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ABSTRACT
In cluster perturbation (CP) theory, we consider a target excitation space relative to a Hartree-Fock state and partition the target excitation
space into a parent excitation space and an auxiliary excitation space. The zeroth-order state is in CP theory a coupled cluster (CC) state in
the parent excitation space, and the target state is a CC state in the target excitation space. In this paper, we derive CP series for excitation
energies in orders of the CC parent-state similarity-transformed fluctuation potential where the zeroth-order term in the series is an excitation
energy for the CC parent state response eigenvalue equation and where the series formally converge to an excitation energy for the CC
target state response eigenvalue equation. We give explicit expressions for the lowest-order excitation energy corrections. We also report
calculations for CP excitation energy series for various parent and target excitation spaces and examine how well the lower-order corrections
can reproduce the total excitation energies. Considering the fast local convergence we have observed for the CP excitation energy series, it
becomes computationally attractive to use low-order corrections in CP series to obtain excitation energies of CC target state quality. For the
CPS(D-n) series, the first-order correction vanishes, the second-order correction becomes the CIS(D) model, and for the CPS(D-3) model,
our calculations suggest that excitation energies of CCSD quality are obtained. The numerical results also suggest that a similar behavior can
be seen for the low-order excitation energy corrections for CP series where the parent state contains more than a singles excitation space, e.g.,
for the CPSD(T) model. We therefore expect the low-order excitation energy corrections in CP series soon to become state-of-the-art models
for determining excitation energies of CC target state quality.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053167

I. INTRODUCTION

In Paper I,1 we introduced a new class of perturbation models—
the cluster perturbation (CP) models—where the major draw-
backs of Møller-Plesset perturbation theory (MPPT)2,3 and cou-
pled cluster perturbation theory (CCPT)4–6 have been overcome.
The theoretical foundation for CP theory is given in Paper I.1
In Paper I,1 we also discuss the advantages of using CP theory
compared to CCPT and MPPT.

In CP theory, we consider a target excitation space relative to
a Hartree-Fock (HF) state and partition the target excitation space
into a parent excitation space and an auxiliary excitation space. The
zeroth-order state is in CP theory a coupled cluster (CC) state in the
parent excitation space, and we here assume that the target state is
a CC state in the target excitation space. In Paper I,1 we determined

a perturbation series of ground-state energy corrections in orders of
the perturbation—the CC parent-state similarity-transformed fluc-
tuation potential—where the zeroth-order term in the series is the
energy of the CC parent state and where the perturbation series for-
mally converge to the energy of the CC target state. We also showed
in Paper I1 that CP series similar to the ones for the ground-state
energy exist for molecular properties, including excitation energies.

In this paper, we derive CP series for excitation energies in
orders of the CC parent-state similarity-transformed fluctuation
potential, where the zeroth-order term in the series is an excita-
tion energy for the CC parent state response eigenvalue equation
and where the series formally converge to an excitation energy for
the CC target state response eigenvalue equation. We give explicit
expressions for the lowest order excitation energy corrections for the
series, in particular, for the excitation energy corrections where the
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parent state is a CCSD state and the target state is a CCSDT state.
We also report calculations for CP excitation energy series for vari-
ous parent and target excitation spaces and examine the convergence
of these series. For the lower order corrections, we examine how
well these corrections can reproduce the total excitation energy. The
theoretical foundation for convergent CP excitation energy series is
discussed in Paper IV7 where it is also discussed how the asymp-
totic convergence of the CP excitation energy series can be modeled
using a simple two state model. The asymptotic convergence of the
CP excitation energy series determines the convergence rate and the
convergence patterns of the higher order terms in the CP series.
In a forthcoming paper, the convergence rate and the convergence
patterns of the higher-order terms in the calculated CP excitation
energy series will be examined using the two-state model that has
been thoroughly analyzed in Ref. 8.

In CP theory, we have introduced a new, generalized order con-
cept in order to enable determination of perturbation series for the
ground-state energy and for excitation energies on an equal foot-
ing. A key feature of this new generalized order concept is that one
contribution, which contains the perturbation operator, is treated
as a zeroth-order contribution. In CP theory, we thus treat the CC
parent state Jacobian, which contains the perturbation operator, as
a zeroth-order contribution. In practice, the CC parent-state Jaco-
bian is treated as a zeroth-order contribution by solving sets of linear
equations in the parent excitation space, for the cluster and response
amplitudes, where the matrix in the linear equations contains the
CC parent space Jacobian. By considering the perturbation operator
contribution of the CC parent state Jacobian to be a zeroth-order
contribution, internal relaxation in the parent excitation space is
treated fully at zeroth-order when the CP ground-state energy and
excitation energy series are derived.

Extending CC theory to calculation of energies of excited states
can be performed using two separate and closely connected for-
malisms: (i) Response function theory, where the response eigen-
value equation determines excitation energies that added to the
ground-state energy give excited-state energies,9 and (ii) equation-
of-motion coupled cluster (EOM-CC) theory,10,11 where the energies
of the excited states are determined directly as eigenvalues of the
EOM-CC eigenvalue equation. Both the response and the EOM-CC
formalisms give a straightforward and consistent extension of the
ground-state energy description to a description of excited states and
yield the same excitation energies and excited state energies when
the cluster operator is truncated at a given excitation level. In this
paper, we determine CP series for both excitation energies and for
the energies of the excited states. Molecular properties for the CC
ground state and for CC excited states and for transitions between
these states can only be determined using response function theory.

CP models are characterized by a CC parent state defined in
the parent excitation space and by an auxiliary excitation space.
This may be expressed using a notation where the parent excitation
space is followed by the auxiliary space in parentheses. For exam-
ple, CPSD(T) denotes a CP model with a CCSD parent state and a
triples auxiliary space. Furthermore, the notation CPSD(T) implies
that a CC target state is used. If the auxiliary space is followed by
a number, as, for example, in CPSD(T-3), the number denotes that
perturbation corrections are determined through that order.

The development of response function theory for a cou-
pled cluster wave function was initiated by Monkhorst.12 The

development of response functions for a coupled cluster wave func-
tion and their practical implementation were described by Koch and
Jørgensen,9 who also derived explicit expressions for the response
eigenvalue equation for a coupled cluster state. The first CCSD
excitation energy calculations were reported by Koch et al.13 For
a CCSDT state, three independent implementations were reported
in 2001 by Kucharski et al.,14 Kowalski and Piecuch,15,16 and Hald
et al.17 The former two implementations were conventional term-
by-term implementations, whereas the latter implementation used
direct CC technology18 for solving the CC response eigenvalue equa-
tion. Using direct CC technology, Kállay et al.19,20 extended the cal-
culation of excitation energies to a CCSDTQ state and to CC states
of higher excitation levels.

The hierarchy of coupled cluster models CC2,21 CCSD,22

CC3,23–25 CCSDT,26,27 etc., was introduced for calculation of excita-
tion energies and response molecular properties where an increased
accuracy was obtained, but with an increased iterative computa-
tional scaling of N5, N6, N7, N8, . . ., where N denotes the size of
the molecular system.

The CC2 model is one out of many N5 computational
scaling singles-and-doubles excitation energy models, includ-
ing the second-order polarization propagator approximation
(SOPPA),28–30 the adiabatic-diagrammatic construction of second
order [ADC(2)],31–33 and the P-EOM-MBPT2 model.34,35 In the
EOM-CCSD(2) model,36 the CCSD Jacobian is reduced to con-
tain only terms that are of second order in Møller-Plesset per-
turbation theory leading to an N6 scaling model. In the P-EOM-
MBPT2 model, the doubles sub-block is approximated to con-
tain only orbital-energy differences. For the above models, single-
configuration dominated excitations are described through second
order in Møller-Plesset perturbation theory.17,24 The ADC(3)33,37–39

model is a singles-and-doubles model with an iterative N6 com-
putational scaling that is correct through the third order in the
single-and-double excitation space.

In Paper III,40 we consider in more detail the CPS(D) model
where a perturbation series in orders of the fluctuation potential is
determined where the zeroth-order contribution is a CCS excitation
energy and where the series converge to a CCSD excitation energy.
We give explicit expressions for the lowest-order corrections in this
series through sixth order and show that the first-order correction
vanishes and that the second-order correction gives the non-iterative
N5 scaling CIS(D) model of Head-Gordon et al.41 The CPS(D-2) and
CPS(D-3) excitation energies have been extensively benchmarked in
Paper III,40 where it is shown that the third order model CPS(D-
3) provides excitation energies of CCSD quality in the sense that
the difference between the CPS(D-3) and CCSD excitation ener-
gies is of the same size or smaller than the effect of adding triples
corrections to the CCSD excitation energies. Furthermore, the devi-
ations of the CPS(D-3) and CCSD excitation energies from triples
corrected excitation energies are of similar size.40

For the CPS(D) series, the perturbation simplifies and becomes
the fluctuation potential. For that reason, the derivation of the CP
excitation energy series for arbitrary parent and target excitation
spaces, which we perform in this paper, can be simplified in the
case of CPS(D). In Paper III,40 we describe this simple derivation of
CPS(D-n) excitation energy series where the excitation energy series
is determined without any reference to the general perturbation
framework of CP theory.

J. Chem. Phys. 150, 134109 (2019); doi: 10.1063/1.5053167 150, 134109-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In the CC3 model,23–25 single-replacement dominated excita-
tion energies are described through third order in Møller-Plesset
theory, while double-replacement dominated excitation energies are
described through second order.17,24 The EOM-CCSDT-1 model42

and the EOM-CCSDT-3 model43 have similar characteristics as
the CC3 model. Non-iterative triples N7 scaling models have also
been proposed. These include the non-iterative EOM-CCSD(T),42

EOM-CCSD(T̃),43 CCSDR(3),44 CCSDR(T),44 and CCSD(T)(a)∗45

models.
There are fundamental structural differences between the theo-

retical foundation for the lowest-order correction in the CPSD(T-n)
series and for the other non-iterative approximate triples mod-
els. For the CPSD(T-n) series, the CP perturbation framework is
used both for determining ground-state amplitude corrections and
Jacobian response eigenvector corrections. Furthermore, the lowest-
order excitation-energy corrections are members of a series that con-
verges to the excitation energies for the CCSDT target state. On the
contrary, for the other non-iterative approximate triples models, the
triples excitation-energy corrections are one-step approximations
that are obtained by simplifying the solution to the CCSDT response
eigenvalue equation using a perturbation framework that is different
for the determination of the ground-state amplitude corrections and
for the Jacobian response eigenvector corrections.

The various excitation energy models have been extensively
benchmarked. Goings et al.46 have tested the performance of the
CIS(D), CC2, EOM-CCSD(2), and P-EOM-MBPT2 models using
CCSD excitation energies as reference values and using a test set
of 11 small organic molecules and 69 valence and Rydberg states.
Thiel and co-workers have developed the Mülheim test set that con-
tains 28 molecules with more than 100 excited valence and Ryd-
berg states and benchmarked the CC2, CCSD, and CCSDR(3) mod-
els using CC3 and CASPT2 reference data47,48 and a TZVP basis
set.49 Later, this study was extended using the aug-cc-pVTZ basis
to estimate basis set effects for the CC2, CCSDR(3), and CC3 meth-
ods.50 The CC3 study was only performed for a small subset, and
no data were reported for CCSD. The conclusion was that CC2 per-
forms better than CCSD for vertical excitation energies and that the
non-iterative CCSDR(3) method is a cost-effective approximation to
CC3.

Watson and co-workers,51 using the TZVP basis and the Mül-
heim test set, have benchmarked the methods containing triple exci-
tations. Kánnár and Szalay52 extended this study to test the reliability
of using CC3 results as reference data performing CCSDT calcula-
tions for a small test set. The conclusion was that CC2 gives results
closer to the high level CC3 and CCSDT results than CCSD, but the
CCSD results are more systematic than the CC2 results. Recently,
Kánnár, Tajti, and Szalay53 have benchmarked CIS(D), CC2, EOM-
CCSD(2), EOM-CCSD(T)(a)∗,CCSDT-3, and CC3 methods against
CCSDT results for basis sets up to aug-cc-pVTZ. The results revealed
a serious deficiency of the CC2 and CIS(D) results for calculating
Rydberg states. This deficiency is not present in the EOM-CCSD(2)
and CCSD models. The CC3 model proved to be an accurate choice
among the iterative triples models and the EOM-CCSD(T)(a)∗
method turned out to be the best choice among the non-iterative
models.

In Sec. II, standard CC theory is summarized for the calcula-
tion of excitation energies. In Sec. III, CP theory is developed for
excitation energy series, using general CC parent and CC target

states, and explicit expressions are given for the lowest-order exci-
tation energy corrections. Explicit expressions are also given for the
CPSD(T) excitation energy series through third order. In Sec. IV,
we present calculations of CP excitation energies for general CC
parent and CC target states and examine how well these excita-
tion energy corrections can reproduce the total excitation energy.
Section V contains a short summary and concluding remarks.

