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Abstract 

Sorghum (Sorghum bicolor) is known as a major feedstock for biofuel production. To improve 

its biomass yield through genetic research, manually measuring yield component traits (e.g. plant 

height, stem diameter, leaf angle, leaf area, leaf number, and panicle size) in the field is the 

current best practice. However, such laborious and time-consuming tasks have become a 

bottleneck limiting experiment scale and data acquisition frequency. This paper presents a high-

throughput field-based robotic phenotyping system which performed side-view stereo imaging 

for dense sorghum plants with a wide range of plant heights throughout the growing season. Our 

study demonstrated the suitability of stereo vision for field-based 3D plant phenotyping when 

recent advances in stereo matching algorithms were incorporated. A robust data processing 

pipeline was developed to quantify the variations or morphological traits in plant architecture, 

which included plot-based plant height, plot-based plant width, convex hull volume, plant 

surface area, and stem diameter (semi-automated). These image-derived measurements were 

highly repeatable and showed high correlations with the in-field manual measurements. 

Meanwhile, manually collecting the same traits required a large amount of manpower and time 



compared to the robotic system. The results demonstrated that the proposed system could be a 

promising tool for large-scale field-based high-throughput plant phenotyping of bioenergy crops.  
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1. INTRODUCTION 

Sorghum (Sorghum bicolor) is regarded as one of the most productive bioenergy crops in the US 

because of its drought tolerance and high biomass yield potential (Rooney, Blumenthal, Bean, & 

Mullet, 2007). Increasing biomass yield is a major objective for biomass sorghum breeding 

programs. However, breeding high-yield crop varieties is a difficult task because biomass yield 

is a complex trait that depends on many different yield component traits. It has been shown that 

plant architectural traits such as plant height (Salas Fernandez, Becraft, Yin, & Lübberstedt, 

2009), leaf area index (Olson et al., 2012), leaf angle (Truong, McCormick, Rooney, & Mullet, 

2015) are highly correlated with sorghum biomass yield. Unraveling the genetic control of such 

plant architectural traits at different growth stages can potentially accelerate plant breeding 

programs. The advances in high-throughput genotyping technologies have allowed for easy 

access to the massive plant genomic data. However, linking phenotypic traits to its underlying 

genes often requires accurately measuring the traits for many genotypes and replications. For 

instance, genome-wide association studies (GWAS) are routinely used nowadays to efficiently 

identify the genetic regions controlling multiple traits at the same time from a diverse population 

(Zhao, Mantilla Perez, Hu, & Salas Fernandez, 2016). However, the most commonly used 

practice to obtain the desired phenotypic data is in-field manual measurement. Such tasks are 



extremely laborious and time-consuming, considerably limiting experiment scale and data 

acquisition frequency. High-throughput field-based plant phenotyping aims at resolving this 

bottleneck. 

In the last decade, many automated high-throughput field-based phenotyping platforms have 

emerged. Several ground-based systems were designed to travel over short row crops and carry 

sensors such as RGB, depth or hyperspectral cameras, light curtains, and infrared radiometers 

(Andrade-Sanchez et al., 2014; Jiang et al., 2018; Ruckelshausen et al., 2009; Shafiekhani, 

Kadam, Fritschi, & DeSouza, 2017; Underwood, Wendel, Schofield, McMurray, & Kimber, 

2017). Plant population, canopy density, inter-row spacing, plant height, leaf area, light 

exposure, stem thickness, canopy temperature, and canopy reflectance were measured. Designing 

a high-clearance vehicle to characterize sorghum plant architecture is a challenging task because 

some varieties can grow up to 4 m. The Field Scanalyzer (LemnaTec, Aachen, Germany) is a 

stationary gantry system which can move a sensor platform from 3 m to 6 m above the ground 

(Virlet, Sabermanesh, Sadeghi-Tehran, & Hawkesford, 2017). The major limitations of this 

approach are the reduced field size, fixed location, and high cost. Unmanned aerial imaging 

systems have been developed for high-throughput field phenotyping (Chapman et al., 2014; Shi 

et al., 2016; Watanabe et al., 2017). Regarding plant architectural traits, plant height and leaf 

area index were extracted so far because top-view aerial imaging could only capture top-level 

visible canopy. Recently, two ground-based robotic systems were developed specifically for 

phenotyping bioenergy sorghum. One, named Robotanist, autonomously navigated in the 0.61 m 

row space between plots (Mueller-Sim, Jenkins, Abel, & Kantor, 2017). It had a 1.83 m vertical 

linear track to move a robotic manipulator for stem strength measurement, which was guided by 

a side-viewing stereo camera mounted next to the robotic gripper. The other system traveled 



inside the 1.8 m alley way between sub plots (Vijayarangan et al., 2018). Two foldable sensor 

booms could move vertically on a mast higher than 4 m while four sensorpods on the booms 

continuously captured the side-view images of plants with multiple cameras of different 

resolutions and wavelengths. 

Digital plant architecture phenotyping relies on the three-dimensional (3D) reconstruction of 

plants. Although different types of 3D sensing technologies have been investigated for plant 

phenotyping, very limited 3D sensors are suitable for in-field sorghum phenotyping. Time-of-

Flight cameras often do not perform well under direct sunlight, and they were mostly used for 

plant phenotyping in controlled environments (Chaivivatrakul, Tang, Dailey, & Nakarmi, 2014; 

Jiang, Li, & Paterson, 2016; J. Li & Tang, 2017). Line-scan LiDAR sensors can work outdoor, 

and were used for leaf area density estimation (Sanz, Rosell, Llorens, Gil, & Planas, 2013), 

individual tree identification (Underwood, Jagbrant, Nieto, & Sukkarieh, 2015), and tree trunk 

detection (Bargoti, Underwood, Nieto, & Sukkarieh, 2015). However, due to the low spatial 

resolutions, thin structures such as stems are difficult to reconstruct accurately with LiDAR 

sensors. Stereo vision has shown promising potentials in plant phenotyping applications. Active 

stereo vision with flash illumination was used to detect round fruits of textureless surfaces such 

as apple and grape under field conditions (Pothen & Nuske, 2016). The high-powered flash 

illumination combined with a fast shutter speed produced good image quality under sunlight. The 

same imaging system was adopted on the Robotanist (Mueller-Sim et al., 2017) for sorghum 

stem count and stem width estimation (Baweja, Parhar, Mirbod, & Nuske, 2018). In controlled 

environments, multi-view stereo can provide a detailed 3D reconstruction at a low cost (Lou, 

Liu, Han, & Doonan, 2014; Nguyen, Slaughter, Maloof, & Sinha, 2016). Structured-light pattern 

illumination was used to add texture on the textureless plant surfaces to facilitate stereo matching 



(Nguyen et al., 2016). The main limitation of multi-view stereo reconstruction is the long 

processing time. Recently, multi-view stereo with active illumination was also applied to 

reconstruct a side-view 3D point cloud of fully grown sorghum plants in the field (Sodhi, 

Vijayarangan, & Wettergreen, 2017). However, since the cameras were moved to scan the tall 

plants, wind could be a potential problem. Wind can cause large movements of plant canopies, 

especially for biomass sorghum with long and broad leaves. If the plants were moving during the 

scanning process, the 3D reconstruction integrity would be corrupted.  

This paper presents a high-throughput field-based phenotyping system for the characterization of 

plant architecture of dense canopy sorghum solely relying on stereo vision. Instead of multi-view 

stereo reconstruction using moving cameras, our solution was to image the potentially fast 

moving plants with multiple stereo cameras simultaneously and instantaneously (using a fast 

shutter speed). We demonstrate that the depth sensing capability of conventional passive stereo 

vision can be quite robust against field lighting conditions with the state-of-the-art stereo 

matching techniques. Furthermore, several valuable features were extracted from stereo 3D 

reconstruction to quantify some important plant architectural variations including plot-based 

plant height, plot-based plant width, convex hull volume, plant surface area, and stem diameter. 

