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ABSTRACT
Quantification of spin density, R∗

2 decay and off-resonance
frequency maps is very important in some applications of
magnetic resonance imaging (MRI). To reconstruct these pa-
rameter maps, a time-varying model such as mono-exponentials
must be used to represent the signal from each voxel. When
only a single-shot trajectory is adopted, the underlying re-
construction problem is significantly nonlinear and therefore
requires an iterative algorithm. The regularized trust region
method previously proposed to address this problem is stable
but lacks speed. In this paper, we propose a novel auxiliary
variable method that is very efficient in solving the underlying
optimization problem. This method introduces an auxiliary
variable in the spatial-temporal domain that separates the data
fidelity term and the structure fidelity term. The algorithm
then alternately optimizes the data fidelity and the structure
fidelity to reach the solution. The data fidelity optimization
has a closed-form solution and can be solved very efficiently.
The structure fidelity optimization fits the exponential model
with the auxiliary variable and can also be rapidly computed.
Some preliminary comparisons between the auxiliary vari-
able method and the trust region method show that the new
method is 10 times faster than the trust region method at a
reasonable reconstruction precision.

Index Terms— Auxiliary variable method, variable split-
ting, image reconstruction, MRI

1. INTRODUCTION

In many applications of MRI, the signal at each voxel does
not remain constant through the imaging time frame. A typi-
cal time-domain model treats each voxel as a decaying expo-
nential with unknown amplitude (spin density),R∗

2 decay, and
off-resonance frequency [1, 2]. Joint estimation of these pa-
rameter maps can dramatically reduce the artifacts caused by
T ∗
2 relaxation, field inhomogeneities, and susceptibility dif-

ferences. Furthermore, the quantification of these parame-
ter maps itself is important in some MR applications such as
BOLD functional MRI. However, through the years a robust

and fast solution remains challenging due to the associated
nonlinear, ill-conditioned, and large scale cost function.

The most commonly used method for joint reconstruction
of the spin density, R∗

2, and off-resonance frequency maps is
the conjugate gradient (CG) method [3, 4]. While the method
works well with an educated initialization of the variable sets,
the method experiences large difficulties to converge rapidly
when the initialization is poor. Recently, the trust region (TR)
method has been applied to the joint reconstruction problem
and outperforms CG in both stability and speed [5]. However,
this method does not leverage the structure of the forward op-
erator, and its speed gain mainly comes from its stability. In
this work, we propose a novel auxiliary variable (AV) method
to solve the joint reconstruction problem. The AV method in-
troduces an auxiliary variable set to separate the original data
fidelity term into two terms. Both the two terms exploit the
special structure of the relative forward operator and therefore
can be solved efficiently. The speed of this method is there-
fore much higher than the CG and TR method which need to
evaluate the nonlinear function and gradient in each iteration.
A number of researchers have exploited this strategy to imple-
ment nonquadratic regularization and other constraints more
efficiently ([6, 7, 8, 9, 10]).

The auxiliary variable is introduced by a penalty term
in the cost function that links the unconstrained form of the
time-dependent image (the auxiliary variable) to the nonlin-
ear function of time adopted for each voxel. Each iteration
consists of two steps—minimization with respect to the time-
varying image to be estimated and minimization with respect
to the parameters of the time-domain models. When the
augmented cost function is minimized with respect to the
unconstrained image (the auxiliary variable), the constraint
term is not directly enforced but only the proximity of the
image to the time model through the penalty term. When
the augmented cost function is minimized with respect to the
time model parameters, this step does not require estimating
the full time-varying image but only enforces proximity to it
through the penalty term. As a result, each iteration is greatly
simplified.



2. THEORY

2.1. The general objective function

The k-space data is modeled by the following discretized
equation:

sl =

N−1∑
n=0

mne
zntle−2πι[kl·rn] + εl, l = 1, 2, · · ·L (1)

where sl denotes the k-space data, tl,~kl, εl, l = 1, 2, · · · , L
denote the L samples of time, the underlying trajectory, and
the noise. ~r := vec(rn), ~m := vec(mn), and ~z := vec(zn)
denote the spatial coordinates, the spin density map, and the
complex frequency which takes the R∗

2 decay and the off-
resonance frequency maps as its real and imaginary part, re-
spectively. When a single-shot trajectory is adopted, direct
inverse Fourier transform is not workable because the k-space
at each time point is very sparsely sampled. Furthermore, the
forward operator in (1) is nonlinear and ill-conditioned and
hence calls for a regularized iterative method. Because the
noise in (1) is Gaussian, a natural way to formulate the cost
function is the least-squares approach:

‖sl −
N−1∑
n=0

mne
zntle−2πι[kl·rn]‖2 (2)

With regularization, (2) becomes

‖sl−
∑
n

mne
zntle−2πι[kl·rn]‖2+λ1‖R~m‖2+λ2‖R~z‖2 (3)

where R is the regularization matrix. In this work, we use the
first-order difference operator for all regularization methods.

