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Abstract Fast magnetosonic waves in Earth’s inner magnetosphere, which have as their source ion
Bernstein instabilities, are driven by hot proton velocity distributions (fp) with 𝜕fp(v⟂)∕𝜕v⟂ > 0. Two typical
types of distributions with such features are ring and shell velocity distributions. Both have been used in
studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities
driven by the two types of distributions have not been thoroughly addressed. The present study uses
linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern
is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution
in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k‖)
increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic
frequencies while they become broader in frequency space. At sufficiently large k‖, the neighboring discrete
modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry
of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern
of growth and damping rates in frequency and wave number space and confines the unstable Bernstein
modes to relatively small k‖. In addition, when k‖ increases, the unstable modes are no longer limited to
the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k‖
bifurcates into two local peaks on both sides of the harmonic when k‖ becomes large.

1. Introduction

Enhanced magnetic and electric field fluctuations at frequencies between the proton cyclotron frequency
(Ωp) and the lower hybrid frequency (𝜔lh) and at propagation nearly perpendicular to the background mag-
netic field (B0) are observed frequently near the magnetic equatorial plane of the terrestrial magnetosphere
[Santolík et al., 2004; Němec et al., 2005, 2006; Meredith et al., 2008; Ma et al., 2013; Hrbáčková et al., 2015; Posch
et al., 2015]. Russell et al. [1970] first reported broadband electromagnetic signals confined to an equatorial
region within ∼ 2∘ of magnetic latitude, thus initially labeled them as “equatorial noise.” Later, Gurnett [1976]
reported that these signals exhibit a discrete structure in frequency space at harmonics of ion cyclotron fre-
quencies, suggesting that cyclotron resonances with ions rather than bounce resonance with electrons are
the likely source of free energy. Since then, there has been increasing observational evidence showing that
the dispersion properties of these electromagnetic signals are consistent with those of the low-frequency fast
magnetosonic mode in magnetohydrodynamic theory [e.g., Boardsen et al., 1992; Walker et al., 2015]. Hence,
these electromagnetic fluctuations are more commonly called “fast magnetosonic waves.”

Fast magnetosonic waves tend to occur more frequently on the dayside [Ma et al., 2015]. Particle obser-
vations associated with such waves show energetic ring current proton velocity distributions fp(v) as
having a velocity ring feature or, more generally, 𝜕fp(v⟂)∕𝜕v⟂ > 0 [Meredith et al., 2008; Chen et al., 2011;
Xiao et al., 2013; Ma et al., 2014; Zhou et al., 2014; Balikhin et al., 2015], where ⟂ denotes directions perpendic-
ular to B0. Chen et al. [2010a, 2010b] carried out ring current simulations to show that such proton velocity
distributions can arise primarily from dusk to dawn as a result of energy-dependent drift of injected ring
current ions. Statistical observations suggest that dusk permits more of such proton distributions than does
dawn [Meredith et al., 2008; Thomsen et al., 2011], due perhaps to stabilization of the initially unstable distri-
butions by self-generated fast magnetosonic waves, the mechanism missing in the ring current simulations
[Chen et al., 2010a, 2010b].
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With a sufficient positive slope of fp(v⟂), kinetic linear dispersion theory in a homogeneous, collisionless,
magnetized plasma predicts unstable proton Bernstein modes at 0 < k‖ ≪ k⟂ and near harmonics of Ωp

[e.g., Gul’elmi et al., 1975; Perraut et al., 1982; Boardsen et al., 1992; Horne et al., 2000], where k denotes the wave
number and ‖ denotes the direction parallel to B0. Perraut et al. [1982] considered a two-component pro-
ton velocity distribution consisting of a cold proton background and a cold proton ring for linear dispersion
analyses. With k‖ = 0 and a sufficiently tenuous cold proton ring component consistent with plasma con-
ditions found in the inner magnetosphere, they showed that the proton ring-driven instabilities are excited
near the crossings between the fast magnetosonic mode and the harmonics of the various Bernstein modes,
only if the perpendicular ring speed is larger than the Alfvén speed. With a sufficiently dense cold proton ring
component; however, they also showed that the instabilities can be excited substantially away from the fast
magnetosonic mode toward decreasing phase speeds.