These features demonstrate the advantages of the side-view imaging configuration for exposing 

plant architecture. The system was successfully used to collect and process image data for large-

scale field experiments multiple times throughout the growing season. Discussion is provided 

about the results and limitations regarding the image data acquisition system, the stereo 

reconstruction algorithms, and the extracted features, followed by potential solutions to each of 

the three aspects for future improvements. 



The objectives of this research project were to: (1) develop a field-based robotic ground vehicle 

to perform stereo imaging of side-view profile for biomass sorghum of various heights, (2) 

develop a robust 3D feature extraction pipeline to quantify variations in plant architecture, (3) 

analyze the repeatability of the extracted features and their correlations with the manual 

measurements, and (4) analyze the effects of different stereo matching algorithms on feature 

extraction results. 

The paper is organized as follows: The field-based robotic ground vehicle is described in Section 

2. Section 3 presents the data processing pipeline, including stereo reconstruction and feature 

extraction. In Section 4, the extracted features are analyzed with respect to the manually 

measured phenotypic traits, followed by a detailed time analysis. Section 5 provides discussions 

about the performance, the limitations, and the potential improvements for the data acquisition 

system, the stereo reconstruction algorithm, and the traits extraction, concluding in Section 6. 

2. THE AUTONOMOUS DATA ACQUISITION SYSTEM (PHENOBOT 1.0) 

A stereo image data acquisition system was designed for tall biomass crops, high-throughput 

data collection, and high-endurance operation. It was called Phenobot 1.0. This section starts 

with the field design and imaging scheme, followed by a detailed description of the components 

and capabilities of Phenobot 1.0. The data acquisition workflow and performance is presented at 

the end. 

2.1. Field Design and Imaging Scheme 

Field experiments were conducted during the summers of 2014 and 2016 at the Agricultural 

Engineering and Agronomy Research Farms of Iowa State University. In 2014, 589 diverse 

sorghum genetic lines were planted at two locations with two replications per location. The field 



design and imaging scheme are illustrated in Figure 1. Each genotype was planted in a three-

meter-long two-row plot with an average interplant spacing of 0.075 m. The row spacing within 

a plot was 1.5 m, while the row spacing between plots, where the robot navigated, was 2.2 m. 

Each side of a plot was imaged once per pass, with an imaged plot length of 1.5 m at the center 

of the plot. The wide row spacing was designed to prevent long leaves blocking the camera view. 

The effect of such wide row spacing is discussed in Section 5. In 2016, a subset of six sorghum 

lines representing the genetic diversity of the entire set were planted at one location with three 

repetitions for the ground-truth validation. The field design was the same as the one used for the 

entire set of diverse lines in 2014. 

 

Figure 1: Field design and imaging scheme in a bird’s-eye view. Each genotype is planted in a 

three-meter-long and two-row plot. The row spacing within a plot is 1.5 m, while the row 

spacing between plots is 2.2 m. The robot navigates between plots, and the imaging system has a 

horizontal field of view of 1.5 m. Two rows are imaged per pass. 

 

 



2.2. Phenobot Development and Construction 

The field-based stereo imaging robot consisted of four major components: a mobile platform, a 

navigation system, a stereo imaging system, and a central computer for data acquisition (Fig. 2). 

The mobile platform was a John Deere 1026R sub-compact utility tractor (John Deere, Moline, 

IL), which offered hours of continuous operation in the field. To realize autonomous navigation, 

the tractor was retrofitted with a Topcon 350 auto-guidance system (Topcon, Tokyo, Japan). Its 

AGI-4 receiver/steering controller (Topcon, Tokyo, Japan) integrated both a real-time kinematic 

global positioning system (RTK-GPS) and a steering controller. The tractor steering wheel was 

replaced by an AES-25 electric steering wheel (Topcon). A user can record a path during manual 

driving via the X30 console (Topcon). Afterwards, the auto-guidance system performed 

autonomous steering to follow the path. This integration resulted in an approximately 2-cm 

lateral tracking error at speeds below 1 m/s when following straight paths in the field. The 

vehicle travel speed was controlled by a linear actuator which was connected to the chassis and 

the forward speed pedal with two rotational joints. The cylinder position was set via RS-232 

serial communication. After plant emergence, the robot was manually driven through the crop 

rows while the paths were recorded for subsequent navigation during the remaining growing 

season. Since this robot was designed to image the center of each three-meter plot, the Universal 

Transverse Mercator (UTM) coordinates of the robot were recorded at every imaging location 

during the initial path recording. These UTM coordinates were converted from the GPS 

coordinates output by the auto-steering controller at 10 Hz, and used as a map for season-long 

use. Note that the mapping process was only done once per field. 

The stereo imaging system consisted of 12 Point Grey GRAS-20S4C-C 2-Megapixel color 

cameras daisy-chained on an IEEE-1394b bus. These cameras were mounted on a rotatable rig in 



front of the vehicle, and arranged in six side-viewing binocular stereo camera heads (Fig. 2 

right). Three of the stereo camera heads aimed to image the left-side crop row, and the other 

three, the right-side, allowing for imaging two rows in one pass. The set of stereo camera heads 

on the same side of the rotatable rig was placed at three height levels, to reduce occlusion caused 

by the long leaves growing towards the row space. All cameras imaging the same side were 

synchronously triggered using its FlyCapture software development kit. The 32-MB onboard 

image buffer provided temporary storage in case that the images were queued before they were 

saved in the central computer. An Edmund Optics 6-mm f/1.4 lens with a 62.1° angular field of 

view (FOV) was used along with a linear polarizing filter to suppress glare from the leaf and 

stem surfaces. Given the field design, the three-level stereo imaging configuration achieved a 

horizontal FOV of approximately 1.5 m (Fig. 1) and a vertical FOV of 2.7 m.  

  

Figure 2: Phenobot without a camera extension rig for early stage imaging (left). Phenobot with a 

camera extension rig for imaging tall plants (right). 

2.3. Data Acquisition 



The data acquisition software ran on a Getac B300 rugged laptop with an Intel Core i7-3520M 

processor clocked at 2.9 GHz. The program workflow is illustrated in Figure 3. During data 

acquisition, the main thread of the program monitored the distance between the robot and the 

next imaging location along the crop row direction. Once the robot reached the location, the 

cameras on the corresponding side were triggered, and proper file names with embedded crop 

row IDs and plot IDs were constructed and saved in a list. Two other worker threads kept polling 

the camera image buffers on the left side and the right side, respectively, fetched images and 

saved them with proper file names in two separate solid state drives (SSD). Phenobot 1.0 

achieved a maximum data collection speed of 0.67 m/s without camera image buffer overflow. 

Given the maximum travel speed and plot length, the average data throughput was 5 MB/s. 

 

Figure 3: The multi-threaded data acquisition workflow. The main thread monitors robot location 

relative to the next image location in the map, triggers the left or right side stereo cameras, and 

inserts a new file name in the file name list. The left-side images are retrieved and saved by the 



worker thread 1, while the right-side images are managed by the worker thread 2. The robot 

speed is set by a user and handled by the main thread. 

3. DATA PROCESSING  

3.1. Dense Two-View Stereo 3D Reconstruction for Field Crops 

Two-view stereo reconstruction is the process of transforming a stereo image pair into a 3D point 

cloud. It consists of three steps: (1) stereo camera calibration and rectification, (2) stereo 

matching, and (3) reprojection of the disparity map to a 3D point cloud. Step 1 and Step 3 are 

well-established procedures nowadays, but the second step has the biggest impact on 3D 

reconstruction quality, and remains an active research area in computer vision.  

