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abstract: The scarcity of asexual reproduction in vertebrates
alludes to an inherent cost. Several groups of asexual vertebrates ex-
hibit lower endurance capacity (a trait predominantly sourced by
mitochondrial respiration) compared with congeneric sexual spe-
cies. Here we measure endurance capacity in five species of Aspi-
doscelis lizards and examine mitochondrial respiration between
sexual and asexual species using mitochondrial respirometry. Our
results show reduced endurance capacity, reduced mitochondrial
respiration, and reduced phenotypic variability in asexual species
compared with parental sexual species, along with a positive rela-
tionship between endurance capacity and mitochondrial respira-
tion. Results of lower endurance capacity and lower mitochondrial
respiration in asexual Aspidoscelis are consistent with hypotheses
involving mitonuclear incompatibility.

Keywords: parthenogenesis, asexuality, hybridization, mitochon-
dria, endurance, variability.

Introduction

The fitness advantages of asexual reproduction predict an
abundance of asexual species (Maynard Smith 1958, 1978).
However, the prevalence of sexual reproduction in animals
suggests that the evolutionary costs of asexual reproduction
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outweigh the benefits (Speijer et al. 2015). Although theo-
retical and empirical studies over the past century have
proposed and tested hypotheses regarding these costs,
much remains to be understood regarding the direct con-
sequences of asexual reproduction in vertebrates (Fujita
et al. 2020).
For the purposes of this article, we use the term “asexu-

ality” to refer to a reproductive strategy where all progeny
are produced without male genetic contribution (as op-
posed to facultative asexuality). Asexual vertebrates, virtu-
ally all of which are of hybrid origin (Dawley and Bogart
1989; Avise 2008, 2015; Fujita et al. 2020; but see Sinclair
et al. 2010), reproduce by premeiotically doubling their
ploidy (Lutes et al. 2010). The subsequent pairing of con-
specific homologous chromosomes in meiosis I results in
the perpetual preservation of genome-wide heterozygosity
(Vrijenhoek and Pfeiler 2008; Warren et al. 2018). With
ploidy restored after the completion of meiosis, the cells
are ready to develop without variation introduced via fer-
tilization or recombination, thus maintaining the genome
in a frozen hybrid state (Vrijenhoek and Pfeiler 2008;War-
ren et al. 2018; but for evidence of some gene conversion,
see Hillis et al. 1991; Warren et al. 2018).
The effect of this unique evolutionary strategy on intra-

cellular bioenergetics is unclear, but examining the effect
of heterozygosity on mitochondrial function and overall
fitness can inform predictions. Higher rates of coupledmi-
tochondrial respiration and increased fitness (interpreted
as heterosis) have been observed in F1 hybrids from inbred
Drosophila melanogaster lines (McDaniel and Grimwood
1971; Martinez andMcDaniel 1979) and natural Tigriopus
hicago. All rights reserved. Published by The University of Chicago Press for
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californicus populations (Ellison and Burton 2008) com-
pared with their parental lineages, whereas lower values for
these traits have been observed when backcrosses lead to
mismatched mitochondrial and introgressed nuclear ge-
nomes in natural populations of T. californicus (Ellison and
Burton 2008) and Urosaurus (Haenel and Moore 2018).
High heterozygosity of asexual vertebrates led numerous
researchers to predict an increase in performance compared
with sexual parental species (White 1970; Schultz 1971;
Cole 1975; Mitton and Grant 1984; Bullini 1994; Cullum
1997), yet the results from several studies have contradicted
these predictions by showing reduced aerobic performance
in asexual lineages (Cullum 1997; Mee et al. 2011; Denton
et al. 2017).
Aerobic activities requiring endurance (continuous ex-

