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Characterization of Plenoptic Imaging Systems and
Efficient Volumetric Estimation from Plenoptic Data

Paul Anglin, Stanley J. Reeves, Senior Member, IEEE, and Brian S. Thurow

Abstract—Plenoptic imaging is a rapidly growing field driven
by the ever-declining cost of imaging systems and the promise
of image focus, perspective, and depth of field manipulation
during post-processing. While plenoptic systems are often limited
to 2D image reconstruction and manipulation, plenoptic data
and reconstruction algorithms can be extended to volumetric
fields. An estimate of the imaged volume can be created by
generating a stack of 2D images, but such an estimate can easily
be dominated by image blur from neighboring focal planes.
Tomographic algorithms have been shown to be effective in
creating volumetric estimates from plenoptic data but are often
prohibitively slow. The research presented here shows that the
reconstruction is solvable through deconvolution. Unfortunately,
the observation model is not shift-invariant. However, with
appropriate transformations, the problem can be made shift-
invariant so that deconvolution is a viable solution. Utilizing the
computationally efficient fast Fourier transform (FFT) allows the
reconstruction to be completed quickly while producing estimates
exhibiting significantly reduced blur compared to a simple focal
stack. This work describes a deconvolution algorithm designed
to reconstruct a 3D volume from a 2D plenoptic image. The
imaging system and refocusing algorithm are characterized with
respect to shift-variance in order to identify potential sources of
artifacts and propose potential mitigating steps. To demonstrate
the efficacy of the algorithm, experimental data is presented with
comparisons of the focal stack to the reconstructed volume.

Index Terms—deconvolution, plenoptic, light-field.

I. INTRODUCTION

THE estimation and reconstruction of volumetric processes
and events from 2D measurements is the subject of

significant research with a wide range of applications. Fluid
flow measurement, estimation, and analysis via particle image
velocimetry is one application [1–14]. The analysis of flame
structures, flame front propagation, and combustion events
is another [15–26]. Many more exist, and improved under-
standing of these processes and events can lead to efficiency
improvements and energy savings in the associated systems.

While traditional imaging modalities such as a standard
camera can be used to acquire spatial samples of a volume,
these samples are limited to projections on a 2D plane. To
obtain the angular information necessary to produce a 3D
reconstruction, movable or multi-camera systems can be used,
but these are often limited by size and cost restraints [3,
14, 26–28]. However, light-field imaging offers a potential
solution. A light-field—or plenoptic—camera samples each of
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the four dimensions of the light field with each exposure. By
sampling both the spatial and angular domains, the user is
given the tools to manipulate focus, perspective, and depth of
field (DOF) during post-processing. With traditional imaging,
these attributes are largely fixed once the image is acquired.
The concepts related to sampling the 4D light field are not new
and have been presented by many others [27,29–31]. However,
the works presented by [30, 32–34] and the introduction of
the Lytro Camera have brought both these concepts and the
technology to mainstream attention.

From plenoptic data, a crude estimate of the imaged volume
can be generated simply by creating computationally refocused
images at slightly different depths throughout the volume. This
focal stack represents a sampled version of the imaged volume.
However, such a reconstruction represents a poor estimate
of the volume as each refocused plane will contain energy
from out-of-focus structures in adjacent focal planes. This
out-of-focus energy is commonly recognized as image blur in
conventional 2D images. In some scenarios, the image blur can
dominate the response and obscure smaller structures in the
image. In order to provide an accurate estimate of the volume,
a method of reducing or eliminating the out-of-plane-energy
is desired.

Tomographic methods utilizing plenoptic data have been
shown to produce largely blur-free estimates but are compu-
tationally expensive and may take hours to produce a single
reconstruction [35–37]. This work demonstrates that the vol-
ume reconstruction problem is solvable via frequency-domain
deconvolution methods. This is advantageous as such methods
can utilize FFT-based processing techniques for computation
of the frequency spectra. The result is a computationally
efficient algorithm that can produce volume reconstructions
in seconds or minutes when given the focal stack and PSF.

To demonstrate the efficacy of deconvolution when applied
to plenoptic data, a shift-invariant model of the imaging sys-
tem is first developed. Potential sources of shift-variance are
explored in detail, and potential impacts to the reconstructions
and possible methods of minimizing this impact are presented.
An experimental volume consisting of two separate flames
is imaged utilizing a plenoptic camera, and existing spatial-
domain refocusing techniques are then utilized in creating
the focal stacks from the simulated data. Deconvolution is
then used to reconstruct the imaged volume, artifacts in
the reconstructions are identified, and potential sources and
methods of minimization are addressed.
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II. BACKGROUND

The basic concepts related to light-field imaging, plenoptic
cameras, and computational refocusing are presented here.
However, the reader is encouraged to refer to works devoted
to the subjects [27,29–31,33,34,38–42] for a fuller treatment
of the topics.