Our camera calibration process is described as follows. Each camera was first calibrated to 

obtain its intrinsic parameters and distortion coefficients. Then, each stereo camera head was 

calibrated and rectified such that the two image planes were the same and all epipolar lines were 

parallel. Lastly, the relative pose (translation and rotation) between every two adjacent stereo 

camera heads on the same side was calibrated. The wide-angle lens ensured sufficient overlaps 

between the FOVs of the adjacent stereo camera heads at a close distance for the relative pose 

calibration. The goal was to use the stereo camera pose at the bottom level as the world 

coordinate system into which the reconstructed point clouds from the middle and top stereo 

cameras were transformed. The stereo camera calibration and rectification were performed with 

a checkerboard pattern using the OpenCV library (Bradski & Kaehler, 2000). 

Dense two-view stereo matching is the process of correspondence search for every pixel between 

the two stereo images, and relies on image texture. Field crops present several challenges for 

dense two-view stereo correspondence matching. First, field lighting conditions can change 



dramatically, which results in overexposed or underexposed images, diminishing image texture. 

Second, the nearly homogeneous color of leaf and stem surfaces can create large untextured 

regions in the images, adding more ambiguity to the stereo matching problem. Third, the dense 

canopy often causes heavy occlusion. The occluded pixels in the stereo images do not have 

correspondences. Fourth, the leaf and stem surfaces become non-Lambertian when the surface 

normal direction is close to being perpendicular to the image plane under strong sunlight, 

resulting in specular reflection and loss of image texture. Lastly, thin structures, such as stems, 

are often difficult to preserve in the stereo matching process.  

Here we briefly review how different aspects of stereo matching algorithms were improved to 

solve these challenges, and we provide the rationale of the stereo matching algorithm chosen for 

this application. Most stereo matching algorithms consist of the following steps: matching cost 

computation, cost aggregation, disparity computation (and optimization), and disparity 

refinement (Scharstein & Szeliski, 2002). In matching cost computation, a 3D cost volume is 

built where each layer has the same dimensions as the input image and stores the matching costs 

for every pixel at some discretized disparity level. The performances of various conventional 

matching costs were evaluated on images with radiometric differences (exposure, vignetting, 

varying lighting, and noise) (Hirschmüller & Scharstein, 2009). Census was found to give the 

best overall performance (Zabih & Woodfill, 1994). With the recent breakthrough in artificial 

intelligence, a convolutional neural network (CNN) known as MC-CNN was trained to compute 

the similarity between two small image patches (Zbontar & LeCun, 2016). The architecture was 

a siamese network, which started with two convolutional feature extractors for the stereo image 

patches, and then concatenated the feature vectors and compared them with several fully 

connected layers. Surprisingly, MC-CNN learned to compare features invariant to exposure and 



illumination differences. It was also insensitive to small stereo rectification errors, which are 

more present in high-resolution stereo images. Moreover, MC-CNN outperformed Census, 

especially on large untextured regions.  

The matching cost of a single pixel can be ambiguous. Matching costs are often aggregated over 

a support window to improve matching accuracy. However, the side effect is blurred depth 

discontinuity. To preserve edges, a bilateral filter was used as the weighting function within the 

support window (Yoon & Kweon, 2006). Later, the geodesic distance support weight was 

adopted to further improve the edge preserving performance (Hosni, Bleyer, Gelautz, & 

Rhemann, 2009). In case of overlapping leaves, the weights drop sharply once beyond the 

contour of the center leaf due to the image edge and geodesic connectivity constraint. The above 

support windows all assume a constant disparity value for the pixels inside them, which is only 

true for planes parallel to the image plane. For slanted planes, they lead to stair-casing artifact. 

PatchMatch Stereo (PMS) solved this problem with slanted support windows in which disparities 

at different positions were parameterized by three plane coefficients (Bleyer, Rhemann, & 

Rother, 2011). One limitation of the window-based methods is that the fixed window size does 

not handle large untextured regions well. Efficient non-local cost aggregation was achieved by 

traversing the minimum spanning tree (MST) built on the stereo image (Yang, 2012). The 

support weights around a pixel are approximations of the geodesic support weights. Because the 

support region becomes the entire image, this method greatly improves matching robustness over 

large untextured regions. Cost aggregation can be viewed as filtering of the 3D cost volume 

(Hosni, Rhemann, Bleyer, Rother, & Gelautz, 2013). 

To compute a disparity map, "winner-take-all" selects the disparity with the minimum matching 

cost for each pixel. However, advanced optimizations on cost volume have been studied to 



enforce spatial smoothness constraint. The state-of-the-art smoothness priors regularize piece-

wise affine planar surfaces (Olsson, Ulén, & Boykov, 2013; Ranftl, Bredies, & Pock, 2014). The 

optimization problem can be solved by graph cuts and variational methods at the expense of a 

high computational cost. Semi-Global Matching performs 1D scanline optimization in 16 

directions of the 2D image space and sum up all the costs to enforce the smoothness constraint 

(Hirschmüller, 2008). Due to its efficiency and robustness, it has gained popularity in real-world 

applications. 

For 3D reconstruction of in-field crops, the optimal stereo matching algorithm should be the one 

that can handle radiometric differences caused by field lighting conditions, reconstruct large 

untextured free-form surfaces, and preserve accurate depth discontinuity and thin structures. One 

of the top performing algorithms on Middlebury Stereo Evaluation 3.0 is 3DMST (Lincheng Li, 

Yu, Zhang, Zhao, & Zhang, 2017). This algorithm meets the above requirements by efficiently 

combining MC-CNN matching cost, PMS, and MST-based non-local edge-preserving support 

region filtering. Therefore, 3DMST was used as the main stereo matching algorithm in our study. 

Using our in-field sorghum dataset, a qualitative comparison between 3DMST and the 

OpenCV’s Semi-Global Block Matching (SGBM) is illustrated in Figure 4. SGBM is a more 

efficient variant of the original SGM, and serves as a good baseline for the evaluation of 

3DMST. The disparity maps and color-coded surface normal maps demonstrate 3DMST’s 

superior edge-preserving piece-wise smoothness property for densely populated sorghum plants. 



 

Figure 4: Qualitative comparison of 3D reconstruction quality between 3DMST and SGBM for 

in-field sorghum. The five images in each row correspond to an enhanced RGB image after 

histogram equalization, the disparity map of 3DMST, the colored-coded surface normal map of 

3DMST, the disparity map of SGBM, and the colored-coded surface normal map of SGBM. 

3DMST generates a more edge-preserving and piece-wise smooth surface reconstruction. 