Numerous studies have since considered thermal ions and electrons [e.g., Boardsen et al., 1992; McClements
et al., 1994; Horne et al., 2000; Denton et al., 2010; Gary et al., 2010, 2011]. Boardsen et al. [1992] considered a
tenuous thermal proton ring by subtracting a cooler bi-Maxwellian from a warmer bi-Maxwellian and showed,
using kinetic linear dispersion theory, that the proton cyclotron harmonic instabilities are found within the
vicinity of the cold plasma fast magnetosonic mode and the unstable frequency range is affected by the local
Alfvén speed. McClements et al. [1994] used a more general proton ring
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where nr and vr denote the ring density and the ring speed, respectively, 𝜃‖r and 𝜃⟂r denote the ring ther-
mal speeds parallel and perpendicular to B0, respectively, and erfc(x) is the complementary error function.
They showed that thermal effects allow the proton cyclotron harmonic instabilities to grow at wave normal
angles out to at least 10∘ from the directions strictly perpendicular to B0. Later, Min and Liu [2016] carried out
linear dispersion analyses and particle-in-cell simulations using the proton ring distributions of equation (1)
to show that not only the proton Bernstein modes but also the Alfvén-cyclotron mode can simultaneously
develop. For the proton ring velocity distributions considered, although the maximum linear theory growth
rate of the Alfvén-cyclotron instability was always smaller than that of the fastest growing Bernstein mode,
the particle-in-cell simulations consistently yielded larger saturation amplitudes for the Alfvén-cyclotron
instability.

Gary et al. [2010] considered a dense thermal proton shell (relevant to the situation in the plasma sheet bound-
ary layer) by subtracting a cooler Maxwellian from a warmer Maxwellian and showed the decreasing phase
speed of the fundamental mode with decreasing beta. Liu et al. [2011] and Min and Liu [2015a] extended their
linear analyses to a more general proton shell (equation (2) below with 𝜎s = 0), and Min and Liu [2015b]
showed that the instability transition between the Bernstein-like and magnetosonic-like regimes is more
strongly affected by the shell density than the shell speed while other parameters are fixed. Min et al. [2016]
carried out linear dispersion analyses and particle-in-cell simulations for the partial shell velocity distribution
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where 𝛼 is the pitch angle, v ≡ √
v2
⟂ + v2‖ , ns, vs, and 𝜃s are the shell density, the shell speed and the shell ther-

mal speed, respectively, and Γ(x) is the Euler gamma function. They investigated the critical 𝜎s value at which
the Alfvén-cyclotron mode and the proton Bernstein modes saturate at the same level and suggested that
since observed fast magnetosonic waves are often not accompanied by electromagnetic ion cyclotron waves,
the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should have
small anisotropies and be nearly isotropic.

The ring and shell distributions are two typical types of velocity distributions with 𝜕fp(v⟂)∕𝜕v⟂ > 0. They have
both been used in the studies of ion Bernstein instabilities and fast magnetosonic waves, but the differ-
ences between the instabilities driven by the two types of distributions have not been thoroughly addressed.
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In recent studies of these instabilities using proton velocity distributions described by equations (1) and (2)
[Min and Liu, 2015a, 2016; Min et al., 2016], substantial differences in the growth rate patterns have been
noticed—the instabilities are more discrete, more complex, and more closely confined to quasi-perpendicular
propagation for a shell [see Min and Liu, 2015a, Figure 7] than for a ring [see Min and Liu, 2016, Figure 1].
Here these differences are more thoroughly examined using linear kinetic theory. It should be noted that the
present study focuses on the proton Bernstein instabilities only, although the Alfvén-cyclotron mode can also
be unstable for the ring and partial shell velocity distributions [Min and Liu, 2016; Min et al., 2016].

There have been several studies discussing how the proton Bernstein instabilities are related to the ring
speed relative to the Alfvén speed for the conditions found in the inner magnetosphere. Boardsen et al.
[1992] showed that the ring speed should be close to the Alfvén speed to excite fast magnetosonic waves.
Horne et al. [2000] provided further insights into the relationship between the ring speed and the frequency
range where the maximum growth rate should occur. They suggested that growth is possible for the fre-
quencies > 30Ωp when the ring speed exceeds the Alfvén speed and for the frequencies <30Ωp when the
ring speed exceeds twice the Alfvén speed. Chen et al. [2010b] provided more quantitative explanation of this
relationship by invoking approximate linear theory. The methodology for the analyses performed in the cur-
rent paper follows along similar lines to that used by Chen et al. [2010b] but consider propagation directions
sufficiently away from the strict perpendicular direction.

