
1. Introduction
Increasing nutrient pollution in water bodies has become a global concern (Sinha et al., 2017). Excessive agri-
cultural nitrogen (N) leached from soils and transported through river channels is a major driver of the formation 
and extent of hypoxic zones and algal blooms in estuaries and coastal waters (Howarth et al., 2000; Howarth & 
Marino, 2006). Since the 1960s, synthetic N fertilizer use has increased ninefold globally (Lu & Tian, 2017), 
resulting in widely documented degradation of water quality (Evans et al., 2012; Grizzetti et al., 2011; Rabalais 
et al., 2007). Climate change is expected to increase the riverine N loading in many regions around the world 
(Howarth et  al.,  2006). Human-induced climate change has influenced the occurrence and the magnitude of 
extreme climatic events (National Academies of Sciences, Engineering, and Medicine, 2016). Therefore, under-
standing the response of land-to-aquatic N loading to extreme climatic events is urgent and critical for better 
N management and the assessment of progress toward reducing riverine N loading. Although previous studies 

Abstract While spatial heterogeneity of riverine nitrogen (N) loading is predominantly driven by the 
magnitude of basin-wide anthropogenic N input, the temporal dynamics of N loading are closely related to 
the amount and timing of precipitation. However, existing studies do not disentangle the contributions of 
heavy precipitation versus non-heavy precipitation predicted by future climate scenarios. Here, we explore 
the potential responses of N loading from the Mississippi Atchafalaya River Basin to precipitation changes 
using a well-calibrated hydro-ecological model and Coupled Model Intercomparison Project Phase 5 climate 
projections under two representative concentration pathway (RCP) scenarios. With present agricultural 
production and management practices, N loading could increase up to 30% by the end of the 21st century 
under future climate scenarios, half of which would be driven by heavy precipitation. Particularly, the RCP8.5 
scenario, in which heavy precipitation and drought events become more frequent, would increase N loading 
disproportionately to projected increases in river discharge. N loading in spring would contribute 41% and 
51% of annual N loading increase under the RCP4.5 and RCP8.5 scenarios, respectively, most of which is 
related to higher N yield due to increases in heavy precipitation. Anthropogenic N inputs would be increasingly 
susceptible to leaching loss in the Midwest and the Mississippi Alluvial Plain regions. Our results imply that 
future climate change alone, including more frequent and intense precipitation extremes, would increase N 
loading and intensify the eutrophication of the Gulf of Mexico over this coming century. More effective nutrient 
management interventions are needed to reverse this trend.

Plain Language Summary Future climate change is expected to alter nutrient transport from 
land to rivers, which will have impacts on coastal ecosystems. The impacts of future precipitation changes on 
nitrogen (N) loading, however, remain unclear. Based upon a well-tested hydro-ecological model, this study 
separates the roles of future heavy precipitation, non-heavy precipitation, and no-precipitation days in affecting 
N leaching loss and predicts the changes in N loading to the Gulf of Mexico. N loading is projected to increase 
by 30% under two climate scenarios (RCP4.5 and RCP8.5) by the end of the 21st century, half of which is likely 
driven by heavy precipitation. Future increases in spring heavy precipitation likely result in higher N leaching 
loss and enhance N loading. Our results indicate that more effective nutrient reduction efforts will be needed to 
reach the reduction goals of N loading and hypoxia extent in the Gulf of Mexico.
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have demonstrated the impacts of historical precipitation events on riverine N loading (Lu et al., 2020; Sinha 
et al., 2017; Tian et al., 2020), it remains unclear how future changes in the intensity and timing of precipitation 
events will affect riverine N loading.

Previous study has shown that year-to-year variations in precipitation amount drive over three-quarters of the 
interannual variability of N loading, and extreme precipitation events have been reported to only slightly influ-
ence N loading variations (Ballard et al., 2019; Donner & Kucharik, 2003; Sinha et al., 2017; Sinha & Micha-
lak,  2016). However, other research shows that heavy precipitation could play an important role in enhanc-
ing nutrient loading under both historical and projected climate change conditions across scales (Carpenter 
et al., 2018; Zheng et al., 2020). Particularly, heavy rainfall after multiyear dry spells could potentially increase N 
loading in the Susquehanna River Basin by 40%–65%, leading to enlarged hypoxic zones (Lee et al., 2016). Such 
a debate on the heavy precipitation impacts on N loading arises primarily for two reasons: (a) existing research 
solely focused on the changes in annual or monthly precipitation (Ballard et al., 2019; Sinha & Michalak, 2016), 
which did not quantify the contributions of precipitations with different intensities (e.g., heavy precipitation vs. 
non-heavy precipitation) on N loading at a daily time step, and (b) re-assembled natural climate variability and 
continuity were used to force factorial modeling experiments (Lee et al., 2016), which did not necessarily reflect 
the real-world spatiotemporal changes in N loading. These methodological limitations raise the concern that 
future N loading will be difficult to predict without fully considering the various impacts of heavy and non-heavy 
precipitation in the coming decades.

Nutrient discharge from the Mississippi Atchafalaya River Basin (MARB) in the United States forms the world's 
second-largest hypoxic zone in the receiving Gulf of Mexico (Thomas & Rahman, 2012). A previous study has 
shown that the MARB will likely experience large increases in heavy precipitation in the coming century (Jans-
sen et al., 2016). Here, we quantify the impacts of future precipitation events (e.g., rain and snow) with different 
intensities on riverine N loading across the MARB using a daily time-step process-based hydro-ecological model, 
the Dynamic Land Ecosystem Model (DLEM). The DLEM model considers the short-term and long-term legacy 
effects of precipitation on changes in water and N yield (Lu et al., 2020; Tian et al., 2020). In DLEM, snowfall 
does not directly induce N leaching or loading but can affect soil moisture in early spring due to snow melting, 
altering water yield (i.e., surface and subsurface runoff) as well as N yield. Such processes may not be triggered 
until the snow starts melting in DLEM. This delayed effect will apply to the extreme snowfall as well. The goals 
of this study are to (a) examine the patterns of future heavy precipitation (HP, daily precipitation is over the 
monthly 90th percentiles) across the MARB under two climate scenarios (i.e., two representative concentration 
pathways [RCPs] scenarios, namely RCP4.5 and RCP8.5 as known as a “medium stabilization scenario” and a 
“ high baseline emission scenario”, respectively, based on greenhouse gas concentration trajectories; Figure 1), 
(b) estimate the contributions of annual total precipitation (TP), HP events, non-HP events, and no-precipitation 
days to water yield and N yield across the MARB by the end of the century, and (c) identify the spatial hotspots 
of increases in water yield and N yield driven by precipitation intensity change. We use the climate projections 
generated by three Coupled Model Intercomparison Project 5 (CMIP5) models to force a hydro-ecological model, 
DLEM, that incorporates land hydrological and biogeochemical processes with a networked river system. Over 
the study period, the MARB exhibits no significant trends in annual precipitation under future climate scenarios. 
This near-stationarity in annual precipitation exposes the role of daily variations of precipitation intensity in 
driving N loading. Our analysis shows that HP is strongly associated with increases in water and N yield by the 
end of the century.