II. STANDARD COUPLED CLUSTER THEORY
FOR EXCITATION ENERGIES

In this section, we summarize the CC theory background that
is needed for describing the development of CP series for excitation
energies and for the energies of excited states for a coupled cluster
state.

In CC theory,54,55 the wave function is exponentially parame-
terized,

∣CC⟩ = eT ∣HF⟩, (1)
where the cluster operator,

T =∑
i
Ti, (2a)

Ti =∑
µi
tµiθµi , (2b)

contains the cluster amplitudes tµi and the many-body excitation
operators θµi that carry out excitations from the Hartree-Fock state
|HF⟩ to its orthogonal complement set of states,

∣µi⟩ = θµi ∣HF⟩. (3)

In Eqs. (2) and (3), i denotes an excitation level and µi denotes
an excitation at this level. The Hartree-Fock state together with its
orthogonal complement set of states forms a complete set of states,

∣B⟩ = {∣HF⟩, ∣µi⟩, i = 1, 2, . . .}. (4)

The CC Schrödinger equation may be expressed as

e−TH0eT ∣HF⟩ = E0∣HF⟩, (5)

where H0 is the Hamiltonian and E0 is the ground-state energy.
The CC Schrödinger equation is solved by projection, giving the CC
energy and amplitude equations,

E0 = ⟨HF∣e−TH0eT ∣HF⟩ = ⟨HF∣H0∣HF⟩ + ⟨HF∣H0T2∣HF⟩

+
1
2
⟨HF∣H0T2

1 ∣HF⟩, (6)

⟨µi∣e−TH0eT ∣HF⟩ = 0, (7)

where we have used the Brillouin theorem to obtain the energy in
Eq. (6).

In CC theory, excitation energies are determined as eigenvalues
of the CC response eigenvalue equation,

J Rx = ωx Rx, (8a)
Lx J = Lx ωx, (8b)
LxRy = δxy, (8c)
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where Rx and Lx are the right and left eigenvectors of an excited state
x and ωx is the excitation energy. The left and right eigenvectors may
be chosen to be biorthonormal [Eq. (8c)]. The CC Jacobian matrix
elements are given by

Jµiνj = ⟨µi∣[e−TH0eT , θνj]∣HF⟩, (9)

where the amplitudes of the cluster operator in Eq. (9) satisfy the
cluster amplitude equations in Eq. (7).

In CC theory, total energies of excited states can be obtained
solving the EOM-CC eigenvalue equation,11

HT
0 C = CE, (10)

where the electronic Schrödinger equation is solved in the bi-
orthonormal basis

∣BT
⟩ = {eT ∣HF⟩, eT ∣µi⟩; i = 1, 2, . . .}, (11a)

⟨BT
∣ = {⟨HF∣e−T , ⟨µi∣e−T ; i = 1, 2, . . .}. (11b)

The matrix elements of the Hamiltonian in Eq. (10) are given by

(HT
0 )HF HF

= ⟨HF∣e−TH0eT ∣HF⟩ = E0, (12)

(HT
0 )µi HF

= ⟨µi∣e−TH0eT ∣HF⟩ = 0, (13)

(HT
0 )HF µi

= ⟨HF∣e−TH0eT ∣µi⟩ = ηµi , (14)

(HT
0 )µiνj

= ⟨µi∣e−TH0eT ∣νj⟩ = (HT
0 )
⊥

µiνj
. (15)

Equation (13) is the cluster amplitude equation in Eq. (7) and van-
ishes, and Eq. (12) gives the CC ground-state energy in Eq. (6). The
matrix E in Eq. (10) contains the ground-state energy E0 and the
excited-state energies En, n = 1, 2, . . .,

E = (
E0 E1 E2 ⋱

). (16)

The Hamiltonian matrix has the structure

HT
0 = (

E0 η
0 (HT

0 )
⊥ ). (17)

The Jacobian in Eq. (9) can be written as

Jµiνj = ⟨µi∣e−TH0eT ∣νj⟩ − δµiνj⟨HF∣e−TH0eT ∣HF⟩

= (HT
0 )
⊥

µiνj
− δµiνjE0. (18)

Since HT
0 has the block upper triangular structure of Eq. (17), (HT

0 )
⊥

can be diagonalized with the matrix R of Eq. (8),

(HT
0 )
⊥

R = RE⊥, (19)

where E� contains the total energies of the excited states as eigenval-
ues,

E⊥ = (
E1 E2 ⋱

). (20)

Equations (8), (18), and (19) show that the total energy of excited
state x in CC theory can be determined as a sum of the ground state

energy and the excitation energyωx obtained by solving the Jacobian
response eigenvalue equation in Eq. (8),

Ex = ωx + E0. (21)

In a standard CC excitation energy calculation, a CC target state
is determined using a cluster operator that is truncated at an excita-
tion level t and the cluster amplitude equations in Eq. (7) are solved
in the target excitation space 1 ≤ i ≤ t. The amplitudes are then used
in the CC Jacobian in Eq. (9), and excitation energies are determined
solving the response eigenvalue equation in Eq. (8). In this paper,
we describe how CP theory may be used to determine the excitation
energies of Eq. (8) without the need of solving the cluster amplitude
and the response eigenvalue equations explicitly.

III. CLUSTER PERTURBATION THEORY
FOR EXCITATION ENERGIES

In CP theory, we consider a target excitation space, 1 ≤ i ≤ t,
that is partitioned into a parent excitation space, 1 ≤ i ≤ p, and an
auxiliary excitation space p < i ≤ t. The zeroth-order state is in CP
theory a CC state in the parent excitation space. As in Paper I,1 we
assume that the target state is a CC state in the target excitation
space. In Paper I,1 we showed that using CP theory a series of excita-
tion energy corrections in orders of the CC parent-state similarity-
transformed fluctuation potential exists where the zeroth-order term
in the series is an excitation energy of the CC parent state response
eigenvalue equation and where the series formally converges to an
excitation energy of the CC target state Jacobian eigenvalue equa-
tion. We describe in this paper how the series of excitation energy
corrections can be determined.

From the derivation in Paper I,1 we know that the CC tar-
get state in CP theory has to be parameterized with the CC parent
state as the expansion point. Furthermore, the parent state Jaco-
bian partitioning of the extended parent space Jacobian has to be
used to determine the perturbation series of excitation energy cor-
rections and the eigenvalue equation for the zeroth-order Jacobian
has to become the eigenvalue equation for the CC parent state. The
expansion of the Jacobian of Eq. (9) in orders of the CC parent-
state similarity-transformed fluctuation potential may therefore be
expressed as

J = J(0) + J(1) + J(2) + J(3) +⋯, (22)

where the zeroth-order Jacobian satisfies

J(0) R(0)x = ω(0)x R(0)x , (23a)

L(0)x J(0) = L(0)x ω(0)x , (23b)

L(0)x R(0)y = δxy, (23c)

ω(0)x = ωP
x , (23d)

where ωP
x is an eigenvalue of the CC parent state response eigen-

value equation. Furthermore, we know from Paper I1 that a series
of excitation energy corrections can be determined substituting the
Jacobian expansion in Eq. (22) into Eq. (8) and solving the response
eigenvalue equation in Eq. (8) order by order in the CC parent-
state similarity-transformed fluctuation potential where the excita-
tion energy and the right eigenvector have been expanded in orders
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of the CC parent-state similarity-transformed fluctuation potential,

Rx = R(0)x + R(1)x + R(2)x + R(3)x +⋯, (24)

ωx = ω(0)x + ω(1)x + ω(2)x + ω(3)x +⋯. (25)

We describe in Subsection III A how the Jacobian expansion in
Eq. (22) can be determined where the zeroth-order Jacobian satisfies
the zeroth-order eigenvalue equation in Eq. (23). In Subsection III B,
explicit expressions are determined for the lowest-order corrections
for the Jacobian and for the cluster amplitudes. In Subsection III C,
we determine the excitation energy corrections of Eq. (25), and in
Subsection III D, CP series are determined for the energies of CC
excited states. In Subsection III E, we give explicit expressions for
the excitation energy corrections through third order for a CP model
with a general parent and auxiliary excitation space, and in Subsec-
tion III F, the excitation energy corrections through third order are
given for the CPSD(T) model.

A. Perturbation series for the Jacobian
In CP theory, the zeroth-order state is the CC parent state in

the parent excitation space,

∣CC∗
⟩ = e

∗T
∣HF⟩, (26)

∗T =
∗T1 +⋯ + ∗Tp, (27)

∗Ti =∑
µi

∗tµiθµi , 1 ≤ i ≤ p, (28)

where the amplitudes of the CC parent state satisfy the cluster
amplitude equations,

⟨µi∣e−
∗TH0e

∗T
∣HF⟩ = 0, 1 ≤ i ≤ p, (29)

and where the parent-state energy is

∗E0 = ⟨HF∣H0e
∗T

∣HF⟩. (30)

The CC target state is in CP theory parameterized with the CC
parent state as the expansion point,

∣CC⟩ = eT ∣HF⟩ = eδT+∗T
∣HF⟩ = eδT ∣CC∗

⟩, (31)

where

δT =
t
∑
i=1
∑
µi
δtµiθµi . (32)

The similarity-transformed Schrödinger equation for the CC target
state in Eq. (31) may be written as

e−δTe−
∗TH0e

∗TeδT ∣HF⟩ = E0∣HF⟩ (33)

and solved by projection in the target excitation space giving the
cluster energy and amplitude equations,

E0 = ⟨HF∣e−δTe−
∗TH0e

∗TeδT ∣HF⟩ = ⟨HF∣e−δTH
∗T
0 eδT ∣HF⟩, (34)

⟨µi∣e−δTe−
∗TH0e

∗TeδT ∣HF⟩ = ⟨µi∣e−δTH
∗T
0 eδT ∣HF⟩ = 0,

1 ≤ i ≤ t,
(35)

where
H
∗T
0 = e−

∗TH0e
∗T . (36)

The Jacobian of Eq. (9) may similarly be parameterized with the CC
parent state as the expansion point,

Jµiνj = ⟨µi∣[e−δTH
∗T
0 eδT , θνj]∣HF⟩, i, j = 1, 2, . . . , t. (37)

Introducing the Møller-Plesset partitioning of the Hamiltonian,

H0 = f + Φ, (38)

where f is the Fock operator and Φ is the fluctuation potential, and
carrying out Baker-Campbell-Hausdorff (BCH) expansions, we may
write Eqs. (35) and (37) as

⟨µi∣Φ
∗T

∣HF⟩Sip +
t
∑
j=1
∑
νj
⟨µi∣[H

∗T
0 , θνj]∣HF⟩δtνj +

1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩ +
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩

= ⟨µi∣Φ
∗T

∣HF⟩Sip +
t
∑
j=1
∑
νj
Aµiνjδtνj +

1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩

+
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩ +
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩ = 0, 1 ≤ i ≤ t, (39)

Jµiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩ + ⟨µi∣[[Φ

∗T ,δT], θνj]∣HF⟩

+
1
2
⟨µi∣[[[Φ

∗T ,δT],δT], θνj]∣HF⟩ +
1
6
⟨µi∣[[[[Φ

∗T ,δT],δT],δT], θνj]∣HF⟩

= Aµiνj + ⟨µi∣[[Φ
∗T ,δT], θνj]∣HF⟩ +

1
2
⟨µi∣[[[Φ

∗T ,δT],δT], θνj]∣HF⟩

+
1
6
⟨µi∣[[[[Φ

∗T ,δT],δT],δT], θνj]∣HF⟩, i, j = 1, 2, . . . , t. (40)
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To obtain the first term in Eq. (39), we have used Eq. (29) and
introduced the integer step function Sab,

Sab = {
0, for a ≤ b
1, for a > b. (41)

To obtain the last equality in Eqs. (39) and (40), we have introduced
the extended parent-state Jacobian,

Aµiνj =
d

dδtνj
⟨µi∣e−δTH

∗T
0 eδT ∣HF⟩∣

δt=0

= ⟨µi∣[H
∗T
0 , θνj]∣HF⟩, i, j = 1, 2, . . . , t. (42)

Equations (39) and (40) show that the extended parent-state Jaco-
bian arises both in the amplitude equations in Eq. (39) and in the
CC target-state Jacobian in Eq. (40). Furthermore, the CC target-
state Jacobian has the extended parent-state Jacobian as its dominant
contribution.

