computed and compared to the desired (fixed-boundary) one.

For each experiment a set of coils approximating the real coil geometry
was used. The coil geometry was determined in part by trial and error, with
the purpose to keep the coil geometry as close as possible to the experimental
one and the number of coils as small as possible for simplicity, but still be
able to obtain reasonably accurate plasma shapes. No limitation on the
number or position of the coils is hardwired into FREE-FIX. As mentioned
earlier, coils are represented as wires of infinitesimal cross section. This
reduces the accuracy of the resulting magnetic field near the coils. However,
preliminary studies performed during the development of FREE-FIX showed
that this has little effect close to the plasma. The input used for all the
calculations presented in this section is available from FREE-FIX’ website.
[22]

The main findings of a sample “spherical-tokamak” NSTX equilibrium
calculation are collected in Fig. 2. The figure shows the plasma shape deter-
mined by four free-boundary equilibria (in color) and compares them with
the desired plasma shape (black). The slightly jagged appearance of the
target shape is due to the limited number of grid points used in the shape
representation. A smooth profile is used as input and in all calculations.
The free-boundary equilibria are obtained using the different methods de-
scribed in Section 3. Figure 2(a) shows the result obtained using the “direct
method”, i.e. by using a number of points on the prescribed boundary equal
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Figure 2: Desired plasma shape (black) and plasma shapes calculated with
FREE-FIX input for an NSTX equilibrium. Input is calculated with the
direct method (a), an LSF with 100 points uniformly distributed in θ (b), an
SVD including gradients of ψ and 7 points (c), an LSF with 100 equidistant
points on the desired boundary (d). All equilibria were calculated with
FLOW.

to the number of coils and solving the linear system for the coil currents
without any fitting. The results confirm what was anticipated in Section 3,
i.e. that the direct method does not produce satisfactory results. Figure 2(b)
is obtained from an LSF FREE-FIX calculation using 100 points uniformly
distributed in θ. It is seen that the desired plasma shape is reproduced with
reasonable accuracy. A good approximation of the desired shape is also
obtained in Fig. 2(c), which corresponds to a FREE-FIX SVD calculation
using only 7 points, in which both the ψ = 0 condition and Eq. (10) are
imposed. We stress that the number of coil currents in this calculation is 9
plus the central solenoid’s, meaning that a number of points smaller than
the number of unknowns is sufficient to reproduce the desired plasma shape.
Finally, Fig. 2(d) is obtained with the same method and number of points as
Fig. 2(b), but using points determined with the “equal distance” approach,
more uniformly distributed on the plasma shape.
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The same methods are tested for a “standard-tokamak” DIII-D equilib-
rium and the results, qualitatively similar to the ones shown in Fig. 2, are
shown in Fig. 3. The slightly jagged appearance of the target shape is due

Figure 3: Desired plasma shape (black) and plasma shapes calculated with
FREE-FIX input for a DIII-D equilibrium. Input is calculated with the
direct method (a), an SVD with 100 points uniformly distributed in θ (b), an
LSF including gradients of ψ and 14 points (c), an SVD with 100 equidistant
points on the desired boundary (d). All equilibria were calculated with
FLOW.

to the limited number of grid points used in the shape representation. A
smooth profile is used as input and in all calculations. The direct method,
shown in Fig. 3(a) fails again to reproduce a satisfactory plasma shape. A
very good match between the desired and calculated shapes is obtained us-
ing an SVD calculation with 100 points on the plasma boundary distributed
using two different strategies, Fig. 3(b) and 3(d). In this case, the strategy
used to select the point positions does not have a noticeable effect on the
quality of the result. If the calculation is repeated also including gradients
of the target ψ, a good approximation of the desired shape is obtained with
little more than 10 points [14 in Fig. 3(c)]. For all calculations shown in
Fig. 3, 16 coil currents plus the central solenoid current need to be calcu-
lated. Thus, using gradients to impose Eq. (10) once again allows to obtain
a reasonable approximation to the target shape with a number of points
smaller than the number of unknowns.
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Some more quantitative details on the accuracy with which the desired
plasma shape is reproduced by the various methods are given in Table 1.
The table shows, for different methods as defined in Appendix B (see in par-
ticular Table 3) and different numbers of Nfit points on the plasma bound-
ary, distributed at either “constant-θ” (“coords”=1) or constant-distance
(“coords”=10), four different figures of merit. Those are the average and
maximum distance between the desired and obtained shape, with or without
normalization with respect to the radius length. For each of methods 2, 4