The paper is organized as follows: section 2 describes an overview of the differences in the proton Bern-
stein instabilities driven by the ring and the shell distributions using full linear dispersion theory, section 3
derives the approximate growth rate formula, and section 4 uses this formula to explain the differences in
the growth rate pattern. Section 5 summarizes the results. We denote the jth species plasma frequency as

𝜔pj ≡ √
4𝜋nje2∕mj , the jth species cyclotron frequency as Ωj ≡ ejB0∕mjc (with sign retained), and the jth

component beta as 𝛽j ≡ 8𝜋njTj∕B2
0. Additionally, we define 𝛽j ≡ 8𝜋n0Tj∕B2

0 following Gary et al. [2010]. The

Alfvén speed is vA ≡ B0∕
√

4𝜋n0mp, the proton inertial length is 𝜆p ≡ √
mpc2∕4𝜋n0e2, and the lower hybrid

frequency is 𝜔lh = 𝜔pp∕
√

1 + 𝜔2
pe∕Ω2

e . Here n0 is equal to the unperturbed electron density ne. We assume

B0 = B0ẑ, real wave number k = k⟂x̂ + k‖ẑ (with x̂ = ŷ × ẑ) and complex wave frequency 𝜔 = 𝜔r + i𝛾 with
𝛾 > 0 indicating a growing mode.

2. Overview

We consider three different model distribution functions. The first model distribution consists of the relatively
dense, relatively cold core Maxwellian proton component fc and the relatively tenuous, warm ring proton
component fr following equation (1) and will be labeled as “ring model.” For the second model, the ring
component is replaced with the isotropic shell fs given by equation (2) with 𝜎s = 0. Hence, this model will
be labeled as “shell model.” For the third model, the ring component is replaced with the partial shell fs of
equation (2) with 𝜎s = 2, and this model will be labeled as “partial shell model.” For consistency as well as
convenience, we adopt base parameters similar to Min and Liu [2016] and Min et al. [2016] who used the same
two-component proton distributions. That is, we choose 𝛽c = 0.002 and 𝜃2‖r∕v2

A = 𝜃2
⟂r∕v2

A = 𝜃2
s ∕v2

A = 0.2.
We, however, use more tenuous energetic proton populations with nr∕n0 = ns∕n0 = 0.01. This is because
the approximate growth rate formula, which is derived in section 3 following the approximate linear theory
approach [Kennel, 1966; Chen et al., 2010b] and used to interpret the growth rate patterns in section 4, relies
on the cold plasma dispersion relation and, therefore, favors more tenuous energetic proton populations. For
all three cases, electrons are represented by a single Maxwellian distribution with 𝛽e = 𝛽c.

We also adopt a reduced proton-to-electron mass ratio of mp∕me = 100 and a relatively small light-to-Alfvén
speed ratio of c∕vA = 15 (equivalent to𝜔pe∕Ωe = 1.5), which result in𝜔lh∕Ωp ≈ 8.3. This reduces the number
of unstable modes involved and simplifies the linear analyses. Our preliminary analyses show that although
the absolute magnitude of growth rates will change when the realistic mp∕me and a larger c∕vA are used,
the overall growth rate patterns which are the main focus of the present paper remain consistent. More thor-
ough analyses of the dependence of the Bernstein instabilities on mp∕me are currently underway and will be
reported as a separate paper.

Using these parameters and proton model distributions, a full kinetic linear dispersion relation solver [Min
and Liu, 2015a] is used to calculate the proton Bernstein instabilities driven by the three model distributions
and the results are shown in Figures 1a–1c. Additionally, the shapes of the energetic proton components
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Figure 1. (a–c) Full linear dispersion theory solutions for (Figure 1a) the ring, (Figure 1b) partial shell, and (Figure 1c)
shell models. Color intensity (different scales for different plots) and solid contours represent the positive growth rates
and real frequencies, respectively. The four dashed curves from Figure 1a denote constant wave normal angle contours
at 𝜓 = 72∘, 82∘ , 87∘ and 89.5∘, respectively. (d–f ) Contours of the energetic ring-like velocity distribution functions
corresponding to the linear results in Figures 1a–1c. The lowest levels delineate 10% of the maximum magnitude of the
ring-like velocity distribution functions and the neighboring levels differ by 20%.

that drive the corresponding instabilities are shown to the next in Figures 1d–1f. (The reader is referred to
Min et al. [2016] for details of handling the partial shell distribution of equation (2) in the linear analyses). The
real frequencies represented by the contours are very consistent among all model distributions, whereas the
growth rates exhibit significant differences, especially between the ring and shell models—for the parameters
chosen and compared to the ring model, the shell model results in a more complex growth rate pattern and
the unstable Bernstein modes are confined to much smaller k‖. Consistent with the fact that the partial shell
model represents a transition from the ring model to the shell model, the growth rate pattern from the partial
shell model is apparently in between that of the other two models.