2. Methods
2.1. Data Sources

We obtain the future (defined as 2018–2099) daily climate data (temperature, precipitation, and shortwave radi-
ation) from the Multivariate Adapted Constructed Analogs (MACA)v2-METDATA data set (http://www.clima-
tologylab.org/maca.html) that is at 4  ×  4  km 2 resolution for the United States. They are generated by three 
CMIP5 Earth System Models (ESMs) for the RCP4.5 and RCP8.5 scenarios (Table 1). Among the three ESMs, 
the HadGEM2-ES and the GFDL-ESM2G respectively represent the high and low bound of the projected global 
climate warming in the 21st century (Figure 1a), and the CNRM-CM5 is representative of the mid-values of 
equilibrium climate sensitivity in the CMIP5 suite. The climate data are resampled to 5-arc min resolution using 
the inverse distance weighted interpolation to match the resolution of other input drivers used in this study. The 
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historical climate data from 1979 to 2017 are downloaded from the MACA Training Data (https://climate.north-
westknowledge.net/MACA/MACAtrainingdata.php). These training climate data, which are used to bias-correct 
and downscale the CMIP5 climate data in both the historical and future periods, are from the observation-based 
METDATA climate data developed by Abatzoglou (2013). The MACA downscaling method exhibits well perfor-
mance in temperature, humidity, wind, and precipitation due to its ability to jointly downscale temperature and 
dew point temperature and its use of analog patterns rather than interpolation (Abatzoglou & Brown, 2012). 
For the period from 1901 to 1978, we use the CRU-NARR climate data (Mesinger et  al.,  2006; Mitchell & 
Jones,  2005) to drive our model in the way as our previous studies (Lu et  al.,  2018,  2020; Yu et  al.,  2018). 
To develop a spatiotemporally consistent climate data set, we adjust the CRU-NARR climate data based on 
the MACA historical training data, namely the METDATA, by using a revised delta method (Liu et al., 2013). 
We first calculate a long-term average annual temperature and monthly temperature from 11 overlapping years 
(1979–1989) for the two climate data sources. The ratio of monthly temperature range between the two datasets 
is calculated as:

𝑅𝑅 =
(

𝑇𝑇
𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡
− 𝑇𝑇

𝑚𝑚𝑡𝑡𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡

)

∕
(

𝑇𝑇
𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀𝑅𝑅𝐶𝐶−𝑁𝑁𝑀𝑀𝑅𝑅𝑅𝑅
− 𝑇𝑇

𝑚𝑚𝑡𝑡𝑡𝑡

𝑀𝑀𝑅𝑅𝐶𝐶−𝑁𝑁𝑀𝑀𝑅𝑅𝑅𝑅

)

 (1)

where 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴−𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴−𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚
 are the maximum and minimum monthly temperatures from the MACA histor-

ical training climate data; 𝐴𝐴 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶𝐶𝐶−𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶
 and 𝐴𝐴 𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶𝐶𝐶−𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶
 are the maximum and minimum monthly temperatures 

Figure 1. Mean annual temperature (a) and annual total precipitation (b) in the MARB for the historical period (1988–2017) 
from instrumental measurements by the METDATA climate data (Abatzoglou, 2013) and future period (2018–2099) 
projected by the three Coupled Model Intercomparison Project 5 (CMIP5) climate models. The shaded area in (a) and (b) 
indicates the standard deviation across the three CMIP5 models. The red curves indicate the historical period from 1988 to 
2017.

Model name
Original 

resolution
Adjusted 
resolution

Model 
country

Historical 
period

Future 
period References

CNRM-CM5 1.4° × 1.4° 0.083° × 0.083° France 1961–2017 2018–2099 Voldoire et al. (2013)

GFDL-ESM2G 2.5° × 2.0° 0.083° × 0.083° USA 1961–2017 2018–2099 Dunne et al. (2013)

HadGEM2-ES 1.88° × 1.25° 0.083° × 0.083° UK 1961–2017 2018–2099 Collins et al. (2011)

Table 1 
CMIP5 Models Used for the Simulations
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from the CRU-NARR data from 1979 to 1989, respectively. Then we calculate the difference between the MACA 
annual temperature and the adjusted CRU-NARR annual temperature:

Δ𝑇𝑇 = 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶−𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 ×𝐶𝐶 − 𝑇𝑇𝑀𝑀𝑁𝑁𝐶𝐶𝑁𝑁−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (2)

where 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶−𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶 is the 11-year annual average temperature of the CRU-NARR data, 𝐴𝐴 𝐴𝐴 is the above-esti-
mated ratio, and 𝐴𝐴 𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 11-year annual average temperature of the MACA-training data. The daily 
CRU-NARR temperature data from 1901 to 1978 are then adjusted as:

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑎𝑎 ×𝑅𝑅 − Δ𝑇𝑇 (3)

where 𝐴𝐴 𝐴𝐴𝑑𝑑 is the original CRU-NARR daily temperature, and 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the adjusted daily temperature that is used 
to drive simulations in this study. Through this modification, we not only modify the magnitude of CRU-NARR 
temperature but also reserve the annual amplitude signal from the MACA training data. The adjustment of radi-
ation data is the same as the temperature data. Because the precipitation data is not continuous, we adjust the 
precipitation by using the ratio (R′) of annual average precipitation between the two data sources:

𝑅𝑅
′ =

(

𝑃𝑃
𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∕𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑅𝑅𝐶𝐶−𝑁𝑁𝑀𝑀𝑅𝑅𝑅𝑅

)

 (4)

where 𝐴𝐴 𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶−𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶
 are the annual average precipitation from 1979 to 1989 from the MACA-train-

ing data and the CRU-NARR data, respectively.

