
1.  Introduction
The dynamics of relativistic electrons in the Earth’s magnetosphere are of fundamental science interest and 
of considerable practical importance because of their effect on spacecraft and because of their radiation 
hazard to astronauts who perform extravehicular activity (EVA) (e.g., Baker, 2001; Baker, Allen et al., 1998; 
Fennell et al., 2001). A real-time prediction model of radiation belt electron flux can provide operators time 
to mitigate these hazards and help to reveal the underlying physical mechanisms of electron dynamics (e.g., 
Li, 2004; Boynton et al., 2013, 2016).

The outer electron radiation belt is the product of warm plasma transporting into the inner magne-
tosphere during magnetic storms. Plasmas waves and magnetic field re-configurations play key roles 
in the variability of the outer belt electrons. Lower energy electrons (<20 keV) are transported rapidly 
inward from the magnetotail into the inner magnetosphere by convective electric fields during magnetic 
storms (e.g., Li et al., 2009; Jaynes et al., 2015). For electrons with higher energies, radial diffusion, a 
slower process involving many individual fluctuations of fields, may dominate the transport (e.g., Zhao, 
Baker, et al., 2019). Lower energy electrons that have been rapidly transported into the inner magne-
tosphere can then be energized in situ by plasma waves outside the plasmasphere, or radial diffusion 
can energize electrons by transporting them inward from the outer part of magnetosphere to the inner 
magnetosphere. However, the relative role of these two processes is not well understood. Recently the 
paradigm for explaining the creation of the electron radiation belt has shifted from the almost exclusive 
use of the theory of radial diffusion to greater emphasis on the role of waves in the in-situ heating of 
radiation belt electron (e.g., Boyd et al., 2018; Li et al., 1999; Reeves et al., 2013). The waves are a direct 
consequence of the injection of plasmasheet electrons into the inner magnetosphere (Chen et al., 2007; 
Horne et al., 2005; Shprits, Thorne, Horne et al., 2006). These electrons generate strong chorus whistler 
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waves, which can both scatter electrons into the loss cone and heat lower energy electrons outside the 
plasmasphere to produce a high energy tail on the electron distribution, creating the outer radiation belt. 
Satellite observations (e.g., Baker, Pulkkinen et al., 1998; Li et al., 2006; X. Li et al., 2017; Zhao & Li, 2013; 
Zhao et al., 2018) suggest the following scenario for the creation of the electron radiation belt: during 
magnetic storms, plasma convection penetrates deeper into the magnetosphere, replacing the cold plas-
ma in the outer plasmasphere with warm plasma in energy range up to 10s of keV. The pre-existing outer 
belt electrons are scattered and lost by plasma waves generated by the newly injected warm electrons. 
Simultaneously a new radiation belt begins to form in the region outside of the eroded plasmasphere by 
some combination of in-situ heating of the newly injected warm electrons and radial transport of ener-
getic electrons from further out.

During active times, both magnetopause shadowing followed by outward radial diffusion and atmos-
pheric precipitations due to wave-induced pitch angle diffusion play important roles in the loss of ra-
diation belt electrons (e.g., Li et al., 1997; Ma et al., 2020; Morley et al., 2010; Tu et al., 2010; Turner 
et al., 2012; Xiang et al., 2016). The inward movement of the magnetopause due to strong solar wind 
dynamic pressure (Pdyn) can substantially deplete electrons at high L shells where electrons find them-
selves on open drift shells, which is called magnetopause shadowing (e.g., Shprits, Thorne, Friedel 
et al., 2006). The other important loss mechanism of electrons is diffusion induced by magnetospheric 
waves, including chorus waves, plasmaspheric hiss, and electromagnetic ion cyclotron (EMIC) waves 
(e.g., Ni et al., 2013; 2015; 2017; Summers et al., 2007; Thorne, 2010; Turner et al., 2014). During quiet 
periods, hiss waves play an important role in the loss of radiation belt electrons inside the plasmasphere 
(Abel & Thorne, 1998; Breneman et al., 2015; Fu et al., 2020; Ni et al., 2013; Zhang et al., 2018; 2019) 
and produce a reversed electron energy spectrum in the plasmasphere (Ni et al., 2019; Zhao, Johnston 
et al., 2019; Zhao, Ni et al., 2019). During active times, EMIC waves can lead to significant decrease of 
electrons in a few minutes due to cyclotron resonance or bounce resonance (e.g., Blum et al., 2015; Xiang 
et al., 2017, 2018).