3. Approximate Linear Growth Rate Formula

To investigate the differences shown in Figures 1a–1c more quantitatively, we follow the approximate linear
theory approach [Kennel, 1966; Chen et al., 2010b]. Dendy and McClements [1993] used the extraordinary mode
dispersion relation under the assumption that the fluctuating electric fields are polarized in the plane perpen-
dicular to B0. This is usually a legitimate assumption for the fast magnetosonic waves at quasi-perpendicular
propagation. The dispersion relation in this limit [Dendy and McClements, 1993] reads

0 = D(𝜔, k) ≡
(
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𝜔2

)(
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𝜔2

)
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xy , (3)

where the dielectric components, 𝜖xx , 𝜖yy , and 𝜖xy [e.g., Umeda et al., 2012] are
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𝜖yy = 1 + 2𝜋
∑

N

𝜔2
pN

𝜔2

∞∑
j=−∞

∫
∞

0
dv⟂v2

⟂(J
′
j )

2 ∫
∞

−∞

k‖dv‖
𝜔 − k‖v‖ − jΩN

FN, (5)

and

𝜖xy = 2𝜋i
∑

N

𝜔2
pN

𝜔2

∞∑
j=−∞

jΩN

k⟂ ∫
∞

0
dv⟂v⟂JjJ

′
j ∫

∞

−∞

k‖dv‖
𝜔 − k‖v‖ − jΩN

FN. (6)

Here Jj(k⟂v⟂∕ΩN) is the Bessel function of the first kind, J′j (x) = dJj(x)∕dx, N denotes the Nth plasma
component and
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In general, equation (3) should be solved numerically for, e.g., complex frequency 𝜔.

To simplify the formulation, we take the approximate linear theory approach [e.g., Kennel, 1966; Chen et al.,
2010b, 2013] where the real frequency 𝜔r is determined by the cold plasma dispersion relation of the core
plasma components, while the growth rate 𝛾 which is much smaller than 𝜔r is determined by the tenuous
energetic component. That is, assuming |𝛾| ≪ 𝜔r , nr,s ≪ nc and 𝛽c,e ≪ 1, the real frequency and the growth
rate [Kennel, 1966; Chen et al., 2013] are respectively obtained from

D(0)(𝜔r, k) = 0 and 𝛾 = − ℑD(1)(𝜔, k)
𝜕D(0)∕𝜕𝜔

|||||𝜔=𝜔r

, (8)

where D(0) is real and denotes the zero-temperature core plasma components’ contribution to D and D(1) is
complex and denotes the energetic proton component’s contribution. Likewise, the dielectric components
can be separated into the two lowest order terms:

𝜖xx = 𝜖(0)xx + 𝜖(1)xx , 𝜖xy = 𝜖(0)xy + 𝜖(1)xy , and 𝜖yy = 𝜖(0)yy + 𝜖(1)yy . (9)

By substituting equation (9) into equation (3) and collecting the same order terms, D(0) and D(1) can read
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respectively.

For our assumed model distributions, the lowest order zero-temperature dielectric components can be
obtained by following the derivation of the cold plasma dispersion relation [e.g., Stix, 1992]:

𝜖(0)xx = 𝜖(0)yy = 1 − 1
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Using equations (4–6), the first order dielectric components which contribute to 𝛾 may read
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and
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where vj,res ≡ (𝜔 − jΩN)∕k‖ is the parallel resonant speed and N denotes the energetic proton component. In
deriving these terms, the integrations in the parallel velocity component are carried out on the real axis for
the principal values of the integrals [e.g., Chen et al., 2013, equation (4)]. The real parts of 𝜖(1)xx and 𝜖(1)yy and the
imaginary part of 𝜖(1)xy which do not contribute to 𝛾 will not be considered. By substituting the relevant terms
into equation (11), the imaginary part of D(1) which determines 𝛾 may be written as
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Here A = −𝜖(0)xy ∕i and B = k2‖c2∕𝜔2 − 𝜖
(0)
xx , and the dispersion relation (10) has been used to remove the

second term in the second line. As Boardsen et al. [1992], Horne et al. [2000], and Chen et al. [2010b] pointed
out, equation (16) can be interpreted as follows. The function FN determines the role (growth if FN(v⟂)> 0 and
damping if FN(v⟂) < 0) of the jth cyclotron resonant particles at v⟂, whereas Wj(v⟂) which is nonnegative acts
as a weighting function to the contribution of the jth cyclotron resonant particles at certain v⟂ to 𝛾 .