Method Nfit coords < L2 > < L̂2 > L∞ L̂∞
2 30 1 3.04× 10−4 3.23× 10−4 1.66× 10−2 1.70× 10−2

2 50 1 1.77× 10−4 2.11× 10−4 8.10× 10−3 8.00× 10−3

2 75 1 1.78× 10−4 2.11× 10−4 8.17× 10−3 8.07× 10−3

2 100 1 1.78× 10−4 2.11× 10−4 8.18× 10−3 8.08× 10−3

2 25 10 1.48× 10−4 1.88× 10−4 6.73× 10−3 6.76× 10−3

2 30 10 1.62× 10−4 1.98× 10−4 7.49× 10−3 7.05× 10−3

2 50 10 1.61× 10−4 1.98× 10−4 7.56× 10−3 7.20× 10−3

2 75 10 1.61× 10−4 1.98× 10−4 7.60× 10−3 7.21× 10−3

2 100 10 1.61× 10−4 1.98× 10−4 7.60× 10−3 7.21× 10−3

3 100 1 1.78× 10−4 2.11× 10−4 8.18× 10−3 8.08× 10−3

4 12 10 1.44× 10−3 1.56× 10−3 6.00× 10−2 5.79× 10−2

4 13 10 2.54× 10−3 2.78× 10−3 1.05× 10−1 1.03× 10−1

4 15 10 9.36× 10−4 1.05× 10−3 5.43× 10−2 5.41× 10−2

4 20 10 6.27× 10−4 6.93× 10−4 2.62× 10−2 2.69× 10−2

4 50 10 2.21× 10−4 2.73× 10−4 9.13× 10−3 9.05× 10−3

4 100 1 1.64× 10−4 2.15× 10−4 7.20× 10−3 8.37× 10−3

11 20 10 4.50× 10−4 4.86× 10−4 3.32× 10−2 3.07× 10−2

12 13 10 2.39× 10−3 2.54× 10−3 1.32× 10−1 1.39× 10−1

12 14 10 7.17× 10−4 7.73× 10−4 4.32× 10−2 3.99× 10−2

12 15 10 5.08× 10−4 5.58× 10−4 2.22× 10−2 1.99× 10−2

12 20 10 7.54× 10−4 8.21× 10−4 3.45× 10−2 3.33× 10−2

12 50 10 2.77× 10−4 3.30× 10−4 1.29× 10−2 1.25× 10−2

Table 1: DIII-D error table. Four different measures of error in the obtained
shape are shown for several methods and number of boundary points.

and 12, the first entry corresponds to the minimum number of points needed
to obtained a closed plasma boundary. The main message to be taken from
Table 1 is that “good results” (as identified in Fig. 3) have average dis-
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tances from the desired shape of the order of 10−4 (typical radii are ∼ 1
meter, so normalized figures are similar to unnormalized ones) and maxi-
mum distances slightly less than 10−2. Methods using Eq. (10) (4 and 12)
can provide a reasonable approximation to the desired shape with a much
smaller number of points than needed by the standard method. A point dis-
tribution evenly spaced in θ (1) does not perform as well as other strategies
(10 for equal-distance). Also, no difference is seen between SVD and LSF
(compare methods 2 and 3). Our conclusion from this application is that
FREE-FIX performs well in reproducing the shape of standard tokamaks
plasmas.

After considering a highly shaped spherical tokamak and a standard
tokamak shape, it is worthwhile to briefly consider other possible shapes to
gain some insight on the versatility of the code. Four additional equilibria
are considered and presented in Fig. 4. The equilibria represented in the

Figure 4: Desired plasma shape (black) and plasma shapes calculated with
FREE-FIX input (color) for an NSTX-like elliptical equilibrium (a), a sym-
metric, mildly shaped NSTX equilibrium (b), a DIII-D-like elliptical equi-
librium (c) and a DIII-D equilibrium with flow (d). Input is calculated with
the same normalized SVD method with 100 points uniformly distributed in
θ for all equilibria. All equilibria were calculated with FLOW.

figure correspond to (a) an NSTX-like elliptical equilibrium, (b) a symmet-
ric, mildly shaped NSTX equilibrium, (c) a DIII-D-like elliptical equilibrium
and (d) a DIII-D equilibrium with flow. The DIII-D elliptical equilibrium is
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calculated using a reduced set of coils (9 instead of 16), to highlight how in
some cases good results can be obtained with relatively simple coil arrange-
ments. FREE-FIX was ran for all four equilibria with the same method,
number of points and point distribution strategy.