In this study, we build a model incorporating the above source and loss mechanisms to reproduce satel-
lite observations of MeV electron at different L values. The model has realistic boundary conditions at 
the plasmapause and magnetopause and uses real-time solar wind parameters as the input (e.g., Balikhin 
et al., 2011, 2016; Li et al., 2001). The free parameters in the model are optimized through machine learning 
techniques. This model can make predictions of the electron flux in advance since enhancements of elec-
tron flux follow solar wind speed enhancement (e.g., Li et al., 2011; Paulikas & Blake, 1979). The descrip-
tions of each term in the model are provided in Section 2. We present the simulation results in Section 3 and 
summarize the results in Section 4.

2.  Model Description
Our model uses the one-dimensional (1-D) radial diffusion Fokker-Planck equation (Schulz & 
Lanzerotti, 1974):


   

      
2 LL

2 ,f D f fL S
t t LL

� (1)

where f is the electron phase space density (PSD), L is L∗ but we drop the asterisk here and for the rest of the 
equations in this paper, DLL is radial diffusion coefficient, τ is the electron lifetime, and S is the source rate 
due to heating. The DLL, τ, and S are all expressed with solar wind parameters.

For the radial diffusion rate, we adopt the empirical formula from Li et al. (2011):

 
  

 

10

LL 0 ,
6.6
LD D� (2)
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 
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 

                        

3222 21

0 1
0 1

Δ / Δ
1 ,x z x z v tv b v bvD C

v
� (3)

where the first term is a function of the solar wind velocity (v) divided by its average (v0) value of, as calcu-
lated from October 2012 to April 2015, 375 km/s; the second term is a function of the y-component of solar 
wind electric field, vx is the x component of the solar wind speed while bz is the z component of the inter-
planetary magnetic field (IMF) in, GSM coordinate; the third term is a function of solar wind velocity fluc-
tuations, 2Δ / Δv t is directly calculated from the solar wind speed using data at a rate of one measurement 
every 10 min and β is the average of 2Δ / Δv t. The definition of velocity fluctuation follows Li et al. (2001), 
which is an approximation of  2 /v dv dt , a combination of solar velocity and velocity fluctuation.

The magnetopause standoff position is calculated by Shue et al. (1998):

         
1/6.6

0 dyn 110.22 1.29 tanh 0.184 8.14 Δ ,zr b P L� (4)

where Pdyn is solar wind dynamic pressure, 1ΔL  represents some uncertainties in the magnetopause model 
of Shue et al., (1998). Outside the magnetopause, the electron lifetime is set to a low value, for example, 
0.02 days, since, outside the magnetopause, the electrons will not be trapped by the Earth’s magnetic field 
and experience a sudden decrease. Thus, we set the electron lifetime outside the magnetopause to a low 
value comparable to the electron drift period, usually ranges in minutes (e.g., 0.02 days ≈ 30 min).

The plasmapause position is calculated by Verbanac et al. (2015):

     pp 20.373 5.96 Δ ,L B v L� (5)

where B is the interplanetary magnetic field strength, 2ΔL  represents some uncertainties in the plasma-
pause model.

Outside the plasmasphere, we consider electron acceleration from chorus wave using a formula like the 
form of radial diffusion rate:

 






                    

524

2 3
0 2

1 , pp pp Δ ,x z x zv b v bvS C w L L L L L
v

� (6)

  
 0

0.2 ,
0.1

w L
L L� (7)

where w(L) represents the L dependence of heating rate S, we set 0 4.4L  since the peaks of radial profile 
of MeV electrons are generally around L = 4 (e.g., Reeves et al., 2013). Since the electrons outside the mag-
netopause are set with short lifetime, the enhancement of electron PSD in the simulation are controlled by 
the term S. Namely, we assume the in situ heating rather than inward radial diffusion is the main source 
mechanism right outside the plasmapause. 3ΔL  defines a finite region of local heating.

