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Abstract 

The goal of this study was to characterize the changes in biomass with torrefaction for near 

infrared reflectance (NIR) and attenuated total reflectance Fourier transform infrared (ATR-

FTIR) spectroscopy for sweetgum, loblolly pine, and switchgrass.  Calibration models were built 

for the prediction of proximate analysis after torrefaction.  Two dimensional (2D) correlation 

spectroscopy between NIR and FTIR was found to precisely explain the depolymerization at key 

functional groups located within hemicellulose, cellulose, and lignin.  This novel 2D technique 

also demonstrated the possibility of assigning key NIR wavenumbers based on mid IR spectra. 

Hemicellulose based wavenumbers were found to be most sensitive to torrefaction severity 

with complete degradation at 250-275oC. Lignin associated wavenumbers exhibited the least 

degradation to severity but was still detected with 2D correlation spectroscopy.  Finally, 

calibration models for proximate analysis were performed and while both systems could be 

used for rapid monitoring, NIR performed better than FTIR.   

Keywords: near infrared, mid infrared, torrefaction, biomass, proximate 
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1. Introduction 

Conversion of biomass into energy is an attractive alternative to petroleum based oil as the 

international community looks to lower carbon dioxide (CO2) emissions that are not part of the 

natural renewable cycle.  However, conversion of biomass into bioenergy presents several 

hurdles when compared to petroleum including a lower calorific value and higher moisture 

content due to the hygroscopic nature of biomass.  Torrefaction of biomass is one solution to 

increasing the energy content which is attributable to the reduction in hemicellulose content 

after treating at temperatures in the range of 200oC to 300oC. Another advantage of torrefied 

biomass is the increased hydrophobicity which is due to the degradation of hemicellulose at 

high temperatures which previously allowed for significant moisture sorption because of 

amorphous structure and consequent availability of OH groups of the native hemicellulosic 

structure (Olsson and Salmen, 2004). The torrefaction also targets the amorphous region of 

cellulose at 270 to 300oC which further improves the resistance of the feedstock to moisture 

sorption.  Because lignin is fairly resistant at temperatures below 300oC, what is left is a higher 

concentration of lignin which results in a hydrophobic torrefied biomass (Ehara et al., 2002).  

It is also anticipated that the degradation of hemicellulose will improve the uniformity of the 

biomass feedstock.  However, because lignin is stable and remains for higher energy 

conversion, there are still many phenolic type compounds within the biomass and between 

biomass sources (Ralph and Hatfield, 1991).  This variation in the remaining polymer structure 

after torrefaction will need to be monitored so that processing parameters can be adjusted 
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accordingly.  Rapid techniques to monitor feedstock quality would be useful but should require 

minimal sample preparation and low cost of analysis. 

Near infrared reflectance (NIR) and Fourier transform infrared (FTIR) spectroscopy are two 

vibration based techniques that can rapidly measure the spectra which is associated with the 

key functional groups within the biopolymers.  NIR has been shown to be faster and more 

precise in the prediction of biomass density than FTIR while multivariate models from both 

techniques relied on the vibration of key functional groups (Via et al., 2011). It is this key 

relationship between wood chemistry and spectra that allows for the development of 

multivariate calibration equations for FTIR and NIR.  Recently NIR has shown promise in the 

characterization of torrefied wood to monitor the shift in biomass quality with temperature and 

duration (Rousset et al., 2011b) and has been shown to be sensitive to heat pretreatments as 

low as 121 οC (Huang et al., 2013). 

Still, it would be useful to monitor key process metrics that are traditionally obtained 

through time consuming and proximate analysis such as moisture, ash, volatile matter, fixed 

carbon and higher heating value (HHV).  But torrefaction will apply heat and duration 

treatments that will degrade or modify the fundamental chemistry.  Application of these 

analytical tools to this scenario would also be useful.  Labbe et al. was able to trace the 

disappearance of key functional groups in the mid infrared region as wood-derived-charcoal 

was heated to 350oC (Labbe et al., 2006).  This work also proved fruitful in that they condensed 

the spectra into principal components and was able to successfully partition the biomass by 

thermal treatment while the loadings within the PC was utilized to identify important 
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wavenumbers.  Likewise, NIR has been utilized to characterize the biomass with increases in 

temperature.  For example, when wood was exposed to 220oC for 4 hours, it was found that 

there were changes in the spectra related to the change in OH, CH, CH2, and CH3 overtone 

vibrations (Schwanninger et al., 2004).  