ertion) are powered by oxidative phosphorylation. This
catalytic conversion process occurs in themitochondrion,
where a proton gradient powered by nutrient-donated
electrons facilitates the phosphorylation of ADP. Produc-
tion of ATP via this electron transport system (ETS) pro-
duces the vast majority of energy used for cellular func-
tions. While the link between mitochondrial function
and endurance may seem intuitive, studies examining
the association of endurance capacity with mitochondrial
respiration have been primarily in the context of biomed-
ical and exercise physiology rather than evolution (e.g.,
Davies et al. 1981; Gollnick and Saltin 1982; Mercier et al.
1995; Bouchard et al. 1999; Eynon et al. 2011; Jacobs and
Lundby 2013; Scott et al. 2018).
Reductions in asexual aerobic performance may be

explained in part bymitonuclear incompatibility—the re-
sult of interactions between poorly coadapted gene prod-
ucts from mitochondrial and nuclear genomes that can
result in reduced mitochondrial function, reduced organ-
ismal performance, and reduced fitness (Ryan and Hoo-
genraad 2007;Meiklejohn et al. 2013; Hill et al. 2019; Healy
and Burton 2020; Rand and Mossman 2020; Moran et al.
2021).We test the hypothesis that the reduced aerobic per-
formance previously observed in several groups of hybrid
asexual vertebrates is due to decreased mitochondrial
function, as would be predicted with mitonuclear incom-
patibility. The evolutionarymechanisms leading to incom-
patibility in these F1 hybrids could result frommismatched
genomes with dominance effects as a result of Darwin’s
corollary (Turelli and Moyle 2007) and/or the reduced ef-
ficiency of selection on nuclear mutations imposed by the
lack of recombination in asexual species (Fisher 1930;Muller
1932). Because asexual vertebrates are of hybrid origin, rather
than seeking to disentangle the effects of these traits (asexual
reproduction andhybrid origin), we strictly examine hypoth-
esized contributions of an intracellular process (mitochon-
drial respiration) to an organismal phenomenon (reduced
endurance capacity). Squamata (snakes and lizards) is the
only vertebrate clade with lineages that reproduce primar-
ily through parthenogenesis, a mode of asexual reproduc-
tion with no male input. Using the whiptail lizard genus
Aspidoscelis as amodel system (inwhich roughly one-third
of species reproduce parthenogenetically), we quantify en-
durance capacity and mitochondrial respiration to contrast
a sample of sexual and asexual species with two independent
origins of parthenogenesis (Densmore et al. 1989; Reeder
et al. 2002).
Methods

Animal Capture

We collected individuals of three sexual species (n p 6
Aspidoscelis inornatus, n p 6 A. marmoratus, n p 7 A.
septemvittatus) and two asexual species (n p 4 A. neo-
mexicanus, n p 7 A. tesselatus) along the Rio Grande
basin between Las Cruces, New Mexico, and Big Bend
National Park, Texas (table S1; tables S1–S5 are available
online). The estimated evolutionary relationships of these
species (from Reeder et al. 2002) are depicted in figure 1A
(note: although asexual lineages are not species in the typ-
ical sense [originating via cladogenesis], we join others in
referring to them as such given their independent evolu-
tionary trajectory). We caught lizards via lasso or by hand
and transported all individuals to Auburn University for
temporary housing. All collection and animal care proce-
dures were approved by theUSDepartment of the Interior,
state departments, and the Auburn University Institu-
tional Animal Care and Use Committee (2018-3286). Ad-
ditional sampling information is included in the “Sup-
plementary Methods” section of the supplemental PDF
(available online).
Endurance Capacity and Mitochondrial Respirometry