To determine the Jacobian expansion and the cluster amplitude
equations, we use in CP theory the parent state Jacobian partitioning
of the extended parent-state Jacobian in Eq. (42) [cf. Eqs. (29) and
(39) of Paper I1],

Aµiνj = A(0)µiνj + A(1)µiνj , i, j = 1, 2, . . . , t, (43)

where

A(0)µiνj =⟨µi∣[H
∗T
0 , θνj]∣HF⟩(1 − Sip)(1 − Sjp) + ενjδµiνjSipSjp,

1 ≤ i, j ≤ t, (44a)

A(1)µiνj =⟨µi∣[Φ
∗T , θνj]∣HF⟩(1 − Sip)Sjp

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩Sip(1 − Sjp)

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩SipSjp, 1 ≤ i, j ≤ t, (44b)

where we have used that in canonical Hartree-Fock basis

⟨µi∣[f
∗T , θνj]∣HF⟩ = ενjδµiνj , i, j = 1, 2, . . . , t. (45)

The parent space sub-block of A(0) contains in addition to the
Fock operator terms also the CC parent-state similarity-transformed
fluctuation potential terms and the parent space sub-block of A(0)

therefore becomes the CC parent state Jacobian,

JPµiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩, 1 ≤ i, j ≤ p. (46)

A(0) is further block-diagonal, and the auxiliary space sub-block
contains only the Fock operator contributions. A(1) has a vanish-
ing parent-space sub-block and contains only terms that are of first
order in Φ

∗T .
Introducing Eq. (43) in Eqs. (39) and (40), we obtain

t
∑
j=1
∑
νj
A(0)µiνjδtνj + ⟨µi∣Φ

∗T
∣HF⟩Sip +

t
∑
j=1
∑
νj
A(1)µiνjδtνj

+
1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩ +
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩ = 0, 1 ≤ i ≤ t,
(47)

Jµiνj =A
(0)
µiνj + A(1)µiνj + ⟨µi∣[[Φ

∗T ,δT], θνj]∣HF⟩

+
1
2
⟨µi∣[[[Φ

∗T ,δT],δT], θνj]∣HF⟩

+
1
6
⟨µi∣[[[[Φ

∗T ,δT],δT],δT], θνj]∣HF⟩, 1 ≤ i, j ≤ t.
(48)

From Eq. (48), we may identify J(0) of Eq. (22) as A(0),

J(0) = A(0), (49)

where J(0) in the two-component form may be written as

J(0) = (
JP 0
0 εA

), (50)

where JP in the CC parent-state Jacobian in Eq. (46) and εA is a diag-
onal matrix referencing the auxiliary space and containing orbital
energy differences,

(εA)µiνj = ενjδµiνj , p < i, j ≤ t. (51)

Due to the block-diagonal structure of J(0), the parent space com-
ponent of J(0) satisfies the CC parent-state response eigenvalue
equation,

(
JP 0
0 εA

)(
RP
x

0 ) = ωP
x(

RP
x

0 ), (52)

and we thus have
ω(0)x = ωP

x , (53)

R(0)x = (
RP
x

0 ), (54)

L(0)x = (LPx 0 ), (55)

where
LPx R

P
x = 1. (56)

The last three terms in Eq. (48) are of at least second order in Φ
∗T ,

and J(1) of Eq. (22) therefore may be identified as

J(1) = A(1). (57)

To identify J(0) and J(1), we have required that the parent state Jaco-
bian in the parent space sub-block of J(0) becomes a zeroth-order
term and that the parent space sub-block of J(1) vanishes. We have
thereby removed internal relaxation in the parent subspace through
first-order in the Jacobian of Eq. (22). To identify the second- and
higher-order terms in the Jacobian expansion in Eq. (22) from
Eq. (48), we will also require that the cluster amplitudes in the δT
operator in Eq. (48) are determined from a perturbation series where
internal relaxation in the parent subspace is removed. To accomplish
this, we determine the cluster amplitudes in Eq. (48) from Eq. (47).
Substituting Eqs. (44) and (46) in Eq. (47), we can write the kth-order
cluster amplitude equations in the two-component form as
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p

∑
j=1
∑
νj
JPµiνjδt

(k)
νj = −

t
∑
j=p+1
∑
νj
⟨µi∣[Φ

∗T , θνj]∣HF⟩δt(k−1)
νj − {

1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩ +
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩}
{k}

, 1 ≤ i ≤ p, (58a)

εµiδt
(k)
µi = −⟨µi∣Φ

∗T
∣HF⟩δk1 −

t
∑
j=1
∑
νj
⟨µi∣[Φ

∗T , θνj]∣HF⟩δt(k−1)
νj − {

1
2
⟨µi∣[[Φ

∗T ,δT],δT]∣HF⟩ +
1
6
⟨µi∣[[[Φ

∗T ,δT],δT],δT]∣HF⟩

+
1

24
⟨µi∣[[[[Φ

∗T ,δT],δT],δT],δT]∣HF⟩}
{k}

, p < i ≤ t, (58b)

where { . }{k} denotes that terms of order k inΦ
∗T are picked up and

gathered from the expression in the parentheses. In Eq. (58a), inter-
nal relaxation in the parent excitation space is removed from the per-
turbation calculation because the first term on the right-hand side of
Eq. (58a) only introduces a coupling between the auxiliary excita-
tion space and the parent excitation space and because sets of linear
equations containing the zeroth-order CC parent state Jacobian JP
are solved in the parent excitation space.

From Eq. (48), we can identify the series in Eq. (22) for J where
the zeroth-order Jacobian in Eq. (50) satisfies Eqs. (23) and where
the cluster amplitudes δtµi entering Eq. (48) are determined from
the amplitude equation in Eq. (58). For the Jacobian expansion and
the cluster amplitude series, we have used the new generalized order
concept of CP theory where terms are collected order by order in
Φ
∗T with the exception that JP, and thereby J(0), is defined to be of

zeroth order although it contains a Φ
∗T contribution projected on to

the parent excitation space. As both the Jacobian expansion and the
expansion of the cluster amplitudes are determined using the par-
ent state Jacobian partitioning of the extended parent-state Jacobian,
direct relaxation in the parent space is removed from both the cluster
amplitude expansion and the Jacobian expansion.

It is of interest to briefly discuss alternative and more elabo-
rate choices of the separation of the extended parent-state Jacobian
in Eqs. (43). A first choice is to use a zeroth-order Jacobian that
includes the full Jacobian in both the parent-parent and auxiliary-
auxiliary blocks and neglects the coupling blocks between the parent
and auxiliary spaces,

A(0)µiνj =⟨µi∣[H
∗T
0 , θνj]∣HF⟩(1 − Sip)(1 − Sjp)

+ ⟨µi∣[H
∗T
0 , θνj]∣HF⟩SipSjp, 1 ≤ i, j ≤ t, (59a)

A(1)µiνj = ⟨µi∣[Φ
∗T , θνj]∣HF⟩(1 − Sip)Sjp

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩Sip(1 − Sjp), 1 ≤ i, j ≤ t. (59b)

The use of the partitioning in Eqs. (59) leads to a well-defined pertur-
bation expansion for the ground and excited states, which at zeroth
order reproduces the parent state coupled cluster results and con-
verges toward the target state coupled cluster results. Due to the
more elaborate zeroth-order Jacobian, this expansion is expected to
converge faster toward the target state results than is the case for
the CP expansions. However, the use of Φ

∗T in the auxiliary space
block of the zeroth-order Jacobian leads to a formalism, where linear

transformations with the zeroth-order Jacobian have the same com-
plexity and computational scaling as if the full target-space Jacobian
was used. The iterative solution of the linear equations required to
obtain the amplitude corrections of a given order will therefore have
a computational scaling that is of the same order as that for a coupled
cluster calculation in the target space, so this perturbation expansion
does not offer any computational advantages.

Expansions that use the full extended parent-state Jacobian as
the zeroth-order expansion,

A(0)µiνj = ⟨µi∣[H
∗T
0 , θνj]∣HF⟩, 1 ≤ i, j ≤ t, (60a)

A(1)µiνj = 0, 1 ≤ i, j ≤ t, (60b)

may also be concocted. With this choice of the zeroth-order Jaco-
bian, the perturbation expansion of the ground-state amplitudes
becomes similar to that of standard fixed-Hessian optimization
schemes.56 The error of the first correction is quadratic in the norm
∥
∗t− ct∥, where ct denotes the converged CC target state amplitudes,

and the error of the nth correction is of order n + 1 in the same
norm. Such expansions have been extensively tested in connection
with MCSCF optimization.57 In the current context, where the Jaco-
bian is not explicitly constructed, such schemes have limited value;
in particular, they would have the same high scaling as the full target-
state Jacobian and they do not correspond to a well-defined pertur-
bation expansion from parent- to target-space CC expansions. We
conclude that none of these more elaborate zeroth-order Jacobians
offers a better combination of computational scaling and accuracy
than the separation in CP theory, Eqs. (44).

B. Lowest-order amplitudes and Jacobian corrections
We now determine the lowest-order amplitude corrections

from Eqs. (58) and use these amplitude corrections to determine
the lowest-order terms in the Jacobian expansion in Eq. (22). The
zeroth-order amplitudes vanish,

δt(0)µi = 0, 1 ≤ i ≤ t. (61)

The first-order amplitudes become

δt(1)µi = 0, 1 ≤ i ≤ p, (62a)

εµiδt
(1)
µi = −⟨µi∣Φ

∗T
∣HF⟩, p < i ≤ t. (62b)
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The first-order parent space amplitudes vanish because the parent
space cluster amplitude equation in Eq. (29) is satisfied. The second-
order amplitude corrections become

p

∑
j=1
∑
νj
JPµiνjδt

(2)
νj = −

t
∑
j=p+1
∑
νj
⟨µi∣[Φ

∗T , θνj]∣HF⟩δt(1)νj , 1 ≤ i ≤ p,

(63a)

εµiδt
(2)
µi = −

t
∑
j=p+1
∑
νj
⟨µi∣[Φ

∗T , θνj]∣HF⟩δt(1)νj , p < i ≤ t,

(63b)

where to obtain Eq. (63b) we have used Eq. (62a). The third-order
amplitudes become

p

∑
j=1
∑
νj
JPµiνjδt

(3)
νj = −

t
∑
j=p+1
∑
νj
⟨µi∣[Φ

∗T , θνj]∣HF⟩δt(2)νj , 1 ≤ i ≤ p,

(64a)

εµiδt
(3)
µi = −

t
∑
j=1
∑
νj
⟨µi∣[Φ

∗T , θνj]∣HF⟩δt(2)νj

−
1
2
⟨µi∣[[Φ

∗T ,δT(1)],δT(1)]∣HF⟩, p < i ≤ t.
(64b)

The lowest-order terms in the expansion of the Jacobian in
Eq. (22) may be determined from Eq. (48) using the amplitude
corrections of Eqs. (61)–(64). Below we give explicit expressions
through third order for this expansion,

J(1)µiνj = A(1)µiνj = ⟨µi∣[Φ
∗T , θνj]∣HF⟩(1 − Sip)Sjp

+ ⟨µi∣[Φ
∗T , θνj]∣HF⟩Sip(1 − Sjp) + ⟨µi∣[Φ

∗T , θνj]∣HF⟩SipSjp,

1 ≤ i, j ≤ t ; p < t, (65)

J(2)µiνj =
t
∑

q=p+1
⟨µi∣[[Φ

∗T ,δT(1)q ], θνj]∣HF⟩, 1 ≤ i, j ≤ t, (66)

J(3)µiνj =
t
∑
q=1

⟨µi∣[[Φ
∗T ,δT(2)q ], θνj]∣HF⟩ +

1
2

t
∑

q,r=p+1

×⟨µi∣[[[Φ
∗T ,δT(1)q ],δT(1)r ], θνj]∣HF⟩, 1 ≤ i, j ≤ t. (67)

C. Arbitrary-order corrections from right response
eigenvalue equation

We now determine the excitation-energy corrections to the CC
parent state excitation energy in Eq. (25) that formally converge to
an excitation energy of the CC target state. We assume that the right
eigenvector Rx is expanded as in Eq. (24), with R(0)x given in Eq. (54),
and that Rx is intermediate normalized against L(0)x of Eq. (55),

L(0)x Rx = 1, (68)

implying [cf. Eq. (23c)]

L(0)x R(k)x = 0, k > 0. (69)

Substituting Eqs. (22)–(25) in Eq. (8a) and collecting terms of order
k gives

k
∑
p=0

J(p)R(k−p)x =
k
∑
p=0
ω(p)x R(k−p)x , (70)

which may be rearranged as

(J(0) − ωP
x I)R

(k)
x =

k
∑
p=1
ω(p)x R(k−p)x −

k
∑
p=1

J(p)R(k−p)x , (71)

where we have used Eq. (23d) and where I is an identity matrix. Pro-
jecting Eq. (71) against the zeroth-order left eigenvector, L(0)x , we
obtain the kth-order correction to the CC parent space excitation
energy,

ω(k)x =
k
∑
p=1

L(0)x J(p)R(k−p)x , (72)

where we have used Eqs. (23b) and (69). Note that the right-hand
side of Eq. (72) depends only on right eigenvectors through order
(k − 1).