Losses inside the plasmasphere are mainly caused by resonance with plasmaspheric hiss. Orlova et al. (2016) 
built a new global loss model of energetic and relativistic electrons based on hiss wave measurements from 
the Van Allen Probes. We use Equation 3 of Orlova et al.  (2016) to calculate lifetime of electrons inside 
plasmasphere:

   
 


   pp

,
, , , ,av L E

L E Kp L L
h Kp

� (8)
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where E is electron energy. The formula of   ,av L E  can be found in Orlova et  al.  (2016). The term  

(       


20.01414 0.2321 2.5981 / 1315 10 Kp Kph Kp  in Orlova et al., 2016) has been revised to relate with solar wind 
parameters rather than Kp index:

 






                 

726

3
0 3

1 ,x z x zv b v bvh Kp C
v

� (9)

The relationship between first adiabatic invariants  (MeV/G) and electron energy E (MeV) is expressed as 
(Tu et al., 2009):

   2 30.512 0.307 0.512E L� (10)

The quick loss due to EMIC wave near plasmapause is also related to solar wind parameters as:

 





                
     

928
dyn

4 pp 4 pp 4
dyn 40

EMIC 1 , Δ Δ ,x z x zv b v bP
C L L L L L

P
� (11)

This term only takes effect when the value of solar wind dynamic pressure is greater than 7  nPa since 
EMIC wave excitation mostly correlates to high solar wind dynamic pressure (Lessard et al., 2019; Saikin 
et al., 2016). The 7 nPa is an empirical value from simulation results (Chen et al., 2020). The loss effect due 
to chorus waves is not induced in the model, since chorus waves mostly scatter tens of keV electrons and 
have slight effect on the loss of MeV electrons (Ni et al., 2008, 2011). 4ΔL  defines a finite region of quick loss 
near the plasmapause.

To summarize, the free parameters in our model are scaling factors 1 4–C C , space width factors 1 4Δ –ΔL L , 
and factors adjusting the contribution of various solar wind parameters  1 9,  1 4. Here, the free pa-
rameters are those which can be adjusted in a reasonable range in the model to obtain the best prediction 
of the satellite measurements. Similar form is used in Equations 6, 9, and 11 to link loss or source terms 
with solar wind parameters since magnetosphere variability is mostly driven by the variability of the solar 
wind. IMF Bz and solar wind speed are critical for electron acceleration to >1 MeV energies in the heart of 
the outer radiation belt (Li et al., 2015; Reeves et al., 2011) and often used to predict Kp index (Ji et al., 2013; 
Wing et al., 2005). Thus, solar wind velocity and IMF Bz are used in Equations 6 and 9. Similarly, solar 
wind dynamic pressure and IMF Bz are related to EMIC wave distribution and used in Equation 11 (Saikin 
et al., 2016).

In the model, the outer boundary is L = 12 while the inner boundary is L = 2. The outer boundary is deter-
mined based on the last closed drift shell or the magnetopause location (Shue et al., 1998; Xiang et al., 2017). 
The inner boundary is associated with the slot region where electron fluxes generally stay at low levels (X. Li 
et al., 2017). There are 100 grid points in L and the time step is 10 min. The model performance was meas-
ured by the prediction efficiency (PE) (Li, 2004; Li et al., 2001) and the linear correlation (LC) coefficient 
over the defined interval. PE is defined as:

 
 

 
   

 

2

2
mean square residualPE 1 1 ,

variance of data

n
i i i

n
i i

d p

d d
� (12)

where di and pi are the data and model results, respectively, and d  is the mean of all di.  0PE : model re-
sults are as good as the averaged data; PE 0: the model is better than reproducing the average and PE 1:  
perfect modeling.