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑎𝑎 × 𝑅𝑅
′ (5)

where 𝐴𝐴 𝐴𝐴𝑑𝑑 is the original CRU-NARR daily precipitation, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the adjusted CRU-NARR daily precipitation, 
and 𝐴𝐴 𝐴𝐴

′ is the ratio of the annual total precipitation averaged from 1979 to 1989 calculated between the two climate 
data sources.

Atmospheric CO2 concentration for the 21st century is retrieved from the RCP Database (version 2.0) for the two 
examined scenarios (Clarke et al., 2007; Riahi et al., 2007; Smith & Wigley, 2006; Wise et al., 2009). Specifi-
cally, the RCP4.5 scenario represents the radiative forcing level stabilizes at 4.5 W m −2 before 2100 by utilizing 
a range of technologies and strategies for reducing greenhouse gas emissions (Thomson et al., 2011), and the 
RCP8.5 scenario stands for the radiative forcing level at 8.5 W m −2 characterized by high greenhouse gas concen-
tration levels over time (Riahi et al., 2011).

The historical spatial N deposition data are obtained from the National Atmospheric Deposition Program (NADP) 
for the period 2000–2017 and extended to the period before 2000 by following the trend of global gridded N 
deposition data (Dentener, 2006; Wei et al., 2014). The time-series gridded data of historical crop-specific N 
fertilizer use rate, timing, and types used in this study are from Cao et al. (2018). Historical land use and land 
cover change data used in this study are from Yu and Lu (2018), which includes time-varying gridded maps of 
crop types from 1850 to 2016. The dynamic extent of cropland distribution and interannual crop rotations are 
incorporated in our simulations through this historical land-use data. Manure N application data are obtained 
from Yang et al. (2016) at 5-arc × 5-arc min 2 resolution. DLEM also incorporates legume crops that fix atmos-
pheric N (e.g., soybean and alfalfa). Biologically fixed N is simulated and added into the soil available N pools 
for crop uptake and N transformation. N from biomass turnover and residual after harvesting also enters into soil 
N pools and poses legacy effects for crops planted next year. The details of model input data and model structure 
can be found in the Supporting Information of Lu et al. (2020).

2.2. Partitioning Precipitation Into Heavy, Non-Heavy, and No-Precipitation Conditions

To partition precipitation events into “heavy,” “non-heavy,” and “no-precipitation” conditions, we define heavy 
precipitation when daily precipitation is over the monthly 90th percentiles. This definition allows spatial compar-
ison across a large region and accounts for seasonality (Zhang et al., 2016). For easy comparison with extreme 
climate indices, the monthly 90th percentiles are estimated using all daily precipitation from days with precip-
itation greater than or equal to 1 mm in each month over the climatological baseline period 1961–1990. HP is 
identified at the grid cell level when the monthly 90th percentile threshold is surpassed. As a result, the days with 
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precipitation less than the 90th percentiles but larger than 1 mm are defined as non-heavy precipitation days. The 
days with precipitation less than or equal to 1 mm are defined as no-precipitation days.

2.3. Model Descriptions

Water and N yield: We use an improved version of the DLEM (version 2.0) that is developed to explicitly model 
carbon (C) and N cycling, water balances, vegetation structure and growth, and senescence dynamics of managed 
ecosystems (Liu et al., 2013; Lu et al., 2018; Tian et al., 2010; Yu et al., 2020). Particularly, the DLEM is capa-
ble of simulating water flow and N fluxes from land ecosystems (crops, grasslands, forests, etc.) to streams and 
rivers. The N considered in DLEM includes dissolved organic N (DON), dissolved inorganic N (DIN: NO3-N 
and NH4-N), and particulate organic N (PON). Since DIN constitutes over two-thirds of total N (TN) loading 
to the Northern Gulf of Mexico (Aulenbach et al., 2007; Scavia et al., 2017), we only quantify daily fluxes of 
DIN leaching and loading in this study. The representations of DIN leaching in DLEM are shown as following 
equations.

𝐿𝐿𝑁𝑁𝑁𝑁4 = 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁4 ×𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁4 ×
𝑞𝑞𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑑𝑑𝑠𝑠𝑎𝑎𝐷𝐷𝑠𝑠

𝑊𝑊 + 𝑞𝑞𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑑𝑑𝑠𝑠𝑎𝑎𝐷𝐷𝑠𝑠
∕𝑏𝑏𝑁𝑁𝑁𝑁4 (6)

𝐿𝐿𝑁𝑁𝑁𝑁3 = 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3 ×𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁03 ×
𝑞𝑞𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑑𝑑𝑠𝑠𝑎𝑎𝐷𝐷𝑠𝑠

𝑊𝑊 + 𝑞𝑞𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑑𝑑𝑠𝑠𝑎𝑎𝐷𝐷𝑠𝑠
∕𝑏𝑏𝑁𝑁𝑁𝑁3 (7)

where 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁4 and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁3 are ammonia and nitrate leaching rates, 𝐴𝐴 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁4 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁3 are soil available ammonia 
and nitrate, 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are surface and subsurface runoff, 𝐴𝐴 𝐴𝐴  is soil moisture content, and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁4 and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁3 are 
plant-dependent parameters, representing the soil buffer effect of available N. 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁4 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁03 are dissolving 
efficiency coefficients for NH4 and NO3, respectively, which are tuned in the model (by default it is 0.2 for NH4-N 
and 1 for NO3-N). The daily change in soil NH4-N and NO3-N pools is determined by the difference between N 
input (e.g., N deposition, N fertilizer use, manure N, biological N fixation) and N output (plant N uptake, nitrous 
gas emission, N leaching, and N loss due to other unknown pathways). The internal N transformation due to 
mineralization, immobilization, nitrification, and denitrification also contributes to partition N into reduced and 
oxidized inorganic N pools and organic N pools.

In DLEM, leached N is delivered from the land to water bodies along with water movement. The daily lateral 
fluxes of both water (e.g., surface runoff and sub-surface runoff) and N enter two logical water pools, namely 
surface water pool and drainage water pool, before flowing into streams and lakes. The simulating time step for 
water flux from the land to the water pools is 30 min. The N fluxes entering into the two pools are calculated 
based on allocation ratios that are determined by the surface runoff and sub-surface runoff. The details of the 
calculation can be found in Lu et al. (2020).