Because of the sensitivity of NIR and FTIR spectra to changes in temperature, duration of 

exposure, and the consequent change in functional groups, it is hypothesized that accurate and 

precise multivariate models can be built for important proximate analysis metrics that may be 

related to these functional groups.  Proximate analysis and HHV will be measured using 

standard techniques and multivariate models from FTIR and NIR spectra will be built.  

Furthermore, the assignment of functional groups in the near infrared domain as given in the 

literature (Schwanninger et al., 2011) will be confirmed through two dimensional (2D) 

correlation analyses with FTIR spectroscopy.  This 2D technique has been shown to be a 

powerful analytical tool that can partition and explain the relationship between the spectra in 

the NIR and mid infrared region for subtle changes in cellulose, hemicellulose, and lignin 

content (Barton et al., 1992).  Because temperature modification is more extreme than subtle 

changes in wood chemistry, it is anticipated that 2D correlation spectroscopy should accurately 

identify and assign wavelengths in the NIR region based on strong correlations to the mid 

infrared region.  The goal of this study was to characterize the changes in biomass with 

torrefaction for near infrared reflectance (NIR) and attenuated total reflectance Fourier 

transform infrared (ATR-FTIR) spectroscopy for sweetgum, loblolly pine, and switchgrass.  

Multivariate models and 2D correlation spectroscopy will be utilized to better under the 

sequence of depolymerization with thermal exposure. 



6 
 

2. Methods 

2.1 Materials, Heat Treatment and Experimental Design 

Detailed procedure for sample preparation and torrefaction of biomass samples can be 

found elsewhere (Carter, 2012).   Briefly, loblolly pine (Pinus taeda), sweetgum (Liquidambar 

styraciflua) and switchgrass (Panicum virgatum) were acquired from the Research Station at 

Auburn University. Loblolly is the most commercially important softwood in the southern 

United States and was chosen as the most likely conifer feedstock.  Sweetgum was chosen 

because it is an underutilized but fast growing hardwood in the same geographical region as 

loblolly. Finally, switchgrass was chosen due to its north-south range and ecological dominance.  

Each of the three biomass types was treated at three temperatures and three times, and the 

experimental design utilized for calibration can be observed in Table 1.  At the end of the 

treatment time, the biomass samples were pulled from the furnace and immediately placed in 

desiccators for characterization. 

2.2 Biomass Characterization   

Moisture content of each sample was found using an Ohaus moisture analyzer (model 

MB45, Parsippany, NJ).  Ash content was found according to NREL (web reference).  For volatile 

matter determination, samples were shipped to Hazen Research Laboratory ( Golden, CO) for 

analysis using ASTM D3175-11.   Fixed carbon (FC) of the samples was determined indirectly 

according to the Eqn. 1 

FC% = 100% - ashdry% - volatile%    (1) 
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The energy content of the biomass was measured with a bomb calorimeter (IKA Works Inc. 

Model C200, Wilmington, NC).  Average values were reported based on three measurements.  

 

2.3 Vibration Spectroscopy 

Mid -IR spectra were collected between 4000 and 650 cm-1 using a PerkinElmer Spectrum 

model 400 (Perkin Elmer Co., Waltham, MA).  This equipment utilized a single reflectance ATR 

diamond with a repeatable vertical pressure between samples to ensure repeatability in 

spectra acquisition between samples.  Within a sample, the spectra was collected within 10 

seconds of applying the vertical load since relaxation of the polymer can occur over time 

resulting in decreased absorbance of the mid infrared spectra.  The ATR diamond was cleaned 

with acetone prior to data collection.  All scans were carried out at room temperature which 

was approximately 22oC ± 1.  Even though the samples were torrefied, care was taken to 

replicate the time out of the sample to minimize error due to moisture pickup.   