When excitation energy corrections have been determined
through order k, they may be substituted in Eq. (71) to determine
the kth-order correction to the right eigenvector. The kth-order right
eigenvalue equation may in the two-component form be written
as (the subscripts P and A denote parent and auxiliary subspace
components, respectively)

(JP − ωP
x I)R

(k)
xP =

k
∑
p=2
ω(p)x R(k−p)xP −

k
∑
p=2

J(p)PP R(k−p)xP −
k−1
∑
p=1

J(p)PA R(k−p)xA ,

(73a)

R(k)xA = (εA − ωP
x I)

−1⎛

⎝

k−1
∑
p=2
ω(p)x R(k−p)xA −

k
∑
p=1

J(p)AP R
(k−p)
xP

−
k−1
∑
p=1

J(p)AAR
(k−p)
xA

⎞

⎠
, (73b)

where we have used that the auxiliary space component of the
zeroth-order right eigenvector vanishes [cf. Eq. (54)] and that the
first-order excitation energy correction, ω(1)x , also vanishes (vide
infra). Furthermore, to obtain Eq. (73a), we have used that the first-
order Jacobian does not have a PP block [see Eq. (65)], and to obtain
Eq. (73b), we have used that the matrix (εA − ωP

x I) is diagonal and
non-singular.

The parent space component of the kth-order right eigenvector
is obtained solving the linear equation in Eq. (73a). Using iterative
algorithms to solve Eq. (73a) requires linear transformations of the
parent-state Jacobian JP in Eq. (46) on parent space trial vectors bP

(JPbP)
µi
= ⟨µi∣[H

∗T
0 ,BP

]∣HF⟩, i = 1, . . . , p, (74)

BP
=

p

∑
i=1
∑
µi
bPµiθµi . (75)

The construction of JPbP in Eq. (74) has a leading-order compu-
tational scaling that is at least two powers in system size smaller
than the leading-order computational scaling for constructing the
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right-hand sides of Eq. (73b), for example, the right-hand side
component

(J(1)AP R
(k−1)
xP )

µi

= ⟨µi∣[H
∗T
0 ,R(k−1)

xP ]∣HF⟩, i = p + 1, . . . , t, (76)

R(k−1)
xP =

p

∑
i=1
∑
µi
R(k−1)
µix θµi . (77)

Solving the linear equations in Eq. (73a) thus does not affect the
leading-order computational scaling for the determination of exci-
tation energy corrections. We also note that when solving Eq. (73a)
using iterative algorithms and using a diagonal pre-conditioner, we
have to ensure that the initial trial vector is R(0)x of Eq. (54) and
that new trial vectors satisfy Eq. (69). Note that internal relaxation
is removed from the parent excitation subspace when the kth-order
response amplitudes are determined because the kth-order response
amplitudes R(k)xP do not depend on R(k−1)

xP but only on R(k−1)
xA , and

since R(k)xP is determined solving sets of linear equations contain-
ing the zeroth-order parent state Jacobian. For comparison, internal
relaxation in the parent subspace is removed for the energy when
the cluster amplitudes are determined because the kth-order clus-
ter amplitudes δt(k)P do not depend on δt(k−1)

P but only on δt(k−1)
A

and because δt(k)P is determined solving set of linear equations
containing the parent-state Jacobian JP (see Paper I1).

D. CP series for excited state energies
We have in Eq. (41) of Paper I1 determined a CP series for the

ground-state energy in Eq. (6),

E0 = E(0)0 + E(1)0 + E(2)0 +⋯, (78)

where E(0)0 is the CC parent-state energy ∗E0 of Eq. (30). In Eq. (25),
we have determined a CP series for the excitation energy ωx. In
accordance with Eq. (21), we can therefore also determine a CP series
for the total energy Ex of an excited state x,

Ex = {E(0)x ,E(1)x ,E(2)x , . . .}, (79)

where
E(k)x = ωxk + E0k (80)

and

ωxk =
k
∑
q=0
ω(q)x , (81)

Exk =
k
∑
q=0

E(q)0 . (82)

The zeroth-order term in the series in Eq. (79) gives according to
Eq. (21) the total energy of excited state x for a CC calculation in the
parent excitation space and the series in Eq. (79) formally converges
to the CC energy of the excited state x in the target excitation space.
To obtain the CP series in Eq. (79), it is necessary that the same per-
turbation framework is used to establish the perturbation expansion
of the Jacobian in Eq. (22), the excitation energy in Eq. (25), and the
ground-state energy in Eq. (78), as is performed in CP theory.

The CC parent and target state excitation energies are size-
extensive. In addition, the excitation energy corrections that are
determined solving the Jacobian eigenvalue equation at each order in
Φ
∗T are size-extensive since the individual contributions in the CC

target-state Jacobian are term-wise size-extensive. The excited-state
energies that are determined from Eq. (79) are also size-extensive
since the ground-state energy corrections and the excitation-energy
corrections are size-extensive.

E. Explicit expressions for the lowest-order
corrections

In this subsection, we will determine explicit expressions
for excitation energy corrections through third order from the
arbitrary-order energy corrections in Eq. (72) and the arbitrary-
order right eigenvector equations in Eqs. (73).

1. First-order correction
The first-order correction to the excitation energy may be

obtained from Eq. (72) as

ω(1)x = L(0)x J(1)R(0)x = (Lpx 0 )
⎛

⎝

0 J(1)PA

J(1)AP J(1)AA

⎞

⎠
(
RP
x

0 ) = 0, (83)

where to obtain the second equality, we have used Eqs. (54), (55),
and (65). Equation (83) substantiates that the summation in the
∑

k
p=2 ω

(p)
x R(k−p)xP term in Eq. (73a) [and in the corresponding term in

Eq. (73b)] starts with p = 2. The first-order corrections to the right
eigenvector are obtained from Eqs. (73),

(JP − ωP
x I)R

(1)
xP = 0, (84a)

R(1)xA = −(εA − ωP
x I)

−1
J(1)AP R

P
x , (84b)

where to obtain Eq. (84b), we have used Eq. (54). Equations (84)
show that the first-order correction to the right eigenvector may be
written as

R(1)xµi = 0, 1 ≤ i ≤ p, (85a)

R(1)xµi = −(εµi − ω
P
x)
−1

⟨µi∣[Φ
∗T ,RP

x]∣HF⟩, p < i ≤ t, (85b)

where we have used Eq. (65) and introduced the cluster operator RP
x

for the cluster parent excited state x,

RP
x =

p

∑
i=1
∑
µi
θµiR

P
xµi . (86)

2. Second-order correction
Using Eqs. (72) and (73), we obtain second-order corrections

to the excitation energy and eigenvectors as

ω(2)x = L(0)x J(2)R(0)x + L(0)x J(1)R(1)x

= Lpx J
(2)
PP RP

x + Lpx J
(1)
PA R(1)xA , (87)

(JP − ωP
x I)R

(2)
xP = ω(2)x RP

x − J
(2)
PP RP

x − J
(1)
PA R(1)xA , (88a)

R(2)xA = −(εA − ωP
x I)

−1⎛

⎝
J(2)AP R

P
x + J(1)AAR

(1)
xA

⎞

⎠
, (88b)
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where to obtain the second equality in Eq. (87) and Eq. (88b), we
have used Eq. (85a). The second-order excitation energy in Eq. (87)
and the elements of the second-order eigenvectors in Eq. (88) may
be written as

ω(2)x =
t
∑

q=p+1
⟨LPx ∣[[Φ

∗T ,δT(1)q ],RP
x]∣HF⟩

+ ⟨LPx ∣[Φ
∗T ,R(1)xA ]∣HF⟩, (89)

p

∑
j=1
∑
νj

(JPµiνj − ω
P
x δµiνj)R

(2)
xνj

= ω(2)x Rxµi −
t
∑

q=p+1
⟨µi∣[[Φ

∗T ,δT(1)q ],RP
x]∣HF⟩

−⟨µi∣[Φ
∗T ,R(1)xA ]∣HF⟩, 1 ≤ i ≤ p, (90a)

R(2)xµi = − (εµi − ω
P
x)
−1⎛

⎝

t
∑

q=p+1
⟨µi∣[[Φ

∗T ,δT(1)q ],RP
x]∣HF⟩

+ ⟨µi∣[Φ
∗T ,R(1)xA ]∣HF⟩

⎞

⎠
, p < i ≤ t, (90b)

where we have used Eqs. (65), (66), and (86) and introduced the bra
state ⟨LPx ∣ corresponding to a CC parent excited state x,

⟨LPx ∣ =
p

∑
i=1
∑
µi
Lpxµi⟨µi∣, (91)

and the first-order auxiliary space cluster operator R(1)xA correspond-
ing to an excited state x,

R(1)xA =
t
∑
i=p+1
∑
µi
θµiR

(1)
xµi . (92)

3. Third-order correction
Following the same route of derivation as for the second-order

corrections, we obtain the third-order excitation-energy corrections,

ω(3)x = L(0)x J(3)R(0)x + L(0)x J(2)R(1)x + L(0)x J(1)R(2)x , (93)

ω(3)x =⟨LPx ∣[[Φ
∗T ,δT(2)],RP

x]∣HF⟩

+
1
2

t
∑

q,r=p+1
⟨LPx ∣[[[Φ

∗T ,δT(1)q ],δT(1)r ],RP
x]∣HF⟩

+
t
∑

q=p+1
⟨LPx ∣[[Φ

∗T ,δT(1)q ],R(1)xA ]∣HF⟩

+ ⟨LPx ∣[Φ
∗T ,R(2)xA ]∣HF⟩. (94)

F. Explicit expressions for the lowest-order excitation
energy corrections for the CPSD(T) model

As a specific example of excitation energy corrections, let us
consider the CPSD(T) model where a series of excitation energy
corrections to the CCSD excitation energy is determined in orders
of the similarity-transformed fluctuation potential, and where the

series formally converges to the CCSDT excitation energy. For this
model, we have p = 2 and t = 3. Using Eqs. (53), (83), and (85),
the zeroth- and first-order excitation energy and excitation vectors
become

ω(0)x = ωCCSD
x , (95)

ω(1)x = 0, (96)

R(1)xµi = 0, i = 1, 2, (97a)

R(1)xµ3 = −(εµ3 − ω
CCSD
x )

−1
⟨µ3∣[Φ

∗T ,RCCSD
x ]∣HF⟩. (97b)

The second-order corrections are obtained from Eqs. (89) and (90),

ω(2)x = ⟨LCCSD
x ∣[[Φ

∗T ,δT(1)3 ],RCCSD
x ]∣HF⟩ + ⟨LCCSD

x ∣[Φ
∗T ,R(1)x3 ]∣HF⟩,

(98)

2
∑
j=1
∑
νj

(JCCSD
µiνj − ω

CCSD
x δµiνj)R

(2)
xνj

= ω(2)x RCCSD
xµi − ⟨µi∣[[Φ

∗T ,δT(1)3 ],RCCSD
x ]∣HF⟩

− ⟨µi∣[Φ
∗T ,R(1)x3 ]∣HF⟩, i = 1, 2, (99a)

R(2)xµ3 = − (εµ3 − ω
CCSD
x )

−1⎛

⎝
⟨µ3∣[[Φ

∗T ,δT(1)3 ],RCCSD
x ]∣HF⟩

+ ⟨µ3∣[Φ
∗T ,R(1)x3 ]∣HF⟩

⎞

⎠
, (99b)

whereas the third-order excitation energy corrections may be
obtained from Eq. (94),

ω(3)x =
3
∑
q=1

⟨LCCSD
x ∣[[Φ

∗T ,δT(2)q ],RCCSD
x ]∣HF⟩

+ ⟨LCCSD
x ∣[Φ

∗T ,R(2)x3 ]∣HF⟩. (100)

To obtain Eq. (100), we have used that the second and third terms in
Eq. (94) vanish using excitation rank arguments.