Land use and drought-induced crop mortality: Each grid cell in DLEM is a cohort of up to four natural plant 
functional types and one cropping system with its annual area percentage prescribed by land use input data. In 
this study, the distribution and physiological properties of corn, soybean, winter wheat, spring wheat, rice, and six 
other major crop types are specified across the MARB. The model is parameterized to approach the observations 
of annual gross primary production, and crop yields collected from multiple sites and county-level records across 
the United States (Lu et al., 2018; Yu et al., 2019). To characterize the impacts of severe drought, we add a module 
to represent crop mortality when drought intensity exceeds a threshold, which is based on air temperature and soil 
water content (Mananze et al., 2019).

Agricultural management practices: This version of DLEM also models the impacts of various agricultural 
management practices, including applications of synthetic N fertilizer and manure on crops, the effects of tile 
drainage on surface runoff, and the effects of technology innovations for crop yield improvement (Lu et al., 2018). 
The time-series gridded data of historical crop-specific N fertilizer use rate, timing, and types (e.g., NH4-N and 
NO3-N) are used to drive the DLEM model. Specifically, N fertilizer is applied at four timings in DLEM, namely 
before-planting (in spring before crop development), at-planting (in spring during crop planting), after-planting 
(early summer shortly after crop early development), and after-harvesting (late fall). The four N fertilizer timings 
are linked with the phenology for each fertilized crop type. The amount and type of applied N fertilizer at each 
timing a were derived from the reconstructed fertilizer management history data (Cao et al., 2018). Along with 
chemical N fertilizer data, manure N is applied based on the prescribed input data set. Our previous modeling 
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study has confirmed that the DLEM model captures the effects of N application amount and seasonality on the N 
yield and delivery from the MARB to the Gulf (Lu et al., 2020).

In DLEM, a percentage map of the tile-drained area is used to accelerate the water infiltration rate. The tile-drained 
land area percentage in a grid cell could range from 0% to 100% (Figure S1 in Supporting Information S1). The 
subsurface water flow is then accelerated by the adjusted infiltration rate, leading to faster runoff than the case 
without tile drainage. The impact of tile drainage is calibrated against the data from Malone et al. (2017). More 
details regarding tile drainage impacts can be found in Yu et al. (2018).

2.4. Model Calibration and Validation

We have calibrated the key parameters that regulate crop net primary productivity, soil organic C content, and water 
loss through evapotranspiration across multiple sites of the United States (Lu et al., 2018; Yu et al., 2018, 2019). 
In this study, we further calibrate parameters that control river discharge, soil N leaching, and riverine N loading. 
The simulated monthly streamflow and N loading to the Gulf of Mexico from 1980 to 2017 are validated by 
comparison with observed streamflow and N loading data obtained from the Mississippi River at St. Francisville, 
Louisiana (site ID 07373420) and Atchafalaya River at Melville, Louisiana (site ID 07381495) USGS monitor-
ing sites and gauging stations (Figure S2 in Supporting Information S1). The USGS-derived riverine NO2-N, 
NO3-N, and NH4-N data are based on the LOADEST software package (https://water.usgs.gov/software/loadest/). 
In addition to the model validation at the river outlet to the Gulf, we also validate the model's performance in 
simulating annual river discharge and N export for eight major subbasins of the MARB by comparing with the 
gauge-monitoring data obtained from the USGS (Table S1 in Supporting Information  S1). DLEM estimates 
of river discharge and N load from these subbasins are close to the USGS LOADEST estimates over the years 
(Figure S3 in Supporting Information S1). To further test the model's performance in capturing peak streamflow 
and N loads, we compare the modeling results with the USGS LOADEST estimates across the eight subbasins 
when extremely high flows are recorded during 1980–2015 (https://toxics.usgs.gov/pubs/of-2007-1080/flux.
html). The top 5% of high flow months (defined as exceeding the 95th percentile of observed flow rates) at the 
eight gauging stations are used to represent the high flow months. The modeling estimates of discharge and N 
loading from these subbasins are close to the USGS observations during extreme-flow months (Figure S4 in 
Supporting Information S1). To remove the uncertainty derived from the LOADEST approach, our previous work 
has validated the DLEM-modeled daily river discharge and N concentration against the daily raw observations 
from the USGS (Lu et al., 2020). Overall, this model is able to reproduce the daily, monthly and interannual vari-
ations in water discharge and N loading from the eight subbasins and the entire MARB.

2.5. Model Simulations

We project land-to-aquatic water yield and dissolved inorganic nitrogen (DIN) loads (including NH4-N, NO2-N, 
and NO3-N) forward until 2099 using projected temperature, precipitation, and radiation from three CMIP5 
ESMs under two RCP scenarios. All the simulations are forced by the transient climate from 1901 to 2099. 
Specifically, for the period 1901–2017, land use and land cover change, human agricultural management, and 
environmental drivers are based on the available databases introduced above. For the period 2018 to 2099, we 
keep all the environmental drivers but climate fixed to the 2017 level (e.g., N fertilizer input rates, N deposition, 
manure N rates, tile drainage, etc.). We also assume that the land use pattern will not change for the post-2017 
period. To keep crop rotations for the future period, we repeatedly use the crop type maps of 2016 and 2017 for 
the years after 2018 to represent an “unchanged” crop rotation practice for the future period. The setups of static 
land-use and “maintaining-the-status” crop rotations allow us to distinguish and quantify the impacts of climate 
change and extreme climatic events on N loading, assuming current agricultural practices remain unchanged 
in the future. Furthermore, the simulation setups can highlight the potential drawbacks of current agricultural 
management practices on improving water quality given future climatic changes. We quantify N leaching to local 
waters at each grid as N yield (g N m −2 day −1) and N delivered to rivers and coastal areas after in-stream transfer 
and decay as N loading (Tg N day −1). Daily estimates are aggregated to the monthly or annual total for analysis 
and comparison purposes.
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2.6. Summarizing Statistics

Changes in climate drivers (mainly precipitation-related), river discharge, N loading, water yield, and N yield are 
evaluated by the differences for these variables between the periods of 2070–2099 and 1988–2017. We report 
changes in the mean annual precipitation (mm), heavy precipitation frequency (days), and aridity (days), along 
with changes in mean annual river discharge and N loading (%) and yield of water (km 3) and N (Tg). Aridity is 
represented by the indices of consecutive dry days (CDDs), including annual total CDD, the longest CDD event, 
and the number of CDD events.