We quantified endurance by measuring the time that a liz-
ardmaintained forward progression at 1 km/h (on a tread-
mill), following previously established protocols (Garland
1994; Cullum 1997; for more details, see the “Supplemen-
tary Methods” section of the supplemental PDF). One
week later, wemeasuredmitochondrial respiration follow-
ing previously established protocols (Palmer et al. 1977;
Hood et al. 2019; for more details, see the “Supplementary
Methods” section of the supplemental PDF). To measure
oxygen consumption through the electron transport chain,
we added isolatedmitochondria with electron-donating sub-
strates to electrode chamber A (for starting electron trans-
port from complex I [CI] and continuing through complex
III [CIII], complex IV [CIV], and complexV [CV]) and elec-
trode chamber B (for starting electron transport from com-
plex II [CII] and continuing through CIII, CIV, and CV).
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Measuring mitochondrial respiration via the electron trans-
port chain using these two ports of entry provides inde-
pendent avenues with different starting substrates to quan-
tify respiration. Because both avenues (starting with CI or
CII) comprise interacting mitochondrial and nuclear gene
products (CIII, CIV, and CV), it is inappropriate to use
these measures to draw conclusions regarding mitonuclear
compatibility.
To initiate coupled, ADP-stimulated respiration (state 3),

we added ADP to each chamber. After the phosphory-
lation of ADP was complete and any oxygen being con-
sumed was driven by protons moving across the inner
membrane without facilitation from ATP synthase, we
recorded basal respiration (state 4). We normalized respi-
ration rates to mitochondrial protein concentration. To
calculate the respiratory control ratio (RCR), we divided
state 3 respiration by state 4 respiration.
Predictions. To test our hypothesis of reduced mitochon-
drial respiration in hybrid asexual species compared with
their sexual congeneric progenitors, we used the six mito-
chondrial respiration response variables (state 3, state 4,
and RCR initiated from either CI or CII). State 3 respira-
tion measures the rate of oxygen consumption when
ATP is being produced (i.e., oxygen consumption is cou-
pled with proton movement through ATP synthase
[CV]). If coupled electron transport and ATP synthesis
is associated with endurance capacity, we predict that
state 3 respiration would be lower in hybrid asexual species.
State 4 respiration measures the rate of oxygen consump-
tion when ATP is not being produced (i.e., oxygen con-
sumption is coupled with proton leak across the inner
membrane). In this context, we predict no differences in
state 4 respiration. Because RCR is an indicator of respira-
tion efficiency (coupled respiration controlling for leak),
we predict to see lower RCR in hybrid asexual species if
they have lower endurance capacity.
Phylogenetic Network Estimation

Accounting for evolutionary history is critical for accurate
comparative methods when multiple lineages are present
in a sample set. However, in study systems where lineage
history is reticulate rather than bifurcate, models with a
phylogenetic network (rather than a tree) more appropri-
ately account for evolutionary history. To estimate the
history of diversification and hybridization of the five
species of Aspidoscelis, we sequenced mitochondrial ge-
nomes (following Roelke et al. 2018) and downloaded
available mitochondrial sequence data from GenBank (ta-
ble S2). We used several software packages to estimate the
phylogenetic network (Than and Nakhleh 2008; Nguyen
et al. 2015; Solís-Lemus et al. 2017); we provide details in
the “SupplementaryMethods” section of the supplemental
PDF.
Statistical Analyses

We analyze the data in three ways. First, we use phyloge-
netic network linear models that include reticulate evolu-
tionary relationships within the model to estimate (1) the
effect of hybrid asexuality on each response variable (en-
durance and mitochondrial respiration [state 3, state 4,
and RCR initiated from either CI or CII]) and (2) the ef-
fect of mitochondrial respiration on endurance capacity.
Second, we use linear mixed effects models with species
random effects to test for (1) the effect of hybrid asexuality
on each response variable, (2) the effect of mitochondrial
respiration on endurance capacity, and (3) differences in
variability between hybrid asexual and sexual species for
each response variable. Third, we use linear models for
subgroups without needing to account for ancestry to test
the effect of hybrid asexuality on each response variable (we
made subgroup assignments based on mitochondrial history
and parentage). More details for each of these approaches are
provided in the “SupplementaryMethods” section of the sup-
plemental PDF. Data and code are available from GitHub
(https://doi.org/10.5281/zenodo.5784646; Klabacka 2021)
and the Dryad Digital Repository (https://doi.org/10.5061
/dryad.zs7h44j8n; Klabacka et al. 2021).
Results