The NIR spectra were acquired between 10000 to 4000 cm-1 wavenumbers.  Wavenumbers 

were utilized in preference over wavelengths so that NIR and Mid-IR could be compared 

utilizing the same units.  The same PerkinElmer Spectrum model 400 (as mid IR) was utilized to 

capture the NIR but with an NIR module.  The sample window (0.8 cm) was cleaned with 

acetone prior to spectra collection.  All scans were performed at 4 nm resolution and a single 

scan consisted of an average of eight scans from the same position.  A reference check was run 

every 20 minutes using a Spectralon standard. 

2.4 Chemometric Analysis 
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To facilitate NIR modeling in the statistical analysis software (SAS) package, the spectra in 

the near infrared region was reduced to 10 nm intervals prior to the conversion to 

wavenumbers; likewise, the mid infrared region was also reduced to 10 cm-1 interval because 

the SAS software was likewise unable to process larger data matrixes (Via et al., 2011).  This 

procedure was found to allow for data analysis of large data matrixes without degradation of 

calibration equations (Via et al., 2011).  The spectra was then adjusted to a mean =0 and a 

standard deviation =1 to allow for equal comparison of loadings across different wavenumbers.  

In addition to the native spectra, the 1st derivative was computed to remove baseline shifts and 

was calculated as the slope between two adjacent points across the entire wavenumber range.   

The spectra in the IR and NIR range was then reduced to principal components as defined in 

Eqn. 2 and 3.   

PC1 = C11W1  + C12W2 +….  C1jWj    (2) 

PC2 = C21W1  + C22W2 +….  C2jWj    (3) 

In which the coefficient C represents the loading or weight of the linear combination equation 

at Wj and W represents the absorbance at the jth wavenumber.  PC1 represents the dimension 

in the data matrix with the largest source of variation, PC2 accounts for the second largest 

source of variation, and PClast (the last PC) accounts for the dimension with the smallest source 

of variation.  However, during analysis, the top 10 PC’s accounted for > 99% of the overall 

variation for both NIR and FTIR and thus the total factors/PC’s for analysis were restricted to a 

maximum of 10.  Wavenumbers with high absolute coefficients |C| represent a higher 

influence on that dimension.  This procedure (Eqn. 2-3) was repeated for each PC in which the 
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number of factors (PC’s) equals the number of wavelengths (j) although only the top 10 PC’s 

were retained for modeling. The algorithm sets the following scaled conditions when 

computing Cij (Eqn. 4): 

 C11
2 + C12

2 + …. Cij
2 = 1    (4) 

And the covariance matrix S can be defined as 

 S = 1/(n-1)W’W   (5) 

in which the PC’s are the eigenvectors of the covariance matrix of the absorbance’s that make 

up the spectra and the variances along each dimension are the eigenvalues of S.  For a more 

detailed discussion on these equation derivations, please refer to Cowe and McNicole (1985). 

Then principal components regression (PCR) models were computed using standard multiple 

linear regression routines in SAS and following the Full Eqn. 6. 

 Y = C1PC1 + C2PC2 + …..+ CiPCi + ei  (6) 

In which e is the random error and Y is the proximate analysis metric of interest. Eqn. 6 was 

shortened to a reduced model in which only CiPCi combinations with a p-value of the slope < 

0.05 were retained for prediction of the metric Y. 

  Regression diagnostics were analyzed to determine which calibration models were the most 

robust, accurate, and precise.  These diagnostics included root mean square error for 

calibration (RMSEC), R2, and adjusted R2.  For model cross validation, the predicted sum of 

squares (PRESS) error was calculated and converted to a RMSEP following the equations given 
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in (Casal et al., 1996).  The RMSEP was plotted against the number of PC’s (not shown) to 

determine the cut-off point between too many and too few parameters.   Selection of too few 

parameters results in models that only provide a rough approximation of the experimental data 

while selection of too many variables results in overfit.  Overfit is a common problem in which 

too many variables are added to the model which inflates the apparent performance during 

calibration but performs poorly when new samples are measured.  The backward selection 

method was used to determine which principal components were necessary for prediction of 

the independent variables (proximate analysis). Additionally , a p-value criteria < 0.05 was set 

for variable selection to ensure that the reduced model from Eqn. 6 did not futher result in 

overfit. 