IV. NUMERICAL RESULTS
In this section, we report calculations of excitation energies

using the CP hierarchies. The CPS(D) and CPSD(T) methods are
used to determine excitation energies for the lower excited states of
four molecular and atomic systems: hydrogen fluoride at the equi-
librium distance (Re) and a stretched bond length (1.5Re), CH2, and
the fluorine anion. Furthermore, the CPSDT(Q) method is applied
to determine excitation energies to states with selected spins and
symmetries of the CH2 molecule. At this point, we note that the
first-order excitation energy correction vanishes for CP excitation
energy series and that the second-order model CPS(D-2) is identi-
cal to the CIS(D)41 model. The aug-cc-pVDZ basis set is used for
all calculations, and the 1s core-orbitals are doubly occupied on all
atoms differing from H. The geometries are given in our previous
studies of the performance of the CP methods to ground-state ener-
gies; see Paper I.1 These examples have been chosen to study the
CP excitation-energy series of electron-rich as well as electron-poor
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molecular systems with various degrees of multi-configurational
character of the ground-state wave functions. The hydrogen fluoride
example allows us to study a molecule containing an electron-rich
atom. At Re, the molecule is strongly dominated by the Hartree-Fock
configuration, whereas at 1.5Re, it has a minor multi-configurational
component.

The CP calculations of the excitation energies are performed
with the general coupled cluster codes18 of the LUCIA program,58

which has been extended to enable the calculation of CP excitation
vectors and energies for arbitrary choices of excitation levels for the
parent and target states. The codes are rather inefficient, especially
for higher orders of the perturbation expansion. The various wave
function corrections were determined to an accuracy that ensures
that the obtained excitation energies are accurate to 10−6 Hartree.

Several topics are of interest when examining the performance
of a novel perturbation hierarchy. In this paper, we focus on the per-
formance of the CP methods at lower orders, in particular, the lowest
four non-trivial orders. In a forthcoming publication, we will exam-
ine the global convergence of the CP excitation energy series and, in
particular, the convergence patterns for the higher order terms and
how these series patterns can be modeled using a simple two-state
model.

The accuracy of the low-order corrections to an excitation
energy depends on many factors. One factor that we will consider
is whether the state changes position in the energy spectrum when
going from the parent to the target state. For example: Is a first
excited parent state of a given symmetry and spin also the first
excited target state of that symmetry and spin or does it have another
position in the target spectrum? If the state changes position, the
perturbation expansion is divergent, and this may affect the accu-
racy of the low-order results. As both parent and target states are
explicitly calculated here, we can examine the eigenvectors of the
various parent and target states and thereby determine the energy
order of the target state for a given parent state. In the present
work, the parent and target states are mapped by comparing the
dominating excitations of the various parent and target excitation
vectors.

To provide a thorough discussion of the accuracy of CP exci-
tation energy series, we report CP series for both the ground-state
energy and for excitation energies. In quantum chemistry, ground-
state energies are usually reported in Hartree, whereas excitation
energies are reported in eV. To compare CP ground-state energy
series with CP excitation energies series, the results for both series
are reported in Hartree. When we summarize our findings for exci-
tation energy series, results in eV are also reported. We also investi-
gate when CP excitation energy corrections have an accuracy smaller
than 0.004 and 0.001 Hartree; these values correspond to 0.109 and
0.027 eV, respectively.

A. CPS(D) calculations
In the CPS(D) series for excitation energies, we determine

approximate CCSD excitation energies by adding perturbative cor-
rections to a CCS excitation vector. A prerequisite for obtaining
accurate excitation energies from low-order CPS(D) calculations
is thus that the targeted CCSD state is well described at the CCS
level. We refer to such excitations as single-replacement dominated
excitations.

For an excitation to be single-replacement dominated, the
zeroth-order CCS state has to be the dominant excitation compo-
nent in the expansion of Rx in Eq. (24). Making separate order
expansions of the single and double excitation parts of Rx, we may
write

RxS = R(0)xS + R(2)xS +⋯, (101)

RxD = R(1)xD + R(2)xD +⋯, (102)

where we have used that R(1)xS and R(0)xD vanish [see Eqs. (85a)
and (54)]. The CCS right eigenvector R(0)xS may be chosen as
normalized,

∣R(0)xS ∣ = ∣RCCS
xS ∣ = 1. (103)

For a single-replacement dominated excitation, the norm of the dou-
bles component, |RxD|, truncated at a given order must be small
compared to the norm of the singles component. In particular, |RxD|
must be smaller than ∣R(0)xS ∣ = 1,

1 > ∣R(1)xD ∣ + ∣R(2)xD ∣ +⋯. (104)

In addition, for a single-replacement dominated excitation, we must
require that the correction to the CCS state is much smaller than the
norm of the CCS state,

1 > ∣R(2)xS ∣ + ∣R(3)xS ∣ +⋯. (105)

When the position of an excited state changes when going from the
parent to the target space, the size of ∣R(2)xS ∣ may become large and
∣R(2)xS ∣ may therefore be used as a diagnostic for judging the quality
of the low-order corrections.
1. Calculations on HF at Re

For the first considered example, hydrogen fluoride at equilib-
rium geometry, we provide in Table I the results for the considered
excited states. All energies in this and the following tables are in
Hartree. For each excited state, the table provides the excitation
energies at the parent and target level, here corresponding to the
results of CCS and CCSD response calculations, respectively, and
the energy order of each parent state in the energy spectrum of the
target space. With respect to the perturbation expansions, the table
gives the errors of the excitation energies for the lowest four non-
trivial orders, the order at which the error is less than 0.004 and
0.001 Hartree, and whether the perturbation expansion is conver-
gent or divergent. An error is here defined as the difference between
the excitation energy obtained at a given order and the full target
space excitation energy. Finally, the table contains the diagnostic
∣R(2)xS ∣ for the excited states. The table provides also the similar infor-
mation about the CPS(D) series for the ground state of hydrogen
fluoride.

From Table I, it is first noted that the energy ordering of the
parent and target roots is identical for all states. In agreement with
this observation, the CPS(D) hierarchy converges for all considered
excitations. It is seen from the table that the doubles corrections
to the excitation energies all are negative and are in the interval
between −0.06 and −0.03 Hartree, except for the lowest 3Σ state
where the correction is only −0.0066 Hartree. As expected, the cor-
rections to the excitation energies are much smaller than the dou-
bles correlation energy of the ground state, which is about −0.23
Hartree.
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TABLE I. Convergence of the CPS(D) ground state and excitation energies for hydrogen fluoride at Re. Energies, corrections, and errors in a.u. See text for details.

State X1Σ 11Σ 21Σ 13Σ 23Σ 33Σ

Parent energy −100.033506 0.5672 0.6558 0.5002 0.5603 0.6684
Target energy −100.259434 0.5321 0.5985 0.4936 0.5240 0.6429
Target root 0 1 2 1 2 3
∣R(2)xS ∣ . . . 0.12 0.36 0.18 0.07 0.26

Correction −0.225928 −0.0351 −0.0573 −0.0066 −0.0363 −0.0255

Errors for various orders
Order 2 0.0037 −0.0194 −0.0299 −0.0052 0.0017 −0.0248
Order 3 0.0030 0.0035 0.0074 0.0060 −0.0001 0.0020
Order 4 0.0010 −0.0038 0.0091 −0.0048 −0.0018 −0.0018
Order 5 0.0006 0.0021 0.0039 0.0017 0.0008 0.0020

Order with error <0.004(0.001) 4 3(6) 5(8) 5(7) 3(5) 3(6)

Convergent? Yes Yes Yes Yes Yes Yes

State 11Π 21Π 31Π 13Π 23Π 33Π 11∆ 13∆

Parent exc. energy 0.4326 0.5692 0.6339 0.4072 0.5582 0.6217 0.6018 0.5840
Target exc. energy 0.3788 0.5171 0.5732 0.3639 0.5095 0.5654 0.5525 0.5417
Target root 1 2 3 1 2 3 1 1
∣R(2)xS ∣ 0.21 0.29 0.22 0.20 0.34 0.30 0.05 0.04

Correction −0.0538 −0.0521 −0.0607 −0.0433 −0.0487 −0.0563 −0.0493 −0.0423

Errors for various orders
Order 2 −0.0002 −0.0312 −0.0327 −0.0175 −0.0292 −0.0332 −0.0240 −0.0206
Order 3 0.0027 0.0015 0.0004 0.0033 0.0017 0.00022 −0.0007 −0.0009
Order 4 −0.0064 −0.0001 0.0026 −0.0066 −0.0030 0.0045 −0.0009 −0.0014
Order 5 0.0027 0.0016 −0.0005 0.0022 0.0026 −0.0013 0.0011 0.0010

Order with error <0.004(0.001) 3(6) 3(4) 3(3) 3(6) 3(6) 3(3) 3(3) 3(3)

Convergent? Yes Yes Yes Yes Yes Yes Yes Yes

The first non-vanishing contribution, the CPS(D-2) correc-
tion, gives about 98% of the full doubles correction to the ground
state correlation energy, whereas the CPS(D-2) correction to the
excitation energy overestimates the full doubles correction and
gives between 150% and 200% of the full correction. The errors
of the CPS(D-2) excitation energies are thus typically in the inter-
val between −0.02 and −0.03 Hartree. The small reduction in the
second-order errors should not be considered as a flaw of the
CPS(D) method as the size of corrections to the excitation ener-
gies is much smaller than the corrections to the total energies of
the states, so a minor imbalance in the second-order calculation
for the ground and excited state energies can lead to these minor
reductions.

The third-order correction is the first correction that includes
the full interaction between excitations in the auxiliary space. The
inclusion of the third-order correction leads to a reduction in the
initial error by a factor that typically is in the range of 4-10 and
the size of most of the errors is below 0.004 Hartree. Whereas

the second-order excitation energies overestimate the doubles
correction to the excitation energies, the third-order corrections typ-
ically underestimate the corrections. For a few roots, the CPS(D-3)
energies are very accurate. For example, for the 23Σ state, the third-
order correction is within 0.3% of the full results. However, there
does not seem to be any correlation between the accuracy of the
third-order energy and the spin, symmetry, or root number of the
excited state.

The addition of the fourth-order corrections leads in general to
total corrections that are too large and that are not in better agree-
ment with the full corrections than the third-order results. When the
fifth-order corrections also are included, the size of the total correc-
tions is again reduced. By going from third to fifth order, the largest
errors in fifth order are thus reduced by about a factor of two. For
the excitation energies to a few states, including 33Σ and 23Π states,
there is only either a smaller decease or an increase in the deviation
when going from order three to five. However, all fifth-order errors
are smaller than 0.004 Hartree. To obtain a deviation of less than one
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milli-Hartree, it is typically required to go to order six and for a few
roots to order eight.

The low-order corrections to the ground and to the excited
states exhibit a difference: Whereas adding an even order to the
ground state energy leads to an improved accuracy, it is the addition
of odd order corrections that lead to improvements of the excitation
energies.

With respect to the diagnostic ∣R(2)xS ∣, its largest value, 0.36,
occurs for the slowly convergent 21Σ state, which also has the
largest third-order error, 0.007 Hartree. However, for the 33Π state,
the diagnostic has a value of 0.30 and the CPS(D) series is well-
convergent. For diagnostic values in the range 0.30–0.35, it is there-
fore not possible to directly link the size of the diagnostic with the
accuracy of the low-order results.

2. Calculations on HF at 1.5Re

We next consider the hydrogen fluoride molecule at the
stretched inter-nuclear distance of 1.5Re, for which the results for
the CPS(D) calculations on the ground and excited states are given
in Table II. The table uses the same template as Table I. With the
exceptions of the excitation energies to the 31Σ and 13Σ states, all
corrections to the excitation energies are negative. The sizes of the
doubles corrections to the excitation energies are, in general, in the
numerical range of 0.01-0.09 Hartree. With respect to the mapping
between the parent and target states, the parent states 31Σ, 23Σ,
and 33Σ are not mapped to the target states with the same posi-
tion in the energy spectrum, and the CPS(D) perturbation expansion
will therefore diverge for the excitation energies of these states. It
is furthermore seen from the table that the perturbation expansions

TABLE II. Convergence of the CPS(D) ground state and excitation energies for hydrogen fluoride at 1.5Re. Energies, corrections, and errors in a.u. See text for details.