For both NSTX and DIII-D an elliptical shape is fairly non-standard, but
can be reproduced with the standard set of coils (or even a reduced one).
The NSTX shaped equilibrium is less elongated than the one used earlier.
This results in a more accurate match between desired and obtained plasma
shapes than for the more highly shaped one (see Table 2 and compare Figs. 2
and 2). The DIII-D equilibrium with flow has the same shape and coils as
the reference DIII-D equilibrium. The resulting accuracy is very similar, but
not identical. This is due to the fact that the two equilibria have different
current density distributions, which are determined by the right hand side
of the (modified) Grad-Shafranov equation, in turn determined by the input
information on the equilibrium type.

A summary of the error evaluation for the equilibria described above is
shown in Table 2. The two equilibria introduced earlier in this work are
included for reference. free-boundary equilibria are successfully obtained

Equilibrium < L2 > < L̂2 > L∞ L̂∞
NSTX ellipse 1.20× 10−3 1.68× 10−3 3.04× 10−2 5.06× 10−2

NSTX shaped 8.28× 10−4 8.57× 10−4 2.90× 10−2 2.44× 10−2

DIII-D ellipse 3.43× 10−4 4.39× 10−4 1.05× 10−2 1.28× 10−2

DIII-D with flow 1.64× 10−4 2.16× 10−4 6.86× 10−3 8.53× 10−3

NSTX 1.96× 10−3 1.74× 10−3 1.07× 10−1 7.61× 10−2

DIII-D 1.64× 10−4 2.15× 10−4 7.20× 10−3 8.37× 10−3

Table 2: Error table for NSTX and DIII-D equilibria. All calculations are
performed with the same approach and number of points. The NSTX and
DIII-D equilibria described earlier are included for reference.

with FLOW using FREE-FIX to generate the necessary input for all the
shapes considered in Fig. 4. It can be remarked that shapes that are close
to the shape for which the coil system was designed (e.g., mildly shaped
plasmas) can be reproduced with better accuracy than shapes different from
the experimental shapes, even if the shape itself is simple (e.g. an ellipse).

As a final note, we did not include any detailed comparison of the plasma
property for the input (fixed-boundary) and output (free-boundary) equi-
libria. The reason is that if the plasma shape (the ψ = 0 curve) is fixed,
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the solution of the equilibrium inside the plasma is also fixed, since it is
the solution of the same elliptic differential equation given the value of the
unknown on a closed curve. Therefore, a good match for the plasma shape
will automatically result in a good match of the solution inside the plasma.
In conclusion, the errors in the plasma shape used above are the best metrics
for the quality of the free-boundary equilibrium. Even if we did not show
that explicitly, it was verified that all meaningful plasma parameters are
matched well if the plasma shape is reproduced accurately.

5 Discussion and Future Expansions

Some additional extensions of the code that would be helpful to the com-
munity can be envisioned.

One point of general interest is the possibility to impose the location
of X-points on the plasma surface. From the point of view of the stan-
dard method, an X-point is no different from any other point of the plasma
boundary. However, the poloidal magnetic field, and thus ∇ψ, vanish in
the X-point and the plasma surface has a non-smooth shape, meaning that
the unit vector τ̂ tangent to the plasma surface assumes different values if
one approaches the X-point from two different directions along the plasma
boundary.

An option for the presence of a single X-point was included in FREE-
FIX. The approach is to impose two sets of conditions in the X-point using
two different unit vectors τ̂ in imposing Eq. (10). This will automatically
result in two distinct equations for linear combinations of the components of
∇ψ in the same point, which will be satisfied only if both components of ∇ψ
are independently vanishing. The equation for the value of ψ is repeated,
but this does not cause any issue in the minimization process.