2.2. The auxiliary variable method

2.2.1. Formulating the cost function for the AV method

Let’s divide the signal acquisition time frame into multiple
segments. Each segment is sufficiently short in time so that
all samplings within this segment can be modeled as happen-
ing at a single time point. Suppose there are I such time
segments. We call the spatial image at the ith segment the
ith frame, and the Fourier transform of the ith frame the ith
k-frame. The ith frame ~ρi(~m, ~z) and its relation to the ith
k-frame ~Si can be represented by

~Si = F{~ρi(~m, ~z)} (4)

where F represents the spatial Fourier transform. If all sam-
ples are acquired on Cartesian grids of each k-frame, then
the ith k-frame samples are determined by partial rows of the
Fourier matrix prescribed by the trajectory. The cost function
(3) can be rewritten by

‖~S −DF~ρ(~m, ~z)‖2 + λ1‖R~m‖2 + λ2‖R~z‖2 (5)

where D represents the row-wise downsampling of the
Fourier matrix F , and ~S := vec(~Si). Due to the nonlin-
ear relationship between ~ρ and (~m, ~z), the estimation process
must include the constraint implied by the nonlinear model,
making the computational complexity large. A method to de-
couple the solution step from the nonlinear model constraint
is to introduce an auxiliary variable u in the spatial-temporal
domain to decouple ~S and ~ρ. Then (5) becomes

‖~S −DF~u‖2 + α‖u− ~ρ(~m, ~z)‖2

+λ1‖R~m‖2 + λ2‖R~z‖2
(6)

where the relation between the variable and the data in the
first term is linear and highly structured (Fourier transform)
and the operator in the second term is decoupled in the spatial
domain. We then minimize function (6) in an alternating two-
step fashion: in the first step we minimize w.r.t. ~u given an es-
timate for ~ρ(~m, ~z), and in the second step we minimize w.r.t.
~m and ~z given the estimate of ~u from the first step. Solving
in this fashion can maximally leverage the spatial structure of
the operator in the first and the second term.

Although the cost function in (6) is not ill-conditioned
w.r.t. ~m and ~z due to the regularization, it still may be ill-
conditioned w.r.t. ~u especially when α is small. Furthermore,
for large α the solution may be relatively close to ~ρ(~m, ~z)
but without maintaining the smoothness, oscillatory, and de-
cay characteristics of that term. We therefore add a temporal-
spatial regularization term to the cost function (6):

‖~S −DF~u‖2 + β‖RE~u‖2

+α‖~u− ~ρ(~m, ~z)‖2 + λ1‖R~m‖2 + λ2‖R~z‖2
(7)

where E represents a first-order difference operator in time.
The composite operator RE thus represents a temporal-
spatial regularization operator to make ~u smooth in both
spatial and temporal domains.

2.2.2. Minimizing the cost function

The cost function associated with the AV method is mini-
mized in a two-step iterative manner. In the first step of each
iteration, one minimizes

‖~S −DF~u‖2 + β‖RE~u‖2 + α‖~u− ~ρ(~m, ~z)‖2 (8)

w.r.t. u given ~ρ. Notice this is a quadratic function. Also,
since R is a convolution in the spatial domain, R is diagonal-
izable through F . The solution to (8) is given below

~̂u = (FHDHDF + β(RE)HRE + αI)−1(FHDHS + α~ρ)

=(FHDHDF + βFHXHXF + αFHF )−1(FHDHS + α~ρ)

=FH(DHD + βXHX + αI)−1F (FHDHS + α~ρ)

=FH(DHD + βXHX + αI)−1(DHS + αF~ρ)

(9)



where X is a bidiagonal block matrix that satisfies RE =
FHXF . DHD+ βXHX + αI is a tridiagonal block matrix
where each block is a diagonal matrix. (9) can be solved in
O(n) complexity by using the fast Fourier transform (FFT)
and the tridiagonal matrix algorithm (the Thomas algorithm).

In the second step of each iteration, one minimizes

‖~u− ~me~zt‖2 + λ1
α
‖R~m‖2 + λ2

α
‖R~z‖2 (10)

where ~u is given by step 1. Notice this function is highly
decoupled in the spatial domain and therefore is much easier
to solve than the problem of minimizing (3). In this work,
we minimize it in two steps, where we first find an educated
initialization to the variables by curve fitting in the logarith-
mic domain and then run a preconditioned nonlinear conju-
gate gradient (PCG) algorithm to find the true minimum. In
the first sub-step, we find |~m| and Re{~z} by fitting the loga-
rithm of |~u| along the time axis and find ∠~m and Im{~z} by
fitting the unwrapped phase of ~u. Notice the resulting matri-
ces are all very easy to invert. PCG in the second sub-step
uses a diagonal preconditioner.

The AV method recursively runs the two steps. Three pa-
rameters are associated with the method: α, β, and λ. Gen-
erally, we adopt a schedule such that α increases, β reduces,
and λ reduces when the iteration grows so that the solution
of (7) approaches that of (2). However, for practical purpose,
the parameters β and λ do not reduce to zero to maintain the
regularization effects.