In this study, the algorithm of Bayesian optimization using Gaussian processes are used to find the highest 
PE and the corresponding free parameter values (Frazier, 2018; Rasmussen & Wilians, 2006). This idea is 
to optimize the PE of the radiation belt model using Gaussian process regressions, that is, the PE values are 
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assumed to follow a multivariate Gaussian. The covariance of the PE values is constructed by a Gaussian 
process kernel which has the property that similar sets of free parameters in the input space produce similar 
outputs. Then a smart choice to choose the next free parameters can be made by the acquisition function 
over the Gaussian prior, which is much quicker to evaluate. The acquisition functions are mathematical 
techniques that determine how the parameters space should be explored based on current input param-
eters. The scikit-optimize library was used in this study to perform the optimization (https://github.com/
scikit-optimize/scikit-optimize).

3.  Model Results and Discussions
We apply our model to simulate electron flux variations with equatorial pitch angle around 90° at L = 5 
and at L = 4 from October 2012 to April 2015. These L values are important since L = 4–5 is the center 
of outer radiation belt with highest relativistic electron flux level. The simulation results are compared 
with measurements from the Van Allen Probes, which were launched into a highly elliptical and low in-
clination orbit on August 30, 2012 (Mauk et al., 2012). The Relativistic Electron Proton Telescope (REPT) 
(Baker et al., 2012) instrument onboard the Van Allen Probes provided pitch angle resolved energetic elec-
tron measurements over the critical energy range of ∼2 –20 MeV. The free parameters in Equations 3–6, 9, 
and 11 were adjusted to get highest average PE values both at L = 4 and L = 5. Also, the linear correlation 
(LC) coefficients were calculated.

3.1.  Long-Term Simulations

The simulation results from October 2012 to April 2015, around two and half years, are shown in Figure 1. 
From top to bottom, the panels show the simulated electron PSD at   2,400 MeV / G as a function of L 
and time, the comparison between simulated 2 MeV electron flux and the Van Allen Probes at L = 5, the 
comparison of 3 MeV electron flux at L = 4, Pdyn, IMF Bz, and solar wind speed. 2 MeV electrons at L = 5 
and 3 MeV electrons at L = 4 share the same μ value: μ = 2,400 MeV/G. The white curve and magenta curve 
in panel (a) are the positions of magnetopause and plasmapause, respectively. The 2  and 3 MeV electron 
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Figure 1.  (a) Simulated evolution of electron PSD at   2,400 MeV / G as a function of L and time. The white curve shows the magnetopause position and 
the magenta curve indicates the plasmapause. Flux comparison between data (black curve) and model results (red curve) at (b) L = 5 and (c) L = 4. Solar wind 
parameters are from OMNIWeb (http://omniweb.gsfc.nasa.gov): (d) Solar wind dynamic pressure; (e) z component of interplanetary magnetic field; (f) Solar 
wind speed. PSD, phase space density.
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flux observations in panels (b) and (c) are interpolation results from original satellite data product since the 
energy channels of REPT instrument do not exactly equal 2 or 3 MeV. The model achieved a PE of 0.45 at 
L = 5 and 0.51 at L = 4 using the parameters listed in Table 1. The LC values at L = 5 and L = 4 are 0.71 and 
0.72, respectively. The LC values in this study are calculated with original flux values. We also calculated the 
LC values with log fluxes. The results are higher than the LC values using original fluxes. To be consistent 
with the PE values, we still show the LC values using original fluxes. The electron flux experienced more 
variations at L = 5 than at L = 4. For example, during February 2015, 2 MeV electron flux at L = 5 showed 
some sudden decreases that are followed by a quick recovery to a high level while electron flux at L = 4 only 
showed slight variations. This phenomenon is likely due to the magnetopause shadowing and the follow-
ing outward radial diffusion since electrons at L = 5 are closer to the magnetopause and easier to get lost. 
Xiang et al. (2017) suggested that, compared to the magnetopause standoff position, it is more reliable to 
use last closed drift shell (LCDS) to evaluate the impact of magnetopause shadowing. But, currently, there 
is no model to get reliable LCDS models using solar wind parameters as input. Both at L = 5 and at L = 4, 
the slow decay of electron fluxes inside plasmapause was well reproduced, indicating that hiss wave plays 
an important role in scattering the relativistic electrons into loss cones during quiet times. We also tried to 
tune the parameters by hand (Barker et al., 2005; Tu et al., 2009). The results are quite close to the results in 
Table 1 using the machine learning technique (the differences in PE are less than 0.05).