Since the code FLOW does not explicitly allow for an X-point on the
boundary, the option was tested by modifying ad hoc the direction of τ̂ in
the assigned X-point. The resulting equilibrium (not shown) is very similar
to the original one, but with the shape of the plasma being “pulled” in the
direction of the assigned X-point. The method can trivially be extended
to a double-null geometry. It is emphasized that a proper treatment of
X-points requires a self-consistent equilibrium calculation that includes X-
points. Thus, the treatment will be further pursued when users’ need arises.
However, the structure of the treatment is already in place and will only
require a minimal effort to be adapted to a different equilibrium description.
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A further point worth a brief discussion is the presence of structures
in the “vacuum region”, such as probes or other hardware, including the
first wall. Any physical object that needs to be included in the calculation
will have a finite resistivity, which will allow the magnetic field to pene-
trate into it in a finite amount of time. Considering that resistive diffusion
times are typically large with respect to MHD times, [23] it is reasonable
to approximate the shapes under consideration as made of superconductive
materials, in which the magnetic field cannot penetrate and ψ = constant.
Any additional piece of hardware included in the calculation will provide
one more condition (ψ = constant on the surface of each object) and one
more unknown (the value of ψ on the surface) to be included in the min-
imization calculation. The shapes of the ψ = constant surfaces then need
to be included in the free-boundary equilibrium calculation. Any other rea-
sonable condition involving ψ and possibly ∇ψ on the structures present in
the vacuum region can be included in the model in a similar way. Since the
presence of structures in the vacuum region is not allowed by FLOW, we
could not explore this issue in FREE-FIX.

6 Conclusions

In this work, the code FREE-FIX was presented in more detail than in
Ref. [7]. FREE-FIX calculates the coil currents and the value of ψ(R,Z)
on an assigned closed curve outside the plasma to be used as input for free-
boundary equilibrium codes. The required input for FREE-FIX is a desired
plasma shape and plasma equilibrium properties (i.e., a fixed-boundary equi-
librium). This is a well-known problem, but no universal tools are available
to the community for its solution, a gap that FREE-FIX is designed to fill.

The main unknowns are the coil currents, obtained using a Green’s func-
tion method to enforce numerical conditions to be satisfied. Green’s function
are known from the literature and expressed in terms of elliptic integrals.
The required numerical conditions are that the poloidal magnetic flux due
to the plasma and coil currents should have an assigned, fixed value on
the plasma boundary, typically ψ = 0. The standard procedure is to use
a least square fit or singular value decomposition to minimize the differ-
ence between the desired and resulting shape in a finite number of points, a
standard numerical problem.

Numerical tests for the DIII-D tokamak and the NSTX spherical toka-
mak were performed with the FLOW equilibrium code, showing good agree-
ment between the desired and obtained shape. A variety of shapes, coil con-
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figurations and equilibrium models was tested with success. Remarkably,
good agreement can be found with a small number of points, even smaller
than the number of unknowns. That is made possible by the innovative idea
introduced in FREE-FIX for matching the desired shape. The new condi-
tion is to require that ∇ψ be normal to the desired plasma shape, i.e. that
the ψ = 0 curve be tangent to it. The advantage of this numerical method
is that the condition on the poloidal magnetic flux gradient only depends
on the same elliptic integral as the ψ = 0 condition. Since almost all of
the computational cost is in calculating elliptic integrals, this results in a
computational cost that is only about half of what would be required by
imposing the same number of conditions, but only using the ψ = 0 require-
ment. Moreover, the condition on the derivative proves to be “stronger”
than the condition on the value of ψ, in the sense that for the same (small)
number of equations a satisfactory result may be obtained when two condi-
tions are imposed in each point, while no good solution is found if only one
condition per point is imposed. It was shown that the choice for the location
of the points where the conditions are enforced is of critical importance for
small numbers of points. Various error estimates were introduced to give
quantitative evaluations of the accuracy of the result.

FREE-FIX is freely distributed to the community and it is our hope that
other scientists will benefit from its use. An impact may also be made for
applications different from the ones described in this work. In particular, it
is suggested that the fast algorithm introduced in this work for determining
the boundary condition needed for a free-boundary equilibrium could benefit
real-time equilibrium reconstructions used for plasma shape and position
control and optimization calculations in the design of experiments.
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A Brief Description of FLOW

The equilibrium code FLOW was used for all equilibrium calculations in this
work. FLOW is written in Cartesian coordinates and uses a finite-difference,
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red-black, multi-grid SOR solver to calculate the magnetic poloidal flux
ψ(R,Z). When needed (i.e. in the presence of macroscopic rotation) the
plasma mass density is calculated from a Bernoulli-type algebraic equation
with a combination of bisection and Newton-Raphson methods.