3. RESULTS

We compared the three methods—CG, TR, and AV—based
on a synthetic cylindrical phantom (Fig 1 left column), which
contains four small cylindrical objects that have different spin
density, R∗

2 decay, and off-resonance frequency maps. The
size of the image is 64× 64. The ranges of the R∗

2 decay and
off-resonance frequency within the phantom are [−50,−10]
sec−1 and [−200, 100] Hz. The simulations were run using
MATLAB on an Intel i7-4700MQ quad-core processor. The
AV program uses only a single core while the TR and CG
use four cores with a parallel implementation. The signal-to-
noise ratio (SNR) is defined by the norm of the signal divided
by the standard deviation of added noise. In this simulation,
white Gaussian noise is added with SNR = 10, which is a
considerable amount of noise for testing algorithms. The pre-
cision of the reconstruction results is evaluated by means of
normalized mean-square error (NMSE), which is defined by
the norm of the reconstruction error divided by the norm of
the ground truth. The trajectory used in the data synthesis is
the rosette trajectory. Rosette is a single-shot non-Cartesian
trajectory that has been remarked by many authors to be op-
timal in terms of the encoding capability over the complex
frequency map [1, 4]. Since the AV method in our current
development requires a Cartesian trajectory, the used rosette

trajectory is rounded to nearby grid locations for preliminary
algorithm justifications. 128 k-frames are used and this num-
ber needs to be carefully chosen to avoid aliasing in the recon-
struction of the off-resonance frequency. For an 80 ms-long
trajectory, each k-frame in the model covers less than 1 ms,
causing only a small quantification error. We only consider
the single-coil reconstruction in this paper.

(a) true SD (b) CG SD (c) TR SD (d) AV SD

(e) true decay (f) CG decay (g) TR decay (h) AV decay

(i) true freq (j) CG freq (k) TR freq (l) AV freq

Fig. 1. Comparison between CG, TR, and AV on the re-
construction of the spin density (SD), R∗

2 decay, and the off-
resonance frequency maps

Fig 1 shows the reconstruction results from CG, TR, and
AV as compared with the ground truth. Fig 2 shows the con-
vergence profiles associated with the three methods. Clearly,
TR has more precise estimates than the other two methods.
AV has a better precision than CG overall and is close to TR.
In terms of the speed, AV is much faster than both TR and
CG. The speed gain of AV over TR is more than 10 fold and
over CG is more than 20 fold. This large speed gain makes
AV a suitable method for initialization of variables. In a sim-
ulation which is not shown, TR converges in 2 minutes with
initialization given by the AV method and generally converges
around 18 minutes with poor initialization.

4. DISCUSSIONS AND CONCLUSIONS

The simulation shows that the AV method is much faster than
both the CG and TR method. The speed gain has two sources:
first, the good utilization of the structure allows for efficient
matching of the data; and second, the constraint on ‖~u − ~ρ‖
allows a large region for the underlying ~z to vary in step 1,
causing a rapid convergence in early phase of the iteration.
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Fig. 2. Convergence profiles of CG, TR, and AV on the re-
construction of the spin density (mag), R∗

2 decay, and the off-
resonance frequency maps

The simulation shows that the AV method leads to a worse
reconstruction than TR. This may be caused by the slow con-
vergence of the AV method when the residual becomes very
small. There are many reasons which may explain the slow
convergence. For example, the AV method is very simi-
lar to the alternating projection method. Therefore, it may
also have the convergence property of the alternating pro-
jection method, which can be arbitrarily slow. However, to
thoroughly understand the convergence behavior of the AV
method, further analysis is required. Although the precision
of the AV method appears to be limited, the AV method is
still important since it provides a very good initialization in
a very short time. After that, other methods such as the TR
method can be used to refine the result. This two-step pro-
cedure largely reduces the computation time compared to the
situation when TR utilizes a poor initialization.

The method proposed in this paper works only for Carte-
sian sampling. For non-Cartesian sampling, directly gridding
the k-space samples may cause a large rounding error. There-
fore, modifications to step 1 are required for non-Cartesian
trajectories, and this topic is still under investigation. In ad-
dition, the AV method has many parameters, and this char-
acteristic is similar to the TR method. Trial-and-error is cur-
rently used to choose these parameters, but a more intelligent
method is highly desired.

In conclusion, we have presented a novel auxiliary vari-
able method which can rapidly solve the nonlinear large-scale
optimization problem associated with joint reconstruction of
the spin density, R∗

2 decay, and off-resonance frequency
maps. The auxiliary variable method exploits the structure
between the images and the data, making the method remark-
ably efficient. The speed of the auxiliary variable method
using a single core is roughly 10 times faster than the trust
region method and 20 times faster than the conjugate gradient

method, both of which run on four cores in parallel. The
precision of the auxiliary variable method is reasonable under
strong noise. This characteristic makes the method a desired
initialization method for the joint reconstruction problem.
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