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Abstract Fast magnetosonic waves, which have as their source ion Bernstein instabilities driven by
tenuous ring-like proton velocity distributions, are frequently observed in the inner magnetosphere. One
major difficulty in the simulation of these waves is that they are excited in a wide frequency range with
discrete harmonic nature and require time-consuming computations. To overcome this difficulty, recent
simulation studies assumed a reduced proton-to-electron mass ratio, mp∕me, and a reduced light-to-Alfvén
speed ratio, c∕vA, to reduce the number of unstable modes and, therefore, computational costs. Although
these studies argued that the physics of wave-particle interactions would essentially remain the same,
detailed investigation of the effect of this reduced system on the excited waves has not been done. In this
study, we investigate how the complex frequency, 𝜔 = 𝜔r + i𝛾 , of the ion Bernstein modes varies with
mp∕me for a sufficiently large c∕vA (such that 𝜔2

pe∕Ω
2
e ≡ (me∕mp)(c∕vA)2 ≫ 1) using linear dispersion theory

assuming two different types of energetic proton velocity distributions, namely, ring and shell. The results
show that low- and high-frequency harmonic modes respond differently to the change of mp∕me. For the
low harmonic modes (i.e., 𝜔r ∼ Ωp), both 𝜔r∕Ωp and 𝛾∕Ωp are roughly independent of mp∕me, where Ωp is
the proton cyclotron frequency. For the high harmonic modes (i.e., Ωp ≪ 𝜔r ≲𝜔lh, where 𝜔lh is the lower
hybrid frequency), 𝛾∕𝜔lh (at fixed 𝜔r∕𝜔lh) stays independent of mp∕me when the parallel wave number,
k‖, is sufficiently large and becomes inversely proportional to (mp∕me)1∕4 when k‖ goes to zero. On the
other hand, the frequency range of the unstable modes normalized to 𝜔lh remains independent of mp∕me,
regardless of k‖.

1. Introduction

Enhanced magnetic and electric field fluctuation spectra with peaks at frequencies close to the proton
cyclotron frequency, Ωp, and its harmonics up to and beyond the lower hybrid frequency, 𝜔lh, have been
observed near the geomagnetic equator of the terrestrial magnetosphere at radial distances between 2 and
8 RE [Russell et al., 1970; Perraut et al., 1982; Santolík et al., 2002; Boardsen et al., 2016]. The waves propagate
nearly perpendicular to the background magnetic field (B0) [Boardsen et al., 1992; Santolík et al., 2002], are pri-
marily confined within 2–3∘ of the geomagnetic equator [Němec et al., 2005, 2006], and are mainly observed
in the afternoon and premidnight sectors [Ma et al., 2016]. These waves are called fast magnetosonic waves
because the wave properties are consistent with the prediction using the cold plasma dispersion relation for
fast magnetosonic waves [Boardsen et al., 1992; Walker et al., 2015; Boardsen et al., 2016].

Observations [Perraut et al., 1982; Boardsen et al., 1992; Meredith et al., 2008] and linear theory studies [Gul’elmi
et al., 1975; McClements et al., 1994; Chen et al., 2010a] suggest that the waves are driven by energetic pro-
tons at energies of tens of keV which have ring-like velocity distributions with 𝜕fp(v⟂)∕𝜕v⟂ > 0, where fp(v⟂)
is the perpendicular velocity distribution function. Statistical observations show that the ring-like proton
velocity distributions mainly appear near dusk [Meredith et al., 2008; Thomsen et al., 2011] due partly to
energy-dependent drift of injected ring current ions [Chen et al., 2010a]. With a sufficiently steep positive slope
of fp(v⟂), kinetic linear dispersion theory in a homogeneous, collisionless, magnetized plasma predicts nar-
row bands of unstable ion Bernstein modes at 0 ≤ k‖≪k⟂ and near harmonics of Ωp [e.g., Gul’elmi et al., 1975;
Perraut et al., 1982; Boardsen et al., 1992; Horne et al., 2000], where k denotes the wave number and
the subscripts denote the directions parallel and perpendicular to B0. Perraut et al. [1982] considered a
two-component proton velocity distribution consisting of a cold proton background and a cold proton ring
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for linear dispersion analyses. With a sufficiently tenuous cold proton ring component consistent with plasma
conditions found in the inner magnetosphere, they showed that the proton ring-driven instabilities are
excited near the crossings between the fast magnetosonic mode dispersion relation and the multiple dis-
persion branches of the various ion Bernstein modes. Therefore, the fast magnetosonic waves have as their
source the ion Bernstein instability and exhibit proton cyclotron harmonic structure.

There are also cases where the narrow bands are observed at off-harmonic frequencies, often with frequency
spacings substantially deviating from integer multiples ofΩp, or the frequency spectrum does not exhibit any
discrete bands at all, but broadband structures; examples of these cases have been recently reported by Posch
et al. [2015]. One explanation for the odd harmonicity of fast magnetosonic waves is that the waves can prop-
agate across the field lines [Kasahara et al., 1994; Horne et al., 2000; Chen and Thorne, 2012; Xiao et al., 2012,
2015]. Although they were excited at the harmonics of Ωp in the source region, the wave frequencies nor-
malized to the local Ωp vary, as the waves propagate radially. Observationally, Němec et al. [2013] confirmed
the azimuthal as well as radial components of the wave normal vector with directions dependent upon the
location relative to the plasmapause. Hrbáčková et al. [2015] showed an azimuthal asymmetry of the occur-
rence rate of the waves outside of the plasmasphere but a relatively uniform distribution inside, favoring the
hypothesis that fast magnetosonic waves are generated in the afternoon sector of the plasmapause region
and propagate both inward and outward. Another explanation simply invokes linear theory in local plasmas.
Horne et al. [2000] and Chen et al. [2016] showed that the growth rates of the ion Bernstein instabilities can
be continuous. Min and Liu [2015a, 2016a] showed that the growth rates do not necessarily peak at the exact
harmonics of Ωp when a more realistic partial shell or isotropic shell proton velocity distribution is consid-
ered. There is also the possibility that nonlinear wave-wave interactions may contribute as Perraut et al. [1982]
suggested.

One major difficulty in studying the fast magnetosonic waves is that the waves are excited in a wide frequency
range (roughly betweenΩp and𝜔lh), which means that both ion and electron kinetics should be considered in
linear analyses and kinetic simulations. In particle-in-cell (PIC) simulations, this translates to a large number of
simulation cells (thus more computational resources) needed to resolve both large- and small-scale Bernstein
modes. In terms of linear theory analyses, identifying multiple Bernstein dispersion surfaces becomes tedious
and requires substantial computing time because of the increasing number of harmonic sums needed for the
convergence of the kinetic dispersion relation and the increasing computational cost of evaluating the tran-
scendental Bessel functions at large harmonic numbers. To overcome these challenges, recent studies [Liu
et al., 2011; Min and Liu, 2015a, 2015b, 2016b, Min et al., 2016; Min and Liu, 2016a] resorted to a reduced system
where the proton-to-electron mass ratio, mp∕me, and the light-to-Alfvén speed ratio, c∕vA, are substantially
reduced. Although the reduced system has a fewer number of unstable modes because the number of har-

monics excited is dependent upon 𝜔lh which can be expressed as 𝜔lh = Ωp∕
√

v2
A∕c2 + me∕mp (where me∕mp

is the electron to proton mass ratio), they argued that the waves excited still exhibit the general ion Bern-
stein mode dispersion properties. Nevertheless, more quantitative justification of employing such a reduced
system is needed, and the present paper is aimed at delivering this goal from a linear theory point of view.

Better understanding the scaling properties of the Bernstein instabilities with mp∕me is advantageous in many
aspects because this parameter (combined with c∕vA) determines𝜔lh and thus the number of the discrete har-
monic modes excited. Moreover, Sun et al. [2016a, 2016b] showed that it is also related to the overall growth
rates of these wave modes. If the scaling is well defined, one can wisely choose mp∕me to reduce compu-
tational costs while keeping the necessary physics and then properly scale the results back to the realistic
situation. Sun et al. [2016a, 2016b] recently studied the dependence of the instability growth rate on mp∕me

and c∕vA but only considered exact perpendicular propagation with k‖ = 0. Using linear theory with a cold
(delta function) ring and 1-D PIC simulations, they showed that the growth rate increases with increasing
mp∕me and c∕vA and that the discrete unstable mode can merge into a continuum when the growth rate
becomes sufficiently large. The present study is focused on the dependence of the ion Bernstein modes for
k‖∕k⟂ ≥ 0 on mp∕me for sufficiently large c∕vA consistent with inner magnetospheric conditions.