3.2.  Short-Term Simulations

To investigate how much the free parameters need to be changed to predict electron fluxes better during 
different periods, we tuned the parameters individually to get highest PE values during every 60-days. The 
simulation results are shown in Figures 2a–2c while two short-term simulation results are shown in Fig-
ures 2d–2i (corresponding to the first 60-days in Figures 2a) and Figures 2j–2o (corresponding to the last 
60-days in Figure 2a), respectively. The model achieved a PE of 0.58 at L = 5 and 0.82 at L = 4 for the two 
and half years using the parameters listed in Table 2. The LC values at L = 5 and L = 4 are 0.77 and 0.91, 
respectively. The values of  1 9,  1 4 are kept same as those in Table 1 to focus on improving the model 
results by only tuning parameters listed in Table 2. For these free parameters, 1 4–C C  are scaling factors and 

1 4Δ –ΔL L  are space width factors. These eight parameters have their assigned physical meanings. Thus, we 
only tune these eight parameters in this section. This will also reduce the CPU operation time. To ensure 
the physical reasonability of free parameters, the value of free parameters can only be adjusted in prede-
fined ranges. Mostly, the ranges of scaling factors are one order larger/smaller than empirical values. The 
optimized free parameters in Table 2 mainly show physically reasonable values. For example, the residual 
standard deviation of the plasmapause model in Verbanac et al. (2015) is 0.86. The space width factors 2ΔL  
in Table 2 are mostly smaller than 0.86, suggesting that the values of 2ΔL  are physically reasonable. Com-
pared to the long-term simulation results in Figure 1, the model gets much higher PE values at both L = 4 
and L = 5 using time updated parameters. Especially for L = 4, the PE values significantly increase from 
0.51 to 0.82. It can be observed that in panel (f) and panel (l) the simulation results mostly reproduced the 
actual variations of electron fluxes at L = 4. In contrast, some decreases of electron flux at L = 5 (see panel k) 
are still not well captured by the model. These decreases of 2 MeV electron flux at L = 5 are all accompanied 
with decreases of magnetopause position, indicating that the loss due to magnetopause shadowing is not 
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C1 C2 C3 C4 1ΔL 2ΔL 3ΔL 4ΔL

Values 0.25 6.5e−10 0.15 1e−3 0 0 3 3

1γ 2γ 3γ 4γ 5γ 6γ 7γ 8γ 9γ

Values 1.86 0.113 0.03 1.86 1.1 0.1 0.2 1 1

1α 2α 3α 4α PE L = 5 LC L = 5 PE L = 4 LC L = 4

Values 70 200 70 70 0.45 0.71 0.51 0.72

LC, linear correlation; PC, prediction efficiency.

Table 1 
Optimum Parameter Values and Corresponding PE and LC for the Simulation Result in Figure 1
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well captured in our model. In Table 2, the parameters have very different values in different periods, sug-
gesting that we may need to express some parameters as functions to account for these differences. We also 
plot these optimum parameter values as time series and show the results in Figure 3. The left panel shows 
free parameter values in Table 2 as a function of time periods while the right panel shows free parameter 
values normalized to parameter values during period 1. It is clear to see that there are two free parameters 
( 3 4,C C ) with large variations. The two parameters are used to adjust  h Kp  and quick loss due to EMIC 
waves using a similar formula for radial diffusion rate. The large variations in the two parameters suggest 
that the formula for radial diffusion is not a good choice to represent  h Kp  and loss due to EMIC, which 
should be improved in the future studies.