3. Result and Discussion 

3.1 Proximate analysis and heating value  

Table 2 shows the results for proximate analysis of the samples.  Ash and fixed carbon 

contents of the treated samples increased while volatiles decreased as the temperature and 

time of treatment increased.  At the most intense treatment conditions, each biomass type 

showed a decrease in volatile content of up to ~50%, while ash percentages approximately 

doubled, and fixed carbon percentages tripled.  Only volatile matters are driven off the biomass 

during torrefaction, leaving the ash and fixed carbon portions.  These trends agree with other 

studies of torrefied biomass (Prins et al., 2006).    

3.2 NIR spectral response 
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Between 10,000 and 7,000 cm-1, a lower baseline shift was observed when transitioning 

from the control to 225oC and this was in spite of the slightly darker color in the samples 

(spectra not shown).  A similar observation was observed for sweetgum and switchgrass.  Color 

changes were observed from darker brown at lower temperatures to nearly black at 300oC.  

This agrees with Deng et al. who observed only a mild brown color at lower torrefaction 

temperatures but black for samples treated at 300oC. It is theorized that the downward shift in 

spectra at 225oC may be attributable to the degradation of hemicellulose that occurs around 

that temperature resulting in lower densities of the individual particles. With lower density, the 

absorbance will decrease as a function of lower concentrations of these amorphous structures.  

At this temperature, cellulose has been shown to show considerable resistance to thermal 

cleavage of the polymer while hemicellulose degradation is just beginning.  For example, at 

230oC only 3% of the hemicellulose was consumed for hemicellulose that was extracted from 

bagasse and processed with thermal gravimetric analysis (Chen and Kuo, 2011a).   

  Given the complex baseline shift in spectra with thermal degradation that was observed, 

the first derivative was applied to increase the sensitivity of key peaks with increases in 

temperature (pretreated spectra not shown).  Conversion of the spectra to the first derivative 

after torrefaction will help to improve the precision of the peaks that may not be seen in the 

native spectra due to broad overlapping peaks that are common in the near infrared region 

(Rousset et al., 2011b).  The wavelength 5220-5051cm-1 has been shown to be related to the O-

H stretch and deformation in water and was sensitive to torrefaction in this study; however, it 

should be pointed out that dehydration of free and then bound water occurs well below the 

temperatures in this study. As such, the degradation of wavelengths between 5220-5051 cm-1 is 
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probably attributable to the reduction in O-H groups that occurs during torrefaction.  This was 

observed for torrefied beach in which the same wavelength range diminished as the 

temperature increased coupled with 8 hour duration (Rousset et al., 2011b).   

The wavenumber at 7410, 6003, and 5848 cm-1 were sensitive to temperature increases and 

can be associated with hemicellulose degradation.  The wavenumber 7410 cm-1 appeared most 

sensitive to temperature increases particularly at temperatures equal to or greater than 250oC.  

This was attributable to the disappearance of CH and CH3 functional groups associated with 

hemicellulose (Phanphanich and Mani, 2011; Schwanninger et al., 2011).  The degradation of 

CH3 was probably associated with the cleavage of acetyl groups in hemicellulose during 

temperature increases which has been shown to be the first to depolymerize under higher 

temperatures (Tjeerdsma and Militz, 2005).  There was also an apparent degredation at 7080 

cm-1 and this may have been attributable to the degradation of O-H bonds in water molecules 

(Schwanninger et al., 2011). 

At 15 minutes duration, there was not much depolymerization of cellulose as indicated by 

the wavenumbers at 6660, 5464, and 4370 cm-1 which was attributable to the O-H, C-O, and C-

H vibrations in cellulose.  However, when longer durations were exposed to the biomass, these 

wavelengths began to also degrade particularly at higher temperatures.  Conversely for lignin, 

as indicated by the lack of degradation of the C-H stretch for aromatic portions of lignin (5980 

cm-1), the lignin based polymer was resistant to thermal depolymerization during torrefaction.  

This was expected as lignin at best only experiences mild depolymerization at temperatures 

tested in this study but typically longer exposure times are required (Shang et al., 2012).  This 
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was indicative of the torrefaction of bamboo in which the concentration of lignin actually 

increased at 280oC based on mid infrared spectra and this was attributed to the resistance of 

the β-O-4 bond to thermal decomposition (Rousset et al., 2011a).   