3.2. Point Cloud Preprocessing 

The input 3D point cloud for feature extraction was the fusion of three point clouds from the 

three stereo camera heads on the same side of the rotatable rig. The processing pipeline was 

developed by utilizing the Point Cloud Library (PCL) (Rusu & Cousins, 2011). First, we defined 

our world coordinate system as follows: the X-axis was perpendicular to the ground plane 

pointing upwards, the Y-axis was parallel to the crop row, and the Z-axis was perpendicularly 

pointing towards the crop row. Due to the side-viewing angle, the crop rows beyond the 

foreground row were partially captured as well, and thus, background rows were removed by 



filtering the Z coordinates. The threshold was set to 2.0 m, which equaled the distance between 

the bottom stereo camera and the midpoint between the foreground row and the first background 

row along the Z-axis. The resultant 3D point cloud was downsampled with the VoxelGrid (Rusu, 

2010) filter of a voxel size of 1 cm, which served as an effective way to regularize point cloud 

density and speed up subsequent processing. A voxel can be viewed as a small cube. The point 

cloud was partitioned by a 3D voxel grid and all points in each voxel were replaced by their 

centroid. After this process, the point cloud only contained the foreground crop row and ground 

surface which was robustly identified by plane fitting with random sample consensus 

(RANSAC) (Fischler & Bolles, 1987). Because the ground plane was approximately 

perpendicular to the X-axis, the maximum deviation between the randomly sampled plane 

normal direction and the X-axis was limited to 20°. Any points within 3 cm away from the plane 

were considered as inliers. After the RANSAC plane fitting, the inliers of the ground surface 

were removed from the point cloud. Xground was computed as the average of the X coordinates of 

the ground inliers to serve as the reference for measuring plant height. Next, the 

StatisticalOutlierRemoval (Rusu, Marton, Blodow, Dolha, & Beetz, 2008) filter was applied to 

further remove sparse outliers. This filter computes the distance from each point to all its 

neighbors and removes points whose mean distance to its neighbors are outside the interval 

defined by the global mean distance and standard deviation. The number of neighbors to analyze 

for each point was set to 50, and the standard deviation multiplier to 1. Last, the Euclidean 

clusters were extracted using a tolerance of 5 cm, and the small clusters of less than 400 points 

were removed to correct for the presence of weeds and soil clumps that failed the ground inlier 

test. The outcomes of the preprocessing stage are Xground and the point cloud of the foreground 

crop row as illustrated in Figure 5. 



 

Figure 5: Workflow of the 3D point cloud preprocessing. The foreground crop row and ground 

surface were first extracted from the input point cloud. After the VoxelGrid downsampling, the 

ground plane was identified by random sample consensus (RANSAC). Sparse outliers and small 

clusters were then removed by the StatisticalOutlierRemoval filter and the EuclideanCluster 

filter, respectively. The preprocessing output is the point cloud of the foreground crop row and 

the ground height. 

3.3. Plot-based Plant Height and Plot-based Plant Width 

An axis-aligned bounding box (AABB) was extracted from the preprocessed point cloud. Each 

edge of an AABB is parallel to one of the axes of the world coordinate system. Therefore, an 

AABB was defined by two of its vertices, Pmin (Xmin, Ymin, Zmin) and Pmax (Xmax, Ymax, Zmax). Pmin 

was obtained by finding the minimum coordinate in each dimension of a 3D point cloud. 

Similarly, Pmax was constructed by the maximum coordinates. We defined plot-based plant 

height PPH = Xmax – Xmin and plot-based plant width PPW = Zmax – Zmin based on the world 

coordinate system described in previous sections.  



However, to obtain more accurate and robust measurements, it is necessary to refine (Xmax, Xmin, 

Zmax, Zmin). Firstly, Xmin is assigned to the value of Xground considering that plant height should be 

measured from ground plane. Second, Xmax is not robust against abnormal individuals which are 

much taller than average plants of a plot. Such phenomenon could be caused by the instability of 

a gene known to control sorghum plant height (Multani et al., 2003), by environmental variation 

affecting the germination rate within a plot, or by management practices such as unequal 

planting depth within a plot. Our solution was to partition the point cloud along crop row 

direction (Y-axis) into Nslice slices. In Slice i, let 𝑋"#$%  denote the maximum X value of all points 

and 𝑤% the associated weight equal to the ratio of number of points in Slice i to the total number 

of points. Weight wi effectively reduces the contribution of slices that contain empty space. The 

weighted median of 𝑋"#$%  was used as a robust reference of the top of a plot in case of abnormal 

plants. The weighted median was obtained by first sorting 𝑋"#$%  and then finding the first 𝑋"#$'  

satisfying 𝑤%'
%() ≥ 0.5. Then 𝑋"#$ of the AABB was refined by the weighted median value. 

The same weighted median approach was used to refine Zmax and Zmin. Note that the stereo 

cameras only captured one side of a crop row and thus, the extracted plant width represents half 

of the canopy depth along the Z-axis. Lastly, any point outside the refined AABB was removed. 

The only parameter used to estimate PPH and PPW is the number of volume slices, 𝑁/0%12. If 

Nslice equals one, the resultant PPH measures the maximum plant height, which may not be 

representative. The linear increase of Nslice reduces the thickness of each volume slice. In general, 

as the volume slice becomes thinner, the number of volume slices containing gaps between top 

canopies increases, resulting in a decrease in the estimated PPH (Fig. 6). 

 



 

Figure 6: Sample 3D point cloud (left) and plot-based plant height vs number of volume slices 

(right). Left: different colors represent different point clouds of the ground surface and the three 

sets of stereo cameras. 

The choice of a reasonable Nslice depends on plant growth stage and intra-row spacing. Before 

flowering, PPH is normally measured from ground to plant whorl. The top three or four leaves 

are frequently above the whorl. A large Nslice would help reduce the difference between actual 

plant height and our estimated PPH. After flowering, this potential inaccuracy does not need to 

be overcome since the exserted panicle appears above the leaves and its clearly exposed tip is 

used to estimate plant height. If Nslice is chosen so that only one plant is in each volume slice, our 

method would measure the exact PPH of each plant. However, choosing different Nslice values 

during the growing season is difficult because sorghum genotypes vary in flowering time. 

Therefore, a fixed Nslice was used to process the data at all growth stages. The ratio of plot length 

in the FOV to average inter-plant spacing was a reasonable reference. Hence, the number of 

volume slices was calculated as   

𝑁/0%12 =
4056	829:6;	%9	<=>	

?@2A#:2	B962ACD0#96	ED#1%9:
,         (1) 



where  denotes a ceiling function. Given that the imaged plot length was approximately 1.5 

m and the average interplant spacing was 0.075 m, Nslice = 20 was used for our dataset. Figure 7 

and Figure 8 demonstrate the PPH and PPW estimations visualized by the height and width of 

the bounding box for a short genotype and a tall genotype, respectively. The algorithm visits 

each point once for volume slicing and once for searching height/width in each volume slice. 

Weighted median computation is linear to Nslice. Since Nslice is significantly less than the point 

cloud size, the runtime is still linear to the point cloud size. 

 

Figure 7: Plot-based plant height and plot-based plant width estimations for a short genotype. (a) 

The RGB image from the bottom stereo camera after histogram equalization for enhancement of 

the underexposed regions. (b) Front view of the 3D point cloud and bounding box. (c) Side view 

of the 3D point cloud and bounding box. Different colors of the point cloud represent the ground 



surfaces (grey) and plant surfaces observed by the bottom (red) and middle (orange) stereo 

camera heads. 

 

Figure 8: Plot-based plant height and plot-based plant width estimations for a tall genotype. (a), 

(b), and (c) are the enhanced RGB images from the bottom, middle, and top stereo camera heads, 

respectively. (d) Front view of the 3D point cloud and bounding box. (e) Side view of the 3D 

point cloud and bounding box. Different colors of the point cloud represent the ground surfaces 

(grey) and plant surfaces observed by the bottom (red), middle (orange), and top (yellow) stereo 

camera heads. 