A. The Plenoptic Function and Light-field Imaging

The geometric distribution of light in the world around us
can be described by a 5D function often referred to as the
plenoptic function given by P (x, y, z, θ, φ). This function has
three spatial coordinates (x, y, z) and two angular coordinates
(θ, φ) and is often used in computer vision and computer
graphics. However, the measurement of light in a space is
generally restricted to regions outside the convex hull, in
which case the plenoptic function becomes redundant in one
dimension. That is, the intensity of each ray does not change
as it propagates in the z direction in the absence of occluders.
The resulting 4D function is referred to as the light field and
is given by P (x, y, θ, φ) [27, 29].

Traditional imaging modalities capture a 2D projection of
the 4D light field by integrating over (θ, φ). When the image
is acquired by the camera sensor, only the (x, y) spatial
information is recorded and the angular information is lost.
However, a simple modification to a traditional camera allows
the system to sample all four dimensions of the light field.
Placing a micro-lens array between the camera main lens and
the camera sensor subdivides the sensor such that the pixels
underneath each micro-lens correspond to angular samples
and each micro-lens now corresponds to a spatial sample.
This also establishes the fundamental tradeoff in plenoptic
imaging. Subdividing the camera sensor in this way sacrifices
spatial resolution for angular information. The system spatial
resolution is now established by the micro-lens array while
the angular resolution is set by the pixels underneath each
micro-lens [43,44]. Such a tradeoff may have previously been
unacceptable, but the exponential growth of sensor resolution
has resulted in cases where the system is resolution-limited
by the optics rather than the sensor. For these cases, and
those where exceedingly high spatial resolution is not required,
plenoptic imaging offers an attractive method of utilizing the
otherwise unused sensor resolution [44].

B. Computational Refocusing

Light-field cameras provide many post-processing opportu-
nities that were not previously available to the photographer
or researcher. The ability to computationally shift perspective
and change the DOF are useful, but of particular interest to
this work is the ability to create an image at any focal depth
utilizing the data captured during a single acquisition. Com-
putational refocusing is possible because a plenoptic camera
captures not only the intensity at each spatial location but also
the angle of arrival for the incident rays. With this information,
the light field can be traced through space to simulate the
equivalent sensor information at any arbitrary depth. The
equivalent image at a chosen focal depth can be calculated

by simply integrating the rays passing through each spatial
location. In this way, images at any focal length are generated
in the same way that a traditional camera captures a single
image, that is, by integrating over the angular information and
collecting the remaining spatial information.

C. Imaging Equations

A more rigorous description of the process can be achieved
by dividing the camera into two planes [29]. The first plane
represents the camera main lens or aperture and is assigned
coordinates in (u, v) while the second plane represents the
micro-lens array and is assigned coordinates in (x, y). This is
convenient as any ray within the camera can now be described
by its intersection with these two planes. The radiance at a
given point on the (x, y) plane is then given by

EF (x, y) =
1

F 2

∫∫
LF (x, y, u, v) du dv (1)

where F is the distance between the (u, v) plane and the (x, y)
plane. EF is the irradiance at (x, y), and LF is the light field
given in terms of the two planes separated by F . Determining
the light field at the desired focal plane F ′ is accomplished
by calculating the location where each ray intersects the new
focal plane and is given by

LF ′(x′, y′, u, v) = LF

(
u+

x′ − u
α

, v +
y′ − v
α

, u, v

)
(2)

= LF

(
u

(
1− 1

α

)
+
x′

α
, v

(
1− 1

α

)
+
y′

α
, u, v

)
, (3)

where the ratio of the new focal plane to the old focal plane
is defined as α = F ′/F . These equations provide the necessary
relationships for integral-based refocusing.

D. Ray-space Diagrams and the Radiance Array

The use of a two-plane parameterization also introduces the
concept of a Cartesian ray-space diagram and the radiance
array. These concepts have proven to be invaluable as a visu-
alization tool in determining the source of spatial variability
in the refocusing algorithm. Figure 1 shows the relationship
between the imaged point and the ray-space diagram in two
dimensions. Light rays radiating from a discrete point in space
trace a line through the (x, u) plane, where the angle of the line
is dependent on the distance of the point from the focal plane.
A continuous distribution of light is sampled spatially by the
microlens array and angularly by the camera sensor. That
is, the pixels underneath each lenslet correspond to angular
samples across the camera aperture. Each line in image space
corresponds to a single sample of the plenoptic function, which
is represented as a point in the ray-space diagram. When
digitally refocusing to the plane containing this point, the
pixel associated with the point is synthesized by summing the
angular samples along this line in the (x, u) plane. Moving
the point in the x direction on the current focal plane simply
shifts the line along the x-axis in the ray-space diagram, while
moving off the current focal plane results in a shearing or
rotation of the line/samples about the x-axis sample.
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Fig. 1. Example imaged point (left) and the corresponding ray-space diagram
(right). Points along the line in the ray-space diagram are summed to produce
a single point in the image.