3.3 NIR versus FTIR two dimensional correlation spectroscopy 

The experimental design in this study allowed for the external perturbation of temperature 

and duration on biomass modification which can then be simultaneously monitored with NIR 

and FTIR.  Two dimensional (2D) correlation methodologies allow for the interpretation of 

changes in the modification of the biomass as temperature or duration increases.  The 

correlation of combination and overtone bands in the NIR can then be associated with 

fundamental vibrations from FTIR. Fig. 1 represents a slice of the NIR versus FTIR in which there 

is significant correlation via the pearson correlation coefficient.  Other graphs were generated 

(not shown ) and the important correlations were summarized in Table 3.  Because of the 

overtone and combination bands in the NIR, there were often wide regions that exhibited 

significant correlation making it more difficult to partition out true peaks.  As such, application 

of the first derivative prior to 2D analysis was found to be partially helpful in resolving the peaks 

in the NIR and mid-IR region (Fig. 1).  Also, the lower r-value regions in the graph had to be 

filtered out and the higher r-value categories were widened to 0.4-0.6 (medium correlation) 

and 0.6 to 0.8 (high correlation) such that only relevant chemical information could be 

extracted from the analysis. 

Significant correlations from the red zones in Fig. 1 and similar graphs (not shown) were 

found to correspond closely when compared to peaks observed with torrefaction.  The most 
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significant peaks from these red zones were then exported to Table 3 and the vibrations 

associated with temperature and duration increases were identified and band assignments 

were performed. It was not surprising that the highest correlation (r=0.84) was attributable to 

the high reactivity and degradation of hemicellulose at 5848 versus 1740 cm-1.  This was 

expected given that hemicellulose degradation begins before cellulose and lignin for the 

temperatures tested in this study.  The significance of 5848 cm-1 was due to the C-H stretch in 

furanose or pyranose and this corresponded to 1740 cm-1 which was attributable to the C=O 

stretch in hemicellulose.   This was observed in another study in which spruce wood was heated 

to 140oC through steam for 5 to 100 hours and the response in the NIR region was monitored.  

They found significant effects of steam treatment on the C-H stretch due to pyranose and 

furanose degradation with time (Mitsui et al., 2008). Other significant correlations associated 

with hemicellulose occurred at 7414 and 6003 versus 1360 cm-1 due to the sensitivity of both 

regions to C-H bonds in hemicellulose.   

Cellulose associated wavenumbers in the NIR region were found to correlate with 

torrefaction severity at 6660, 5464, and 4392 - 4365 cm-1 with the latter exhibiting the strongest 

correlation to FTIR spectroscopy (Table 3).  The assignment at 4392-4365 cm-1 was attributable 

to the weak carbonyl (C=O) stretch in cellulose.  This behavior can be explained by observations 

with CP/MAS 13C NMR in which large concentrations of carbonyl groups were found in the 

torrefied residue due to the eradication of cellulose and hemicellulose for loblolly pine, which 

was one of the three species used in this study (Ben and Ragauskas, 2012). 
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Finally, lignin associated wavenumbers were found to be least resistant to thermal 

treatment both in the NIR and FTIR region.  Nevertheless, significant correlations were found 

between FTIR and NIR region due to the C-H bond associated with the aromatic portion of the 

polymer (Table 3).  These correlations were as high as r=0.77 and could partially be explained 

by the increase in signal clarity as other polymers diminish with temperature increases.  Such 

difficulty in interpretation has been observed by others in which the covariance between 

functional groups of various polymers is high since multiple polymers will depolymerize and 

trend in sequence (Alciaturi et al., 2001).  As such, while powerful, 2D correlation spectroscopy 

should be coupled with more traditional chemometric techniques  to ensure proper analysis of 

the trends within the data analysis. 