Effect of Hybrid Asexuality on Endurance
and Mitochondrial Respiration

We found reduced endurance capacity and mitochondrial
respiration in hybrid asexual species when using either
the phylogenetic network or mixed effects linear models
(fig. 1; table 1; summary statistics in table S3).We observed
that hybrid asexual species had reduced endurance capac-
ity and rates of oxygen consumption when starting from
either CI or CII for state 3 and state 4 respiration. We
see no support for differences in RCR (for either complex)
between sexual and asexual species (fig. S2; figs. S1–S4 are
available online). This is not surprising given that both
state 3 and state 4 changed in the same direction, resulting
in no changes in the ratio between the twomeasures (RCR).
The effect sizes for each response variable are similar be-
tween phylogenetic network and mixed effects linear mod-
els (table 1), providing evidence for little phylogenetic sig-
nal for response variables. Within-group comparisons show
the same general pattern without a statistically significant

https://doi.org/10.5281/zenodo.5784646
https://doi.org/10.5061/dryad.zs7h44j8n
https://doi.org/10.5061/dryad.zs7h44j8n
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effect for each response variable (potentially because of
lower sample size; table S4). Details on the within-group
comparisons are included in the supplemental PDF.
Positive Relationship between Endurance
and Mitochondrial Respiration

We observed a positive relationship between endurance
and rate of oxygen consumption when starting from either
CI or CII for state 3 and state 4 respiration with either the
phylogenetic network or the mixed effects linear models;
each of these relationships is statistically significant except
for the phylogenetic network model for CII state 3 (table 1;
fig. 2). We see no support for a relationship between en-
durance and RCR.
Greater Variation in Sexual Species

We found that models incorporating different residual
variation parameters for sexual and hybrid asexual groups
were preferred for endurance, CII state 3 respiration, and
CI and CII state 4 respiration (tables 1, S5; fig. S3; also see
pink rows vs. gray rows in fig. 1B). The approximate pos-
terior probability that sexual species have a greater mean-
corrected variance than asexual species was 75%, 96%,
83%, and 94% for endurance, CI state 4, CII state 3, and
CII state 4, respectively (fig. S4).
Discussion

We present novel findings of reducedmitochondrial respi-
ration in hybrid asexual species. We also reproduce the
findings of previous studies that indicate reduced endur-
ance capacity in these asexual species relative to parental
sexual species (Cullum 1997; Mee et al. 2011; Denton et al.
2017). A positive relationship between mitochondrial res-
piration and endurance capacity is evident in our results,
which matches our prediction given that aerobic activities
require a large amount of ATP. This reflects a similar cor-
relation between endurance and mitochondrial genotype
inDrosophila (Sujkowski et al. 2019). The lower variability
in endurance, CII state 3, and CI/CII state 4 in the hybrid
asexual species supports the hypothesis that asexual species
have lower phenotypic variability because of decreased ge-
netic variation (Ghiselin 1974; Williams 1975; Maynard
Smith 1978). While lower phenotypic variability in loco-
motor performance has been previously documented in
asexual Aspidoscelis species (Cullum 2000), our study is
the first to report decreased variability in mitochondrial
respiration of hybrid asexual species relative to respective
parental sexual species.
Despite the high heterozygosity of hybrid asexual spe-

cies, which led numerous researchers to predict an in-
crease in performance of hybrid asexual species com-
pared with parental sexual species (hybrid vigor; see
White 1970; Schultz 1971; Cole 1975; Mitton and Grant
Table 1: Results from PhyloNetwork and mixed effects linear models
Hybrid parthenogens
 Log endurance
b
 SE
 P
 js, ja
 b
 SE
 P
 r2
PhyloNetwork model:

Log endurance
 2.22
 .040
 .031
 . . .
 . . .
 . . .
 . . .
 . . .