The physical application of the ray-space diagram can be
seen when considering the sensor data acquired by a plenoptic
camera. The camera sensor collects a 2D array of angular
samples, but the spatial information is also encoded in the
locations of these samples on the sensor. In order to simplify
processing, it becomes beneficial to reorder the sensor data
into a 4D radiance array that mimics the structure of the
ray-space diagram. To clarify and demonstrate concepts, 2D
simulated data is presented throughout this work. This data is
generated by choosing a point or points in object space and
tracing the path of the light rays originating at these points
back to the camera lens, to the microlens array, and finally to
the sensor. The process is described in greater detail in [45],
and the simulation parameters used are presented in Table I.
Utilizing this process, Fig. 2 shows the relationship between
the sensor data for a simulated point 9mm in front of the focal
plane and the corresponding radiance array. Note the shear-
ing/rotation of the ray-space samples that occurs for points not
on the optical focal plane. With this representation, refocusing
to an arbitrary focal plane becomes a matter of choosing the
correct angular samples from the radiance array, and summing
the values. Recognizing that the data acquired for an arbitrary
point in space is a combination of a shifting and shearing
within the radiance array, the samples for that location can
be similarly chosen. The importance of understanding this
relationship will become clear in subsequent sections.

III. VOLUME RECONSTRUCTION VIA FFT-BASED
DECONVOLUTION

When imaged by a plenoptic camera, an estimate of the
imaged volume can be created by generating a focal stack
utilizing computational refocusing. When objects are present
within the volume, each focal plane within the stack will
contain energy from out-of-plane features. FFT-based decon-
volution offers a fast and efficient means of removing this
volumetric blur, thereby improving the estimate of the volume.
While volumetric deconvolution of light-field data has been
applied to microscopy [46], the characteristics of these systems
are governed by the wave nature of light where each point
emits a spherical wave of light. At the macro level, the system
is modeled based on ray approximations to light propagation
which yields unique characteristics. Furthermore, microscopes
are shift-invariant in the x and y directions [46], which is
a significant advantage when applying 3D deconvolution. In
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Fig. 2. Simulated sensor data with micro-lens locations indicated across the
bottom (left) and the corresponding radiance array (right) for a point 9 mm
in front of the optical focal plane.

contrast, existing refocusing algorithms for light-field cameras
are inherently shift-variant, which must be considered when
applying 3D deconvolution.

A. Imaging Model

In order to apply deconvolution to volumetric reconstruc-
tion, it is beneficial to model the system as a convolution in the
forward direction. Denoting an arbitrary point in three-space
as f(x, y, z), approximating the shift-variant point spread
function (PSF) as a shift-invariant function h(x, y, z), noise as
η(x, y, z), and the resulting image as g(x, y, z), the imaging
operation can be approximated as

g(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x′, y′, z′)

h(x− x′, y − y′, z − z′) dx′ dy′ dz′ + η(x, y, z)

= f(x, y, z) ∗ h(x, y, z) + η(x, y, z). (4)

The second line follows by denoting the convolution operator
as ∗. Equation (4) describes the relationship between the
imaged point and the focal stack generated by refocusing the
plenoptic data.

The PSF is the system impulse response. Ideally, the PSF
chosen will completely characterize the imaging system. This
would include the blurring that occurs as objects are moved
further from the focal plane as well as impacts due to optical
aberrations or other system anomalies. Unfortunately, neither
the plenoptic imaging system nor the refocusing algorithm are
shift-invariant. However, under certain circumstances and with
appropriate strategies, the system can be closely approximated
as shift-invariant. Sources of shift-variance must be identified
and addressed where possible to provide the best possible
agreement between the shift-invariant model and the shift-
variant system being analyzed.
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1) Shift-Invariant Image Synthesis: Identifying sources of
shift-variance begins with analyzing the refocusing equation

EαF (x
′, y′) =

1

α2F 2

∫∫
LF

(
u

(
1− 1

α

)
+
x′

α
,

v

(
1− 1

α

)
+
y′

α
, u, v

)
dudv. (5)