The paper is organized as follows: section 2 provides an overview of the full linear theory solutions and
section 3 is focused on the detailed analyses. Section 4 summarizes and discusses the results. Same as our

previous studies, we denote the jth species plasma frequency as 𝜔pj ≡
√

4𝜋nje2∕mj , the jth species cyclotron

frequency as Ωj ≡ ejB0∕mjc (with sign retained), and the jth component beta as 𝛽j ≡ 8𝜋njTj∕B2
0. Additionally,

we define 𝛽j ≡ 8𝜋n0Tj∕B2
0 following Gary et al. [2010]. The Alfvén speed is vA ≡ B0∕

√
4𝜋n0mp and the proton
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inertial length is 𝜆p ≡ √
mpc2∕4𝜋n0e2. Here n0 is equal to the unperturbed electron density ne. We assume

B0 = B0ẑ, real wave number k = k⟂x̂ + k‖ẑ (with x̂ = ŷ × ẑ) and complex wave frequency 𝜔 = 𝜔r + i𝛾 with
𝛾 > 0 indicating a growing mode.

2. Overview

We first present a full linear theory picture of the ion Bernstein instabilities driven by two types of ring-like
proton velocity distributions for four different proton-to-electron mass ratios—mp∕me = 100, 400, 900, and
1836—and outline the key features that will be addressed in the following section. For all analyses presented,
we assume a homogeneous, magnetized, and collisionless plasma consisting of core electrons and protons
represented by a single Maxwellian distribution with a small temperature and tenuous but energetic pro-
tons which drive the instability of interest. It should be noted that the “shape” of the velocity distributions,
particularly, those with a high-energy tail, are critical for instability analysis for both ion- [e.g., Mace et al.,
2011; Sugiyama et al., 2015; Shaaban et al., 2016] and electron-scale instabilities [e.g., Mace, 2004; Mace and
Hellberg, 2009; Qureshi et al., 2014]. For example, energetic particles of the magnetospheric plasma often have
a high-energy tail so a kappa-type distribution may be a better choice [e.g., Viñas et al., 2005; Xiao et al., 2007,
2008]. In this study, however, we mainly focus on gaining physical insights into the mp∕me dependence of the
Bernstein instability by choosing a single Maxwellian for the core components.

As in Min and Liu [2016a] (referred to as paper 1 hereinafter), we use two different model proton distributions
that contain one ring and one shell, respectively. The first model distribution consists of a relatively dense,
relatively cold core Maxwellian proton component (fc), and a relatively tenuous, warm ring proton component
(fr) which is defined as

fr ≡ 1
𝜋3∕2𝜃3

r Cr

e−v2‖∕𝜃2
r e−(v⟂−vr )2∕𝜃2

r ,

Cr ≡ e−v2
r ∕𝜃

2
r +

√
𝜋

(
vr

𝜃r

)
erfc

(
−

vr

𝜃r

)
,

(1)

where 𝜃r and vr denote the ring thermal speed and the ring speed, respectively, and erfc(x) is the complemen-
tary error function. This model will be referred to as “ring model.” For the second model, the ring component
is replaced with an isotropic shell (fs) velocity distribution which is defined as

fs ≡ 1
𝜋3∕2𝜃3

s Cs

e−(v−vs)2∕𝜃2
s ,

Cs ≡ 2√
𝜋

[
vs

𝜃s
e−v2

s ∕𝜃
2
s +

√
𝜋

(
1
2
+

v2
s

𝜃2
s

)
erfc

(
−

vs

𝜃s

)]
,

(2)

where 𝜃s and vs denote the shell thermal speed and the shell speed, respectively, and v ≡ √
v2
⟂ + v2‖ . So this

model will be referred to as “shell model.”

Similarly, we choose 𝛽c = 0.002, 𝜃2
r ∕v2

A = 𝜃2
s ∕v2

A = 0.2, and nr∕n0 = ns∕n0 = 0.01 and assume that electrons
are represented by a single Maxwellian distribution with 𝛽e = 𝛽c. Unlike paper 1, however, we choose as a
nominal value a sufficiently large light-to-Alfvén speed ratio of c∕vA = 400 similar to the values found in the
inner magnetosphere. Using these parameters and proton model distributions, a full kinetic linear dispersion
relation solver [Min and Liu, 2015a] is used to calculate the properties of ion Bernstein instabilities (readers are
referred to Min et al. [2016] for details of handling the shell velocity distribution of equation (2) in the linear
analyses).

Figures 1a and 1b display the full linear theory solutions for the ring model with vr∕vA = 2 and 1.2 in k‖-k⟂
space, respectively. Here k‖ and k⟂ are normalized to 𝜆−1

p , and the maximum k⟂ value on the horizontal axis
is chosen to be 8𝜆−1

e (more discussion in the next paragraph), where 𝜆e ≡ c∕𝜔pe =
√

me∕mp𝜆p denotes the
electron inertial length. With a similar format, Figure 2 displays the full linear theory solutions for the shell
model with vs∕vA =2.

Three features are highlighted as follows. First, the extent of unstable modes in k‖ space appears to be well
regulated by 𝜆p irrespective of mp∕me. This is especially apparent for the shell model where the alternat-
ing growth and damping patterns in k‖𝜆p space are remarkably consistent regardless of mp∕me. For the ring
model case, however, the unstable modes near k⟂ = 8𝜆−1

e extend slightly to larger k‖ for larger mp∕me. These
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Figure 1. Full linear theory solutions for the ring model with (a) vr∕vA = 2 and (b) vr∕vA = 1.2 in k‖-k⟂ space for
mp∕me = 100, 400, 900, and 1836. The minimum and maximum k⟂ values are 1.8𝜆−1

p and 8𝜆−1
e , respectively. The color

intensity represents the growth rates (only the growing modes) whose values normalized to Ωp are denoted by the
color bars (same scale). The solid contours represent the real frequencies normalized to Ωp, and the four dashed lines
mark constant wave normal angles denoted by the labels. The dark red patches are where the dispersion solver failed,
and thus, no solutions were available.

complex growth rate patterns have been investigated in paper 1; they are primarily determined by the struc-
ture of the gyroaveraged ring-like velocity distribution and the proton cyclotron resonance condition. Since
the distribution function used is independent of mp∕me and the resonance condition, vres = (𝜔 − jΩp)∕k‖,
is governed by the proton cyclotron frequency, it is not surprising to see that the patterns are well defined
in terms of k‖𝜆p (rather than k‖𝜆e) regardless of mp∕me. Second, the upper k⟂ bound of the unstable modes
appears to be well defined in terms of 𝜆e rather than 𝜆p, whereas the lower k⟂ bound is well defined in terms
of 𝜆p. Therefore, although the absolute growth rate magnitudes are different, the unstable modes appear to
be well contained within the range of 𝜆−1

p ≲ k⟂ ≲ 𝜆−1
e . Third, the number of unstable modes and the overall

growth rates apparently increase with increasing mp∕me. The former characteristic can be easily understood
because 𝜔lh, which increases with increasing mp∕me, is closely related to the upper frequency bound of the
unstable modes [e.g., Boardsen et al., 2016]. The latter characteristic will be further explored in section 3.

3. Analyses

Since the first point can be explained from the results of paper 1, we here focus on investigating the remaining
two features. The analyses in this section are done by comparing the real frequencies and growth rates of
the ion Bernstein modes for the four different mp∕me values at fixed k‖. To facilitate the analyses, we define
two scales: proton kinetic scale where 𝜔r ∼ Ωp and k𝜆p ∼ 1 and electron kinetic scale where Ωp ≪𝜔r ≲ 𝜔lh
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Figure 2. Full linear theory solutions for the shell model with vs∕vA = 2 for mp∕me = 100, 400, 900, and 1836. The
format is similar to Figure 1. The minimum and maximum k⟂ values are 1.8𝜆−1

p and 8𝜆−1
e , respectively, and the vertical

and horizontal axes are in linear and logarithmic scales, respectively. The irregular contours near 𝜔r∕Ωp = 2 and large k⟂
are an artifact caused by multiple dispersion curves and gaps between the neighboring curves.

and k𝜆e ∼1. Approximate growth rate formulae corresponding to these two different scales are derived in
Appendix A and will be employed to help interpret the full linear theory results.