State X1Σ 11Σ 21Σ 31Σ 13Σ 23Σ 33Σ

Parent energy −99.922689 0.3713 0.5247 0.6134 0.1514 0.5013 0.5262
Target energy −100.171773 0.3566 0.5066 0.6301 0.2041 0.4983 0.4714
Target root 0 1 2 5 1 3 2
∣R(2)xS ∣ . . . 0.09 0.19 0.54 0.05 0.31 0.36

Correction −0.249084 −0.0147 −0.0181 0.0167 0.0527 −0.0030 −0.0548

Errors for various orders

Order 2 0.0024 −0.0034 −0.0229 −0.0473 0.0017 −0.0290 −0.0300
Order 3 0.0069 0.0048 0.0068 −0.0239 −0.0010 0.0009 −0.0001
Order 4 −0.0022 −0.0022 −0.0054 −0.0496 −0.0007 −0.0086 −0.0029
Order 5 0.0018 0.0024 0.0043 −0.0239 −0.0003 −0.0014 0.0059

Error <0.004(0.001) at order 4(6) 4(6) 7(−) −(−) 2(3) 0(3) 3(3)

Convergent? Yes Yes No No Yes No No

State 11Π 21Π 13Π 23Π 11∆ 13∆

Parent exc. Energy 0.2303 0.5077 0.1946 0.5007 0.5661 0.5481
Target exc. Energy 0.1924 0.4212 0.1767 0.4187 0.4986 0.4881
Target root 1 2 1 2 1 1
∣R(2)xS ∣ . . . 0.13 0.44 0.12 0.59 0.18 0.16

Correction −0.0379 −0.0865 −0.0179 −0.0820 −0.0675 −0.0600

Errors for various orders

Order 2 −0.0068 −0.0756 −0.0075 −0.0671 −0.0444 −0.0389
Order 3 0.0033 0.0044 0.0023 0.0051 −0.0029 −0.0035
Order 4 −0.0062 −0.0041 −0.0055 −0.0163 −0.0037 −0.0045
Order 5 0.0027 0.0066 0.0020 0.0114 0.0038 0.0031

Error <0.004(0.001) at order 3(8) 8(13) 3(8) 10(−) 3(8) 3(7)

Convergent? Yes No Yes No Yes Yes
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for the second states of 1Σ, 3Σ, 1Π, and 3Π symmetry are divergent.
The second-order correction overshoots the total correction for all
states except the 11Σ state. When the third-order corrections are
included, the errors are about 10% for the Π and ∆-states, whereas
the errors are larger for a number of Σ states. A noticeably inac-
curate result is obtained for the 31Σ state, where the third-order
error of −0.0239 Hartree is larger than the zeroth-order error. How-
ever, it should be noted that the diagnostic for this state is 0.54,
which clearly shows that the zeroth-order excitation vector is not a
good approximation to the corresponding excitation vector in the
CCSD space. With the exception of the excitation energy to the
31Σ state, the third-order errors at the equilibrium and stretched
geometries are comparable. The fourth-order energies overshoot the
corrections to the excitation energies also for the stretched geom-
etry. The fifth-order corrections give errors that, in general, are
slightly larger than the corresponding corrections at the equilibrium
geometry.

With respect to the diagnostic |R(2)xS |, the 31Σ state has the above
mentioned value of 0.54, which leads to a very large third-order error
of −0.024 Hartree. However, for the 11∆ state, the |R(2)xS | diagnostic
is 0.59 and thus of similar size, but the third-order error of −0.0029
Hartree is small. It is thus not possible to link directly the accuracy
of the low-order corrections to the value of the diagnostic. How-
ever, the trend is clear: for increasing diagnostic values exceeding
0.3, larger errors become more frequent.

3. Calculations on CH2

For the CH2 molecule, the lowest closed shell determinant is
used as the reference state for the CC and CP calculations, so the
excitation energies to the ground state 1B1 will be negative. The CP
and CC results are given in Table III. With a few exceptions, the
corrections are negative and have typical values in the range of 0.01–
0.03 Hartree. Comparing first the energetic order of the parent and
target states, it is observed that these disagree for all 1A1 states and

TABLE III. Convergence of the CPS(D) ground state and excitation energies for CH2. Energies, corrections, and errors in a.u. See text for details.

State X1A1 11A1 21A1 31A1 11B1 21B1 11B2 21B2 11A2 21A2

Parent energy −38.884374 0.2616 0.3414 0.3883 0.0604 0.3303 0.3049 0.3703 0.2193 0.4979
Target energy −39.027619 0.2433 0.3277 0.3719 0.0637 0.3130 0.2899 0.3556 0.2105 0.4635
Target root 0 2 3 4 1 2 1 3 1 3
∣R(2)xS ∣ . . . 0.06 0.08 0.05 0.02 0.03 0.07 0.05 0.02 0.13

Correction −0.143245 −0.0183 −0.0137 −0.0164 0.0033 −0.0173 −0.0150 −0.0147 −0.0088 −0.0344

Errors for various orders
Order 2 0.0278 −0.0053 −0.0069 −0.0056 −0.0040 −0.0038 −0.0066 −0.0075 0.0015 0.0142
Order 3 0.0068 −0.0056 −0.0063 −0.0053 −0.0032 −0.0045 −0.0058 −0.0077 −0.0014 0.0103
Order 4 0.0025 −0.0033 −0.0037 −0.0024 −0.0022 −0.0017 −0.0030 −0.0049 −0.0015 0.0072
Order 5 0.0014 −0.0016 −0.0025 −0.0012 −0.0014 −0.0004 −0.0013 −0.0034 −0.0012 0.0050

Error <0.004(0.001) at order 5(6) 4(6) 4(−) 4(6) 2(6) 2(5) 4 (6) 5(−) 2(6) −(−)

Convergent? Yes No No No Yes Yes Yes No Yes No

State 13A1 23A1 33A1 13B1 23B1 33B1 13B2 23B2 13A2 23A2

Parent exc. Energy 0.2470 0.2987 0.3757 −0.0181 0.3227 0.4243 0.2911 0.3340 0.1720 0.4881
Target exc. Energy 0.2354 0.3018 0.3638 −0.0015 0.3090 0.4045 0.2822 0.3327 0.1769 0.4704
Target root 1 2 3 1 2 4 1 3 1 4
∣R(2)xS ∣ 0.12 0.12 0.17 0.02 0.04 0.08 0.25 0.23 0.02 0.13

Correction −0.0116 0.0031 −0.0119 0.0166 −0.0137 −0.0198 −0.0089 −0.0013 0.0049 −0.0177

Errors for various orders
Order 2 −0.0032 −0.0043 −0.0054 −0.0043 −0.0043 0.0194 −0.0020 −0.0053 0.0002 0.0034
Order 3 −0.0040 −0.0040 −0.0045 −0.0018 −0.0050 0.0149 −0.0013 −0.0057 −0.0007 0.0002
Order 4 −0.0032 −0.0026 −0.0022 −0.0012 −0.0025 0.0108 −0.0030 −0.0028 −0.0010 −0.0002
Order 5 −0.0018 −0.0014 −0.0010 −0.0008 −0.0011 0.0081 −0.0017 −0.0018 −0.0010 0.0003

Error <0.004(0.001) at order 3(6) 0(6) 4(5) 3(5) 6 . . . 2(6) 0(−) 2(3) 2(3)

Convergent? Yes Yes Yes? Yes Yes No Yes No Yes No
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the 21B2, 21A2, 33B1, 23B2, and 23A2 states. The CPS(D) perturba-
tion expansions will therefore diverge for these states, whereas the
expansions are convergent for all the remaining excitation energies.

From the table, it is first noted that the second-order energy
overshoots the correlation contributions for most of the excitation
energies by 20%-50%. There are a few states where the second-order
energies do not overestimate the full correction, but there does not
seem to be any relation between symmetry, spin and position of the
state and overshooting or undershooting of the full correction by the
second-order energy. The third-order energies provide, in general,
either no or very limited improvements of the energy. The errors of
the fifth-order energies are smaller and are, in general, reduced by at
least a factor of two compared to the second-order errors.

With respect to the stated thresholds, it is seen that second
to fourth order is required to obtain an accuracy of 0.004 Hartree,
whereas the corrections through sixth order typically are required
to obtain an error of at most 0.001 Hartree. For many of the diver-
gent expansions, these target accuracies are not obtained for any
order.

The above results may seem somewhat unfavorable for the
CPS(D) method, but it should be reiterated that the methylene
molecule with the chosen reference state has a very complicated set
of excited states, where many of the excited states are doubly excited
with respect to the chosen reference state. To describe such states,
a parent excitation space containing double excitations and a tar-
get excitation space containing triple excitations are needed. Note,
however, that these complications are not, in general, caught by
the diagnostic measure |R(2)xS |, as many of the divergent states have
diagnostics smaller than 0.1.

4. Calculations on F−

For our final CPS(D) example, the fluorine anion, data are
given in Table IV. We restrict ourselves to a single excitation for
each spin and symmetry combination, as the other excitations in the

aug-cc-pVDZ basis excite electrons from the 2s orbital and have
large excitation energies. The table shows that all energy corrections
are negative and in the range between −0.09 and −0.01 Hartree. The
energy ordering of the states is identical in the parent and target
spaces, and all expansions are convergent.

From the table, it is noted that the second order corrections
overestimate the size of the correction to the excitation energies by
a factor of about two, so the second-order excitation energies are, in
general, not more accurate than the zeroth-order excitation energies.
For the third- and higher-order corrections, the 11S state behaves
in a different manner than the remaining five states. For these
five states, the third-order correction results in significant reduc-
tions of the errors, leading to positive errors in the range between
0.0013 and 0.0039 Hartree, i.e., below our higher threshold. For these
states, the fourth- and fifth-order contributions do not give a general
improvement. For the 11S state, the third-order error is 0.03 Hartree,
which is reduced in fifth order by a factor of about ten, giving an
error of −0.0025 Hartree, corresponding to about 3% of the initial
error.

With respect to the considered thresholds, it is seen from the
table that up to order 16 is required to get the excitation energies
with an accuracy of 0.001 Hartree, whereas the third order results are
sufficient to obtain the excitation energies with an accuracy of 0.004
Hartree or better for all states except 11S. Thus, the perturbation
expansions for the excitation energies are slowly convergent. This
is not surprising as orders 8 and 23 are required to get the ground
state energy correct within 0.004 and 0.001 Hartree, respectively.

The diagnostic |R(2)xS | is at most 0.05 for all the considered
excitations, so it does not provide warnings about the slow conver-
gence of the expansions. Nor is the diagnostic capable of predict-
ing the very large errors in third order for the 11S state. However,
considering that the second and third order excitation energy cor-
rections, −0.2150 and 0.1538 Hartree, respectively, both are numer-
ically large compared to the excitation energy correction of −0.0900
Hartree, the third-order energy correction is not expected to give an

TABLE IV. Convergence of the CPS(D) ground state and excitation energies for F−. Energies, corrections, and errors in a.u. See text for details.

State X1S 11S 13S 11P 13P 11D 13D

Parent energy −99.428282 0.5711 0.3303 0.3950 0.3598 0.3894 0.3658
Target energy −99.662690 0.4801 0.3134 0.3465 0.3236 0.3548 0.3415
Target root 0 1 1 1 1 1 1
∣R(2)xS ∣ . . . 0.03 0.05 0.02 0.03 0.04 0.04

Correction −0.234408 −0.0910 −0.0169 −0.0485 −0.0362 −0.0346 −0.0243

Errors for various orders

Order 2 −0.0033 −0.1239 −0.0191 −0.0335 −0.0278 −0.0303 −0.0254
Order 3 0.0060 0.0299 0.0015 0.0039 0.0035 0.0024 0.0013
Order 4 −0.0043 0.0077 −0.0036 −0.0047 −0.0051 −0.0031 −0.0034
Order 5 0.0028 −0.0025 0.0023 0.0053 0.0044 0.0035 0.0029

Error <0.004(0.001) at order 8(23) 5(15) 3(8) 3(16) 3(14) 3(10) 3(9)

Convergent? Yes Yes Yes Yes Yes Yes Yes
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accurate excitation energy. From the first and second order
doubles correction to R(1)x , ∣R(1)xD ∣ = 0.496, ∣R(2)xD ∣ = 0.248, it is clear
that the 11S excitation is not single-replacement dominated and
that the third-order excitation energy for this state therefore cannot
be trusted. For comparison, for the excitation to the 13S state, the
norm of the lowest order doubles correction is ∣R(1)xD ∣ = 0.249 and
∣R(2)xD ∣ = 0.044.

B. Excitation energies from the CPSD(T) expansion
1. Calculations on HF at Re

The results of the CPSD(T) calculations for the ground and
excited state energies of hydrogen fluoride at the equilibrium geom-
etry are given in Table V. The triples corrections to the excitation
energies are positive and are in the range of 0.0028-0.0063 Hartree,
which is comparable to the size of the triples correction to the
ground state energy, −0.0043 Hartree. The ordering of the states
in the parent and target spaces is identical, and all perturbation
calculations are found to converge.

The second-order energy correction underestimates in most
cases the full triples corrections to the excitation energy and gives
typically between 85% and 95% of the full triples correlation. It is
noted that second order is sufficient to obtain errors of less than
0.001 Hartree for all excitation energies. The third-order corrections
reduce, in general, the size of the triples correction and lead there-
fore to slightly larger errors. The fourth order corrections increase
the size of the corrections and give rather accurate approximations
to the full triples correction—the largest errors are now 0.00010
Hartree, and 97% or more of the full triples corrections are recov-
ered at this order. The addition of the fifth-order contributions, in
general, does not lead to an improved accuracy. Whereas the odd-
order corrections lead to improvements of the ground state energy,
it is the even-order corrections that lead to the major improvements
in the excitation energies.