A compact notation is adopted by letting x = [x y]′ and
u = [u v]′, which gives

EαF (x
′) =

1

α2F 2

∫∫∫
LF

(
u

(
1− 1

α

)
+

x′

α
,u

)
du. (6)

The analysis begins by selecting a point x′0 in image space
on some arbitrary focal plane a distance z′0 from the microlens
array. This can be modeled by an impulse A(z′0)δ(x

′−x′0, z′−
z′0) with an arbitrary amplitude given by A(z′0). The object-
space impulse is observed through the camera aperture which
limits the range of angular samples and is modeled by applying
a windowing function W (u) to the impulse that models the
effects of the aperture. The light field for a point source at x′0
at depth z′0 from the microlens is defined by:

LF−z′0(x
′,u) = A(z′0)δ(x

′ − x′0)W (u) (7)

The light field LF at the microlens plane can then be
expressed in terms of the light field LF−z′0 at the plane F−z′0
by solving for x′ in terms of x, where α = (F − z′)/F :

x =
1

α
[u (α− 1) + x′] (8)

x′ = αx− u (α− 1) (9)

Let α0 = (F −z′0)/F . The light field at the microlens array
is then

LF (x,u) = LF−z′0 (α0x− u (α0 − 1) ,u) (10)

= A(z′0)δ (α0x− u (α0 − 1)− x′0)W (u) (11)

=
A(z′0)

α2
0

δ

(
x− u

(
1− 1

α0

)
− x′0
α0

)
W (u)

(12)

= δ

(
x− x′0

α0
− u(1− 1

α0
)

)
W (u) (13)

where the last line is obtained by setting A(z′0) = α2
0.

Note that the light field at F − z′0 is shifted by x′0, while
the light field at the microlens array is shifted by a function
dependent upon the location of the impulse along z. Therefore,
the imaging equation based on this light field parameterization
is shift-variant. However, this can be remedied by scaling the
argument when evaluating functions of the light field at the
microlens.

Define a mapping from an image space x′′-plane, where x′′

is used to denote an x position in the scaled image space, to
the light-field plane with the scaling removed (x̂):

x̂ = u (α− 1) + x′′ (14)
x′′ = x̂− u (α− 1) (15)

where α = (F − z′′)/F . The modified light field
L′′F−z′′(x

′′,u) at an arbitrary focal plane z′′ can now be

calculated in terms of the light-field pattern created by the
impulse:

L′′F−z′′(x
′′,u) = LF (x̂,u)

∣∣
x̂=u(α−1)+x′′ (16)

= δ

(
u (α− 1) + x′′ − u(1− 1

α0
)− x′0

α0

)
W (u) (17)

= δ

(
u[α− 1− 1 +

1

α0
] + x′′ − x′0

α0

)
W (u) (18)

Observe that

α− 1− 1 +
1

α0
=
F − z′′

F
− F

F
+
z′0 − F
F − z′0

+
F

F − z′0
(19)

= − 1

F

(
z′′ − F

F − z′0
z′0

)
(20)

= − 1

F

(
z′′ − z′0

α0

)
(21)

Further defining the following transformed coordinates:

x′′0 =
x′0
α0

(22)

z′′0 =
z′0
α0

(23)

we substitute into the previous expression to obtain

L′′F−z′′(x
′′,u) = δ

(
−u 1

F
(z′′ − z′′0 ) + x′′ − x′′0

)
W (u)

(24)

Note that evaluating this modified function at z′′ = z′′0 yields

L′′F−z′′0 (x
′′,u) = δ(x′′ − x′′0)W (u) (25)

which is the light-field function arising from an impulse in
scaled image space δ(x′′ − x′′0 , z

′′ − z′′0 ). The integral over
the aperture is then calculated by integrating over u to find
modified refocused images at each z′′-plane:

E′′F−z′′(x
′′) =

∫∫∫
L′′F−z′′(x

′′,u)du (26)

=

∫∫∫
δ

(
−u 1

F
(z′′ − z′′0 ) + x′′ − x′′0

)
W (u)du

(27)

=
F 2

(z′′ − z′′0 )2
W

(
(x′′ − x′′0)

F

z′′ − z′′0

)
(28)

Thus, a shift of the input impulse by (x′′0 , z
′′
0 ) results in a shift

of the refocused image by the same amount, which demon-
strates shift-invariance. The resulting algorithm for calculating
a shift-invariant focal stack is

EαF (x
′′, y′′) =

∫∫
LF
(
u (α− 1) + x′′,

v (α− 1) + y′′, u, v
)
dudv. (29)