We make three points regarding equation (16). First, further analytical evaluation of the integral involving Wj

and our base distribution functions (1) and (2) is difficult (cf. see Vandas and Hellinger [2015], for the ring dis-
tribution). Consequently, many studies utilizing the similar approach rely on numerical techniques [e.g., Chen
et al., 2010a, 2010b]. In the present paper numerical integration using Simpson’s rule [Press et al., 1992] is uti-
lized. Second, for the reasons discussed in Chen [2015], the approximate linear growth rate derived becomes
invalid as k‖ approaches zero. In the following analyses, the k‖ range of interest is 0.1 ≲ k‖𝜆p ≲ 1 and, as will
be shown in the next paragraph, the approximate growth rate formula derived is generally valid in this range.
Third, k⟂ is involved only in Wj . So k⟂ scales the perpendicular velocity at which the weighting function peaks
and is relevant primarily in regulating the magnitude of the growth rates.

As a validation of the approximate linear dispersion theory described above, Figure 2 compares the real fre-
quencies and the growth rates obtained for the ring and shell models specified in section 2 with the results
from our full linear dispersion relation solver [Min and Liu, 2015a] at k‖𝜆p = 0.15, 0.5, and 0.8. The real frequen-
cies in the approximate linear dispersion theory are essentially from the cold plasma dispersion relation so
they are the same for the ring and shell models. Since the real frequencies calculated from the full linear dis-
persion relation solver are also similar for the ring and shell models (see the solid contours in Figures 1a and
1c), we here display the comparison of the two sets of real frequencies for the shell model only. As shown in
Figures 2a–2c, the real frequencies from the full linear dispersion relation solver are close to the cold plasma
dispersion relation but can have multiple dispersion branches (due to ion kinetic effect), which are indicated
by the nearly horizontal portions of the solid lines in Figures 2a and 2b and are part of the general electromag-
netic ion Bernstein mode solutions. The cold plasma dispersion relation becomes less accurate with increasing
k‖ for fixed𝜔r and with increasing𝜔r for fixed k‖. Yet the approximate linear growth rates shown in Figures 2d
and 2e are generally consistent with the full linear dispersion relation solutions, especially where the peaks
and valleys occur. Consequently, the approximate linear growth rate formula derived above is suitable for
understanding the significant differences in the growth rate patterns of the proton Bernstein instabilities
driven by the two different types of velocity distributions.
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Figure 2. Comparisons of the complex frequencies obtained from full (solid) and approximate (dashed) linear dispersion
theory at k‖𝜆p = 0.15 (black), 0.5 (blue) and 0.8 (red). (a–c) Comparison of real frequencies for the shell model. (d) and
(e) Comparison of growth rates for the ring and shell models, respectively.

4. Analyses

In this section, we first examine the simpler growth rate pattern driven by the ring model. The noticeable
main features are that (1) the discrete unstable modes approximately follow the integer harmonics of Ωp,
(2) they are broadened in frequency space with increasing k‖, and that (3) the neighboring modes eventually
merge into a continuum at sufficiently large k‖ (Figure 1a). We then examine the more complex growth rate
pattern driven by the shell model. In contrast to the ring model case, the main features are (1) the split of
the local growth rate maxima with increasing k‖, (2) the suppression of the instabilities at large k‖ (k‖𝜆p ≳ 1)
and, more interestingly, (3) the alternating pattern of growth and damping in frequency and wave number
space (Figures 1c and 2e). The analyses are mainly based on comparing the ∫ ∞

0 WjFNdv⟂, Wj , and FN terms in
equation (16) near the representative harmonic mode and at the relevant cyclotron resonant speeds vj,res for
k‖𝜆p = 0.15, 0.5, and 0.8.

4.1. Ring Model
In this subsection, the growth rate pattern driven by the ring model will be explained. Figure 3a displays
∫ ∞

0 WjFrdv⟂ as a function of frequency near 𝜔r∕Ωp = 4 and at k‖𝜆p = 0.15. Here only the j = 4 term is shown
because |vj,res|≫ 𝜃‖r for all other js. Note that the shape of the integral is consistent with 𝛾 shown in Figure 2d.
Figure 3b displays the profile of the parallel component of the ring distribution function of equation (1) and
vj,ress at 𝜔r∕Ωp = 3.92, 4, and 4.08 for j = 4. Since vj,res is a sensitive function of 𝜔r due to the smallness of k‖,|vj,res| quickly goes beyond the thermal extent of the ring as𝜔r moves away even slightly from 4Ωp. Figure 3c
displays Wj (dashed) and Fr (solid) as a function of v⟂ for the three selected𝜔r values. Although the peaks of Fr

are located near the first valleys of Wj , the overall integral is still positive around 𝜔r = 4Ωp so the net effect is
wave growth. As 𝜔r moves away from 4Ωp, the magnitude of Fr drops quickly as the corresponding resonant
speed for j = 4 rapidly goes beyond the thermal extent of the ring protons. This explains why the instabilities
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Figure 3. For the ring model, plots of various quantities determining 𝛾 at k‖𝜆p = 0.15 (Figures 3a–3c) and 0.5
(Figures 3d–3f ). (a and d) Plots of ∫ ∞