2. Calculations on HF at 1.5Re

We next consider the application of the CPSD(T) method to
the more demanding case of the hydrogen fluoride molecule at
the stretched bond length 1.5Re, for which the results are given in

TABLE V. Convergence of the CPSD(T) ground state and excitation energies for hydrogen fluoride at Re. Energies, corrections, and errors in a.u. See text for details.

State X1Σ 11Σ 21Σ 13Σ 23Σ 33Σ

Parent energy −100.259434 0.5321 0.5985 0.4936 0.5240 0.6429
Target energy −100.263767 0.5349 0.6014 0.4971 0.5303 0.6468
Target state 0 1 2 1 2 3

Correction −0.0043 0.0028 0.0029 0.0035 0.0063 0.0039

Errors for various orders

Order 2 0.00433 −0.00036 0.00065 −0.00094 −0.00086 −0.00046
Order 3 0.00034 −0.00042 −0.00043 −0.00059 −0.00092 −0.00054
Order 4 0.00029 −0.00003 0.00009 −0.00010 −0.00010 −0.00002
Order 5 0.00001 −0.00003 −0.00003 −0.00008 −0.00014 −0.00006
Error <0.004(0.001) at order 3(3) 0(2) 0(2) 0(2) 2(2) 0(2)

Convergent? Yes Yes Yes Yes Yes Yes

State 11Π 21Π 13Π 23Π 11∆ 13∆

Parent exc. Energy 0.3788 0.5171 0.3638 0.5095 0.5525 0.5417
Target exc. Energy 0.3823 0.5209 0.3679 0.5136 0.5572 0.5472
Target state 1 2 1 2 1 1

Correction 0.0035 0.0038 0.0041 0.0041 0.0047 0.0055

Errors for various orders

Order 2 −0.00026 −0.00022 −0.00044 −0.00020 −0.00039 −0.00058
Order 3 −0.00047 −0.00049 −0.00057 −0.00050 −0.00056 −0.00075
Order 4 −0.00005 −0.00003 −0.00005 −0.00001 −0.00005 −0.00005
Order 5 −0.00002 −0.00002 −0.00005 −0.00002 −0.00004 −0.00010
Error <0.004(0.001) at order 0(2) 0(2) 0(2) 2(2) 2(2) 2(2)

Convergent? Yes Yes Yes Yes Yes Yes
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Table VI. It is seen that the triples correction to the excitation ener-
gies is in the range from −0.006 to 0.005 Hartree and may thus
increase as well as decrease the total excitation energy.

From the table, it is seen that the second-order energies give
very inaccurate approximation to the full triples corrections. For
the excitation energies that have the largest triples corrections, the
second-order correction does improve the accuracy and all excita-
tion energies are within the 0.004 Hartree threshold at second order.
The third-order corrections give significant improvements of the
excitation energies, and the excitation energies are now within the
smaller threshold of 0.001 Hartree for all states except the 23Σ state.
The error of the latter state in third order is 0.00103 Hartree and
is thus only marginally larger than the threshold. At fifth order, the
largest errors are about 0.0004 Hartree, and more than 90% of the
triples correction to the excitation energies is recovered.

3. Calculations on CH2

The application of the CPSD(T) method to the methylene
molecule allows us to test the performance of this method for excited

parent states that are doubly excited with respect to the chosen ref-
erence state. The results are given in Table VII. In the entry in the
table that specifies the target state, a (D) has been added for the six
target states that are dominated by double excitations. The triples
correction to the reference state energy is −0.004 Hartree.

For excited states that are dominated by double excitations, the
contributions of the triples corrections to the excitation energy are
large, typically of the order of −0.06 Hartree, and are thus more than
an order of magnitude larger than the triples contribution to the
reference state energy. For single-replacement dominated excited
states, the triples contributions to the excitation energies are much
smaller and are in the range of −0.001–0.002 Hartree.

The large reductions in the excitation energies for the states
dominated by double excitations lead to several crossings in the
energy order when going from the parent to the target excitation
level. The states thus change position for the spin and point-group
symmetries of 1B2 and 3B2. For the spin and symmetry 1A1, the dou-
bly excited state is the lowest state already at the parent level, so
the reduction in this excitation energy does not lead to any change
of the energy ordering. The perturbation expansion is divergent for

TABLE VI. Convergence of the CPSD(T) ground state and excitation energies for hydrogen fluoride at 1.5Re. Energies, corrections, and errors in a.u. See text for details.

State X1Σ 11Σ 21Σ 13Σ 23Σ 33Σ

Parent energy −100.171773 0.3566 0.5065 0.2041 0.4714 0.4983
Target energy −100.178960 0.3505 0.5071 0.2078 0.4761 0.5014
Target state 0 1 2 1 2 3

Correction −0.007187 −0.0061 0.0006 0.0037 0.0047 0.0031

Errors for various orders

Order 2 0.0072 −0.00171 −0.00154 −0.00423 −0.00189 −0.00204
Order 3 0.0007 0.00033 −0.00015 −0.00078 −0.00103 −0.00076
Order 4 0.0007 0.00001 −0.00007 −0.00057 −0.00031 −0.00007
Order 5 0.0000 0.00008 0.00012 −0.00008 −0.00020 −0.00013
Error <0.004(0.001) at order 2(3) 2(3) 0(4) 0(3) 2(3) 0(3)

Convergent? Yes Yes Yes Yes Yes Yes

State 11Π 21Π 13Π 23Π 11∆ 13∆

Parent exc. Energy 0.1924 0.4212 0.1766 0.4187 0.4986 0.4881
Target exc. Energy 0.1882 0.4221 0.1746 0.4198 0.5007 0.4918
Target state 1 2 1 2 1 1

Correction −0.0042 0.0009 −0.0020 0.0011 0.0021 0.0037

Errors for various orders

Order 2 −0.00135 −0.00066 −0.00160 −0.00046 −0.00130 −0.00153
Order 3 0.00034 0.00021 0.00014 0.00024 −0.00021 −0.00069
Order 4 0.00002 −0.00034 0.00004 −0.00019 −0.00032 −0.00026
Order 5 0.00015 0.00038 0.00013 0.00037 0.00013 −0.00007
Error <0.004(0.001) at order 0(3) 0(0) 0(3) 0(0) 0(3) 0(3)

Convergent? Yes Yes Yes Yes Yes Yes
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a number of states in addition to those changing position in the
energy spectrum. In particular, the expansion is divergent for the
two lowest 1A1 states. We will return to an analysis of this divergence
after we have discussed the accuracy of the perturbation expansions
for the excitation energies.

Restricting the discussion to excitations dominated by dou-
ble replacements, the second-order corrections give about 70% of
the full correction for the four states that do not change position
in the energy spectrum, 11A1, 21A2, 33B1, and 23A2, whereas 50%-
60% of the full corrections is recovered for the two states that do
change position. Increasing the order toward five leads to system-
atic improvements for the four states that do not change position,
with the exception of the fifth-order correction for the 11A1 state.
Thus, at fifth order, the triple correction for the three states that do
not change position recovers the full triples correction within 0.0013
Hartree, whereas the errors are up to 0.05 Hartree for the states that
do change position.

With respect to the excitation energies to the single-excitation
dominated states, the smallness of the corrections makes the lower-
order corrections somewhat erratic. These excitation energies are
within 0.002 Hartree of the full correction already at zeroth order
for all such states except for the 11B2 and 13B2 states. The perturba-
tion expansions for the latter two states are diverging, and the errors
are within 0.004 Hartree at zeroth order but do not reach the lower
threshold of 0.001 Hartree at any order.

We will now return to the divergence of the two lowest 1A1
excited states. This divergence may be understood by observing that
the large reduction in the energy of the first excited A1 state, when
going from the parent to the target space, implies that the energy
of 11A1 will rise significantly for negative values of the perturbation
strength. By contrast, the excitation energy of the second excited
state is nearly constant when going from the parent to the target
space, which suggests that the excitation energy to this state is nearly
constant for negative values of the perturbation strength. To quan-
tify this, we assume that the excitation energies are simple linear
functions of the perturbation parameter z. This linear approxima-
tion has been shown to be accurate for standard Møller-Plesset ener-
gies.55,59 The parent excitation energies are obtained for z = 0, and
the target excitation energies are obtained for z = 1. From the data
in Table VII, we then obtain for the excitation energies as a function
of z,

ω(11A1) = 0.2219 − 0.0538z,

ω(21A1) = 0.2433 − 0.0002z,

ω(31A1) = 0.3276 − 0.0007z.

(106)

These linearized excitation energies are plotted in Fig. 1 for z ∈ [−1,
1]. It is seen that the lines for the two lowest excitation energies
cross around z = −0.4, whereas the third excitation energy is so
large that no crossing is observed for this excitation energy. The per-
turbation expansions of the excitation energies for the two lowest
excitations are thus divergent due to a degeneracy for negative per-
turbation strengths, much like the back-door intruders observed for
the standard Møller-Plesset perturbation expansion,55,59 whereas the
third excitation energy is predicted to converge. These predictions
are in agreement with the results of Table VII. The divergence of the
doubly excited states 1A2 and 3A2 is similarly explained by the cross-
ings, at negative perturbation strengths, of these states with singly

FIG. 1. Linearized excitation energies as functions of a real perturbation parameter
for the excitation energies to the lowest three 1A1 states of CH2.

excited states that have higher parent and target energies. These
higher lying states are not included in the table, but they have been
identified.

For the calculations of the methylene molecule, we conclude
that double excited states represent a challenge to the CPSD(T)
method: their large change in the excitation energy when going
from the parent to the target state may lead to front- as well as
back-door intruders. In the present calculations, the presence of
the front-door intruders for the excitations to states of symme-
try B2 impairs the accuracy of the low-order results, whereas the
back-door intruders do not impair the accuracy of the low-order
results.

4. Calculations on F−

The final test case for the the CPSD(T) method is the fluorine
anion, for which the results are given in Table VIII. From the table, it
is noted that the addition of triple excitations increases the excitation
energies by up to 0.005 Hartree for all states except the 11S state,
where the triples correction reduces the excitation energy by 0.01
Hartree. For comparison, the addition of triple excitations reduces
the reference energy by 0.006 Hartree. It is also noted that all states
keep their energy order when going from parent to target energies
and that all expansions are convergent.

The corrections to the 11P and 11D states are so small that
they are excluded from the following discussion. The second-order
corrections underestimate in most cases the full triples corrections
and recover 60%-100% of these. The third-order energies reduce
the errors of the most inaccurate second-order corrections, and the
errors are now 0.002 Hartree or less. When the fourth-order cor-
rections are included, one obtains significant improvements of the
excitation energies, whereas the fifth-order corrections improve the
accuracy for three of the excitations.

The total corrections from the triples excitations are so small
for two of the excitation energies that already the zeroth-order
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TABLE VIII. Convergence of the CPSD(T) ground state and excitation energies for F−. Energies, corrections, and errors in a.u. See text for details.

State X1S 11S 13S 11P 13P 11D 13D

Parent energy −99.662 690 0.4801 0.3134 0.3465 0.3236 0.3548 0.3415
Target energy −99.668 972 0.4699 0.3189 0.3468 0.3265 0.3557 0.3445
Target state 0 1 1 1 1 1 1

Correction −0.006282 −0.01014 0.00550 0.00029 0.00291 0.00091 0.00307

Errors for various orders

Order 2 0.00628 0.00403 −0.00118 0.00052 0.00003 −0.00029 −0.00057
Order 3 0.00025 0.00202 −0.00092 0.00020 −0.00040 0.00024 −0.00031
Order 4 0.00089 −0.00048 −0.00019 0.00002 0.00005 −0.00022 −0.00012
Order 5 −0.00017 0.00124 −0.00013 0.00018 0.00000 0.00029 0.00008
Error <0.004(0.001) at order 3(3) 2(6) 2(2) 0(0) 0(2) 0(0) 0(2)

Convergent? Yes Yes Yes Yes Yes Yes Yes

excitation energies are within the tighter error bound of 0.001
Hartree. For two of the remaining states, 13S and 13P, the tight error
bound is obtained at second order, whereas this accuracy is obtained
only at sixth order for the excitation energy to the 11S state.