3.1. Dependence of Dispersion Relation on mp∕me

Figure 3 plots𝜔r versus k for the four different values of mp∕me. Due to the dominance of the cold, core proton
and electron components, the full linear theory dispersion relations for the unstable modes are close to the
cold plasma dispersion relations for the fast magnetosonic waves (not shown). On the other hand, the general
electromagnetic ion Bernstein modes can have multiple dispersion branches (due to ion kinetic effect), which
are indicated by the nearly horizontal portions of the solid lines in Figures 3a and 3d (corresponding to k‖ = 0)
and are not present in the cold plasma dispersion relation [e.g., Curtis and Wu, 1979, Figure 2]. As k‖ becomes
sufficiently large (or wave normal angle is sufficiently away from 90∘), the dispersion solver is able to find the
solutions continuously as shown in the figure for the k‖ > 0 cases. There still should be multiple ion Bernstein
dispersion curves approaching the proton cyclotron harmonic frequencies as for the k‖ = 0 case, but we did
not attempt to find them since the strongly growing modes appear only near the intersections of the cold
plasma dispersion curves for the fast magnetosonic waves and the multiple ion Bernstein dispersion curves
when the cold background dominates [e.g., Min and Liu, 2015b].

Note the different normalizations chosen for Figures 3a–3f. When normalized to the proton scale as shown
in Figures 3a–3c, for all k‖ values chosen, the curves essentially coincide with each other in the proton scale
and asymptote to or even cross 𝜔lh as k𝜆e goes above 1. The opposite situation is evident when normal-
ized to the electron scale as shown in Figures 3d–3f. It is not surprising to see such a picture because at
low-frequency limit, electron kinetic effect is not expected to be important, and the phase speed should be
close to vA (with sufficiently small plasma beta), whereas at high-frequency limit protons may be treated as
massive particles (but keeping their kinetic effect). This picture is also confirmed by the properly approximated
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Figure 3. Full linear theory dispersion relations at, from the top, k‖𝜆p = 0, 1 and 2, respectively. (a–c) The real
frequencies and the wave numbers are normalized to the proton cyclotron frequency and inverse of the proton inertial
length, respectively. The vertical lines, which are labeled as 𝜆e with the superscripts corresponding to different mp∕me ,
mark the locations of k𝜆e = 1. (d–f ) The real frequencies and the wave numbers are normalized to the lower hybrid
frequency and inverse of the electron inertial length, respectively. The vertical lines, which are labeled as 𝜆p with the
superscripts corresponding to different mp∕me , mark the locations of k𝜆p = 1.

cold plasma dispersion relations for the fast magnetosonic waves given by equations (A25) and (A31) in the
electron and proton scales, respectively, which clearly show independence of mp∕me (after the corresponding
normalization and for fixed k‖𝜆p).

3.2. Dependence of Linear Growth Rate on mp∕me

Figure 4 displays the comparison of the growth rates driven by the ring model with vr∕vA = 2 (same as Figure 1)
at k‖𝜆p ≈ 0, 0.5, 1, 2, and 10 from top to bottom, respectively. Only the local maximum growth rates of the
individual harmonic modes, which outline the growth rate envelope, are plotted for the cases with k‖𝜆p ≤ 1
because of the distinct harmonic peaks. For the k‖𝜆p =2 and 10 cases, however, the growth rate as a continu-
ous function of frequency is shown and can have two values at a given frequency close to 𝜔lh (see Figure 1).
Both the growth rates and real frequencies are normalized toΩp in Figure 4 (left column), but to𝜔lh in Figure 4
(right column).

When normalized to the proton scale in Figure 4 (left column), the maximum growth rates of the first few
(𝜔r∕Ωp ≤5) unstable modes remain nearly unchanged for all but the mp∕me =100 case. For mp∕me =100, they
exhibit some deviation from the rest but still appear to have a similar trend. When normalized to the electron
scale in Figure 4 (right column), the growth rate envelopes for all but the mp∕me = 100 case are aligned well
in 𝜔r∕𝜔lh space, except for the first few unstable modes that are organized better when normalized to the
proton scale in Figure 4 (left column). Interestingly, 𝛾∕𝜔lh at fixed 𝜔r∕𝜔lh differs substantially at k‖𝜆p ≈ 0 but
gradually converges starting from large 𝜔r∕𝜔lh as k‖ increases. The mp∕me =100 case exhibits a similar trend
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Figure 4. Comparison of the linear growth rates driven by the ring model with vr∕vA = 2 versus the real frequencies for
the four different values of mp∕me denoted by the line colors (constant k‖ slices from Figure 1). From the top, four slices
at k‖𝜆p = 0.01, 0.5, 1, 2, and 10 are shown, respectively. Except for the k‖𝜆p = 2 and 10 slices, only the local growth rate
maxima of the individual harmonic modes are shown with the symbols (the line segments simply connect them). Both
the growth rates and the real frequencies are normalized to the proton cyclotron frequency, Ωp , in the left column and
to the lower hybrid frequency, 𝜔lh, in the right column.

at small k‖ but as k‖ increases beyond ∼ 2𝜆−1
p , the unstable modes appear at lower values of 𝜔r∕𝜔lh, and their

𝛾∕𝜔lh becomes smaller compared to the cases with larger mp∕me.

Figure 5 displays the comparison for the ring model with vr∕vA = 1.2. The main difference in this case (com-
pared to Figure 4) is that the lower harmonic modes in the proton scale are now suppressed due to the reduced
ring speed. As a result, the consistency of the growth rate envelopes and the convergence of 𝛾∕𝜔lh in the elec-
tron scale as described above are more pronounced. Similarly, Figure 6 displays the comparison for the shell
model with vs∕vA =2 (same as Figure 2). Although different k‖ slices are shown due to the different growth rate
patterns compared to the ring model cases, there exists a consistent trend in both the proton and electron
scales with the ring model case with vr∕vA = 2.
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Figure 5. Comparison of the linear growth rates driven by the ring model with vr∕vA = 1.2. The format is the same as
Figure 4.

From these comparisons, we highlight two features: (1) the maximum 𝛾∕Ωp at the first few harmonics appear
to be independent of mp∕me and (2) the maximum 𝛾∕𝜔lh at the higher harmonics (i.e., 𝜔r∕Ωp ≫ 1) decreases
with increasing mp∕me for k‖ ≈ 0 but becomes independent of mp∕me when k‖ increases.

To explain the first feature, we resort to equation (A48), the approximate growth rate formula valid for k‖ = 0
and for the proton scale. Noting that the argument of the Bessel function, Jj(x), is x ≡ k⟂v⟂∕Ωp, the disper-
sion relation is 𝜔r∕k ≈ vA and that the velocity distribution function is independent of mp∕me, it is apparent
that 𝛾∕Ωp is also independent of mp∕me. The same argument can be applied to the k‖ ≠ 0 case using
equation (A34), although it contains a few extra terms. It should be noted that the mp∕me = 100 case does
not seem to follow this rule as well as the other cases (see Figures 4 (left column) and 6 (left column)). This is
because that the smaller the mp∕me, the less the number of proton cyclotron harmonic modes for which elec-
tron kinetic effect becomes less important. Besides, the dispersion relation for the mp∕me = 100 case shows
the earliest departure from 𝜔r∕k = vA at 𝜔r∕Ωp ≈ 3 compared to the other cases (Figure 3).
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Figure 6. Comparison of the linear growth rates driven by the shell model with vs∕vA = 2 (constant k‖ slices from
Figure 2). The format is the same as Figure 4 except for the different k‖ slices as labeled.