The impact of this modification to the algorithm can be seen
by plotting the boundary of the PSF both before and after the
scaling is applied. The boundary of the PSF at a given focal
plane can be calculated by utilizing (9). The PSF can be plotted
by setting u to the limits of the camera aperture, selecting two
x intercept points at the micro-lens, and plotting x′ over a
range of α values. The top row of Fig. 3 shows example PSFs
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(z) (right) and scaled PSFs (bottom) showing shift-invariance in (x, z).
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Fig. 4. PSF (left) showing banding with two sample points denoted by an ∗
and a ◦ in the PSF with the associated samples in the radiance array (right).

depicting how the shape of the impulse response will change
throughout the image in both x and z-directions. Equations
(5) and (9) show that the slope of the PSF boundary is set by
(x− u) which will vary for every point in the imaged space.

The boundary of the PSF in scaled coordinates is obtained
similarly from (15). The slope of the PSF boundary in scaled
coordinates is now set by u which is constant for every point
throughout the volume. This can be seen in the second row of
Fig. 3 which depicts the PSFs in scaled coordinates.

2) Additional Sources of Shift Variance: Unfortunately, the
sampling and reconstruction process introduces further sources
of shift-variance. One source occurs when objects or features
are imaged across multiple micro-lenses. This can occur when
objects are located at the boundary of multiple micro-lenses
or when objects off the focal plane are imaged. Quantization
artifacts result in variations in the reconstructed points. Other
sources of shift-variance result from the reconstruction algo-
rithm itself and can be seen by inspecting the simulated PSF
and its corresponding radiance array shown in Fig. 4.

The most prominent feature of the PSF is the alternating
light and dark bands that appear as the PSF decays from the
optical centerline. The source of these bands becomes apparent
when considering the samples of the radiance array responsible
for example regions of the PSF. To illustrate, a point along one
of the bright regions in the focal stack is denoted by an ∗. The
samples integrated to obtain the point, likewise denoted by an

Distance From Main Lens (mm)

D
is

ta
nc

e 
Fr

om
 O

pt
ic

al
 A

xi
s 

(m
m

)

60 80 100 120 140

−5

−4

−3

−2

−1

0

1

2

3

4

5

U−direction (mm)

D
is

ta
nc

e 
Fr

om
 O

pt
ic

al
 A

xi
s 

(m
m

)

 

 

−10 −5 0 5 10

−5

−4

−3

−2

−1

0

1

2

3

4

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. PSF (left) obtained by oversampling the radiance array (right).
Increasing the samples used in the reconstruction algorithm produces a
smoother response.

∗, are overlaid on the radiance array. Of note is the single
sample that falls within the data (i.e. non-zero region) of the
radiance array. When the samples are summed, this sample is
the most significant contributor to the intensity of the point in
the PSF. A second point is chosen that falls within one of the
dark bands and is denoted by a ◦ along with the corresponding
samples from the radiance array. The samples for this point fall
on either side of the data in the radiance array, and therefore
produce a much lower intensity in the corresponding point in
the PSF.

The significance of this observation is that this banding is
not the result of inadequate data collection, or aliasing, but
of inadequately sampling the data that has been recorded. To
address the issue, at least in part, simply increasing the number
of samples used in the reconstruction can significantly reduce
the banding present in the focal stack. Figure 5 depicts the case
where four times as many data samples are used to reconstruct
the PSF from the same radiance array. Once again the points in
the PSF and the corresponding samples in the radiance array
are identified.

While oversampling improves the reconstruction signifi-
cantly, some asymmetric banding and dark regions persist
in the PSF. Both artifacts are identified in Fig. 6. Again
comparing the points in the PSF with the corresponding
samples from the radiance array demonstrates the source of
these artifacts.

First, the persistent banding is caused when the samples for
a point in the PSF have the opposite slope compared to the
radiance data. This can be seen when comparing the radiance
array samples shown in Fig. 5 and Fig. 6. In the former,
the discontinuities in the data are masked by the overlapping
angular information between adjacent micro-lenses. Because
the slope of the samples has the same sign, more samples
consistently fall on regions containing data, which results in
a more uniform intensity. In the latter, because the slope of
the samples has the opposite sign as the data and the data
has a stair step structure, as the slope changes the number of
samples falling on data regions varies more dramatically. This
causes the alternating light and dark regions in the refocused
image. This also explains why this source of banding appears
only on one side of the optical focal plane.
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Fig. 6. Persistent asymmetric banding and dark regions in the PSF (left)
with two example points identified and the corresponding samples from the
radiance array (right) shown.