3.4. Convex Hull Volume and Plant Surface Area 

Convex hull has been used to quantify canopy volume (Azzari, Goulden, & Rusu, 2013). Given a 

set of 3D points, the convex hull is the smallest convex set that contains all points. For any two 

points in a convex hull, the line segment connecting them must be in the convex hull. PCL relies 

on Qhull (Barber, Dobkin, & Huhdanpaa, 1996) to compute convex hull. Directly applying Qhull 

to the point cloud would not be accurate due to possible empty spaces in the plot. Therefore, the 

same slicing strategy was applied to identify slices that contained no plant. A convex hull was 

constructed for the points in each slice of the previously described bounding box. The volume 

ratio of the convex hull to its containing slice indicated the vegetation occupancy of the slice. If 

the ratio was lower than a threshold a, the convex hull was marked as invalid. We defined 

convex hull volume (CHV) as the sum of volumes from the valid convex hulls 

𝐶𝐻𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒@#0%N	1ℎO00
PQ

P() ,    (2) 

where M denotes the number of valid convex hulls. CHV requires two parameters, Nslice and 

minimum volume ratio a. The same Nslice in PPH and PPW estimation was used for CHV. Based 

on our dataset, we chose a heuristic value 0.3 for the minimum volume ratio a, which means that 

a valid volume slice should contain a set of points whose convex hull volume is larger than 30 

percent of the slice volume. Figure 9 shows the valid convex hulls extracted from the short 

genotype and the tall genotype used in the previous section. The empty space in the point cloud 

was successfully detected with no convex hulls visualized in the corresponding volume slices. 

The empty space was caused by insufficient data points to form a plant shape. 



 

Figure 9: Valid convex hulls for (a) the short genotype in Figure 7 and (b) the tall genotype in 

Figure 8. Grey points represent ground surfaces, while other color points are either outside the 

bounding box or not enclosed by a valid convex hull.  

To quantify plant surface area, the point cloud needs to be converted to a surface presentation. 

Triangle mesh is widely used for its simplicity and efficiency. PCL provides the 

GreedyProjectionTriangulation (Marton, Rusu, & Beetz, 2009) algorithm for fast surface 

reconstruction. MovingLeastSquares (Rusu & Cousins, 2011) was applied beforehand to smooth 

noisy surfaces, especially the overlapping surfaces captured by two adjacent stereo camera 

heads. This step improved the result of GreedyProjectionTriangulation. Given the three vertices 

(p1, p2, p3) of a triangle, the triangle area (TA) was computed as 

𝑇𝐴 = (𝒑VC𝒑W)×(𝒑ZC𝒑W)
[

.     (3) 

The plant surface area (PSA) was approximated by the sum of areas of all triangles in the mesh 

𝑃𝑆𝐴 = 𝑇𝐴0=
0() ,     (4) 



where O denotes the number of triangles in the mesh. The PSA includes the surface area of 

leaves, stems, and panicles. Figure 10 shows the reconstructed triangle mesh for the short 

genotype and the tall genotype. 

 

Figure 10: Triangle meshes for (a) the short genotype in Figure 7 and (b) the tall genotype in 

Figure 8. Surfaces outside the bounding box are discarded. 

3.5. User-Interactive Stem Diameter Extraction 

Extraction of sorghum stem diameter (SD) from the side-view images is a challenging task. First, 

sorghum has the ability to tiller. It is necessary to differentiate the stem of a plant from those of 

its tillers because tillers often have smaller SDs. Second, SDs should be measured at the same 

height above ground to provide comparable data. Third, the contour of the cross section of a 

sorghum stem (including the leaf sheaths) is best described as an ellipse. The difference between 

the maximum diameter and the minimum diameter could be large and the orientation of the plant 

should not be ignored. It is worth pointing out that the automated stem width estimation methods 

developed recently have shown promising accuracy (Baweja et al., 2018; Vijayarangan et al., 

2018). However, currently they cannot differentiate the main plant from its tillers, which could 



result in unwanted effects on the subsequent GWAS. Considering the above factors, we resorted 

to human decision to select which stem segment should be measured. A user interface was 

developed to facilitate the process in which a user is first shown three RGB images, as in Figure 

6. Subsequently, the user must zoom in on a stem segment by clicking on it, and select four 

reference points to obtain the estimated SD (Fig. 11).  

 

Figure 11: Four reference points on the stem edges chosen by the user. 

The four points can be picked in any order as long as they form a convex quadrangle. Then, they 

are sorted such that (q1, q2, q3, q4) correspond to the top left corner, bottom left corner, top right 

corner, and bottom right corner in the image coordinate system (Fig. 12).  

 

Figure 12: Sorted reference points and stem diameter estimation in the image coordinate system. 

Let q12 denote the midpoint between q1 and q2, and q34 the midpoint between q3 and q4. The 

distance from q12 to the line passing through q3 and q4 was computed as  



𝑑)[ =
(𝒒ZC𝒒`)×(𝒒`C𝒒WV)

𝒒ZC𝒒`
.     (5) 

Similarly, the distance from q34 to the line passing through q1 and q2 was 

𝑑ab =
(𝒒WC𝒒V)×(𝒒𝟐C𝒒Z`)

𝒒WC𝒒V
.     (6) 

The SD in the image coordinate system was estimated by 

𝑑 = NWVdNZ`
[

.      (7) 

The SD in metric unit (for instance, millimeter) was calculated as 

𝐷 = fN
Nghijkl

,      (8) 

where b denotes the stereo camera baseline, and 𝑑/;#A2N is the shared disparity of (q1, q2, q3, q4) 

(assuming the disparities are equal at the four points). The shared disparity 𝑑/;#A2N was 

calculated by matching the image patch containing the stem segment in the reference (left) image 

of a stereo image pair to its correspondence in the target (right) image. Because the stem segment 

was relatively small compared to the full image size and there was not enough resolution to 

reconstruct the curved surface on the stem segment, it was reasonable to assume that q1, q2, q3, 

and q4 were on the same plane parallel to the image plane. In other words, the depth values of all 

four reference points to the stereo camera were assumed to be equal. The stem segment patch 

matching score was evaluated using Normalized Cross-Correlation for its well-known robustness 

against radiometric differences in real-world images (Hirschmüller & Scharstein, 2007). The 

desired shared disparity was the one of the maximum matching score among all possible values. 

 



3.6. Validation of the Image-Derived Features 

A correlation analysis was performed between the in-field manual measurements and the image-

derived features to identify highly correlated variables. This correlation would also provide 

valuable information to select image-derived features as proxies for biologically important traits 

that are targeted in genomic-based research. Repeatability of each image-derived feature was 

tested as well. Moreover, both 3DMST and SGBM were used to generate 3D point cloud data for 

feature extraction. The effect of the two stereo matching algorithms on the image-derived 

features were assessed.  

The 18 plots (six genotypes and three replications) in 2016 were both imaged and manually 

measured twice during the growing season. The first measurement was 37 days after planting 

(DAP), while the second one was completed in two days, 98 and 99 DAP. We refer to the first 

date as the early stage and the second as the mature stage. Three sets of stereo images were 

collected at different positions along each plot. This was done by adding two additional imaging 

locations for each plot in the GPS-tagged imaging location map. One was 0.75 m before the 

center imaging location, and the other 0.75 m ahead. These images were used for the extraction 

of: i) PPH; ii) PPW; iii) CHV; and iv) PSA. The averaged results over the three positions for 

each plot were used for the correlation analysis. 

The manually measured traits were collected on a single representative plant in each plot selected 

by trained plant breeders, and included the following: i) panicle apex height (PAH); ii) SD for 

every other internode; iii) leaf angle (LAN), leaf length (LL), leaf width (LW), leaf area (LAR), 

and leaf collar height (LCH) for each individual leaf; iv) leaf apex position (LAP) and leaf tip 

position (LTP) (or the 2D coordinates of the leaf apex and the leaf tip relative to the plant base 



assuming the plant grows in a plane); and v) panicle length (PL) and panicle diameter (PD). 

Figure 13 illustrates the manually collected measurements on a sorghum plant, and Table 1 

summarizes the available data for validating the automated image-derived features. 