To explain the second feature, we employ equations (A45) and (A28) which give the approximate growth rate
formulae in the electron scale for k‖ = 0 and k‖ ≠ 0, respectively. Although it is difficult to derive closed forms
of the integrals in equations (A45) and (A28) for the ring model, assuming that 𝜔r∕Ωp ≫ 1 and vr∕𝜃r ≳ 1, one
can qualitatively explain the convergence of 𝛾∕𝜔lh with increasing k‖. Since 𝜕fr∕𝜕v⟂ ≈ 0 except in the vicinity
of v⟂ = vr , the Bessel function argument is large in the integral interval from which the most contribution to
instability comes. Therefore, J2

j (x) may be expanded about x for a large argument and approximated by the
lowest-order term [Arfken, 1985, pp. 573–596]:

J2
j (x) ∼

2
𝜋x

cos2

(
𝜋

4
+

j𝜋
2

− x

)
. (3)

On the other hand, the terms other than the first term in Fr in equation (A8) may be neglected, assuming
that the maximum growth rate occurs when the parallel resonant speed is close to zero (i.e., when 𝜔r ≈ lΩp).
Then by substituting equation (3) and Fr ∼ (𝜔r∕k‖)(𝜕fr∕𝜕v⟂) into equations (A45) and (A28), the growth rate
normalized to 𝜔lh may be determined by

⎧⎪⎪⎨⎪⎪⎩
𝛾2

𝜔2
lh

∝ ∫ ∞
0

𝜔2
r Ωp

k3
⟂

cos2 (· · ·) 𝜕Hr

v⟂𝜕v⟂
dv⟂ for k‖ = 0

𝛾

𝜔lh
∝ ∫ ∞

0
𝜔3

r

k‖k3
⟂

cos2 (· · ·) 𝜕fr

v⟂𝜕v⟂
dv⟂ for k‖ ≠ 0

, (4)

where (· · ·) denotes the cosine argument from equation (3), lΩp is replaced with 𝜔r , and only the j = l term
is kept in the summation of equation (A28) for the k‖ ≠ 0 case. Note that the terms before the integrals in
equations (A45) and (A28) (especially for the k‖≠0 case) are independent of mp∕me (and c∕vA) for fixed𝜔r∕𝜔lh

and k‖𝜆p and therefore are omitted for brevity. Since the cosine term is a highly oscillating function, it is clear
that 𝛾∕𝜔lh is inversely proportional to (mp∕me)1∕4 for k‖ = 0 but relatively constant for k‖ ≠ 0 (again for fixed
𝜔r∕𝜔lh). Note that if normalized to Ωp, 𝛾 from equation (4) will increase with increasing mp∕me which explains
the overall growth rate increases shown in Figures 1 and 2 when mp∕me becomes large. In addition, unlike the
sharp contrast between the k‖ = 0 and k‖ ≠ 0 cases suggested by equation (4), the full linear theory results
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Figure 7. Comparison of the linear growth rates driven by the ring model with vr∕vA = 1.2 for c∕vA = 200. The format is
the same as Figure 5.

exhibit a smooth transition of the 𝛾∕𝜔lh scaling property as k‖ increases (e.g., Figure 5, right column). This
transition is probably related to the change of the cyclotron resonant interaction mechanism—whether or
not the Doppler effect is involved (between nonresonance for k‖ = 0 and resonance for k‖ ≠ 0 according to
Chen [2015]).

4. Conclusions and Discussions

We have investigated how the linear dispersion properties of ion Bernstein instabilities vary with the
proton-to-electron mass ratio, mp∕me, for a sufficiently large light-to-Alfvén speed ratio, c∕vA, assuming two
different types of tenuous energetic proton velocity distributions, namely, ring and shell distributions. Com-
parison of the real frequencies, 𝜔r , for different values of mp∕me indicates that there exist two scaling factors
depending on the importance of electron kinetic effects. The dispersion relations of the unstable modes with
𝜔r ∼ Ωp and k𝜆p ∼1 become independent of mp∕me when the real frequency and wave number are normal-
ized to Ωp and 𝜆−1

p , respectively, and this regime is labeled as proton kinetic scale limit where the influence of
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electrons can be neglected. In contrast, the dispersion relations of the unstable modes with Ωp ≪ 𝜔r ≲ 𝜔lh

and 𝜆−1
p ≪ k ≲ 𝜆−1

e become independent of mp∕me when the real frequency and wave number are normal-
ized to 𝜔lh and 𝜆−1

e , respectively, and this regime is labeled as electron kinetic scale limit. As for the growth
rates, 𝛾∕Ωp is roughly independent of mp∕me regardless of propagation direction in the proton kinetic scale
limit. In the electron scale limit, however, 𝛾∕𝜔lh is roughly independent of mp∕me for sufficiently large k‖ but
inversely proportional to (mp∕me)1∕4 for k‖ ≈ 0. This 𝛾∕𝜔lh scaling property transitions smoothly with k‖ and
seems to be associated with the change of the resonant interaction mechanism.

The present study is limited to sufficiently large c∕vA such that 𝜔2
pe∕Ω

2
e = (me∕mp)(c∕vA)2 ≫1. Boardsen et al.

[2016] recently reported a thorough study of frequency-dependent fast magnetosonic wave modes based on
satellite data worth of 2 years. From Figure 14 therein and assuming a dipole geomagnetic field, it appears
that c∕vA = 400 assumed here is close to the upper limit of the c∕vA values associated with fast magnetosonic
waves observed. On the other hand, the lower limit of c∕vA is near 200. To explore how the change of c∕vA may
affect the results, we carried out one set of calculation using the ring model with c∕vA = 200 and vr = 1.2vA

which will lead to wave growth only at the electron scale limit. The result is shown in Figure 7 and is very
consistent with Figure 5, i.e., with the c∕vA = 400 case. Combined with the approximate growth rate formula
derivation described in Appendix A, the agreement between Figures 5 and 7 suggests that the instability is
insensitive to the change of c∕vA, as long as (me∕mp)(c∕vA)2 ≫1 is satisfied.

Boardsen et al. [2016] also showed that the observed ratios of the electric field wave amplitude to the mag-
netic field wave amplitude are consistent with those of the cold plasma extraordinary mode, indicating that
the cold plasma assumption made to explain the aforementioned results was appropriate. A noteworthy
result in their study is that the equatorial wave normal angle distribution has a frequency dependence; the
median approaches 90∘as 𝜔r increases. Min and Liu [2016a], using reduced mp∕me, showed that when the
proton velocity distribution approaches a shell, the fast magnetosonic wave growth becomes more limited to
the quasi-perpendicular propagation direction. Furthermore, the growth rate pattern is better organized in
k‖-k⟂ space, so the higher the real frequency, the closer the wave normal angle is to 90∘. The present results
show that as mp∕me increases, the unstable k⟂ range increases, while the unstable k‖ range remains relatively
unchanged. Therefore, the wave growth is further confined to quasi-perpendicular direction with increasing
real frequency for realistic mp∕me. As suggested by Min et al. [2016] and consistent with the statistical result
by Boardsen et al. [2016], the proton velocity distribution associated with the observed waves may be close to
a shell distribution.

Appendix A: Approximate Growth Rate Formulae

Derived in this section is a series of approximate linear growth rate formulae considering two limiting cases:
(1) Ωp ≪𝜔r <𝜔lh (electron kinetic scale) and (2) Ωp ≲ 𝜔r ≪ 𝜔lh (proton kinetic scale). The derivation assumes
that the dispersion relation is determined by the dominant cold plasma components, while the growth rate
is treated as a minor perturbation from the tenuous energetic plasma components [Kennel, 1966; Chen et al.,
2010b, 2010a]. That is, we start from the full kinetic dispersion relation and drop terms that become small in
the small temperature and small growth rate limits. The approximate linear theory is justified for |𝛾| ≪ 𝜔r

and, for our model distributions, for nr,s ≪nc ≈ ne, and 𝛽c,e ≪1.