3. Results and Discussion
3.1. Changes in Precipitation in the MARB During the 21st Century

We first examine the patterns of future HP across the MARB for both RCP scenarios. The 30-year average annual 
HP from 2070 to 2099 across the MARB under the two climate scenarios shows a west-to-east gradient, ranging 
from less than 100 mm yr −1 in the west to ∼600 mm yr −1 in the east (Figure S5 in Supporting Information S1). 
Although the annual TP is projected to remain relatively stable for both scenarios (Figure 1b), the annual total 
HP in the MARB on average would likely increase by 8% (±5%) and 15% (±8%) by the end of this century under 
the RCP4.5 and RCP8.5 scenarios, respectively (Table S2 in Supporting Information S1). HP amount is likely 
to increase substantially across the Upper Mississippi and Ohio River Basins where N fertilizer is intensively 
used to maximize crop yields of the US Corn Belt region (generally referring to Minnesota, Illinois, Indiana, 
Iowa, Nebraska, and Ohio; Figures 2a–2d). Only a small portion of the area lying within the southern MARB 

Figure 2. The number of days with heavy precipitation (HP) events each year averaged from 2070 to 2099 in the MARB 
under the RCP4.5 (a) and RCP8.5 (b) scenarios, the change of annual HP amount (mm) in the MARB between the periods 
of 2070–2099 and 1988–2017 under the RCP4.5 (c) and RCP8.5 (d) scenarios, and the standard deviation of the annual HP 
change (mm) among three Coupled Model Intercomparison Project 5 models under the RCP4.5 (e) and RCP8.5 (f) scenarios. 
The red outlines in sub-figures highlight the upper-Mississippi, mid-Mississippi River Basins, and the Ohio River Basin.
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is projected to experience a decrease (<−50 mm yr −1) in HP amount under the examined scenarios (Figures 2c 
and 2d). However, the standard deviation (STD) of annual HP change shows a high variation (60–90 mm yr −1) 
in the southern area of the MARB among the three CMIP5 models (Figures 2e and 2f). The spatial patterns of 
STD indicate that the predicted HP in this region has a larger uncertainty under both RCP scenarios, compared 
with the rest of MARB where the annual total HP STD is overall less than 60 mm yr −1 (Figures 2e and 2f). We 
further find that, between the two climate scenarios, the RCP8.5 scenario shows a larger spatial extent with HP 
increase >50 mm yr −1 than the RCP4.5 scenario (Figures 2c and 2d), despite an overall similar small increase in 
the number of HP events found in both scenarios (Figure S6 and Table S2 in Supporting Information S1).

3.2. Impacts of Future Precipitation Change on Water Yield and Nitrogen Loss in the MARB

Forced by climate prediction data from three CMIP5 models along with present-day agricultural practices and 
N fertilizer inputs, our simulation indicates that the river discharge is projected to only increase by 6 ± 3% (i.e., 
mean ± standard deviation among simulations driven by the three CMIP5 ESMs) under the RCP4.5 and nearly 
zero-change with a large among-model variation (0.3 ± 5%) under the RCP8.5 scenarios (Figure 3a). However, 
the MARB annual N loading would increase by ∼30% during the last three decades of the 21st century under the 
RCP4.5 (30 ± 3%) and the RCP8.5 (31 ± 14%) scenarios, compared to the most recent three decades (Figure 3b). 
All other input drivers being equal, model simulations indicate that the estimated discharge and N loading show a 
larger uncertainty under the RCP8.5 scenario than the RCP4.5 scenario (Figures 3a and 3b), corresponding to the 
divergence among future climate projections. Using projected climate from six CMIP5 ESMs under the RCP8.5 
scenario, Kujawa et al. (2020) demonstrated that variation among climate models was the dominant source of 
uncertainty in predicting future total discharge and total N loading in a watershed located in northwest Ohio. This 
study supports our findings regarding uncertainty sources in projected discharge and N loading in the MARB.

To gain insights into the impacts of future precipitation changes on N export, we quantify the contributions of 
HP events, non-HP events, and no-precipitation days to water yield (i.e., the sum of surface runoff and drainage 
runoff) and N yield (i.e., N leaching from soils) across the MARB. Under the RCP4.5 scenario, HP-induced 
water yield change (49.1 ± 16.8 km 3 yr −1) would dominate the total water yield increase (44.8 ± 20.3 km 3 yr −1; 
Figure 3c and Table S3 in Supporting Information S1). For the RCP8.5 scenario, while the water yield increase on 
the HP days is more robust (64.1 ± 16.4 km 3 yr −1), it is offset by the decreases in water yield during non-HP days 
(−35.5 ± 19.9 km 3 yr −1) and no-precipitation days (−25.3 ± 18 km 3 yr −1). The offset of daily water yield leads 
to a small net increase in the annual total water yield (3.3 ± 32.6 km 3 yr −1) under the RCP8.5 scenario, despite a 
large among-model variation (Figure 3c and Table S3 in Supporting Information S1).

Along with the total water yield increase, the projected change in total N yield would increase up to 0.55 (±0.11) 
Tg yr −1 for the RCP4.5 scenario (Figure 3d). Surprisingly, despite the small increase in total water yield, the 
projected total N yield would increase by 0.68 (±0.33) Tg yr −1 under the RCP8.5 scenario (Figure 3d). Specif-
ically, we find that the N yield increases in HP days would on average account for 45% (0.25 ± 0.05 Tg yr −1) 
and 56% (0.38 ± 0.18 Tg yr −1) of the total N yield increase under the RCP4.5 and the RCP8.5 scenarios, respec-
tively (Figure 3d and Table S4 in Supporting Information S1). With the changes in the HP-induced water yield 
(Figure  3c), our modeling results highlight the significant roles of future HP in contributing N yield across 
the MARB (Figure 3d). The results for the RCP8.5 scenario indicate that the riverine N concentration would 
increase, which likely drives the further deterioration of water quality in the region (Davidson et al., 2011).

Furthermore, the projected changes of N yield also highlight the critical role of days without precipitation in 
flushing out N, particularly under the RCP8.5 scenario (Figure 3d). Specifically, the N yield from no-precip-
itation days would account for 39% (0.21 ± 0.07 Tg yr −1) and 37% (0.25 ± 0.15 Tg yr −1) of the total N yield 
increase under the RCP4.5 and RCP8.5 scenarios, respectively (Figure 3d and Table S4 in Supporting Informa-
tion S1). These findings indicate the significant legacy effects after rainfall events on N yield under future climate 
conditions.