 

Figure 13: Illustration of the manually collected measurements on a sorghum plant. The plant is 

assumed to have a vertical stem. The 2D coordinates of each leaf collar, leaf apex, and leaf tip 

are measured with respect to the plant base. 

Table 1. Summary of the available data for validating the automated image-derived features. 

 Phenobot In-field 

Measurements per season 2 2 

Measurements per plot 3 1 

Total measurements 6 2 



Features 
PPH, PPW, CHV, 

PSA 

PAH, SD, LAN, LL, 

LW, LAR, LCH, 

LAP, LTP, PL, PD 

Note. CHV: convex hull volume; LAN: leaf angle; LAP: leaf apex position; LAR: leaf area; 

LCH: leaf collar height; LL: leaf length; LTP: leaf tip position; LW: leaf width; PAH: panicle 

apex height; PD: panicle diameter; PL: panicle length; PPH: plot-based plant height; PPW: plot-

based plant width; PSA: plant surface area; SD: stem diameter. 

The height and width measurements were done in situ by using a measuring stick, and leaf angle 

using a protractor. Then the plants were taken to a lab at the farm. Each leaf was cut off from the 

plant at the collar, and the LL was measured from leaf base to leaf tip with a string closely 

following the midrib. Leaf area was scanned by a leaf area meter. After removal of the leaf 

sheaths from the stem, the length of each internode and the SD of every other internode were 

obtained using a tape measure and a caliper, respectively. Stem surface area was approximated 

by the sum of the cylinder surface area of each internode. Similarly, panicle surface area was 

calculated as the surface area of the cylinder parameterized by the PL and diameter at its widest 

point. Hence, the manually measured plant surface area equaled the sum of surface area of 

leaves, stem, and panicle. Given the 2D coordinates of the leaf apexes and PAH (assuming the 

stem was vertical) mentioned above, the 2D bounding shape of a representative plant was 

approximated as the 2D convex hull of those coordinates (Fig. 13) using the Qhull algorithm. 

The 3D CHV was calculated as the product of the 2D convex hull area and the average interplant 

spacing. Since the length of a plot in the image was approximately constant, the image-derived 

CHV was expected to correlate well with the convex hull volume of the presentative plant. 



The user-interactive SD was assessed using an earlier dataset. The SDs of a subset of 20 

genotypes were measured using a caliper in two field locations during the summer in 2014 at two 

different time points: 63-75 DAP and 83-87 DAP. A total of 80 in-field measurements were 

acquired. The measured stalk segments were marked with red ribbons so they could be identified 

in the images. Because the cross section of a sorghum stem (with leaf sheaths) is not circular, the 

in-field caliper measurements were performed along the row direction as the camera would 

capture. The image-derived SD data were obtained four times from each stem, with the user-

interactive approach described above. 

To evaluate repeatability of the image-derived features, standard deviation (STD) and coefficient 

of variation (CV) are reported based on the deviation between each image-derived feature 

measurement and the average value for its plot, since the true value is unknown. The STD is the 

standard deviation of all measurement deviations. The CV is calculated by dividing the STD of 

the deviations by the mean for each plot and then taking the mean of these values over all plots 

(Underwood et al., 2017): 

𝐶𝑉 = 𝑚𝑒𝑎𝑛%
Eopq N@qr	
"2#9q(N@qr)

×100%,     (9) 

where the subscript i is the plot ID, the subscript j is the measurement ID, dvji is the measurement 

deviation j of an image-derived feature (e.g., PPH, PPW, CHV, PSA, or SD) for plot i. 

4. RESULTS 

This section includes correlation and repeatability analyses of the image-derived features. 

Additionally, a detailed time analysis of the data processing pipeline is presented, followed by a 

time comparison between the human labor and the robotic solution. 



4.1. Plot-based Plant Height and Plot-based Plant Width 

Before flowering, measuring plant height is an ambiguous task due to the lack of a reliable 

reference as the top of a plant. Thus, both the maximum canopy height and leaf collar height of 

the last fully expanded leaf were analyzed for the early stage. The correlation between the image-

derived PPH and the manually collected plant height was moderate at the early stage (Fig. 14 left 

and middle). In contrast, the PPH and the panicle apex height had a very strong linear 

relationship at the mature stage with either stereo matching algorithm (R3DMST = 0.97, RSGBM = 

0.98) (Fig. 14 right). Note that the datasets of both growth stages were not combined for further 

assessment because different traits were manually measured. To assess repeatability, the PPH 

data from both stages were combined. The STD and CV were 0.05 m and 4.7%, respectively 

when using 3DMST, while SGBM resulted in similar repeatability with STD = 0.04 m and CV = 

3.8%. 

 

Figure 14: Correlation analysis of the image-derived plot-based plant height (PPH) with two 

stereo matching algorithms (3DMST and SGBM). Left: the manually measured max canopy 

height vs. the PPH at the early stage. Middle: the manually measured highest leaf collar height 



vs. the PPH at the early stage. Right: the manually measured panicle apex height vs the PPH at 

the mature stage. There are 18 samples including six genotypes and three replications. 

At the early stage, the image-derived PPW was not correlated with the average leaf length with 

the p-values larger than 0.05 (Fig. 15 left). At the mature stage, the PPW was moderately 

correlated with the average leaf length (Fig. 15 middle). However, if the datasets of both growth 

stages were combined, the PPW achieved a very strong correlation with the average leaf length 

(Fig. 15 right). The STD and CV were 0.03 m and 8.6% for 3DMST, and 0.04 m and 9.8% for 

SGBM. Both 3DMST and SGBM performed closely on this feature. 

 

Figure 15: Correlation analysis of the image-derived plot-based plant width (PPW) with two 

stereo matching algorithms (3DMST and SGBM). The PPW is compared with the manually 

measured average leaf length. Left: the early stage. Middle: the mature stage. Right: the early 

and mature stages combined. There are 18 samples including six genotypes and three 

replications. 

4.2. Convex Hull Volume and Plant Surface Area 

At the early stage, there was no correlation between the image-derived CHV and the manually 

obtained convex hull volume of the single representative plant (Fig. 16 top left) at the 5% 



significance level. However, the correlation was moderate at the mature stage (Fig. 16 top 

middle), and became very strong when both growth stages were combined (Fig. 16 top right). 

The STDs were both 0.03 m3 for the two methods, but the CVs were quite different with 17.8% 

for 3DMST and 10.7% for SGBM. The reason was that using SGBM resulted in much higher 

CHVs than using 3DMST did, which caused much lower CVs for SGBM with similar within-

plot STDs to 3DMST. The higher CHV using SGBM was probably due to its noisier 3D 

reconstruction which expanded the envelop of the point cloud. Alternatively, the product of the 

PPH and the PPW achieved a slightly higher correlation with the manually obtained 2D convex 

hull area than the CHV did with the manually obtained convex hull volume (Fig. 16 bottom 

row). 

 



Figure 16: Correlation analyses of the image-derived convex hull volume (CHV) and the product 

of the plot-based plant height (PPH) and the plot-based plant width (PPW) with two stereo 

matching algorithms (3DMST and SGBM). Top row: the manually measured convex hull 

volume of the single representative plant vs. the image-derived CHV. Bottom row: the manually 

measured 2D convex hull area of the single representative plant vs. the product of the PPH and 

the PPW. There are 18 samples including six genotypes and three replications. 