CI state 3
 26.88
 .44
 6.03E204
 . . .
 .033
 .0036
 .0028
 .97

CI state 4
 22.33
 .23
 .0020
 . . .
 .095
 .016
 .011
 .92

CI RCR
 .066
 .13
 .66
 . . .
 2.13
 .55
 .84
 .017

CII state 3
 26.12
 1.13
 .013
 . . .
 .031
 .11
 .060
 .74

CII state 4
 22.90
 .47
 .0087
 . . .
 .072
 .017
 .023
 .86

CII RCR
 2.13
 .09
 .26
 . . .
 .52
 .59
 .44
 .20
Mixed effects model:

Log endurance
 2.24
 .050
 .017
 .18, .090a
 . . .
 . . .
 . . .
 . . .

CI state 3
 27.10
 1.77
 .028
 4.77, 4.51
 .021
 .0050
 2.00E204
 .40

CI state 4
 22.31
 .57
 .026
 2.26, .75a
 .049
 .014
 .0023
 .29

CI RCR
 .021
 .29
 .95
 .69, .88
 2.042
 .042
 .33
 .23

CII state 3
 25.91
 1.28
 .019
 4.53, 2.49a
 .021
 .0060
 4.0E204
 .37

CII state 4
 23.17
 .85
 .034
 3.29, 1.32a
 .023
 .011
 .042
 .14

CII RCR
 .036
 .13
 .81
 .36, .21
 .039
 .11
 .71
 .0035
Note: Within columns, we show the deviation of hybrid asexual species from sexual species for all response variables (left) and the effect of mitochondrial
respiration states on endurance (right). The table is broken into two horizontal sections showing results from the PhyloNetwork linear model (top) and the
mixed effects linear model (bottom). Effect sizes (b), standard errors, P values, standard deviations for reproductive modes (js and ja indicate the standard
deviation for sexual and hybrid asexual species, respectively; confidence intervals, results from the likelihood ratio test, and coefficients of variation are shown
in table S5), and the coefficient of determination (r2) are shown for the models. CI p complex I; CII p complex II; RCR p respiratory control ratio.

a Models where two residual variances were selected.
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1984; Bullini 1994; Cullum 1997), several studies have
shown reduced aerobic performance in asexual vertebrate
species (Cullum 1997; Mee et al. 2011; Denton et al.
2017). Historically, this decrease in performance has been
attributed to (a) genomic incompatibility (consequence
of hybridization via negative epistasis [Cullum 1997;
Denton et al. 2017] and/or subsequent gene conversion),
(b) mutational erosion (consequence of asexuality via
Muller’s Ratchet [Muller 1964; Leslie and Vrijenhoek
1978; Cullum 1997; Vorburger 2001]), or (c) the inability
of the organism to “keep up”with the evolution of parasites
because of lack of variation (consequence of asexuality
via Red Queen [Valen 1973; Hamilton et al. 1990; Lively
et al. 1990; Moritz et al. 1991; Mee and Rowe 2006; Mata-
Silva et al. 2008]). It is also possible that the inability
of asexual lineages to combine beneficial alleles that arise
in a population via sexual recombination (Maynard Smith
1978) results in the failure of the nuclear genome to effi-
ciently compensate for deleterious mutations that arise in
the mitochondrial genome. This hypothesis, an extension
of the Hill-Robertson effect (Fisher 1930; Muller 1932;
Felsenstein 1974; Hill and Robertson 2007) in the context
of accelerated compensatory evolution in nuclear-encoded
mitochondrial genes, was originally posed to explain the
origin and prevalence of sexual reproduction among eu-
karyotes (Havird et al. 2015). Additional biological factors,
such as demography, ecology, and/or life history strategies
specific toAspidoscelis’s sexual mode, may contribute to the
differences in endurance and mitochondrial respiration,
although several studies have found little to no differences
in factors such as response to habitat disturbance (Co-
sentino et al. 2019), thermal preference (Díaz de la Vega-
Pérez et al. 2013), reproductive strategies (Schall 1993),
and diet (Smith 1989; Mata-Silva et al. 2013). This study
is unable to identify which of the previously described
non-mutually-exclusive hypotheses best explain our obser-
vation of reduced mitochondrial respiration in hybrid
asexual species. We recommend that future work inte-
grates genomic sequencing approaches with physiological
and cellular measurements (e.g., RNA-seq and individual
ETS complex activity) to disentangle potential contribu-
tions from these hypotheses.
While reduced endurance is observed in several groups