Second, the dark regions on either side of the focused point
are related to the persistent banding described above. The point
denoted by an ∗ in Fig. 6 falls in one of the dark regions, and
its corresponding samples are shown on the radiance array. It
can be seen that the samples cross a region in the data where
no overlap exists between angular samples. As a result, fewer
samples in the reconstruction collect data which results in a
lower intensity.

These final artifacts are of particular interest because they
are spatially variant. The persistent banding will vary depend-
ing on the position of the point and is asymmetric about the
point center depending on which side of the optical focal plane
the point appears. The dark regions appear when angular data
is collected by a single micro-lens, which again is a spatially
variant phenomena. Addressing these issues requires direct
manipulation of the data or the imaging system and is the
subject of future research. For the purposes of this work, these
are sources of spatial variability within the reconstruction.

With the imaging system modeled and sources of variability
identified and addresses where possible, implementation of a
deconvolution algorithm can be pursued.

B. Deconvolution

Deconvolution of the imaging model given in (4) requires
that the presence of noise be taken into account. The PSF
is a finite bandwidth approximation of an infinite bandwidth
function. The result is a frequency response with zeros, which
would unacceptably amplify the noise term if direct inversion
is attempted. To limit the impacts of noise amplification and
PSF mismatch by viewing the image as a random process, we
employ the multidimensional Wiener filter given by

F̂ (ωx, ωy, ωz) = H∗(ωx, ωy, ωz)

|H∗(ωx, ωy, ωz)|2 + Sη(ωx,ωy,ωz)
Sf (ωx,ωy,ωz)

G(ωx, ωy, ωz), (30)

where Sη and Sf are the power spectrum of the noise and the
original image volume respectively. When the power spectra
are not known, as is the case here, the ratio of the power
spectra can be replaced by a regularization parameter K,

usually with little performance degradation. Substituting this
into (30) gives

F̂ (ωx, ωy, ωz) =[
H∗(ωx, ωy, ωz)

|H(ωx, ωy, ωz)|2 +K

]
G(ωx, ωy, ωz) (31)

C. Effects of Regularization and Artifact Identification

To demonstrate the efficacy of deconvolution when applied
to plenoptic imaging and to identify artifacts in the recon-
struction, two example cases are presented. The first is a
a simplified 2D case which is used to identify artifacts in
the deconvolved reconstruction. The second is a 3D case
used to demonstrate results when the algorithm is applied to
experimentally acquired volumetric data.

D. 2D Reconstruction

For the 2D example case, the system is modeled with
a native focal plane at 100 mm and the remaining system
parameters as identified in Table I. The simulations presented
here utilize a lenslet pitch that is not an integer multiple
of the pixel pitch. As a result, some overlap exists between
pixels associated with adjacent micro-lenses. This accurately
simulates the physical scenario and these ambiguous pixels
must be discarded before creating the radiance array.

TABLE I
2-D SIMULATION PARAMETERS

Lenslet Focal Length fl 0.500 mm
Lenslet Pitch pl 0.125 mm
Pixel Pitch pp 0.0074 mm
Number of Pixels np 1503
Sensor Size 10.5 mm
Number of Lenslets nl 89
Main Lens Focal Length fm 50 mm

Another important aspect of generating the radiance array
is properly registering the micro-lens array with respect to
the sensor. This step accounts for shifts and/or rotations of
the micro-lens array relative to the sensor as well the case
where the micro-lens pitch is not an integer multiple of
the pixel pitch. While the details of such a process are not
considered here, the simulations provided here are calibrated
via a calibration image in the same way experimental data
would be calibrated. This process identifies the center of each
micro-lens with respect to the sensor. The sensor data is then
interpolated onto a uniform grid which simulates the perfectly
aligned/integer multiple scenario. This ensures that each row
of the radiance array corresponds to the same angle while
each column represents the same spatial location throughout
the array. Without this step, each entry within the 2D array (for
2D images) or the 4D array (for 3D volumes) must be uniquely
identified within the (x, u) space or the (x, y, u, v) space
respectively. Utilizing a plaid—that is, separably sampled—
array significantly improves computational efficiency of the
refocusing algorithm. This plaid data is then used by the
refocusing algorithm to generate the focal stack. Inclusion of
these steps is intended to more accurately model the physical
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Fig. 7. Simulated 2-D PSF (left) and the associated radiance array (right).

system, its parameters, and potential sources of error from the
algorithm.