At the early stage, the image-derived PSA was not correlated with the manually measured 

surface area of the single representative plant. However, at the mature stage, a very strong linear 

relationship (R3DMST = 0.82) was found when 3DMST was used for 3D reconstruction, much 

higher than that obtained with SGBM (RSGBM = 0.66) (Fig. 17 top row). Regarding repeatability, 

the STD and CV were 0.08 m2 and 8.7% for 3DMST while larger values were obtained for 

SGBM (STD = 0.11 m2 and CV = 9.1%). The results suggested that 3DMST improved the 

accuracy of PSA estimation. As illustrated in Figure 4, large variations were observed in the 

surface normal maps generated by SGBM, which was the most likely reason behind the overall 

higher PSA and lower repeatability associated with SGBM. When both growth stages were 

combined, the image-derived PSA had a very strong correlation with the manual measured one 

for both 3DMST and SGBM. Additionally, there was no correlation between the convex hull 

surface area and the single plant surface area at the 5% significance level except when both 

growth stages were combined (Fig. 17 bottom row). 



 

Figure 17: Correlation analyses of the image-derived plant surface area (PSA) and the convex 

hull surface area with two stereo matching algorithms (3DMST and SGBM). Top row: the 

manually measured surface area of the single representative plant vs. the image-derived PSA. 

Bottom row: the manually measured surface area of the single representative plant vs. the image-

derived convex hull surface area. There are 18 samples including six genotypes and three 

replications. 

4.3. Stem Diameter 

The image-derived SD had a very strong correlation with the manually measured SD (R = 0.96) 

(Fig. 18), even though the image-derived approach produced larger values than the caliper 

measurements, as demonstrated by the intercept of the fitted line (2.8 mm). One possible 

explanation is that the caliper could be pressed against the soft leaf sheaths around the stem, 



resulting in smaller values. The user-interactive approach was also highly repeatable with a 

STD of 0.70 mm and a CV of 3.8%. In comparison with the current automated methods, the 

user-interactive method demonstrated higher accuracy. The StalkNet achieved a mean absolute 

error (MAE) of 2.76 mm (Baweja et al., 2018), while the user-interactive method achieved a 

MAE of 1.64 mm. If the range of the ground truth SDs was considered, the MAE of the 

StalkNet equaled 29.05% of their ground truth SD range (minimum = 8.00 mm, maximum = 

17.50 mm). However, the MAE of the user-interactive method equaled 7.07% of our ground 

truth SD range (minimum = 8.47 mm, maximum = 31.67 mm). Vijayarangan et al. (2018) 

reported a normalized root mean squared error of 25.15% for their automated SD estimation 

method, while the same measure for the user-interactive method was 8.65%.  

 

Figure 18: Correlation analysis of the user-interactive image-derived stem diameter (SD). There 

are 80 samples (20 genotypes ´ 2 locations ´ 2 time points). The image-derived SD values 

showed a strong positive correlation with the manually measured SD. 

4.4. Time Analysis 



The stereo image data were processed on a desktop workstation with a 3.5 GHz Xeon HexaCore 

CPU, 16 GB RAM, and a NVIDIA GTX Titan X GPU (Maxwell). The stereo images were 

downscaled to the resolution of 812´612. The average stereo matching time for 3DMST was 30 

s per stereo pair, while it was 0.4 s for SGBM. 3DMST was 75 times slower than SGBM in our 

application. The time analysis of the data processing pipeline is presented in Table 2. Due to the 

long runtime of 3DMST, the processing pipeline was dominated by the stereo matching stage, 

which was not the case for SGBM occupying only 17% of the total processing time. In the point 

cloud processing (Stage 2-5 in Table 2), the most time-consuming stage was the PSA extraction 

mostly due to the expensive GreedyProjectionTriangulation. The total processing time increased 

approximately linear to plant height as expected. 

Table 2. Time analysis of the data processing pipeline. 

 Plant Height 

Processing 

Stage 

 

 

1.1 m 1.8 m 2.7 m 

1. Stereo matching 

(3DMST/SGBM) 
30.214/0.407 60.405/0.815 90.643/1.225 

2. Preprocessing 0.689 1.055 1.333 

3. PPH and PPW 0.002 0.004 0.007 

4. CHV 0.021 0.036 0.050 

5. PSA 1.168 3.001 4.062 

Stage 2-5 1.880 4.096 5.452 

Total 32.094/2.287 64.501/4.911 96.095/6.675 



Note. CHV: convex hull volume; PPH: plot-based plant height; PPW: plot-based plant width; 

PSA: plant surface area; SGBM: semi-global block matching. The results were obtained by 

processing a tall genotype at different plant heights. The time unit is in seconds. 

Regarding human labor, there were eight to ten people taking in-field manual measurements in 

the 2016 validation trial. At the early stage, it took a full day to measure the traits for the 18 

plots, and the estimated man-hours were approximately 32. However, at the mature stage, the 

man-hours doubled to 64 since the plants grew taller with more leaves and internodes to 

measure. Whereas, the Phenobot took approximately 3 min to collect the stereo images for the 18 

plots, which was determined by the number of plots, the plot length, and the maximum travel 

speed regardless of growth stage. The automated data processing at the mature stage took 20 min 

and 83 s using 3DMST and SGBM, respectively. Using the user-interactive SD extraction 

software, it typically took 10 s for human to measure a stem segment. Although the SD 

extraction was not fully automated, the robotic phenotyping system still demonstrated its 

superior efficiency over the current manual practice. 

5. DISCUSSION 

In this section, the data acquisition system, stereo matching algorithms, and image-derived 

features are discussed based on our experimental results. Limitations and potential solutions are 

also suggested for future improvement. 

5.1. Phenobot 1.0 

The Phenobot 1.0 has been successfully deployed for two growing seasons and collected over 

100,000 stereo images for various genetic lines. During this process, technical challenges had to 

be overcome and methods adapted to the biology of the target organism. Biomass sorghum is a 



tall crop with dense canopies, making it one of the most difficult plant species for ground-based 

high-throughput phenotyping. At the mature stage, plant height ranges from 0.5 m to more than 3 

m, with leaves that grow vertically and expand horizontally. Considering that these long leaves 

would likely block the camera view if the commercial row spacing (0.76 m) was implemented, 

we compromised the standard row spacing and expanded it to 1.5 m during the system testing 

phase. However, as the leaves were expanding, it was evident that they were still blocking the 

view of the mid-level and top-level cameras, which led to the selection of a final 2.2 m row 

spacing with which only occasional view blocking of the top-level cameras occurred. One 

alternative solution that could potentially reduce row spacing would be to image multiple 

locations per plot and to place additional sets of stereo camera heads vertically with varying 

vertical tilting angles.  

The data collection time was limited between 10 AM and 4 PM to avoid low solar elevation 

angles, which could cause strong backlighting conditions, especially if crop rows were planted 

north to south. During normal operation time, the varying field lighting conditions did not pose a 

challenge for stereo reconstruction because stereo matching relied on image texture or local 

intensity variation, which was preserved as long as the amount of light received by the imaging 

sensor was within its dynamic range. However, we recognize that it would be beneficial to add 

the active lighting (Mueller-Sim et al., 2017; Pothen & Nuske, 2016) for the stereo camera heads 

to extend the limitation on operation time. Moreover, extremely tall genotypes could 

substantially block the sunlight, and the image noise level increases in such low-light conditions, 

which could greatly affect the stereo reconstruction. Another potential improvement to the in-

field active lighting for stereo cameras would be to combine the high-powered flash, the 

structured light pattern (Nguyen et al., 2016), and polarizing filters. The high-powered flash with 



short camera exposure times can reduce the effect of varying ambient light. However, sorghum 

plant surfaces tend to be reflective. Polarizing filters can be added in front of both the flash and 

the camera lens to suppress glare and improve image quality. 