3.4 Calibration and prediction capability of NIR and FTIR 

Table 4 demonstrates the ability to calibrate NIR and FTIR for proximate analysis of torrefied 

biomass.  Both techniques proved useful in the rapid monitoring of these traits and could be 

easily implemented in quality control laboratories located at the manufacturing plant.  All 

models required 5 to 8 factors depending on the pretreatment, spectroscopic method, and 

metric.   In all cases, NIR performed slightly to considerably better than FTIR in both R2 and 

RMSEP and on average, the same number of factors for prediction were necessary for both 

systems.  Perhaps the better performance with NIR is to be expected because it has been 

shown to be superior in the calibration of biomass chemistry which should drive the variation in 

proximate analysis.  This was observed for bamboo in which the holocellulose, α-cellulose, 

klason lignin, and extractives content were predicted better with NIR than FTIR (Sun et al., 

2011).  Additionally, Kelley et al. demonstrated good correlations of NIR based partial least 
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squares regression models to fundamental sugars for 15 different types of biomass (Kelley et 

al., 2004).  As Table 3 indicates, it is the degradation (or lack thereof) of functional groups 

within lignin, cellulose, and hemicellulose that is most sensitive to torrefaction severity.  

Furthermore, the HHV has been shown to be nonlinearly associated to fixed carbon and 

volatiles and linearly related to lignin and ash (Demirbas, 2003).  The interrelationship between 

HHV, other proximate analysis, and underlying chemistry helps to explain the successful 

calibration of models in this study although samples from future populations should be 

appended to the calibration model to ensure proper evolution of the model with time (Doublet 

et al., 2013). 

The two best performing calibrations occurred with NIR based spectra to monitor the 

volatiles and fixed carbon both of which saw an adjusted R2 of 0.98 (Table 4).  Perhaps the 

superiority in the volatiles model can be attributed to the nature of torrefaction.  As 

demonstrated in Table 3, the reactivity of the polymers varies with torrefaction severity 

resulting in the unzipping of polymers with hemicellulose exhibiting the most degradation and 

lignin exhibiting the least.  Likewise, the fixed carbon is the residual carbon within the torrefied 

material that was not volatilized and this interrelationship may help to explain the similar 

predictability for fixed carbon as volatiles.  Additionally, as Table 3 demonstrates, the advanced 

ability to predict fixed carbon perhaps should not be surprising given that most band 

assignments are either C-H or C-O. 

The HHV and ash also exhibited strong calibrations with NIR with an adjusted R2 of 0.91 (Fig. 

2 a-e and Table 4).  As discussed earlier, the HHV has complex interrelations with the chemistry, 
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ash, fixed carbon, and volatiles and this complexity could result in higher errors during model 

building resulting in a lower R2, particularly when nonlinear relationships occur.  Since PCR is a 

linear based model, any deviation from linearity will add to the predicted error.  For ash, 

considerable deviation from linearity can be seen with the residuals around the 1:1 line starting 

low and ending low at the edges of the range of the distribution (Fig. 2b).  A similar deviation 

from linearity was observed when predicting ash content for wood and herbaceous biomass 

(Labbé et al., 2008).  In that work, they were only able to alleviate the nonlinearity when 

orthogonal signal correction (OSC) coupled with partial least squares (PLS) regression was used.  

Application of OSC prior to modeling helps to remove unwanted variation in the X matrix while 

PLS can further remove or alleviate deviation issues.  However, this study elected not to pursue 

these types of preprocessing techniques but instead keep the data matrix closer to its native 

state which has been shown to assist in model interpretation (Hair et al., 2006) while PCR was 

chosen because classical statistical theory can be applied during model development.  Instead, 

PLS is better utilized for prediction purposes albeit the advantage over PCR is much less than 

most researchers believe with other advantages including: a requirement of fewer latent 

variables, utilization of correlations with the y variable during score computation, and better 

resistance to nonlinear behavior (Wentzell and Montoto, 2003).   

The moderately strong R2 for ash agreed with other studies which included 20 non-torriefied 

feedstocks (Sanderson et al., 1996) and yellow poplar (Nkansah et al., 2010)  but was much 

better than PLS-NIR models for Miscanthus x giganteus , which yielded only an R2 of 0.58 (Fagan 

et al. 2011).  The prediction of moisture was the worst performer with an adjusted R2 of 0.84 

and part of this error could be witnessed with the negative residuals at higher moisture levels 
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(Fig. 2c).  This was probably attributable to the lower range of moisture that was observed after 

torrefaction which could have reduced the leverage available during model building.  

Additionally, it is probable that a model for moisture content using the simpler PCR method was 

not as strong as other studies which utilized PLS coupled with multiple spectra pretreatments 

(Fagan et al. 2011). Nevertheless, the predictability of the models using PCR were still strong 

with only minor deviations in linearity for most proximate metrics except moisture (Fig. 2).  