3.3.  Simulations With Free Parameters Adjusted by Solar Wind Parameters

The above section has demonstrated that using time-updated parameters can get higher PE values. There-
fore, in this section, we try to use different set of parameters based on the solar wind conditions in the 
model to get better simulation results. Generally, we divide solar wind parameters into three categories 
to represent active, moderate, and quiet periods, respectively. Figure  4 shows three cases of simulation 
results with parameters adjusted by the solar wind speed (Figures 4a–4c), IMF Bz (Figures 4d–4f) and solar 
wind dynamic pressure (Figures 4g–4i), respectively. The solar wind speed is divided into three categories: 
v v v   400 400 600 600km/s km/s km/s km/s, , . Corresponding to each category of solar wind speed, a 
set of parameters (  1 4 1 4, Δ ΔC C L L ) are used, namely three sets of parameters are tuned in the model to 
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Figure 2.  (a)–(c) Same format as Figures 1a–1c but for free parameters updated every 2 months. (d)–(e) Same format as Figures 1a–1c but for October 2012–
January 2013 using different free parameters. (j)–(o) Same format as panels (d)–(e) but for January–April 2015.
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get best simulation results. The parameters for the three solar wind speed categories are shown in Table 3. 
The model achieved a PE of 0.54 at L = 5 and 0.58 at L = 4. The LC values at L = 5 and L = 4 are 0.75 and 
0.77, respectively. These simulation results are not as good as the results in Section 3.2, but are better than 
using the one set of parameters for the whole period. Similarly, IMF Bz is divided into three categories: 
Bz nT nT Bz nT Bz nT     3 3 0 0, , . The model achieved a PE of 0.45 at L = 5 and 0.53 at L = 4. The 
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Period 1C  10
2 10C C3  3

4 10C 1ΔL 2ΔL 3ΔL 4ΔL

1 0.95 14.4 0.39 0.1 −1.5 −0.57 3.13 2

2 0.11 20 0.22 8.7 −1.5 1.22 4.99 2

3 0.19 8.87 0.32 20 −1.5 0.85 2 3.36

4 1.8 10.94 3.39 0.46 −1.5 −1.13 2 5

5 0.88 5 0.47 4.48 −1.5 −0.63 4.9 5

6 0.11 20 0.30 1.57 1.5 0.79 2.2 2.67

7 0.35 6.44 0.39 2.83 1.03 0.63 5 3.52

8 0.17 15.39 4.38 0.29 −1.5 1.31 3.36 2

9 0.86 5 0.1 2.15 1.03 −0.09 5 4.88

10 0.54 10.18 10 0.65 −1.5 0.33 5 3.84

11 0.49 7.28 0.1 0.29 −1.5 0.37 2.44 2.75

12 0.11 20 0.67 0.79 −1.48 0.7 2 5

13 0.23 8.42 6.12 2.8 −1.5 0.41 2.19 3.22

14 0.48 5 0.36 5.02 −0.9 0.23 2.95 2.45

15 0.35 18.6 0.11 1.44 −1.5 0.51 4 4.35

16 1.03 5 1.88 7.22 −1.13 0.79 2.81 3.6

PE L = 5 LC L = 5 PE L = 4 LC L = 4

Values 0.58 0.77 0.82 0.91

LC, linear correlation; PC, prediction efficiency.

Table 2 
Optimum Parameter Values and Corresponding PE and LC for the Simulation Result in Figure 2