5.2. Stereo Matching 

There has been a concern about the performance of passive stereo vision under field lighting 

conditions (Kazmi, Foix, Alenyà, & Andersen, 2014; Li, Zhang, & Huang, 2014). However, our 

results demonstrate that the advances in stereo matching have allowed for the reconstruction of 

high quality disparity maps for dense canopy crops in the field. As for the performance 

difference between the state-of-the-art 3DMST and the widely used SGBM, although a 

quantitative comparison is not provided, our qualitative comparison of disparity maps and 

surface normal maps, and the correlation analysis for plant surface area validate the superior 

surface reconstruction quality of 3DMST over that of SGBM. First, 3DMST clearly produces 

more accurate contours of leaf, stalk, and panicle. On the contrary, SGBM slightly extends 

foreground disparity on the edges into the background, which is often referred to as border 

bleeding effects. This is caused by the lack of adaptive support weight in SGBM. On the other 

hand, the geodesic type of adaptive support weight utilized by 3DMST accurately captures the 

depth discontinuity. Such property could be more valuable for applications where accurate 

detection and measurement of stem diameter are needed. Second, a much smoother normal 

estimation is achieved on plant surface when 3DMST is used instead of SGBM. The non-local 

support region in 3DMST can adapt the effective area of support region to image content. As the 

effective support region becomes larger, the smoothness strength is implicitly increased as well. 

Hence, 3DMST easily handles large canopies and thin stems in nearly homogenous color. In 

addition, 3DMST jointly searches the disparity and surface normal (3D label), which are in turn 



used to calculate a more accurate support region mapping between the left and the right images. 

For instance, a square support region in the left image is scaled or sheared in the right image, 

depending on the surface normal direction (Heise, Klose, Jensen, & Knoll, 2013). Without this 

more flexible model, disparity on slanted leaf surfaces would show stair-casing effects. Even 

though SGBM uses scanline optimization to enforce smoothness along multiple directions and 

applies quadratic interpolation around the optimal discrete disparity level to obtain sub-pixel 

accuracy, it is difficult to achieve the same smoothness level of 3DMST, even by tuning the 

parameters. From all features investigated in this study, plant surface area was the parameter 

mostly affected by the selection of the 3D reconstruction algorithm. The edge-preserving ability 

and surface smoothness caused a considerable impact on the surface area calculated from the 

triangle mesh. This was revealed by the correlation comparison demonstrating that the image-

derived plant surface area using SGBM was approximately 0.67 𝑚[ larger than that of 3DMST 

(Fig. 17 top middle).  

Regarding runtime performance, SGBM has a clear advantage over 3DMST due to its high 

computational efficiency. The implementation of SGBM takes full advantage of instruction level 

parallelism on modern CPUs, also known as single instruction, multiple data. Therefore, if the 

goal is only to estimate features not related to surface such as plot height, plot width, and convex 

hull volume, SGBM should be the preferred option. There is still potential to cut down the 

runtime of 3DMST by reducing the number of iterations and using a simple matching cost such 

as Census. However, the effect of these two factors on the reconstruction quality is unknown and 

should be further investigated. 

5.3. Image-Derived Plant Architectural Features 



The correlation analyses demonstrate that the image-derived features investigated in this study 

can capture several important plant architectural traits of densely populated sorghum varieties 

grown under field conditions.  

Plant height is probably the most important characteristic due to its significant effect on biomass 

yield. Although the image-derived PPH was obtained on a per-plot basis, it was highly correlated 

with the manually measured plant height. The PPW turned out to be useful for quantifying leaf 

length variation, which could affect the ability of sorghum to absorb light energy. Considering 

that the PPW could also be determined by leaf angle, if the leaf length is constant, a large angle 

would result in a large PPW.  

The convex hull volume combines the effects of plant height, leaf position, and leaf shape. For 

instance, some sorghum varieties have a long exsertion (distance from flag leaf to panicle) while 

others have no exsertion at all, and thus, the panicle is in close proximity to the canopy. Given 

the same plant height, the image-derived CHV could capture such a variation in plant 

architecture. 

The plant surface area can be affected by many factors such as number of leaves, internode 

length, leaf area, plant height, stem diameter, and panicle size. Even though the cameras 

observed the plot, the extracted PSA correlated well with the counterpart of the representative 

individual.  

Stem diameter is one of the most difficult traits to characterize using high-throughput 

phenotyping, but also among the most important plant architecture traits since it contributes 

greatly to biomass yield. The variation in stem diameter was evident in our dataset (from 7 mm 

to 31 mm), and the user-interactive approach produced accurate measurements. It is important to 



emphasize that the image-derived SD included the thickness contributed by the leaf sheath 

around it, and thus it could be used as proxy of the true stem diameter, which should be 

measured after the removal of the leaf sheath. Although the user-interactive approach cannot 

match the speed of the automated method (Baweja et al., 2018), it is still much faster and less 

laborious than in-field manual measuring. 

The proposed features have been partially validated by our recently published GWAS performed 

using the image-derived PPH and SD after maturity (Salas Fernandez, Bao, Tang, & Schnable, 

2017). Genomic regions controlling the two traits estimated using our approach co-localized with 

genetic markers previously identified associated with variation in plant height and stem diameter 

using manually collected data (Zhao et al., 2016). Additionally, this also eases the concern that 

our increased row spacing would affect the GWAS results, since the data used to validate our 

GWAS was collected from materials planted at the commercially used row spacing of 0.76 m. It 

is worth pointing out that the discriminant ability of these image-derived features depends on the 

plant growth stage. At early stages, the variation among crop varieties could be too low to be 

captured by our approach. As the growing season progresses and differences in architecture and 

development become evident, the image-derived features could reach the maximum potential to 

quantify these traits and characterize genetic variation. Our ongoing work includes the discovery 

of genetic regions that control the variations observed in image-derived PPW, CHV, and PSA. 

Additionally, the PPW, CHV, and PSA values at different canopy levels can also be quantified, 

which could potentially provide novel information about plant architecture for gene discovery 

studies. 

Our feature extraction pipeline is fully automated except for stem diameter that requires human 

intervention to select stems and indicate stem boundaries. The automated StalkNet (Baweja et 



al., 2018) has already shown promising accuracy for stem instance segmentation. We believe that 

the state-of-the-art Mask R-CNN (He, Gkioxari, Dollár, & Girshick, 2017) has great potential for 

superior stem segmentation. With the large number of side-view images collected in the field, a 

large amount of training data can be generated to explore the performance of Mask R-CNN for 

instance segmentation of stem and beyond. For instance, panicle instance segmentation can 

reveal flowering time and facilitate grain yield prediction. 

6. CONCLUSIONS 

This paper presents a field-based robotic plant phenotyping system that utilized 3D machine 

vision to automate plant architectural trait characterization for densely populated biomass 

sorghum plants, with a wide range of plant height. The data acquisition system was developed 

based on a utility tractor retrofitted with an auto-steer system and multi-level side-viewing stereo 

camera heads. An automated feature extraction pipeline was developed to quantify plot-based 

plant height, plot-based plant width, convex hull volume, and plant surface area. Stem diameter 

was extracted in a user-interactive approach. The image-derived features were highly correlated 

with in-field manual measurements with high repeatability. Our study also demonstrated the 

suitability of conventional passive stereo vision for 3D plant phenotyping under field lighting 

conditions due to the recent advances in stereo correspondence search algorithms. The proposed 

system demonstrates a great potential for large-scale field-based high-throughput plant 

phenotyping for bioenergy crops. Our future work will focus on building an autonomous ground 

robot, an imaging system optimized for commercial row spacing, and the automatic detection 

and characterization of individual plant organs such as stem, leaf, and panicle. 
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