Compared with HP and no-precipitation events, the small increases in non-HP frequency and intensity (Table 
S4 in Supporting Information S1) would accordingly play a smaller role in determining N yield, only account-
ing for 16% (0.09 ± 0.02 Tg yr −1) and 8% ± (0.05 ± 0.02 Tg yr −1) of total N yield increases under the RCP4.5 
and RCP8.5 scenarios, respectively (Figure 3d and Table S4 in Supporting Information S1). This is likely due 
to longer drought periods and the decreases in the number of non-HP events by the end of the century (Figure 
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S7 in Supporting Information S1). It is also noteworthy that our predictions have large among-model variations, 
especially for the RCP8.5 scenario (Figure 3).

The seasonality of N fluxes in the MARB promotes the development of extensive seasonal hypoxia in the Gulf of 
Mexico (Donner & Kucharik, 2008) and has important implications for upstream agricultural management selec-
tion and planning (e.g., fertilizer application; Wine et al., 2020). We therefore quantify seasonal changes in N 
loading from the Basin. About 41% and 51% (i.e., 0.12 and 0.15 Tg N season −1) of the annual N loading increase 
would come from spring under the RCP4.5 and RCP8.5 scenarios, respectively (Figure 4). In the presence of 
recurrent anthropogenic N fertilizer input across the MARB, increases in spring precipitation (Figure S8a in 
Supporting Information S1) would cause a higher N yield from land (Figure S8b in Supporting Information S1). 
It is noteworthy that the increase in HP-induced N yield would account for 47% (RCP4.5) and 50% (RCP8.5) of 
the spring total N yield increase (Figure S8b in Supporting Information S1), which is likely the major driver for 
the spring N loading increase. The increase in N loading over the summer months would be ∼26% (i.e., ∼0.08 Tg 

Figure 3. Predicted changes in annual river discharge, N loading, water yield (i.e., the sum of surface and subsurface runoff), and N yield (i.e., N leaching from soils, 
calculated as a sum of all simulation grids) from the MARB at the end of the century under the RCP4.5 and RCP8.5 scenarios. (a, b) The change of annual total river 
discharge (a) and annual total N loading (b) at the river outlets to the Gulf of Mexico is calculated as the difference between the periods of 2070–2099 and 1988–2017 
under the RCP4.5 and RCP8.5 scenarios. (c, d) The change of water yield (c) and N yield (d) occurred in HP days, non-HP days, and no-precipitation days is calculated 
as the difference between the periods of 2070–2099 and 1988–2017 under the two climate scenarios. The error bars are the standard deviation among DLEM model 
simulations driven by climate scenario data from the three Coupled Model Intercomparison Project 5 models.
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season −1) of the annual N loading increase under both RCP scenarios, which is mainly driven by non-heavy 
precipitation (Figure S8 in Supporting Information S1). Although lower future N loading increases tend to occur 
in fall and winter (Figure 4), they would be driven by increases in HP during low discharge periods (Figure S8 in 
Supporting Information S1). Model simulations present that the estimated seasonal changes in N loading have a 
larger uncertainty under both RCP scenarios, especially in spring, which is due to the divergence among future 
climate projections.

3.3. Spatial Patterns of Water Yield and Nitrogen Yield Across the MARB

Widespread increases in total water yield by the end of the century are predicted across the MARB under the 
two future scenarios (Figures 5a and 5b). The predicted increases in total N yield in the upper-Mississippi and 
mid-Mississippi River Basins stand out under both RCP scenarios (Figures  5e and  5f) despite the predicted 
increases of annual aridity (Figure S7 in Supporting Information S1). These regions are the home to more than 
half of the US agricultural production (Yu & Lu, 2018), where more N fertilizer is applied than anywhere else 
in the United States (Cao et al., 2018; Lu et al., 2019; Zhang, Cao, et al., 2021). Specifically, the water yield 
increases on the HP days under the RCP8.5 scenario would be more spatially extended than those under the 
RCP4.5 scenario (Figures 5c and 5d), leading to an overall higher N yield (Figures 5g and 5h), especially in 
the upper-Mississippi River Basin. The Mississippi Alluvial Plain (referring to the region with the highest rice 
production in the southern four states, including Arkansas, Louisiana, Mississippi, and Texas, in the United 
States) in the southern MARB also displays significant increases in N yield when HP events would occur in the 
future (Figures 5c and 5d).

We also find that water yield on the non-HP days would decline over a large portion of the MARB, while the 
declines in N yield would not be as widespread as water yield (Figures S9a, S9b, S10a, and S10b in Supporting 

Figure 4. Predicted changes in seasonal total N loading from the MARB at the end of the century under the RCP4.5 and 
RCP8.5 scenarios. The change of N loading indicates how far the predicted N loadings during 2070–2099 under the RCP4.5 
and the RCP8.5 scenarios are away from the historical model-estimated N loading during 1988–2017. Spring: March, 
April, and May (MAM); Summer: June, July, and August (JJA); Fall: September, October, and November (SON); Winter: 
December, January, and February (DJF). The error bars are the standard deviation of DLEM-estimated N loading changes 
driven by climate scenario data from three Coupled Model Intercomparison Project 5 models.
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Information S1). It is noteworthy that, on no-precipitation days, the areas with declined water yield would be 
mainly located in the southern and western MARB and would be larger than the areas with increases in water 
yield (Figures S9c and S9d in Supporting Information  S1). These water yield changes over space lead to a 
basin-wide negligible change and a slight decrease in water yield under the RCP4.5 and the RCP8.5 scenarios, 

Figure 5. Predicted changes in total water yield and total N yield at the end of the century. The predicted changes in annual total water yield (a) and (b) and water yield 
in HP days (c) and (d) between the periods of 2070–2099 and 1988–2017 under the RCP4.5 (a, c) and RCP8.5 (b, d) scenarios. The predicted change in annual total N 
yield (e) and (f) and N yield in HP days (g) and (h) between the periods of 2070–2099 and 1988–2017 under the RCP4.5 (e, g) and RCP8.5 (f, h) scenarios. The black 
outlines in sub-figures (e–h) highlight the upper-Mississippi, mid-Mississippi River Basins, and the Ohio River Basin.
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respectively (Figure 5c). However, increased water yield (Figures S9c and S9d in Supporting Information S1), 
continued intensive fertilizer use, and a greater preponderance of tile drainage in the agriculture-dominated 
watersheds in the Midwest would together drive robust N yield during the no-precipitation days for the two RCP 
scenarios (Figures S10c and S10d in Supporting Information S1). These hotspots indicate the potential legacy 
effects after rainfall events on N yield, depending on the regions and N input amount applied to the cropland 
surface (Van Meter et al., 2016, 2017, 2018).