A1. For k‖ ≠ 0 Case
In this subsection, we derive the approximate linear growth rate formulae for quasi-perpendicular propagat-
ing modes. We begin with a general form of kinetic linear dispersion theory for electromagnetic fluctuations
in a homogeneous, magnetized, collisionless plasma [e.g., Umeda et al., 2012]

0 = D(𝜔, k) ≡
|||||||||
𝜖xx −

k2‖c2

𝜔2 𝜖xy 𝜖xz +
k‖k⟂c2

𝜔2

−𝜖xy 𝜖yy −
k2c2

𝜔2 𝜖yz

𝜖xz +
k‖k⟂c2

𝜔2 −𝜖yz 𝜖zz −
k2
⟂c2

𝜔2

|||||||||
, (A1)

where the dielectric components are

𝜖xx = 1 + 2𝜋
∑
𝜎

𝜔2
p𝜎

𝜔2

∞∑
j=−∞

j2Ω2
𝜎

k2
⟂

∫
∞

0
dv⟂J2

j ∫
∞

−∞

k‖dv‖
𝜔 − k‖v‖ − jΩ𝜎

F𝜎, (A2)
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𝜖yy = 1 + 2𝜋
∑
𝜎

𝜔2
p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v2

⟂(J
′
j )

2 ∫
∞

−∞

k‖dv‖
𝜔 − k‖v‖ − jΩ𝜎

F𝜎, (A3)

𝜖xy = 2𝜋i
∑
𝜎

𝜔2
p𝜎

𝜔2

∞∑
j=−∞

jΩ𝜎

k⟂ ∫
∞

0
dv⟂v⟂JjJ

′
j ∫

∞

−∞

k‖dv‖
𝜔 − k‖v‖ − jΩ𝜎

F𝜎, (A4)

𝜖xz = 2𝜋
∑
𝜎

𝜔2
p𝜎

𝜔2

∞∑
j=−∞

jΩ𝜎

k⟂ ∫
∞

0
dv⟂J2

j ∫
∞

−∞

k‖v‖dv‖
𝜔 − k‖v‖ − jΩ𝜎

G𝜎, (A5)

𝜖yz = −2𝜋i
∑
𝜎

𝜔2
p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v⟂JjJ

′
j ∫

∞

−∞

k‖v‖dv‖
𝜔 − k‖v‖ − jΩ𝜎

G𝜎, and (A6)

𝜖zz = 1 + 2𝜋
∑
𝜎

𝜔2
p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂J2

j ∫
∞

−∞

k‖v2‖dv‖
𝜔 − k‖v‖ − jΩ𝜎

G𝜎. (A7)

Here 𝜎 denotes the plasma component, Jj(k⟂v⟂∕Ω𝜎) is the Bessel function of the first kind with an integer j,
J′j (x) = dJj(x)∕dx and

F𝜎 ≡ 𝜔

k‖
𝜕f𝜎
𝜕v⟂

− v‖ 𝜕f𝜎
𝜕v⟂

+ v⟂
𝜕f𝜎
𝜕v‖ and G𝜎 ≡ jΩ𝜎

k‖
𝜕f𝜎
𝜕v⟂

+
𝜔 − jΩ𝜎

k‖
v⟂
v‖

𝜕f𝜎
𝜕v‖ . (A8)

Paper 1 neglected 𝜖xz and 𝜖yz in equation (A1), which may be sufficient for small k‖. Here they will be kept
because the range of k‖ under consideration can be sufficiently large.

Following the same step as in paper 1, we separate D into the two lowest order contributions:

D(0) =

(
(𝜖(0)xy )

2 + 𝜖(0)xx 𝜖
(0)
yy − 𝜖(0)xx

k2
⟂c2

𝜔2

)(
𝜖(0)zz −

k2
⟂c2

𝜔2

)
+ 𝜖(0)zz

k4‖c4

𝜔4

−
k2‖c2

𝜔2

((
𝜖(0)xx + 𝜖(0)yy

)
𝜖(0)zz −

(
𝜖(0)xx + 𝜖(0)zz

) k2
⟂c2

𝜔2

)

=

[
(𝜖(0)xy )

2 +

(
𝜖(0)xx −

k2‖c2

𝜔2

)(
𝜖(0)yy − k2c2

𝜔2

)](
𝜖(0)zz −

k2
⟂c2

𝜔2

)
−

k2‖k2
⟂c4

𝜔4

(
𝜖(0)yy − k2c2

𝜔2

)
,

(A9)

and

D(1) =
(
𝜖(0)yy − k2c2

𝜔2

)(
𝜖(0)zz −

k2
⟂c2

𝜔2

)
𝜖(1)xx +

[(
𝜖(0)xx −

k2‖c2

𝜔2

)
𝜖(0)zz − 𝜖(0)xx

k2
⟂c2

𝜔2

]
𝜖(1)yy

+

[
(𝜖(0)xy )

2 +

(
𝜖(0)xx −

k2‖c2

𝜔2

)(
𝜖(0)yy − k2c2

𝜔2

)]
𝜖(1)zz

+ 2𝜖(0)xy

(
𝜖(0)zz −

k2
⟂c2

𝜔2

)
𝜖(1)xy − 2

k‖k⟂c2

𝜔2

(
𝜖(0)yy − k2c2

𝜔2

)
𝜖(1)xz + 2

k‖k⟂c2

𝜔2
𝜖(0)xy 𝜖

(1)
yz ,

(A10)

where D(0) is real and denotes the zero-temperature core plasma components’ contribution to D, and D(1) is
complex and denotes the energetic proton component’s contribution. Then the real frequency (𝜔r) and the
growth rate (𝛾) can be obtained respectively from [Kennel, 1966]

D(0)(𝜔r, k) = 0 and 𝛾 = − ℑD(1)(𝜔, k)
𝜕D(0)∕𝜕𝜔

|||||𝜔=𝜔r

. (A11)

For our assumed model distributions, the lowest-order zero-temperature dielectric components can be
obtained by following the derivation of the cold plasma dispersion relation [e.g., Stix, 1992; Min and
Liu, 2016a]:

𝜖(0)xx = 𝜖(0)yy = 1 − 1
2

∑
𝜎=e,c

𝜔2
p𝜎

𝜔2

∑
±

𝜔

𝜔 ∓ Ω𝜎

, (A12)
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𝜖(0)xy = i
2

∑
𝜎=e,c

𝜔2
p𝜎

𝜔2

∑
±

∓ 𝜔

𝜔 ∓ Ω𝜎

, (A13)

𝜖(0)zz = 1 −
∑
𝜎=e,c

𝜔2
p𝜎

𝜔2
, (A14)

and, for nondrifting plasma components assumed, 𝜖(0)xz = 𝜖
(0)
yz = 0. Note that in equation (A9), terms with the

latter two components have already been neglected. From equations (A2)–(A7) and noting that the imaginary
part of equation (A10) contributes to 𝛾 , the first-order dielectric components which contribute to 𝛾 read

ℑ𝜖(1)xx ≈ −2𝜋2
𝜔2

p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂

j2Ω2
𝜎

k2
⟂

J2
j F𝜎

|||||v‖=vj,res

, (A15)

ℑ𝜖(1)yy ≈ −2𝜋2
𝜔2

p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v2

⟂(J
′
j )

2F𝜎
||||v‖=vj,res

, (A16)

ℜ𝜖(1)xy ≈ 2𝜋2
𝜔2

p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂

jΩ𝜎

k⟂
v⟂JjJ

′
j F𝜎

||||v‖=vj,res

, (A17)

ℑ𝜖(1)xz ≈ −2𝜋2
𝜔2

p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v‖ jΩ𝜎

k⟂
J2

j G𝜎

||||v‖=vj,res

, (A18)

ℜ𝜖(1)yz ≈ −2𝜋2
𝜔2

p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v‖v⟂JjJ

′
j G𝜎

||||v‖=vj,res

, (A19)

ℑ𝜖(1)zz ≈ −2𝜋2
𝜔2

p𝜎

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v2‖J2

j G𝜎

||||v‖=vj,res

, (A20)

where vj,res ≡ (𝜔− jΩ𝜎)∕k‖ is the parallel resonant speed and 𝜎 in this case denotes the energetic proton com-
ponent (either ring or shell). In deriving these dielectric components, the integrations in the parallel velocity
component are carried out on the real axis for the principal values of the integrals [e.g., Chen et al., 2013,
equation (4)].