Figure 3.  (a) Free parameter values and (b) Normalized free parameter values in Table 2 as a function of time period. The normalized values are obtained by 
dividing free parameter values during period 1.
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LC values at L = 5 and L = 4 are 0.72 and 0.75, respectively. The PE values and LC values are almost the 
same as results in Figure 1, suggesting that it is better to change the set of parameters by solar wind speed, 
which seems to have the most influence on the variations of the MeV electrons inside magnetosphere. In 
Figures 4g–4i, the model achieved a PE of 0.46 at L = 5 and 0.62 at L = 4 by dividing Pdyn into three catego-
ries: P P Pdyn dyn dynnPa nPa nPa nPa   3 3 6 6, , . The PE value (0.62) at L = 4 is the highest of the three 
cases in Figure 4, indicating that Pdyn has an important influence on electrons at L = 4. In contrast, the PE 
value (0.46) at L = 5 is close to the result (PE = 0.45) under three IMF Bz conditions and lower than the PE 
value (0.54) obtained under three solar wind speed conditions. It seems that the electron fluxes at higher 
L have closer relationship with solar wind speed, which is consistent with conclusions in previous studies 
(e.g., Li et al., 2001) that the solar wind speed is the most important parameter governing relativistic elec-
tron fluxes at the geostationary orbit. Some studies pointed out that IMF Bz plays important roles in both 
electron loss and acceleration (Li et al., 2015; Ni et al., 2016). However, it is unclear in this study why the 
treatment to divide IMF Bz into three categories only slightly improves PE values.

Over the past, we have developed several models to predict and analyze the electron flux in the inner mag-
netosphere. The first model we developed used radial diffusion to model the electron flux at GEO orbit. The 
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Figure 4.  Same format as Figures 1a–1c but using parameters adjusted by solar wind speed (a–c), by IMF Bz (d–f), and by Pdyn (g–i). IMF, interplanetary 
magnetic field.
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model uses the Fokker-Plank equation with the diffusion coefficient a function of solar wind parameters 
(Li, 2004; Li et al., 2001). This model reproduces well the MeV electron flux at GEO, achieving a prediction 
efficiency (PE) of the log of electron flux of 0.81 and a linear correlation of 0.9 for the years 1995–1996 based 
on comparison with daily-averaged LANL 0.7–1.8 MeV electron data at GEO. A version of this model is also 
running 24/7 using real-time solar wind data (https://lasp.colorado.edu/home/personnel/xinlin.li/) to fore-
cast the electron flux one and two days ahead. This model was extended to allow for comparison with meas-
urements at more than one L while retaining a similar form for the diffusion coefficient (Barker et al., 2005). 
The extended model achieved a PE of 0.61 at L = 4 and 0.52 at L = 6 when compared with orbit averaged 
2 MeV electron fluxes measured by Polar satellite at L = 4 and the daily averaged LANL 0.7–1.8 MeV elec-
tron fluxes measured at GEO for the year of 1998. A second model using low energy (∼50 keV) electrons to 
predict higher energy (∼1 MeV) electrons at GEO 1–2 days ahead showed good accuracy (Turner & Li, 2008) 
and quantified the systematic hardening of the electron spectrum. This model, in contrast to the radial 
diffusion model, suggests that the radiation belts can be formed by the injection of lower energy electrons 
from the magnetotail which then hardened (i.e., accelerated by chorus waves) to form the radiation belt. A 
third model, also one-dimensional, Tu et al. (2009) incorporated radial diffusion, loss and a source term to 
model the relativistic electron flux for a range of L values inside GEO using data at geosynchronous orbit 
as a boundary condition for energies corresponding to a single value of the first adiabatic invariant, μ. The 
model can be made to work well for individual storms but is difficult because of the needed adjustment of 
parameters for each storm and because the source term doses not properly model heating. From developing 
this model, we also learned that radial diffusion alone is not sufficient to reproduce the electron flux and 
that for many storms an additional heating term is required. Thus, in this study, we build a model incorpo-
rating the local heating term and loss mechanisms driven by solar wind parameters to reproduce electron 
flux variations.
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Vsw (km/s) condition C1
 10