The free-boundary version of the code, although in existence for several
years, has not been documented elsewhere and is in fact the main topic of
a future publication. For the purpose of the present work, it suffices to
say that an assigned value of ψ (typically ψ = 0, although the choice of a
different value is allowed from input) is used to separate the plasma (ψ > 0)
from the vacuum (ψ < 0) region. In the plasma region the RHS of the GS-
like equation solved by FLOW is assigned using input “free-functions” of
the poloidal magnetic flux ψ. In the vacuum region, the RHS (proportional
to the toroidal current density Jϕ) is identically set to 0. Note that with
this definition Jϕ can be discontinuous at the free-boundary interface.

Since it is possibile to have positive values of ψ outside the last closed
flux surface (i.e. the plasma edge), FLOW calculates the ψ = 0 curve at each
iteration and defines all points outside the curve to be vacuum points. The
curve is obtained by interpolating ψ over the domain with a two-dimensional
spline approximation, then a secant, false-position root finder is used to
calculate the value r(θ), for which ψ = 0 in a finite number of points. Here
r is a radial coordinate measured from the geometric center of the plasma
and θ is the usual standard angle variable. In the case where a closed ψ = 0
curve is not found [see Figs. 2(a) and 3(a)], the plasma extends to the edge
of the computational domain.

B Summary of Solution Methods

For convenience, all the numerical methods and options referenced elsewhere
in this work are summarized here. The methods and corresponding option
number are listed in Table 3.

The first solution method (1) implemented in FREE-FIX is the “direct
method”, in which the number of points on the boundary and thus of equa-
tions is equal to the number of currents that need to be determined. This
method only assigns the value of ψ on the boundary as condition. Currents
are calculated from the exact solution of the linear system formed by the
ψ = 0 equation repeated in the appropriate number of distinct points. The
next methods available to users are a singular value decomposition (2) and
a least square fit method (3) that assign the value of ψ on the boundary
in a number of points larger than the number of coil currents to be calcu-
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lated. The major innovation introduced in this work for the calculation of
coil currents is the use of the condition that the calculated ψ = 0 curve be
tangent to the desired ψ = 0 curve. An LSF calculation is used to impose
both the value of ψ and the tangent condition on a number of points larger
than half the number of coil currents (4). If one imposed the two conditions
per point in a number of points equal to half the number of unknowns, a
linear system that can be solved exactly is again obtained (5). In this case,
only the ψ = 0 condition is imposed in one of the points if the number of
unknowns is odd. We observe at this point that the two conditions imposed

Method Description

1 exact

2 singular value decomposition

3 linear least square fit

4 linear least square fit with gradients

5 exact with gradients

11 weighted SVD fit

12 weighted SVD fit with gradients

Table 3: Solution method options

in methods (4) and (5) as expressed by ψ = 0 and Eq. (10) have different
physical dimensions. Moreover, in regions where the gradient of the un-
known is small, a small mismatch in the numerical value of ψ can cause a
relatively large difference in plasma shape. These two ideas are used for the
next two methods, method (11), in which only the ψ = 0 equation is used
and all equations are normalized to the local value of |∇ψ| and method (12),
in which Eq. (10) is also used and normalized to |∇ψ|/r to obtain equations
with the same physical dimensions.

All methods are summarized in Table 3. In general, methods (4), (11)
and (12) give the best results. For highly shaped plasmas such as NSTX,
typically method (12) performs better than method (4) for the L∞ norm,
but it may do so at the expense of the L2 performance. Users should consider
using, introducing, or requesting the performance metric that best represents
the goal of the calculation (e.g., most similar plasma volume, best match for
desired elongation, best match for position etc.).

Performance also depends on the strategy chosen to distribute points
on the boundary, the more so for smaller numbers of points. The available
options are described in Table 4. In general, options 10 and 11 give the best
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Value Description

1 Inserts points at constant θ spacing.

10 (Approximately) calculates the length of the boundary,
then distributes points at equal distances.
Computationally expensive!
Does not work well if number of points is low.

11 (Approximately) calculates the length of the boundary,
then distributes points at equal arc length distances.

Table 4: Main options for point distribution on the ψ = 0 curve

and similar results. Typically, differences between the options become less
meaningful as the number of points increases. However, different strategies
for the point distribution will not necessarily converge to the same free-
boundary equilibrium.
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