of asexual vertebrates (including in this study), examina-
tion of parthenogenetic geckos in the Heteronotia binoei
complex has shown no difference (Roberts et al. 2012)
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Figure 2: Positive relationship between mitochondrial respiration states and endurance. Scatterplot shows effect of mitochondrial respira-
tion for the initiation complexes (CI and CII) and respiration states (state 3 and state 4) on log10 endurance. Colors and shapes correspond to
species and sex, respectively (circles p females, squares p males). Values for effect size (slope), P, and r2 can be found in table 1.
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and increased endurance (Kearney et al. 2005) in hybrid
asexual species compared with sexual progenitors in dif-
ferent studies. Variation in results between asexual groups
may be due to (1) differences in age of asexual lineages,
(2) divergence between parental species at the time of hy-
bridization, (3) ploidy, or (4) ecology. Compared withHet-
eronotia, Aspidoscelis possesses (1) younger asexual line-
ages (Reeder et al. 2002; Kearney et al. 2006), (2) greater
divergence times between parental species (Strasburg and
Kearney 2005; Zheng and Wiens 2016), (3) diploid asex-
uals (in this study; however, for diploid and triploid asex-
ual Aspidoscelis species see Cullum 1997; Kearney et al.
2005; Roberts et al. 2012), and (4) a more active foraging
strategy (Milstead 1957; Bauer 2007). We do not refer to
these differences between taxa as factors that wholly ex-
plain our observations; rather, we point out that complex-
ities within these biological systems may be responsible
for the seemingly contrasting results.
Decreased RCR between sexual parent and asexual hy-

brid species is not evident given our data, which con-
tradicts our predictions.We attribute this to the significant
differences in state 4 respiration, which we did not predict.
State 4, commonly called the “leak” or “basal” state, occurs
when ADP has been exhausted. Oxygen consumption oc-
curring via the ETS is being driven by protons leaking
across the mitochondrial inner membrane rather than
via ATP synthase. Low state 4 respiration tends to lead
to high reactive oxygen species (ROS) production (Brand
2000); therefore, a higher state 4 in sexual species com-
pared with hybrid asexual species may be an adaptive trait
to mitigate oxidative damage. Investigation into potential
differences in ROS production and oxidative damage be-
tween sexual and hybrid asexual species is needed to test
this hypothesis.We also recommend that future studies in-
clude additional respiration states (e.g., state 4o induced by
a CV inhibitor, state 3u induced by an uncoupling agent)
for examination of respiratory ratios (Gnaiger 2020).
Lower state 3 respiration in hybrid asexual species sug-

gests decreased mitochondrial respiratory capacity and, as
a result, diminished ATP production. The positive rela-
tionship we observed between mitochondrial respiration
and endurance capacity affirms our predicted relationship
between these traits and supports the hypothesis that effi-
cient oxidative phosphorylation increases endurance ca-
pacity. Here we show novel evidence for costs incurred
by hybrid asexual species on mitochondrial respiration and
reproduce findings of their reduced endurance capacity.
Determining the evolutionary underpinnings of these phe-
nomena, thus shedding light on which hypotheses are
responsible, will require integrating physiological and ge-
nomic sequencing approaches. While the benefits of asex-
ual reproduction can explain the genesis of asexual line-
ages, incurred costs for this strategy may explain their
short evolutionary existence. Reduced mitochondrial res-
piration and variability in hybrid asexual species may be
evolutionary disadvantages when performance and varia-
tion are important factors in the realm of natural selection.
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