0 WjFsdv⟂ as a function of the real frequency. (b and e) Parallel resonant speeds
(vertical bars) overlaid on the parallel profile of the ring distribution (solid curves). The corresponding frequencies are
denoted with the vertical bars of the same line style on the top plots. (c and f) Plots of Wj (dashed) and Fr (solid)
evaluated at the parallel resonant speeds. Note that the two quantities are scaled to fit in one plot.

are confined to discrete frequency ranges around the exact proton cyclotron harmonics at small k‖. Another
interesting feature is that the peak growth rate is slightly below the exact harmonic frequency of 𝜔r∕Ωp = 4
here. This is in fact true at every harmonic (Figure 2d). There are two factors contributing to this. First, the first
peak of Wj becomes slightly larger in magnitude and appears at larger v⟂ for 𝜔r < 4Ωp. Second, for our ring
model and using v‖ = vj,res, Fr can be simplified to

Fr =
2fr𝜔rvr

k‖𝜃2‖r

(
jΩp∕𝜔r − v⟂∕vr

)
.

So for any fixed v⟂, Fr decreases with increasing 𝜔r : Fr is larger when 𝜔r∕jΩp < 1 (thus vj,res < 0) than when
𝜔r∕jΩp > 1 (thus vj,res > 0). This indicates that the cyclotron resonant protons contramoving with a wave tend
to produce larger 𝛾 than the comoving resonant protons.

Figures 3d–3f display the same quantities for k‖𝜆p = 0.5. Compared to the case for k‖𝜆p = 0.15, vj,res is less
sensitive to 𝜔r due to the increased k‖ and as a result, the range of 𝜔r∕Ωp where 𝛾 > 0 becomes broader.
Still, k‖𝜆p = 0.5 is sufficiently small that protons are effectively nonresonant near the half harmonics (where
the minimum |vj,res| is ∼ 2𝜃‖r). In addition, one can notice by comparing Figure 3f to 3c that the first peaks
of Wj moved to larger v⟂ and became closer to the peaks of Fr . This is because k⟂ decreases with increasing
k‖ at fixed 𝜔r∕Ωp (Figure 1a) so the first peak of the Bessel function whose argument is k⟂v⟂∕Ωp appears
at larger v⟂. Consequently, 𝛾max near 𝜔r∕Ωp = 4 in Figure 2d is significantly larger for k‖𝜆p = 0.5 than for
k‖𝜆p = 0.15. Apparently, the opposite situation can happen at other harmonics where 𝛾max is reduced at
k‖𝜆p = 0.5 compared to that at k‖𝜆p = 0.15 (Figure 2d). As mentioned in the previous section, k⟂ primarily
regulates the magnitude of the growth rates.

Figures 4a–4c display the same quantities for k‖𝜆p = 0.8 and 4 ≤ 𝜔r∕Ωp ≤ 5. In this case, k‖ is sufficiently
large that |vj,res| ∼ 𝜃‖r at 𝜔r∕Ωp = 4.5. As a result, 𝛾 can be continuously positive in this frequency range
and the originally discrete unstable modes around 𝜔r = 4Ωp and 5Ωp at small k‖ now start to merge into a
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Figure 4. For the case of the ring model and for k‖𝜆p = 0.8. The figure format is the same as Figure 3. The Σj label
denotes sum of all j contributions.

continuum. As k‖ increases further, more j terms come into play so the continuous spectrum of positive 𝛾 in
frequency space shown in Figure 1a is a result of broadening and merging of the neighboring modes due to
more cyclotron harmonic resonances being involved. As a result, 𝜃‖r is expected to closely affect the minimum
k‖ at which the neighboring modes start to merge: the larger 𝜃‖r is, the smaller this minimum k‖ would be. It
should be noted that the continuous spectrum can also arise when the growth rate is sufficiently large [Chen
et al., 2016].

4.2. Shell Model
In this subsection, the same analyses will be applied to the shell model. The shell model is isotropic so Fs in
equation (7) is determined solely by the term involving 𝜕fs∕𝜕v⟂ evaluated at v‖ = vj,res. Based on the previous
analyses, it is expected that this shell model will permit more j terms to be involved due to the wider extent
of the shell along the parallel velocity component (see Figures 1d and 1f) and the cyclotron resonant protons
near the outskirts of the shell (i.e., at |v‖| ≳ vs) will primarily contribute to wave damping due to 𝜕fs∕𝜕v⟂ < 0
and hence Fs < 0 there.