Further analysis (not shown) found that adding more factors in these PCR models would have 

reduced or resolved the non-linear issues; however, it could have resulted in overfit as 

indicated by only inappreciable RMSEP improvements.   

Since 2D correlation analysis proved useful in identifying wavenumbers that were sensitive 

to changes in temperature and duration, the calibration models were further investigated to 

understand if severity of treatment had any effect on model development.  To be consistent, 

the 1st derivative was applied for all comparisons to remove baseline variation.  While many 

factors were often necessary to fully model the proximate analysis metrics (Table 4), PC1 and 

PC2 exhibited the most influence on all metrics and for both spectroscopy systems as 

determined by p-values < 0.0001 and suggests a common covariance between biomass 

chemistry and all of the proximate analysis metrics.  As such, other factors (PC3 – PC10) with 

varying levels of coefficents (Eqn. 6) were often necessary to differentiate proximate analysis 

models.  Despite PC1 and PC2 accounting for most of the systematic variance of the FTIR and 

NIR system (>70%), most of the wavenumbers with significant loadings were not associated 

with thermal treatments as exhibited in Table 3.  Wavenumbers that were associated with 

treatment severity for FTIR based models were 1740 (PC2: C=O stretch hemicellulose), 1600 
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(PC2: H2O), and 850 cm-1 (PC4: C-H stretch aromatic) while for NIR models the coefficient 

weights were high at 5464 (PC3,4: O-H str. + C-O str. in cellulose) and 5980 (PC4: C-H stretch 

aromatic) cm-1.  This suggests that multivariate models were somewhat reliant on treatment 

severity but 2D correlation spectroscopy was necessary to identify the suite of functional 

groups associated with thermal degradation. 

4. Conclusions 

The results demonstrated the ability of both spectroscopy techniques to monitor key 

proximate analysis metrics during torrefaction of switchgrass, loblolly pine, and sweetgum.  NIR 

performed better than ATR-FTIR for most multivariate models.  Fixed carbon and volatiles were 

the easiest to predict while ash and higher heating value was also well predicted after 

torrefaction.  Two dimensional correlation spectroscopy proved to be a valuable technique in 

explaining key changes during polymer degradation of hemicellulose and cellulose.  2D 

correlation spectroscopy was also more sensitive to subtle changes in lignin than PCR modeling.   
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Table Captions: 

Table 1. Full factorial design utilized for torrefaction with 3 replications each or n=90 total 

samples. 

Table 2. Physicochemical Properties of torrefied biomass on dry basis 

Table 3. Summary of significant correlations between NIR and FTIR wavenumbers with the 

temperature and duration increases acting as the perturbation on an otherwise homogenous 

material. 

Table 4. Summary of PCR predictions of proximate analysis from NIR and FTIR spectra 
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Figure Captions: 

Figure 1. Two dimensional correlation contour map of the pearson correlation coefficient (r-

value) between wavenumbers in the NIR and Mid IR region where areas in red represent r-

values between 0.6 to 0.9 while areas in gray represent r-values between 0.4 to 0.6.   

Figure 2. NIR predicted proximate analysis from PCR versus that measured from conventional 

methods for (a) volatiles (b) ash (c) moisture (d) higher heating value (e) fixed carbon   
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Table 1 

Full factorial design utilized for torrefaction with 3 replications each or n=90 total samples. 

Factor 1 - Biomass Factor 2 - Temperature (Co) Factor 3 - Duration (minutes) 
Sweetgum Room Temperature (control only) No time duration (control only) 
Pine 225 15 
Switchgrass 250 30 
 275 45 

  



Table 2 

Physicochemical Properties of torrefied biomass on dry basis  

Samplea Proximate Analysis    HHV 

 

Ash  
(wt%) 

Volatiles 
(wt%) 

Fixed Carbon 
(wt%) 

  (MJ/kg) 

Pine (raw) 0.72 80.79 18.49   20.178 

225-15 0.63 80.53 18.84 
 

20.503 

225-30 0.87 76.37 22.75 
 

21.112 

225-45 0.94 65.45 33.61 
 

22.501 

250-15 1.00 76.57 22.43 
 

21.279 

250-30 0.96 70.03 29.02 
 

22.396 

250-45 1.08 59.75 39.17 
 

24.010 

275-15 0.94 70.90 28.16 
 

21.909 

275-30 0.98 56.53 42.49 
 

24.719 

275-45 1.40 43.17 55.43 
 

26.678 

Sweetgum 
(raw) 