C. The CPSDT(Q) method applied to the excitation
energies of methylene

In Subsection IV B 3, it was noted that the CPSD(T) expan-
sion of excitation energies for CH2 diverged for several states due to
the presence of states dominated by double excitations. It is of inter-
est to investigate whether the next level of CP methods, CPSDT(Q),
is sufficient to eliminate these divergence. For the A1 and B2 sym-
metries, where the presence of crossings led to divergence of the
lowest excited states, we have thus performed calculations using
the CPSDT(Q) method, and the relevant results are presented in
Table IX. It is noted that all states retain the energy position when
going from the parent to the target state and that all expansions
converge.

Reflecting the higher accuracy of the CPSDT(Q) method, the
thresholds in the table have been reduced to 0.00012 and 0.00048
Hartree. From the table, it is seen that the total quadruples correction
is up to 0.0026 Hartree for excitations to doubly excited states. For
excitations to singly excited states, the zeroth-order errors are within
the looser threshold, and within the tighter threshold, at second or
third order.

Restricting the discussion to the doubly excited states, it is seen
that the second-order corrections give between 60% and 70% of the
full corrections. As higher orders are added, the deviations decrease
monotonically. At fifth order, all errors are less than 0.00012 Hartree
and about 95% of the full quadruples corrections has been recovered.
With respect to the chosen thresholds, it is seen that the 0.00012
Hartree deviation is obtained for the 11A1 and 13B2 states at fifth
order, whereas this accuracy is obtained for the 11B2 state at fourth
order. The higher threshold of 0.00048 Hartree is obtained at second
or third order for the three doubly excited states.

D. Summary of numerical calculations
For a single determinant reference state, the excited states

may be divided into single and double replacement dominated
excitations. For a closed shell single determinant reference state, the
excitation energies of the CCSD response eigenvalue equation give
good and robust approximations for single replacement dominated
excitation energies. The CPS(D) excitation energy series that has the
CCSD excitation energies as target excitation energies may therefore
be used to obtain a good description of the single replacement dom-
inated excitations. Double replacement dominated excitations can-
not be described by the CPS(D) series as the CCSD target excitation
energies cannot properly describe double replacement excitations.
The description of double replacement excitations requires that par-
ent excitation space contains double excitations and that the target
excitation space contains at least triple excitations, and hence that
the CPSD(T) or a higher correlation model is used.

We have carried out calculations of excitation energies using
CP models for hydrogen fluoride at Re and 1.5Re, and for F−.
These systems have a closed shell single determinant reference
ground state. For HF at 1.5Re, the ground state has a minor multi-
configuration component. The lowest excitation energies for these
systems are single replacement dominated and the CPS(D) model
therefore can be used to obtain a good description of these exci-
tation energies. We have explicitly reported the CPS(D) excitation
energies through fifth order for these systems. The first order cor-
rections vanish and the second order model, which is identical to the
CIS(D) model, gives errors in the excitation energies in the range of
0.02-0.07 Hartree (0.54-1.90 eV). At third order, these errors are,
in general, reduced by a factor of 4–10. Two outliers have been
observed for the third order errors, the 31Σ state for hydrogen flu-
oride at 1.5Re that has an error of −0.024 Hartree (−0.653 eV), and
the 11S state for F− that has an error of 0.030 Hartree (0.816 eV).
For the 31Σ state of hydrogen fluoride, the |R(2)xS | diagnostic gives
a warning that this excitation is not single replacement dominated
and therefore cannot be trusted. For the 11S state of F−, it is the
size of the doubles component of the excitation eigenvector in the
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TABLE IX. Convergence of the CPSDT(Q) ground state and excitation energies for CH2. Energies, corrections, and errors in a.u. See text for details.

State X1A1 11A 21A 31A 11B2 21B2

Parent energy −39.031918 0.16809 0.24308 0.32686 0.28464 0.29229
Target energy −39.032130 0.16579 0.24328 0.32700 0.28335 0.29210
Target state 0 1(D) 2 3 1(D) 2

Correction −0.000212 −0.00230 0.00020 0.00014 −0.00129 −0.00019

Errors for various orders

Order 2 0.00021 0.00084 −0.00011 −0.00008 0.00042 −0.00004
Order 3 0.00009 0.00037 −0.00006 −0.00005 0.00020 −0.00008
Order 4 0.00003 0.00017 −0.00002 −0.00001 0.00009 −0.00003
Order 5 0.00001 0.00008 −0.00001 −0.00001 0.00003 −0.00001
Error <0.00048(0.00012) at order 1(3) 3(5) 0(2) 0(2) 2(4) 0(2)

Convergent? Yes Yes Yes Yes Yes Yes

State 13A 23A 33A 13B2 23B2 33B2

Parent energy 0.23561 0.30268 0.36334 0.23913 0.28411 0.33210
Target energy 0.23582 0.30284 0.36351 0.23649 0.28426 0.33224
Target state 1 2 3 1(D) 2 3

Correction 0.00021 0.00016 0.00017 −0.00264 0.00015 0.00014

Errors for various orders

Order 2 −0.00012 −0.00013 −0.00009 0.00086 −0.00010 −0.00011
Order 3 −0.00006 −0.00006 −0.00005 0.00036 −0.00006 −0.00005
Order 4 −0.00002 −0.00002 −0.00001 0.00016 −0.00002 −0.00002
Order 5 −0.00001 −0.00001 −0.00001 0.00007 −0.00001 −0.00001
Error <0.00048(0.00012) at order 0(3) 0(3) 0(3) 3(5) 0(2) 0(2)

Convergent? Yes Yes Yes Yes Yes Yes

two lowest orders, ∣R(1)xD ∣ = 0.496, ∣R(2)xD ∣ = 0.248, which is so large
that the third order excitation energy cannot be trusted. Excluding
the two outliers, the errors of the third order excitation energies
are all smaller than 0.0074 Hartree (0.2014 eV) and typical errors
are below 0.004 Hartree (0.109 eV). This is also the case for the
CPS(D) excitation energy series, which diverges for hydrogen fluo-
ride at 1.5Re. The third order errors for hydrogen fluoride at Re and
1.5Re are, in general, of comparable size. If we restrict the diagnostic
|R(2)xS | to be smaller than 0.3, the errors in the third order excita-
tion energies are, in general, smaller than 0.004 Hartree (0.109 eV).
The fourth order excitation energy correction does not improve
the results, and in fifth order, some improvements are obtained.
In Paper III,40 a larger series of benchmark calculations is carried
out of CPS(D-2) and CPS(D-3) excitation energies to investigate
whether the accuracy that is obtained here for the test systems can
generalized and the accuracy we have obtained for the CPS(D-2)
and CPS(D-3) calculations is also obtained in the benchmark
calculations.

For the CPSD(T) model, the lowest non vanishing second order
correction gives typically about 85%-95% of the triples corrections
for hydrogen fluoride at Re, whereas at 1.5Re, where the reference

state has a minor multi-configuration component, the third order
correction is required to obtain this accuracy. The third order exci-
tation energies all have an error that is smaller than 0.001 Hartree
(0.027 eV).

We have also carried out calculations of CP excitation energies
for CH2, for which the single determinant reference state is cho-
sen as a closed shell excited state and the ground state and many
of the excited states are doubly excited compared to the closed shell
reference state. The CH2 state excitation energy spectrum therefore
serves as a good test case for probing the accuracy obtainable with
CP models for double replacement dominant excitations. Triple
excitations are required in order to obtain a proper description of
a double replacement excitation. Thus, even though it looks like
the second order CPS(D) corrections in Table III give a reasonable
description of the excitation spectrum, this is actually not the case
because the target excitation energies are CCSD excitation energies
that cannot properly describe double replacement dominant exci-
tations. For the CPSD(T) model, we obtain a proper description of
the double replacement dominant excitations when the position of
the excitation is the same in the parent and target excitation space,
whereas for excitations that shift position the CPSD(T) series diverge
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lowering also the accuracy obtainable for the lower order correc-
tions. For these excitations, it is necessary to use the lower order
corrections of the CPSDT(Q) model in order to achieve a good
description of the excitation energies.

V. SUMMARY AND CONCLUSION
We have developed CP perturbation series for excitation energy

corrections in orders of the CC parent state similarity transformed
fluctuation potential, where the zeroth order term in the series is an
excitation energy for the CC parent state response eigenvalue equa-
tion and where the series converge to an excitation energy of the
CC target state response eigenvalue equation. CP perturbation series
have also been derived for the energies of the excited states.

In CP theory, we have introduced a new generalized order con-
cept in perturbation theory where internal relaxation in the par-
ent excitation space is treated fully at zeroth order and hence it is
removed from the perturbation calculation. For a CCS parent state,
the singles cluster amplitudes vanish and the perturbation opera-
tor therefore becomes the standard fluctuation potential. Internal
relaxation in the parent singles excitation space is not important
compared to the effect of introducing a doubles auxiliary excita-
tion space and CP and CCPT ground-state energy series therefore
show similar local convergence. However, CP series may be deter-
mined for excitation energies with similar local convergence as for
the ground-state energy series, whereas excitation energy series can-
not be determined using CCPT. We have presented calculations for
the CPS(D-n) model for excitation energies which show fast local
convergence also for cases with close lying excited states where the
CPS(D) excitation energy series diverge.

For a parent excitation space that contains a singles and dou-
bles excitation space, the internal relaxation in the parent excitation
space is large compared to the effect of introducing a triples exci-
tation auxiliary space and the local convergence of the CP ground
state energy series is greatly improved compared to CCPT ground-
state energy series. The CP excitation energy series exhibit similar
local convergence characteristic as for the CP ground state energy
series. We have presented calculations for excitation energies for the
CPSD(T-n) and CPSDT(Q-n) series which show a fast local conver-
gence for the lower order corrections. Furthermore, the excitation
energy series that are obtained for these excitation energy series are
far less plagued by divergences than the CPS(D) excitation energy
series.

CP excitation energy series may diverge for closely lying excited
states. However, an important feature is that while the CP exci-
tation energy series diverge, the divergence does not, in general,
substantially affect the fast convergence of the lower-order correc-
tion in the CP excitation energy series. Furthermore, the divergence
for closely lying excited states does not seem to affect substan-
tially the convergence of the residual part of the excitation energy
spectrum.

CP series may be determined for excitation energies and for
total energies of the excited states. The total energy corrections for
the excited states are size extensive and exhibit similar convergence
patterns as for the ground state energy series. It therefore becomes
interesting to examine potential energy surfaces that are obtained
using lower order CP excited state energy corrections especially con-
sidering that these corrections can be obtained at a fraction of the

cost required to calculate the excited state energies from full CC
target state Jacobian response eigenvalue equation.

In a forthcoming publication, we will examine the global con-
vergence of the excitation energy series for the CP models CPS(D),
CPSD(T), and CPSDT(Q). We will examine the asymptotic conver-
gence of the series that determines the convergence rate and the
convergence patterns of the higher order terms in the series. Pilot
calculations show that the asymptotic convergence of the CP excita-
tion energy series effectively becomes a two state problem at higher
orders.

Summarizing, we have developed an alternative way of solving
the CC response eigenvalue equation in Eq. (8), where perturbative
corrections to a CC parent state excitation energy targeting a CC
target state excitation energy are determined. The excitation energy
corrections are size-extensive at each order. In general, we only want
to determine CC target state excitation energies to a precision where
the excitation energy corrections are small compared to contribu-
tions that are not accounted for by the CC target state model. We
therefore, in practice, need only to determine excitation energy cor-
rections to low orders, thus reducing the computational effort for the
determination of CC target state excitation energies to a small frac-
tion of a conventional CC target state excitation energy calculation.
Considering the fast local convergence, we have observed for the CP
excitation energy series, it becomes computationally attractive to use
low-order corrections in the CP series to obtain excitation energies
of CC target state quality. In Paper III,40 we have described an effi-
cient implementation of the excitation energies for the CPS(D-n)
series through third order and have carried out a series of bench-
mark calculations that demonstrate that excitation energies of CCSD
quality are obtained with the CPS(D-3) model. The computational
scaling of the lower-order corrections in the CPS(D-n) series has also
been compared in Paper III,40 with the scaling of a standard CCSD
excitation energy calculation showing that a CPS(D-3) calculation
can be carried out at a small fraction of the cost of a conventional
CCSD excitation energy calculation. The efficient implementation
of CPS(D-3) excitation energies, presented in Paper III,40 has shown
that the CPS(D-3) excitation energies can be determined for system
sizes that are far beyond the ones that can be considered using a
conventional CCSD excitation energy implementation. The deriva-
tion and the numerical results of this paper suggest that a similar
behavior as for the CPS(D) series can be expected for efficient imple-
mentations of low order CP excitation energy corrections for CP
models where the parent state also contains excitations higher than
singles, e.g., the CPSD(T) series. We therefore expect that low-order
excitation energy corrections in CP series soon will become state-of-
the-art models for determining excitation energies of CP target state
quality.
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