Figure 5a displays ∫ ∞
0 WjFsdv⟂ as a function of frequency near 𝜔r∕Ωp = 4 and at k‖𝜆p = 0.15. Since k‖ is

sufficiently small, |vj,res| is much larger than vs except for j = 4. Therefore, only the j = 4 term contributes
to 𝛾 . The interesting feature here is that the 𝛾 profile as a function of the frequency has a local minimum at
𝜔r∕Ωp ≈ 4 (solid vertical bar). The dashed and dash-dotted vertical bars are located at𝜔r∕Ωp = 3.84 and 4.16
near the two local maxima, respectively. Figure 5b displays the corresponding vj,res values overlaid with the
contours of the shell distribution of equation (2). There apparently exists a range of v⟂ where the values of
𝜕fs∕𝜕v⟂ evaluated at these three vertical bars are positive. Consequently, it is possible to have 𝛾 > 0 at these
frequencies. The local minimum at 𝜔r∕Ωp = 4 can be explained from Figure 5c that shows as a function of v⟂
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Figure 5. For the case of the shell model and for k‖𝜆p = 0.15. (a and c) The figure formats are the same as Figures 3a
and 3c. (b) The plot displays contours of the shell distribution function, fs, and the corresponding parallel resonant
speeds. The dashed contours delineate the 10% level of the fs maximum.

the Wj and Fs terms at the three𝜔r values. As with the ring model case, the peak of Fs for𝜔r∕Ωp = 4 is located
at the valley of Wj . In contrast to the ring model case, however, the peaks of Fs for 𝜔r∕Ωp = 3.84 and 4.16 are
located close to the first peaks of Wj due to curved geometry of the shell distribution in gyroaveraged velocity
space. So the weighted integrals in equation (16) which is directly proportional to 𝛾 are larger at the (slightly)
off-harmonic frequencies. As shown in Figure 1c, the two maxima move farther apart from each other as k‖
increases. This is because in order to keep the more or less same vj,res values at which 𝛾max tend to occur (see
Figure 5b), 𝜔r has to move farther away from 4Ωp. As a result, it appears as though the two local growth rate
maxima split out from a single growth rate peak at k‖ ≈ 0 and the exact harmonics ofΩp as shown in Figure 1c.

Figures 6a and 6b display the same quantities at k‖𝜆p = 0.5 and near 𝜔r∕Ωp = 6. Unlike the case of the ring
model, the terms of j = 5 and 7 become important. At 𝜔r∕Ωp = 6 (solid vertical line), the resonant speeds
are ±2vA for j = 5 and 7, respectively, so Fs evaluated at v‖ = ±2vA is negative for all v⟂. It turns out that the
damping provided by the cyclotron resonant protons at v‖ = ±2vA is larger than the growth provided by the
cyclotron resonant protons at v‖ = 0 (corresponding to j = 6), resulting in the net damping at 𝜔r∕Ωp = 6.
On the other hand, near the half harmonic at 𝜔r∕Ωp = 5.5 (dashed vertical line), the resonant speeds shift
altogether toward the left such that |vj,res| < vs for j = 5 and 6 where Fs can be positive, leading to wave
growth near the half harmonic.

Finally, Figures 6c and 6d display the same quantities at k‖𝜆p = 0.8 and near𝜔r∕Ωp = 6. Due to the increased
k‖, the interspacing between the neighboring vertical bars in Figure 6d becomes tighter. Consequently, at the
exact harmonic of 𝜔r∕Ωp = 6 (vertical solid line) |vj,res| is less than vs for j = 5 and 7, and vj,ress for j = 4 and
8 straddle the outskirts of the shell. Since the terms of j = 5, 6, and 7 provide growth while the terms of j = 4
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Figure 6. For the case of the shell model and for k‖𝜆p = (a and b) 0.5 and (c and d) 0.8. The figure format is similar to
Figures 4a and 4b, but Figures 4b and 4d display the shell distribution function and the relevant parallel resonant
speeds as Figure 3b.

and 8 provide weak damping, the net effect is 𝛾 > 0. On the other hand, near the half harmonic at𝜔r∕Ωp = 5.5
(dashed vertical line), all values of vj,res again shift to the left such that the protons in the fourth and seventh
cyclotron harmonic resonances provide stronger damping (due to |vj,res| ≈ vs) than the growth provided by
the protons in the fifth and sixth cyclotron harmonic resonances. In effect, the situation is roughly opposite
to the case of k‖𝜆p = 0.5.