A PSF must be selected in order to apply deconvolution to a
simulated point field. The PSF chosen for the first simulation
is based on a point located at the optical focal plane along the
optical axis. This ensures that the point is imaged by a single
micro-lens. This is a unique point in the system in that the
banding and dark regions present in PSFs located elsewhere
in the imaged space are not present. A particle located at this
point will exhibit a smooth decay in all directions. This is
due to the structure of the data in the radiance array, which
does not exhibit the step-like discontinuities associated with
points off the focal plane. These characteristics can be seen in
Fig. 7. Furthermore, the simulated point is ideal in that each
ray used in the simulation originates from an infinitesimally
small point. While such a point is not likely to be used for
experimental data, it serves to show that the artifacts resulting
from the deconvolution are inherent in the system, and not
specifically the result of the artifacts in the PSF.

With a PSF chosen, the next step is to simulate an example
field of point sources. A test case is selected with three
points placed within the imaged space at (1.3mm, 91.2mm),
(1.9mm, 97.5mm), and (−2.5mm, 112.5mm). The corre-
sponding focal stack is then generated, and the image is
reconstructed utilizing deconvolution. The resulting focal stack
is shown in Fig. 8, which clearly depicts the blur resulting
from out-of-plane points. Figure 9 compares the results of
the deconvolution when various levels of regularization are
applied and highlights the importance of selecting the appro-
priate value for K. Too little regularization results in a poor
reconstruction dominated by artifacts. Only two of the particles
are easily identifiable as can be seen in the leftmost image
of Fig. 9. Applying too much regularization results increased
blurring of the focal stack as shown by the rightmost image in
Fig. 9. Selecting the appropriate level of regularization results
in three clearly identifiable points, with significantly reduced
blur as shown in the center image of Fig. 9. In practice,
this parameter can be set experimentally and held constant
as long as the imaging conditions remain the same from one
acquisition to another.

Unfortunately, selection of the optimal regularization pa-
rameter does not ensure complete elimination of artifacts.
These can be seen in the center image in Fig. 9. The
deconvolved points display an X-like pattern resulting from
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Fig. 8. Focal stack for three simulated points.
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Fig. 9. Comparison of the deconvolution utilizing regularization values K =
1× 10−7 (left), K = 1× 10−4 (center), and K = 0.1 (right).

mismatch between the PSF and the object response. The
uppermost point displays the persistent banding in both the
object response and the deconvolved image. These artifacts
cannot be eliminated when implementing a single PSF as the
banding phenomena is shift-variant. While techniques exist
for addressing spatially variant PSFs [47], they increase the
computational burden of the algorithm. Nevertheless, these
results show a significant improvement over the estimate
produced by simply generating a focal stack from the plenoptic
data. As a result, we are able to achieve much improved depth
resolution after deconvolution processing.

E. Volumetric Flame Reconstruction

A final experimental case is presented to demonstrate how
the system characteristics and artifacts demonstrated in the
previous sections impact a volumetric reconstruction with
a real-world system. The plenoptic camera parameters are
presented in Table II. This configuration places the optical
focal plane at 50 cm in front of the camera CCD, or 35.1 mm
in front of the camera aperture. For the experiment, two flames
are utilized as shown in Fig. 10. The first is from a Bunsen
burner located to the right of centerline and 6 cm in front of
the camera focal plane. The second is from a handheld torch
located to the left of centerline and 10 cm behind the camera
focal plane. The plenoptic camera is then used to capture an
image of both flames burning. The sensor data is shown in Fig.
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TABLE II
PLENOPTIC CAMERA PARAMETERS

Lenslet Focal Length fl 0.500 mm
Lenslet Pitch pl 0.125 mm
Pixel Pitch pp 0.0074 mm
Number of Pixels np 3280× 4904
Sensor Size 24 mm× 36 mm
Number of Lenslets nl 193× 289
Main Lens Focal Length fm 100 mm

Fig. 10. Experimental setup showing the plenoptic camera and the two flames
being imaged.

Fig. 11. Sensor data obtained by imaging the experimental setup.

11. Both flames appear blurred in the raw image as neither
flame is on the optical focal plane.

Next, a PSF must be selected. Many possibilities exist for
creating a PSF including imaging a small light source such
as a fiber optic light and generating the resulting focal stack.
This poses challenges with regard to adequate light collection
and preventing imaging the fiber optic cable as well. Simulated
sensor data can be used, but these often neglect characteristics
specific to the camera and lens being used as well as micro-
lens/sensor misalignment artifacts. For this reconstruction, a
combination of the experimentally acquired data and simulated
data is used.