By substituting the relevant terms into equation (A11) and noting that G𝜎 = F𝜎 when v‖ = vj,res, the growth
rate can read

𝛾 = 2𝜋2

𝜕D(0)∕𝜕𝜔r

𝜔2
p𝜎

𝜔2
r

∞∑
j=−∞

∫
∞

0
dv⟂WF𝜎

||||v‖=vj,res

, (A21)

where W is defined as

W ≡
(
𝜖(0)yy − k2c2

𝜔2
r

)(
𝜖(0)zz −

k2
⟂c2

𝜔2
r

)
j2Ω2

𝜎

k2
⟂

J2
j +

[(
𝜖(0)xx −

k2‖c2

𝜔2
r

)
𝜖(0)zz − 𝜖(0)xx

k2
⟂c2

𝜔2
r

]
v2
⟂(J

′
j )

2

− 2(𝜖(0)xy ∕i)

(
𝜖(0)zz −

k2
⟂c2

𝜔2
r

)
jΩ𝜎

k⟂
v⟂JjJ

′
j − 2

k‖k⟂c2

𝜔2
r

(
𝜖(0)yy − k2c2

𝜔2
r

)
v‖ jΩ𝜎

k⟂
J2

j

+

[
(𝜖(0)xy )

2 +

(
𝜖(0)xx −

k2‖c2

𝜔2
r

)(
𝜖(0)yy − k2c2

𝜔2
r

)]
v2‖J2

j + 2
k‖k⟂c2

𝜔2
r

(𝜖(0)xy ∕i)v‖v⟂JjJ
′
j .

(A22)

Now we further simplify 𝛾 assuming the two limiting cases corresponding to the electron and proton
kinetic scales, respectively. Let us first consider the first case. With a further assumption that 𝜔2

pe∕Ω
2
e ≡
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(me∕mp)(c∕vA)2 ≫ 1, the lower hybrid frequency can be expressed as 𝜔lh ≈ Ωp

√
mp∕me, and the dielectric

components (A12–A14) may be approximated to the lowest order of me∕mp with

𝜖(0)xx ≈ 1 −
me

mp

c2

v2
A

(
𝜔2

lh

𝜔2
r

− 1

)
, 𝜖(0)xy ≈ −i

√
me

mp

c2

v2
A

𝜔lh

𝜔r
and 𝜖(0)zz ≈ 1 − c2

v2
A

𝜔2
lh

𝜔2
r

≈ − c2

v2
A

𝜔2
lh

𝜔2
r

. (A23)

Based on the relative order 𝜖(0)zz ∼ k2
⟂c2∕𝜔2 ≫ 𝜖

(0)
xx and k⟂ ≫ k‖, the first form of D(0) in equation (A9) may be

simplified to

D(0) ≈

(
(𝜖(0)xy )

2 − 𝜖(0)xx

k2
⟂c2

𝜔2
r

)(
𝜖(0)zz −

k2
⟂c2

𝜔2
r

)
+

k2‖k2
⟂c4

𝜔4
r

𝜖(0)zz

=
me

mp

c2

v2
A

(
c2

v2
A

𝜔2
lh

𝜔2
r

+
k2
⟂c2

𝜔2
r

)[
c2

v2
A

𝜔2
lh

𝜔2
r

+
k2
⟂c2

𝜔2
r

(
1 +

mp

me

v2
A

c2
−

𝜔2
lh

𝜔2
r

)]
− c2

v2
A

𝜔2
lh

𝜔2
r

k2‖k2
⟂c4

𝜔4
r

≈
me

mp

c2

v2
A

(
c2

v2
A

𝜔2
lh

𝜔2
r

+
k2
⟂c2

𝜔2
r

)[
c2

v2
A

𝜔2
lh

𝜔2
r

+
k2
⟂c2

𝜔2
r

(
1 −

𝜔2
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𝜔2
r

)]
− c2

v2
A

𝜔2
lh

𝜔2
r

k2‖k2
⟂c4

𝜔4
r

.

(A24)

Note that (me∕mp)(c∕vA)2 ≫ 1 has been used to derive the final form. By solving D(0) = 0 for k2
⟂c2∕𝜔2

r , the
approximate cold plasma dispersion relation is given by

k2
⟂c2

𝜔2
r

≈
c2∕v2

A

2(𝜔2
r ∕𝜔

2
lh − 1)

⎡⎢⎢⎣−2 + (1 + k2‖𝜆2
p)
𝜔2

lh

𝜔2
r

−
𝜔lh

𝜔r

√
(1 + k2‖𝜆2

p)2
𝜔2

lh

𝜔2
r

− 4k2‖𝜆2
p

⎤⎥⎥⎦ , (A25)

and the approximate derivative 𝜕D(0)∕𝜕𝜔r needed for the growth rate is given by

𝜕D(0)

𝜕𝜔r
≈ − 4

𝜔r

me

mp

c2

v2
A

[
c4

v4
A

𝜔4
lh

𝜔4
r

+

(
1 − 3

2

𝜔2
lh

𝜔2
r

)
k4
⟂c4

𝜔4
r

+

(
2 −

3(1 + k2‖𝜆2
p)

2

𝜔2
lh

𝜔2
r

)
c2

v2
A

𝜔2
lh

𝜔2
r

k2
⟂c2

𝜔2
r

]
. (A26)

Similarly based on the relative order, the weighting function is mainly determined by the first term in
equation (A22):

W ≈ k2c2

𝜔2
r

(
k2
⟂c2

𝜔2
r

− 𝜖(0)zz

)
j2Ω2

𝜎

k2
⟂

J2
j , (A27)

where 𝜖
(0)
yy has been neglected compared to k2c2∕𝜔2

r . Finally, putting all relevant terms together, the approxi-
mate growth rate formula corresponding to the electron kinetic scale regime may read

𝛾

𝜔lh
≈ −

𝜋2 n𝜎
n0

𝜔lh

𝜔r

2[· · ·]
k2c2

𝜔2
r

(
k2
⟂c2

𝜔2
r

− 𝜖(0)zz

) ∞∑
j=−∞

∫
∞

0
dv⟂

j2Ω2
𝜎

k2
⟂

J2
j F𝜎

||||||v‖=vj,res
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𝜋2

2

n𝜎
n0

𝜔lh

𝜔r

k2v2
A

𝜔2
r

(
k2
⟂v2

A

𝜔2
r

+ 𝜔2
lh

𝜔2
r

)
𝜔4

lh

𝜔4
r
+
(

1 − 3
2

𝜔2
lh

𝜔2
r

)
k4
⟂v4

A

𝜔4
r

+
(

2 −
3(1+k2‖𝜆2

p)

2

𝜔2
lh

𝜔2
r

)
𝜔2

lh

𝜔2
r

k2
⟂v2

A

𝜔2
r

∞∑
j=−∞

∫
∞

0
dv⟂

j2Ω2
𝜎

k2
⟂

J2
j F𝜎

||||||v‖=vj,res

,

(A28)

where [· · ·] denotes the term within the square bracket in equation (A26). Although we could not further
simplify the term in front of the summation, it is independent of mp∕me and c∕vA for fixed 𝜔r∕𝜔lh and k‖𝜆p.

The growth rate formula corresponding to the proton scale regime is simpler. By following similar steps, the
dielectric components (A12–A14) can be expressed to the lowest order of me∕mp as

𝜖(0)xx ≈ − c2

v2
A

Ω2
p

𝜔2
r − Ω2

p

, 𝜖(0)xy ≈ −i
c2

v2
A

𝜔rΩp

𝜔2
r − Ω2

p

and 𝜖(0)zz ≈ −
mp

me

c2

v2
A

Ω2
p

𝜔2
r

. (A29)

Considering the relative order 𝜖(0)zz ≫ 𝜖
(0)
xx ∼ k2

⟂c2∕𝜔2 ≳ k2‖c2∕𝜔2, the second form of D(0) in equation (A9) may
be simplified to

D(0) ≈

[
(𝜖(0)xy )

2 +

(
𝜖(0)xx −

k2‖c2

𝜔2

)(
𝜖(0)yy − k2c2

𝜔2

)]
𝜖(0)zz . (A30)
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By solving D(0) = 0 for k2c2∕𝜔2
r , the approximate cold plasma dispersion relation is given by

k2c2

𝜔2
r

≈ c2

v2
A

𝜔2
r − k2‖v2

A

(1 + k2‖𝜆2
p)𝜔2

r − k2‖v2
A

, (A31)

and the approximate derivative 𝜕D(0)∕𝜕𝜔r is given by

𝜕D(0)

𝜕𝜔r
≈ −2

𝜖
(0)
zz

𝜔r

c4

v4
A

Ω2
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r (𝜔2
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A

≈ −2
𝜖
(0)
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p
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2
r − 2k2‖v2

A

(1 + k2‖𝜆2
p)𝜔2

r − k2‖v2
A

.