1.39 81.41 17.20   19.649 

225-15 1.09 82.24 16.66 
 

20.426 

225-30 1.35 78.43 20.22 
 

20.910 

225-45 1.65 73.27 25.08 
 

22.461 

250-15 1.46 78.40 20.15 
 

19.918 

250-30 1.87 71.54 26.59 
 

21.609 

250-45 2.18 60.02 37.80 
 

22.672 

275-15 1.79 70.87 27.34 
 

21.574 

275-30 2.53 59.64 37.84 
 

23.369 

275-45 3.08 44.27 52.65 
 

25.860 

Switchgrass 
(raw) 

2.71 79.18 18.12   19.498 



225-15 2.77 79.38 17.85 
 

19.389 

225-30 3.75 67.45 28.80 
 

21.409 

225-45 5.39 48.25 46.36 
 

23.988 

250-15 3.67 69.85 26.48 
 

21.018 

250-30 5.37 49.37 45.25 
 

24.344 

250-45 6.62 39.00 54.38 
 

25.451 

275-15 4.21 60.03 35.76 
 

22.625 

275-30 6.40 38.68 54.92 
 

26.246 

275-45 7.24 34.82 57.94   25.952 

a The first and second numbers represent temperature and time of treatment. 

  



Table 3  

Summary of significant correlations between NIR and FTIR wavenumbers with the temperature and 
duration increases acting as the perturbation on an otherwise homogenous material. 

NIR Band 
Location  
(cm-1) 

NIR Band  
Assignment  

FTIR Band 
Location  
(cm-1) 

FTIR Band 
Assignment 

Pearson 
Correlation 
Coefficient 

7410 C-H def. + str. For 
CH3 in hemicellulose 

1360 Aliphatic C-H 
def. 

0.67 

6660 O-H str. in cellulose 900 C-O-H def. 0.41 

6003 C-H str. in CH3 in 
hemicellulose 

1360 Aliphatic C-H 
def. 

0.67 

5980 C-H str. for aromatic 
C-H due to lignin 

1035 Aromatic C-H 
in-plane def. 

0.77 

5848 C-H str. in furanose 
or pyranose of 
hemicellulose 

1740 C=O stretch in 
hemicellulose 

0.84 

5464 O-H str. + C-O str. 
due to semi & 
crystalline cellulose 
region 

1335 C-O-H 
deformation in 
cellulose 

0.67 

5240 Lignin in branch 
material 

850 C-H due to 
aromatic 
structure in 
lignin 

0.68 

5220 - 5051 O-H asym str. and O-
H def. in water 

1600 Water 0.70 

4392 - 4365 

 
 

4392 - 4365 

O-H str. + C-C str. & 
C-H str + C-H def. & 
C-O str. in cellulose 

Same 

1730 Weak carbonyl 
(C=O) stretch in 
cellulose 

0.56 

1280 CH2-O-H def. in 
cellulose 

0.81 

4091 Not assigned 1515 Aromatic 
skeleton 
vibration in 
lignin 

0.72 

  



Table 4  

Summary of PCR predictions of proximate analysis from NIR and FTIR spectra 

 Moisture Ash Volatiles Fixed Carbon HHV 
 NIR FTIR NIR FTIR NIR FTIR NIR FTIR NIR FTIR 
Pretreat Raw Der. Raw Der. Der. Raw Raw Raw Raw Der. 
R2 0.85 0.74 0.92 0.82 0.99 0.91 0.99 0.91 0.92 0.81 
Adj R2 0.84 0.71 0.91 0.81 0.98 0.91 0.98 0.90 0.91 0.80 
RMSEC 0.0048 0.0064 0.0053 0.0080 0.0173 0.0433 0.0135 0.038 0.6076 0.911 
RMSEP 0.0051 0.0072 0.0056 0.0083 0.0181 0.0457 0.0143 0.041 0.6384 1.145 
# Factors 5 8 8 6 7 7 7 5 5 5 
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