3.4. Spatial Variations of Water Yield and Nitrogen Yield

Our results indicate that future climate conditions associated with the high-emission scenario would bring a 
bigger challenge for the stakeholders to reduce N leaching in the MARB. This conclusion is supported by a 
recent study (Sinha et al., 2017), which focused on exploring the annual and seasonal patterns of precipitation in 
determining N load. Divergences in precipitation projections among CMIP5 models translate into large variations 
in the magnitude of predicted water and N yield changes across the MARB (Figures S11–S13 in Supporting 
Information S1), illustrating the importance of reducing uncertainties in the future climate projections (Sinha 
et  al.,  2017). For water yield induced by HP events, the central and southeastern MARB display the largest 
among-model variations (e.g., up to 110 mm yr −1 and 120 mm yr −1 under the RCP4.5 and RCP8.5 scenarios, 
respectively; Figures S11a and S11b in Supporting Information S1). Large variations in N yield are also found in 
both the Corn Belt and the Mississippi Alluvial Plain under future scenarios (Figures S11c and S11d in Support-
ing Information S1). Specifically, the highest N yield variation would likely occur in the Mississippi Alluvial 
Plain, which would reach up to 0.8 and 2.4 g N m −2 yr −1 under the RCP4.5 and the RCP8.5 scenarios, respec-
tively. Compared with the RCP4.5 scenario, a larger spatial extent of N yield variation is found under the RCP8.5 
scenario. These spatial patterns of N yield variations highlight the challenges to implementing region-specific N 
mitigation practices in watersheds with high N inputs and more frequent and extreme precipitation (Figure S12 
in Supporting Information S1). Also, future studies should pay more attention to the uncertainties in predicting 
HP-induced water yield and N yield using climate models from the CMIP5 ensemble.

Compared with the HP days, the among-model variations in water yield (e.g., <40 mm yr −1) and N yield (e.g., 
<0.6 g N m −2 yr −1) during the non-HP days present a lower magnitude and a smaller extent across the Basin 
(Figures S12 and S13 in Supporting Information S1). This implies that the non-HP predictions are relatively 
convergent among the three CMIP5 models, and so are their impacts on future water and N yields. Although the 
spatial extent of water and N yield variations under no-precipitation days are smaller than those under the HP 
days, higher variation magnitudes (e.g., >40 mm yr −1 for water yield; >0.6 g N m −2 yr −1 for N yield) are detected 
in the Midwestern states like Iowa and Indiana (Figure S13 in Supporting Information S1). Between the two RCP 
scenarios, the water yield and N yield during the non-HP days and no-precipitation days would be more variable 
under the RCP8.5 scenario. These spatial variations suggest that heavy precipitation would play a significant role 
in determining future water and N yields. However, the climate models contain large uncertainties in predicting 
the occurrence and severity of heavy rainfall events.

4. Uncertainties and Limitations
Our study involves uncertainties in the following aspects. First, uncertainties existing in the 21st-century CMIP5 
precipitation projections dominate the uncertainties of predicted water and N yields across the MARB. These 
sources of CMIP5 projection uncertainty are generally classified into three types: internal variability, inter-model 
variability, and greenhouse gas emissions (Chen et  al.,  2014). Kharin et  al.  (2013) shows that confidence in 
the projected changes in extreme precipitation is low in the tropics due to the large inter-model disagreements, 
indicating that some physical processes associated with extreme precipitation may not be well represented in the 
current generation of models. Our uncertainty analyses of changes in future HP, water yield, and N yield also 
demonstrate a relatively high inter-model disagreement in the southern parts of the Basin (Figures S5c, S5cd, 
and S11–S13 in Supporting Information S1). Using CMIP5 models, Chen et al. (2014) finds that inter- and intra-
model variability are the dominant sources of uncertainty in global precipitation-related extremes. However, 
the increases in intensified extreme precipitation occurring in North America detected in the CMIP5 models 
demonstrate a higher inter-model agreement than other regions around the globe (Chen et al., 2014). Therefore, 
the uncertainties of modeled water and N yields across the MARB presented in our study are highly driven 
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by uncertainties in future climate projections, particularly for the HP events. 
Systematic analyses of N load uncertainty sources deserve further research 
efforts.

Second, our analyses only consider the same-day HP-induced water and N 
yields. Soil water content can be largely increased by extreme rainfall events 
and persists over the following days, leading to a consistently high baseflow 
and consequently high N leaching for several days. In our analysis, however, 
we classify the N yield following the HP events into the N yield occurring 
on non-HP or no-precipitation days. This assumption potentially underesti-
mates the “HP-induced” N yield and load but overestimates those occurring 
on other  days. Therefore, our modeled N loads can be treated as a lower 
estimation bound of the real-world N loads induced by HP events. Based 
on our conservative modeling estimates, we can foresee that the extreme N 
loads and eutrophication peaks in the Gulf would likely be larger after future 
extreme precipitation events. Effects on water quality of extreme precipita-
tion, and of its legacy, merit further analysis.

Third, N fertilizer input data used by our model relies  on the state-level 
crop-specific N fertilizer use survey, assuming N fertilizer applied to the 
same crops is at a uniform rate within a state. Due to limited information, we 
multiply the N fertilizer use rate by the state-level crop-specific fertilized area 
percentage (e.g., 98% of corn is fertilized and 2% is non-fertilized in Iowa, Lu 
et al. (2019)). This step “dilutes” the fertilizer input while guaranteeing the 
total N fertilizer amount is consistent with the state-level survey data. Never-
theless, the consequence of this modification leads to a case that the areas 
without N fertilization would also receive the same state-level N input rate 
as other fertilized areas in that state. Although the unfertilized area is very 
low for most crops, the spatial extent of N yield and loading estimated in our 
study would likely be overestimated across the Basin, while the magnitude is 

underestimated in fertilized soils. Crop-specific N fertilizer use rates at a finer spatial scale (e.g., field-level) can 
be essential for improving the prediction accuracy of excess N load in a changing climate.