(A32)

Similarly, the weighting function is determined by the terms involving 𝜖
(0)
zz in equation (A22):

W ≈ −𝜖(0)zz

(
k2c2

𝜔2
r

− 𝜖(0)yy

)
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⟂
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− 𝜖
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⎤⎥⎥⎦
2

.

(A33)

The second form has been derived using D(0) = 0 with equation (A30) and by taking into account the fact
that ℜ𝜖

(0)
xx and ℑ𝜖

(0)
xy are negative for 𝜔r >Ωp as suggested by equation (A29). After substituting the relevant

terms, the approximate growth rate formula reads

𝛾

Ωp
≈ 𝜋2 n𝜎

n0

Ωp
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(1 + k2‖𝜆2
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√√√√k2v2

A

𝜔2
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r − Ω2

p

Ω2
p

+ 1
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𝜔2
r

𝜔2
r − Ω2

p

Ω2
p

+ 1v⟂J′j

⎤⎥⎥⎦
2

F𝜎

||||||||v‖=vj,res

.

(A34)

A2. For k‖ = 0 Case
In this subsection, we derive the approximate linear growth rate formulae valid for k‖ = 0. It should be noted
that Gul’elmi et al. [1975] derived an approximate growth rate formula for k‖ = 0 in the limit Ωp ≪ 𝜔r ≤ 𝜔lh

(i.e., electron kinetic scale) to investigate the generation mechanism of the magnetospheric ion Bernstein
instability, and Chen [2015] recently put forth an effort to provide a more general formula encompassing the
proton scale regime as well. Following Gul’elmi et al. [1975] and Chen [2015], we consider the extraordinary
mode dispersion relation

D⟂(𝜔, k = k⟂) = 𝜖2
xy + 𝜖xx

(
𝜖yy −

k2c2

𝜔2

)
. (A35)

Similar to equations (A9) and (A10), D(0)
⟂ and D(1)

⟂ can respectively read

D(0)
⟂ ≡ 𝜖(0)xx

(
𝜖(0)xx − k2c2

𝜔2

)
+ (𝜖(0)xy )

2 and (A36)

D(1)
⟂ ≡

(
𝜖(0)xx − k2c2

𝜔2

)
𝜖(1)xx + 𝜖(0)xx 𝜖

(1)
yy + 2𝜖(0)xy 𝜖

(1)
xy , (A37)

where 𝜖
(0)
xx and 𝜖

(0)
xy are given in equations (A12) and (A13), respectively, and 𝜖

(0)
yy has been replaced with 𝜖

(0)
xx .

The next step is to evaluate the dielectric components contributed by the energetic proton component.
For k‖=0 the growth rates maximize at exact harmonics of Ωp [Gul’elmi et al., 1975; Chen, 2015] so we fur-
ther assume 𝜔r,l ≡ lΩp, where l is a positive integer. Since the imaginary part of 𝜔∕(𝜔 − jΩp) is the source
of wave growth [McClements and Dendy, 1993; Chen, 2015], by substituting 𝜔 = 𝜔r,l + i𝛾l and k‖ = 0 into
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equations (A2)–(A4), the lowest-order dielectric components contributing to 𝛾l (that is, the growth rate of the
lth proton cyclotron harmonic mode) can be written as

ℑ𝜖(1)xx ≈ −2𝜋
𝜔r,l

𝛾l

𝜔2
p𝜎

𝜔2
r,l

∫
∞

0
J2

l

l2Ω2
p

k2

𝜕H𝜎

𝜕v⟂
dv⟂, (A38)

ℜ𝜖(1)xy ≈ 2𝜋
𝜔r,l

𝛾l

𝜔2
p𝜎

𝜔2
r,l

∫
∞

0
JlJ

′
l

lΩp

k
v⟂

𝜕H𝜎

𝜕v⟂
dv⟂, and (A39)

ℑ𝜖(1)yy ≈ −2𝜋
𝜔r,l

𝛾l

𝜔2
p𝜎

𝜔2
r,l

∫
∞

0
(J′l )

2v2
⟂
𝜕H𝜎

𝜕v⟂
dv⟂, (A40)

where 𝜎 again denotes the energetic proton component and H𝜎 ≡ ∫ ∞
−∞ f𝜎dv‖ is the reduced v⟂ distribution

function. By substituting the relevant terms into equation (A11) and following similar steps as in the previous
subsection, it is straightforward to obtain the growth rate:

𝛾2 = −2𝜋
𝜔r,l

𝜕D(0)
⟂ ∕𝜕𝜔r

𝜔2
p𝜎

𝜔2
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∫
∞

0
W⟂
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𝜕v⟂
dv⟂, (A41)

where the weighting function W⟂ is defined as

W⟂ ≡
(

k2c2

𝜔2
r,l

− 𝜖(0)xx

)
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p

k2
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=
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k
Jl + sign(𝜖(0)xy ∕i)

√
−𝜖(0)xx v⟂J′l

]2

.

(A42)

Again, D(0) = 0 has been used for the second form and sign(x) = 1 when x > 0 and −1 when x < 0.

Now we further simplify equation (A41) considering the two limiting cases corresponding to the electron
and proton kinetic scales, respectively. Let us first consider the electron kinetic scale. By following the same
steps as the k‖ ≠ 0 case, the cold plasma dispersion relation and the derivative 𝜕D(0)

⟂ ∕𝜕𝜔r can respectively be
simplified to

k2c2

𝜔2
r

≈ c2

v2
A

𝜔2
lh

𝜔2
lh − 𝜔2
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and (A43)
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⟂
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v4
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𝜔4
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2
lh − 𝜔5

r

, (A44)

where (me∕mp)(c∕vA)2 ≫ 1 has been used for the final forms. The final growth rate formula becomes much
simpler:

𝛾2
l

𝜔2
lh

≈ 𝜋
n𝜎

n0

𝜔2
r,l

𝜔2
lh
∫

∞

0

𝜔2
r,l

k2
J2

l

𝜕H𝜎

𝜕v⟂
dv⟂. (A45)

Note that equations (A43) and (A45) are consistent respectively with equations (2) and (3) derived by Gul’elmi
et al. [1975] (apart from the factor 𝜋 in 𝛾l which seems necessary and might be due to the different ways to
normalize H𝜎 in the two studies). Same as equation (A28), 𝛾l∕𝜔lh is also independent of mp∕me and c∕vA for
fixed 𝜔r∕𝜔lh.
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Figure A1. Comparison of the growth rates obtained from the approximate growth rate formulae (with the equation
numbers labeled) with the full linear theory results (blue) for the ring model with vr∕vA = 2 and mp∕me = 1836. (a–c)
The k‖𝜆p = 0, 0.5, and 1 slices, respectively. Only the local maximum growth rates of the individual harmonic modes are
shown.

Let us now consider the second limiting case, the proton kinetic scale. Again, following the same steps, the
cold plasma dispersion relation and the derivative 𝜕D(0)

⟂ ∕𝜕𝜔r respectively read

kvA ≈ 𝜔r and (A46)

𝜕D(0)
⟂

𝜕𝜔r
≈ − 2

𝜔r

c4

v4
A

Ω2
p

𝜔2
r − Ω2

p

, (A47)

and the growth rate is given by

𝛾2
l

Ω2
p

≈ 𝜋
n𝜎

n0 ∫
∞

0

[
𝜔r,l

k

𝜔r,l

Ωp
Jl − v⟂J′l

]2
𝜕H𝜎

𝜕v⟂
dv⟂. (A48)

A3. Validation
Figure A1a compares the growth rates obtained from equations (A41), (A45), and (A48) with the full linear
theory results for the ring model with vr∕vA = 2, mp∕me = 1836 and k‖ = 0, showing rather excellent
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agreement. Clearly, the growth rates valid for the electron kinetic scale (from equation (A45)) show good
agreement in a wide frequency range (𝜔r ≳ 5Ωp), while the growth rates valid for the proton kinetic scale
(from equation (A48)) show good agreement only at 𝜔r ≲ 7Ωp. Therefore, the further simplifications made to
obtain equations (A45) and (A48) from equation (A41) are justified.