2 10C C3
 3

4 10C  1L  2L  3L  4L

<400 0.11 18.9 0.1 19.98 0.49 0.67 4.38 4.88

(400, 600) 0.09 3.15 0.81 0.76 −1.98 −0.29 3.98 2

>600 0.01 10.58 0.33 1.37 −0.58 −0.06 5.06 4.64

PE L = 5 LC L = 5 PE L = 4 LC L = 4

Values 0.54 0.75 0.58 0.77

Bz (nT) condition C1  10
2 10C C3  3

4 10C 1ΔL 2ΔL 3ΔL 4ΔL

<−3 0.21 5 0.13 1.89 1.5 −0.1 3.35 8

(−3, 0) 0.43 5 0.13 20 2 −1 4.67 5

>0 0.08 19 8.88 20 −0.89 1 2 5

PE L = 5 LC L = 5 PE L = 4 LC L = 4

Values 0.45 0.72 0.53 0.75

Pdyn (nPa) condition C1  10
2 10C C3  3

4 10C 1ΔL 2ΔL 3ΔL 4ΔL

<3 0.2 11.7 0.50 18.4 −0.52 2.82 3.8 4.38

(3, 6) 0.13 2 0.1 7.5 0.06 −0.01 3.01 2.88

>6 0.004 5 2.4 2.2 1.48 −0.06 7.34 3.72

PE L = 5 LC L = 5 PE L = 4 LC L = 4

Values 0.46 0.71 0.62 0.79

LC, linear correlation; PC, prediction efficiency.

Table 3 
Optimum Parameter Values and Corresponding PE and LC for the Simulation Result in Figure 4
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4.  Summary
In this study, we have established a 1-D radial diffusion model incorporating internal source and loss terms 
to simulate the radiation belt electron flux variations at L = 5 and at L = 4 from October 2012 to April 2015. 
Different from previous studies (e.g., Tu et al., 2009), the source and loss terms in our model are all related 
to solar wind parameters rather than geomagnetic indices and our model is also applied for a longer period. 
We have considered PSD data at   2,400 MeV / G corresponding to 2 MeV electrons at L = 5 and corre-
sponding to 3 MeV electrons at L = 4. The long-term simulation results have overall reproduced the obser-
vations of radiation belt electron flux variation but with certain over-prediction and under-prediction at dif-
ferent time intervals, suggesting that the same set of parameters cannot be applied to the whole simulation 
period based on our 1-D model. Therefore, the simulations using parameters tuned by different periods and 
different solar wind conditions have been conducted to obtain higher PE values (shown in Figures 2 and 4). 
These results demonstrate that using different sets of parameters for different periods is another method to 
get better simulation results. We have also found that Pdyn plays an important role in governing relativistic 
electron fluxes at lower L (e.g., L = 4) while solar wind speed is the dominant factor affecting relativistic 
electron fluxes at higher L (e.g., L = 5). Several previous studies have investigated the relationships between 
electron flux variations and solar wind conditions. Using the electron flux data measured by POES and 
GOES satellites, Ni et al.  (2016) investigated the flux variations of energetic electrons during solar wind 
dynamic pressure pulses and found that the pressure pulses with longer durations tend to produce quicker 
and stronger electron flux decay. By performing superposed epoch analysis of solar wind parameters during 
efficient and inefficient acceleration events, Li et al. (2015) shown that prolonged southward Bz, high solar 
wind speed, and low dynamic pressure are important for >1  MeV electron accelerations. However, the 
preferred solar wind parameters for electron increase and decrease at different L values have not been fully 
investigated, which we leave for further studies.

Generally, the simulation results at L = 4 are better than those at L = 5. A likely explanation can be that the 
magnetopause shadowing effect is not well included in our model. To improve our model performance, it 
will be better to use the LCDS rather than magnetopause standoff position in the model. To reduce the CPU 
operation time, only values of  1 9,  1 4 are tuned, as described in Sections 3.2 and 3.3. Although the 
simulation period October 2012–April 2015 in this study is during the solar maximum of solar cycle 24, the 
geomagnetic activities during the year 2014 were relatively low and radiation belt electron flux experienced 
unusually low level (L. Y. Li et al., 2017). Our model well reproduced the low electron flux level during Oc-
tober 2013–September 2014 as observed in Figures 1a and 2a, suggesting that our model can be used during 
both active and quiet periods.

Data Availability Statement
All Van Allen Probes ECT/REPT Level-3 data are available at www.rbsp-ect.lanl.gov. The solar wind pa-
rameters used in this study are obtained from the OMNIWeb database (http://omniweb.gsfc.nasa.gov). The 
model codes can be found at https://doi.org/10.6084/m9.figshare.14269127.v1.
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