When viewed closely, the pixels associated with each mi-
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Fig. 12. Subset of the camera sensor data showing the pixels illuminated
underneath each lenset.

crolens can be identified across the camera sensor. A subset of
the pixels from the central portion of Fig. 11 is shown in Fig.
12. The pixel values are normalized in the subset to clearly
show the illuminated pixels. The sensor response to a point
source can be simulated by first realizing that a point centered
on the optical focal plane, centered on one of the micro-lenses
shown in Fig. 12 will illuminate all of the underlying pixels
uniformly. The sensor response is then simulated by choosing
a centrally located micro-lens, setting the associated pixels to
the maximum value, and setting the remaining sensor pixels
to zero. The result is shown in Fig. 13.This method offers a
suitable compromise for the purposes of this experiment.

The deconvolution begins by creating a focal stack of both
the flame image and the PSF. Figure 14 shows an x−y slice of
the volume, a single focal plane, at 44 cm where the Bunsen
burner is in focus. This focal plane clearly shows the image
blur resulting from the torch flame 16 cm further from the
camera. In a blur-free image, we would expect to see only the
in-focus Bunsen burner flame on the right side of the image.
An (x, z) slice through the flames shown in Fig. 15 provides
another view demonstrating how the energy from each flame
is spread into adjacent focal planes. Again, in the absence of
image blur, each flame would be localized to the planes where
the flame is present, rather than smeared into adjacent planes
as shown in the figure. Note that the scaling of the z-axis is
the result of choosing a linear spacing between image-space
samples, which results in a nonlinear sampling in object space.
Sample spacing in object space is determined using the thin
lens approximation

1

fm
=

1

si
+

1

s′
(32)

where si is the image distance and s′ is the object distance
and fm is the main lens focal length.
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Fig. 13. Simulated sensor data used for PSF generation.
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Fig. 14. Slice of the focal stack along the (x, y) plane at z = 44 cm.
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Fig. 15. Slice of the focal stack along the (x, z) plane at y = 6.1mm
depicting image blur in the z-direction.
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Fig. 16. Slice of the deconvolved volume along the (x, y) plane at z =
44 cm. Image scaled by 50% for better visibility.
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Fig. 17. Slice of the deconvolved volume along the (x, z) plane at y =
6.1mm depicting the reduced blur in the z-direction.

Performing the deconvolution, and considering the same
(x, y) and (x, z) slices as before shows a significant reduction
in out-of-plane energy. Of particular note, the blur from the
torch flame is almost completely eliminated in the (x, y)
slice at 44 cm shown in Fig. 16, while the structure of the
Bunsen burner flame is now well defined. Examining the same
(x, z) slice as before shows how the image blur is drastically
reduced in the z-direction in Fig. 17, and again, the structure
of the flames is well defined in-plane. The out-of-plain blur
is not completely removed in the reconstruction, which is
primarily the result of mismatch between the PSF and the
object response.

The deconvolution for the 3D case presented required less
than 10 seconds on a typical laptop without the benefit of
parallel processing. Unfortunately, the integral-based refocus-
ing algorithm used to generate the focal stacks for both the
example volume and the PSF is processor intensive and can
require an order of magnitude more time to complete. This
algorithm is easily parallelizable, and such algorithms have
been demonstrated in our lab to generate similar focal stacks
twice as fast as a non-parallel algorithm. Nonetheless, a faster
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method is desirable, and Fourier-based refocusing algorithms
can significantly reduce the total time required to generate
an estimate of the imaged volume. The development of such
algorithms is the subject of future research.

IV. CONCLUSIONS

Deconvolution has been shown to be a highly efficient
means of volume reconstruction from plenoptic data. Given
the PSF and focal stack, the volume can be reconstructed
in seconds. When compared to existing tomographic methods
such as MART which may require several hours to reconstruct
modestly sized volumes [35–37], this is a significant improve-
ment.

However, limitations remain. The algorithm presented here
relies on integral-based refocusing techniques. These integral
based algorithms are computationally intensive and can re-
quire hours to produce the necessary PSF and focal stacks.
Fortunately, FFT-based refocusing algorithms can also reduce
this computation time to seconds as well and is the subject of
future work.

Finally, the quality of the reconstructions obtained via
deconvolution is limited by the mismatch between the PSF
and the object response. While the plenoptic imaging system
impulse response can be modeled as shift-invariant, sampling
and quantization effects result in a highly variable object
response. As a result, a single PSF cannot provide a perfect
reconstruction of the volume. Future work will explore the
possibility of filtering the acquired data and/or the recon-
structed response, as well as the development of iterative
algorithms that can be used either exclusively or in conjunc-
tion with deconvolution to provide improved reconstructions.
However, despite the residual blur, such a reconstruction is
a significant improvement over the initial focal stack. We
have demonstrated the value of the technique for a single
example—reconstructing combustion events that could be used
to improve burner design. This example illustrates the potential
of plenoptic imaging for volume reconstruction in many other
applications as well.
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