Figures A1b and A1c, corresponding to k‖𝜆p = 0.5 and 1, respectively, compare the maximum growth rates
of the individual harmonics obtained from equations (A21), (A28), and (A34) with the full linear theory results
for the ring model with vr∕vA = 2, mp∕me = 1836. The overestimate from the approximate formulae derived
is quite substantial for small k‖ but is gradually reduced for large k‖. This is rather puzzling, considering that
the similar comparison in Chen [2015, Figure 2] showed better consistency. Without further investigation,
we speculate that the growth rate may be too large, the cold plasma dispersion relation may be inaccurate,
or the underlying energetic velocity distribution may somehow affect the results. We noticed though that
the approximate formulae can produce the growth rate pattern (where the peaks and valleys occur) consis-
tent with the full linear theory results (not shown). Nevertheless, as for the k‖ = 0 case, the growth rates
valid for the electron and proton kinetic scales show good agreement with the growth rates obtained from
equation (A21) in their respective frequency limits, indicating again that the further simplifications made to
obtain equations (A28) and (A34) from equation (A21) are justified.
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Němec, F., O. Santolík, K. Gereová, E. Macúšová, and H. Laakso (2006), Equatorial noise: Statistical study of its localization and the derived
number density, Adv. Space Res., 37(3), 610–616, doi:10.1016/j.asr.2005.03.025.

Perraut, S., A. Roux, P. Robert, R. Gendrin, J.-A. Sauvaud, J.-M. Bosqued, G. Kremser, and A. Korth (1982), A systematic study of ULF waves
above fH+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions, J. Geophys. Res. Space Physics, 87(A8),
6219–6236, doi:10.1029/JA087iA08p06219.

Posch, J. L., M. J. Engebretson, C. N. Olson, S. A. Thaller, A. W. Breneman, J. R. Wygant, S. A. Boardsen, C. A. Kletzing, C. W. Smith, and
G. D. Reeves (2015), Low-harmonic magnetosonic waves observed by the Van Allen Probes, J. Geophys. Res. Space Physics, 120,
6230–6257, doi:10.1002/2015JA021179.

Qureshi, M. N. S., W. Nasir, W. Masood, P. H. Yoon, H. A. Shah, and S. J. Schwartz (2014), Terrestrial lion roars and non-Maxwellian distribution,
J. Geophys. Res. Space Physics, 119, 10,059–10,067, doi:10.1002/2014JA020476.

Russell, C. T., R. E. Holzer, and E. J. Smith (1970), OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial
noise, J. Geophys. Res., 75(4), 755–768, doi:10.1029/JA075i004p00755.

Santolík, O., J. S. Pickett, D. A. Gurnett, M. Maksimovic, and N. Cornilleau-Wehrlin (2002), Spatiotemporal variability and propagation of
equatorial noise observed by Cluster, J. Geophys. Res., 107, 1495, doi:10.1029/2001JA009159.

Shaaban, S. M., M. Lazar, S. Poedts, and A. Elhanbaly (2016), The interplay of the solar wind proton core and halo populations: EMIC
instability, J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA022587.

Stix, T. H. (1992), Waves in Plasmas, Am. Inst. Phys., Springer, New York.
Sugiyama, H., S. Singh, Y. Omura, M. Shoji, D. Nunn, and D. Summers (2015), Electromagnetic ion cyclotron waves in the Earth’s magneto-

sphere with a kappa-Maxwellian particle distribution, J. Geophys. Res. Space Physics, 120, 8426–8439, doi:10.1002/2015JA021346.
Sun, J., X. Gao, L. Chen, Q. Lu, X. Tao, and S. Wang (2016a), A parametric study for the generation of ion Bernstein modes from a discrete

spectrum to a continuous one in the inner magnetosphere. I. Linear theory, Phys. Plasma, 2, 022901, doi:10.1063/1.4941283.
Sun, J., X. Gao, Q. Lu, L. Chen, X. Tao, and S. Wang (2016b), A parametric study for the generation of ion Bernstein modes from a

discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations, Phys. Plasma, 23(2), 022902,
doi:10.1063/1.4941284.

Thomsen, M. F., M. H. Denton, V. K. Jordanova, L. Chen, and R. M. Thorne (2011), Free energy to drive equatorial magnetosonic wave
instability at geosynchronous orbit, J. Geophys. Res. Space Physics, 116, A08220, doi:10.1029/2011JA016644.

Umeda, T., S. Matsukiyo, T. Amano, and Y. Miyoshi (2012), A numerical electromagnetic linear dispersion relation for Maxwellian ring-beam
velocity distributions, Phys. Plasma, 19(7), 072107, doi:10.1063/1.4736848.

Viñas, A. F., R. L. Mace, and R. F. Benson (2005), Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution
plasmas and their comparisons to the IMAGE/RPI observations, J. Geophys. Res. Space Physics, 110, A06202, doi:10.1029/2004JA010967.

Walker, S. N., M. A. Balikhin, D. R. Shklyar, K. H. Yearby, P. Canu, C. M. Carr, and I. Dandouras (2015), Experimental determination of the
dispersion relation of magnetosonic waves, J. Geophys. Res. Space Physics, 120, 9632–9650, doi:10.1002/2015JA021746.

Xiao, F., Q. Zhou, H. He, H. Zheng, and S. Wang (2007), Electromagnetic ion cyclotron waves instability threshold condition of suprathermal
protons by kappa distribution, J. Geophys. Res., 112, A07219, doi:10.1029/2006JA012050.

Xiao, F., C. Shen, Y. Wang, H. Zheng, and S. Wang (2008), Energetic electron distributions fitted with a relativistic kappa-type function at
geosynchronous orbit, J. Geophys. Res., 113, A05203, doi:10.1029/2007JA012903.

Xiao, F., Q. Zhou, Z. He, and L. Tang (2012), Three-dimensional ray tracing of fast magnetosonic waves, J. Geophys. Res., 117, A06208,
doi:10.1029/2012JA017589.

Xiao, F., C. Yang, Z. Su, Q. Zhou, Z. He, Y. He, D. N. Baker, H. E. Spence, H. O. Funsten, and J. B. Blake (2015), Wave-driven butterfly distribution
of Van Allen belt relativistic electrons, Nat. Commun., 6, 8590, doi:10.1038/ncomms9590.

MIN AND LIU ION BERNSTEIN INSTABILITIES 6710

http://dx.doi.org/10.1002/2015JA021041
http://dx.doi.org/10.1002/2015JA021514
http://dx.doi.org/10.1002/2016JA022524
http://dx.doi.org/10.1002/2015JA022042
http://dx.doi.org/10.1002/2015JA022134
http://dx.doi.org/10.1002/2013JA019373
http://dx.doi.org/10.1016/j.pss.2004.09.055
http://dx.doi.org/10.1016/j.asr.2005.03.025
http://dx.doi.org/10.1029/JA087iA08p06219
http://dx.doi.org/10.1002/2015JA021179
http://dx.doi.org/10.1002/2014JA020476
http://dx.doi.org/10.1029/JA075i004p00755
http://dx.doi.org/10.1029/2001JA009159
http://dx.doi.org/10.1002/2016JA022587
http://dx.doi.org/10.1002/2015JA021346
http://dx.doi.org/10.1063/1.4941283
http://dx.doi.org/10.1063/1.4941284
http://dx.doi.org/10.1029/2011JA016644
http://dx.doi.org/10.1063/1.4736848
http://dx.doi.org/10.1029/2004JA010967
http://dx.doi.org/10.1002/2015JA021746
http://dx.doi.org/10.1029/2006JA012050
http://dx.doi.org/10.1029/2007JA012903
http://dx.doi.org/10.1029/2012JA017589
http://dx.doi.org/10.1038/ncomms9590

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