5. Recommendations for Future N Management in the MARB
Concentrated precipitation bursts with durations of a few hours are projected to be more common (Westra 
et  al.,  2013). Increases in extreme precipitation are likely to be accompanied by increases in extreme nutri-
ent loading (Carpenter et al., 2018). As Figure 6 demonstrates, our modeling results suggest that precipitation 
changes in agricultural regions would likely intensify N pollution in the Gulf of Mexico by the end of the century. 
As temperature increases (Figure 1a) and precipitation becomes more variable and extreme (Figure 1b and Figure 
S5 in Supporting Information S1), droughts would become more common under the RCP8.5 scenario (Figure 
S7 in Supporting Information S1), which can intensify N loading and its variation (Figure 6). Drought decreases 
N loading due to short-term low water flows. However, rapid transitions from dry to wet conditions lead to 
increased N fluxes (Loecke et al., 2017). Inorganic N that is easily mobilized may accumulate in the soil during 
drought periods. Subsequent heavy or non-heavy rainfall events could exacerbate N leaching by flushing out the 
unused residual soil N (Lee et al., 2016; Morecroft et al., 2000; Shepherd et al., 2018; Zhang, Lu, et al., 2021).

It is also important to emphasize that the current agricultural production systems would likely adapt to the 
changes in total precipitation, heavy precipitation, and seasonal patterns. Much of the Corn Belt region receives 
more-than-adequate precipitation during the growing season, and the landscape has been hydrologically altered 
to hasten the transfer of water to the stream network (Dai et al., 2016; Kelly et al., 2017; Munoz et al., 2018) to 
maximize crop production. These alterations, which include stream straightening, ditch construction, drainage of 
wetlands, and lowering the water table using subsurface networks of porous pipes, have magnified agricultural N 
loss and downstream eutrophication (Skaggs et al., 1994). DIN loading in May is the best predictor of the areal 
extent of summer hypoxia in the Gulf of Mexico (Turner et al., 2006). As heavy precipitation would increase in 

Figure 6. Conceptual diagram of possible trajectories of nitrogen (N) loading 
changes induced by heavy rainfall intensity and frequency under future 
climate and management scenarios. The trajectory of N loading illustrated in 
this figure is not a reflection of the real-world annual total N loading trend 
in the MARB but is used to represent the potential “cause-effect” between N 
loading and increases in heavy rainfall frequency and intensity in the Basin. 
As indicated by this study, the RCP8.5 scenario is likely to yield a smaller 
increase of runoff but a larger N loading than the RCP4.5 scenario under the 
same level of anthropogenic N input.
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spring (Figure S8a in Supporting Information S1), Corn Belt farmers are likely to intensify their drainage practices 
(Singh et al., 2009) and increase N inputs (Houser et al., 2019) while attempting to maintain production levels, 
multiplying the effects of climate change alone on N loads and hypoxia in summer. Particularly in the Midwest, 
the majority of N fertilizer is applied before crops are planted. For example, corn N fertilizer application before 
crop planting (in spring only) accounts for 43% of annual N fertilizer usage in Iowa and 59% in Minnesota, and 
the amounts of N fertilizer applied at crop planting (9% in Iowa and 5% in Minnesota), after crop planting (25% 
and 4%), and after crop harvest (in the fall of the previous year, 23% and 32%) are all less than that applied in 
spring before crop planting (Cao et al., 2018). With the current N input strategy, increases in heavy precipitation 
are likely to cause increases in N loading, especially in spring when before-planting and at-planting N fertilizer 
are applied (Figure 4 and Figure S8 in Supporting Information S1). We find that near a half of the annual total N 
yield increase across the basin would be from spring (37% under the RCP4.5% and 40% under the RCP8.5 scenar-
ios). Hence land managers should adopt more aggressive management intervention and advanced technologies, 
such as monitoring crop N demands for precision fertilizer use, using slow-releasing fertilizer type, to reduce the 
adverse impacts of heavy precipitation events while maintaining crop production. Additionally, side-dressing and 
postponing fall as well as spring before-planting fertilizer application until crop germinates could be effective 
to lessen the risk of N loss under heavy rainfall events (Lu et al., 2020). Nevertheless, an existing study argued 
that the CMIP5 climate models tend to overestimate the number of spring extreme precipitation events and 
underestimate summer events in the contiguous United States compared to observations (e.g., summer events 
were underestimated by 16% and spring events overestimated by 14% in the Midwestern United States; Janssen 
et al., 2016). This might slightly contribute to the large spring increases in the N yield and loading estimated in 
our study. The effects of climate and land management on nutrient export from agricultural systems remain as 
the current research challenge that involves multiple climatic variables, landscape heterogeneity, and agricultural 
practices (Deshmukh & Singh, 2016; Frans et al., 2013; Gupta et al., 2015; Martin et al., 2017; Shang, 2019). 
More research is needed to clarify the roles of heavy precipitation changes versus agricultural management (e.g., 
rotation, tile drainage, N fertilizer application timing, etc.) for nutrient loading. To reach the reduction goals of N 
load and hypoxia in the Gulf of Mexico, we need to take the trajectories of future extreme climate into account to 
assess and improve the mitigation efforts.

Our conclusions drawn here have global implications for watershed nutrient management and eutrophication 
reduction in the coasts, given the future changing climate and enhanced hydroclimatic extreme events. Our recent 
analyses reveal that more extreme precipitation events have been projected to occur in the upper-Mississippi 
River Basin where N fertilizers are used more intensively (Lu et al., 2020). Understanding the extreme climate 
trends could inform farm-management practices and lessen the likelihood of N loading in waterways. For exam-
ple, land managers may use cover crops to enhance long-term ecosystem N retention capability, reduce N input 
amount using rotation system, and modify fertilizer application timing to meet crop nutrient demands while mini-
mizing the contribution of extreme precipitation events. We have demonstrated that historical N loading from the 
MARB to the Gulf of Mexico could be reduced by up to 16% if N fertilizers are applied multiple times after crops 
develop, without affecting crop productivity (Lu et al., 2020). To achieve the feasibility of water pollution mitiga-
tion, we call for more studies are needed to interpret the relative effects of extreme climate and land management 
practices, such as cover crops, riparian buffers, side-dressed N fertilizer, precision N management, and so on, on 
N outputs from agricultural watersheds.
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