Figure 7. Plots of (top) damping and (bottom) growing modes calculated from the approximate linear theory for the
shell models with the shell speed vs∕vA = (left) 2 and (right) 3 in k‖-𝜔r space. The horizontal dashed lines are drawn at
integral multiples of Ωp∕(2vs).
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Note that Fs evaluated at |v‖| ≥ vs is always negative. Since more cyclotron resonance terms are involved and
the resonant protons at |v‖| ≳ vs predominantly contribute to damping, the overall growth rate decreases
rapidly as k‖ further increases. Subsequently, compared to the ring model, the instability driven by the shell
model is confined to relatively small k‖ (k‖𝜆p ≲ 1), as shown in Figure 1c.

One prominent feature of the growth rate pattern for the shell model shown in Figure 1c is the alternating
pattern of growth and damping in frequency and wave number space. Since it is likely that strong damping
occurs when |vj,res| ≈ vs as discussed in the previous paragraphs explaining Figure 6, it may be possible to
estimate from the resonance condition that at what k‖ exact or half harmonic modes will be stable or unsta-
ble. Using the condition |vj,res| = vs, heavy damping should be expected near the exact harmonics when
k‖ = lΩp∕vs, where l = 1, 2, 3, . . . . Likewise, heavy damping near the half harmonics should be expected
when k‖ = (l − 0.5)Ωp∕vs. Therefore, the Bernstein modes should alternate between the damping and grow-
ing modes near the full/half harmonics ofΩp at everyΔk‖ = Ωp∕(2vs). To confirm this, Figures 7a and 7b show
the damping modes as well as the growing modes calculated using the approximate growth rate formula. For
k‖𝜆p = 0.25, damping is strongest at the half harmonics because there are only two relevant cyclotron reso-
nances at v‖ = ±vs. The next strongest damping occurs at the full harmonics for k‖𝜆p = 0.5 where there is an
additional cyclotron resonance at vj,res = 0 (solid lines in Figure 6b). Then the next strongest damping appears
to occur near k‖𝜆p = 0.75 as expected but somewhat away from the half harmonics. As shown in Figure 6c,
the strongest damping for j = 7 occurs at 𝜔r∕Ωp ≈ 5.65. The reason is perhaps that vj,res becomes less sensi-
tive to 𝜔r with increasing k‖ and the role of Wj becomes important. The next expected heavy damping at the
exact harmonics and at k‖𝜆p = 1 is not clear due perhaps to the same reason and the increasing number of
cyclotron resonances involved. The pattern of the growing modes is roughly opposite to that of the damping
modes, although the strongest growing modes are not so well organized in k‖ space as the strongest damping
modes are.

From Δk‖ = Ωp∕(2vs), it is clear that the shell speed should be closely related to how quickly growth and
damping alternate in k‖ space—the larger the shell speed, the denser the alternating pattern should be.
Figures 7c and d display the damping and growing modes, respectively, for the shell model with vs∕vA = 3. In
this case, the strongest damping modes alternate between full and half harmonics at every Δk‖𝜆p ≈ 1∕(2 ⋅3).

5. Summary

In the present study the differences in the linear growth rate patterns of the proton Bernstein instabilities
driven by the proton ring and shell velocity distributions have been investigated using approximate linear
kinetic theory derived from the extraordinary mode dispersion relation. The results show that the growth
rate pattern (particularly where the peaks and valleys occur) is primarily determined by the geometry of the
gyroaveraged velocity distribution function and the cyclotron resonance condition, v‖ = (𝜔r − jΩp)∕k‖.

For proton velocity distributions involving a ring distribution, the unstable modes are discrete in frequency
space at small k‖. They approximately follow the exact proton cyclotron harmonic frequencies and broaden
in frequency space as k‖ gradually increases. These discrete modes eventually merge into a continuum when
k‖ is sufficiently large. All these features are related to the fact that the resonant speeds are very sensitive to
changes in 𝜔r at small k‖ but become less sensitive as k‖ increases and that the ring speed is independent
of the parallel velocity component. As a result, the parallel thermal spread of the ring distribution should be
closely related to the minimum k‖ at which the continuum starts to appear: the larger the thermal speed, the
smaller this minimum.

On the other hand, for proton velocity distributions involving a shell distribution (fs), the curved geometry of
the shell distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and
damping rates in frequency and wave number space, and confines the unstable Bernstein modes to relatively
small k‖. When k‖ increases, the unstable modes do not follow the proton cyclotron harmonic frequencies
but split into two local peaks on both sides of the corresponding harmonic frequencies. Strong damping
of the instabilities occurs when the protons with |v‖| = vs satisfy the resonance condition, because these
protons have overall the most negative 𝜕fs∕𝜕v⟂. Subsequently, the shell speed closely controls the density of
this alternating pattern (Δk‖ = Ωp∕(2vs)). In addition, the thermal spread of the shell should not significantly
change the pattern itself but affects its sharpness: the larger the thermal spread, the fuzzier the pattern.
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