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Abstract 

During indentation it is often important to determine the relationship between the average 

pressure and the yield strength.  This work uses slip line theory to determine this relationship for 

the case of a rigid sphere indenting a frictionless perfectly plastic half-space (i.e. no hardening).  

The results show that the ratio between the average contact pressure and the yield strength 

decreases as the depth of indentation is increased.  Note that the slip-line analysis does not 

include the effects of pile-up or sink-in deformations.  However, the slip-line theory has also 

been compared to data generated using the finite element method (FEM).  The theory and the 

FEM results appear to agree well. 
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Introduction 

 

The indentation of solids by a harder or effectively rigid object is of great importance to material 

property measurements via the surface. It is also an integral part of friction, wear, and contact 

resistance predictive models.  In most cases, the load is large enough to cause significant plastic 

deformation, and even cause the entire surface in contact to deform plastically.  Indentation 

hardness tests are aimed at achieving this range of deformation. 

In the elastic regime, and at relatively small displacements, the contact of an elastic-plastic 

sphere against a rigid flat (i.e. flattening) and the contact of a rigid sphere against an elastic-

plastic surface (i.e. indentation) are practically equivalent.  However, as the displacements 

increase, the two cases begin to diverge [1].  This work focuses on the case of indentation 

between a rigid sphere and a deformable surface. 

Ishlinskii [2] performed a slip-line analysis of a spherical contact and found that the contact 

pressure for a perfectly plastic contact without hardening (i.e. Brinell hardness) was between 

2.61 and 2.84 and did not vary significantly with the indentation depth.  As will be shown later, 

this is in contradiction to the current work. 

Hardness is the average pressure in a contact when the deformation is fully plastic.  In this work, 

the average pressure, p , is defined by the contact force divided by the projected area of the 

contact in the direction of the indentation, not the total surface area.  This is often defined as the 

Meyer’s hardness and in equation form is: 
2a

F





p , where a is the contact radius and F is the 

contact force.  Alternatively, Brinell suggested that the hardness be calculated by the dividing the 

force by the total surface area of the spherical cap in contact. 
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Jackson and Green [3] performed a finite element analysis of an elastic-plastic deformable 

sphere against a rigid flat surface (referred to as flattening).  They found that as the deformation 

increased, the average pressure reduced from approximately 2.84 times the yield strength (i.e. the 

hardness found by Tabor [4] and Ishlinskii [2]  for a spherical contact).  This is due to the 

spherical geometry changing to that of a compressed cylinder (see Fig. 1).  This was taken even 

farther by Wadwalkar et al. [5] who showed that under heavy deformation, the average pressure 

on a flattened sphere approaches the yield strength.  Note that in these cases of severe 

deformation, the sphere actually begins to behave similarly to a ‘barreling’ cylinder in 

compression.  The deformation in these works is described by the ratio between the contact 

radius, a,  to the radius of the sphere, R, as shown in Fig. 2.  These previous works found an 

equation that captures the effect that large deformations of the sphere have on the average 

contact pressure, p , in relation to the yield strength, Sy [6]: 



















R

a
cos-10.92-84.2 

yS

p
      (1) 

 

Again, note that Eq. (1) was based on the flattening case, where the flat surface is rigid and the 

sphere deforms.  However, it could provide a benchmark to the case of indentation. 
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Figure 1: Schematic showing how the pressure changes with the deformation of the sphere 

during fully plastic contact. 

 

 

 

 

 

     

   

  

    
  

 

Figure 2: Schematic of the contact area between a sphere and a flat surface. 

 

Mesarovic and Fleck [7] studied the indentation of a rigid sphere into an elastic-plastic 

deformable surface both with and without hardening.  They observed that at larger deformations, 

the average pressure to yield strength ratio appeared to decrease from Tabor’s value of 2.8, 
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similar to the trend noted above. They also showed that hardening could nullify this effect in 

some cases.  They were probably the first to observe this trend in indentation, but they did not 

provide an analytical description of the phenomenon.   

Later, Kogut and Komvopoulos [8] investigated elastic-plastic indentation and found that the 

fully plastic pressure behaved similarly to that of the flattening case investigated by Jackson and 

Green [3].  This case is important when using indentation tests for the measurement of material 

properties, especially the Brinell hardness test.  Building from the work of Ye and Komvopoulos 

[9], Kogut and Komvopoulos [8] found that the pressure during elastic-plastic indentation 

reached a maximum value that is less than the popular value of 2.84·Sy.  They suggested that the 

pressure varied as a function of E’/Sy (the effective elastic modulus divided by the yield strength): 

685.10.201ln 
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p
       (2) 

 

which is analogous to Eq. (1) for spherical indentation, rather than flattening, although in terms 

of the material properties rather than the deformed geometry.  However, the current authors 

believe that the ratio is directly dependent on the geometry rather than the material properties, as 

will be shown for indentation in the current work.  Also, the results of the current work cannot be 

compared to Eq. 2 because the current work assumes a perfectly plastic material that does not 

have a finite elastic modulus.  Additional equations are provided in [8] relating contact area and 

pressure to the penetration depth, and the reader is advised to obtain the paper for additional 

information.
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Later, Alcalá and Esqué-de los Ojos [10] also thoroughly analyzed the spherical indentation of 

strain hardening metallic surfaces. Nonetheless, they found a similar emperical relation for the 

case of indentation without hardening or pile-up or sink-in: 

 

R

a
1.885-3.044

yS

p
        (3) 

 

Yu and Blanchard [11] also presented a thorough analysis and summary of many various cases 

of indentation, including wedge, conical, spherical and flat-ended indenters against elastic, 

perfectly-plastic, and elastic-plastic materials.  However, their perfectly plastic analysis was a 

curve fit to previous tabulated results in the literature.  They then provided the following fit 

equation: 

 











R

a
0.4921-2.845

3

2

yS

p
       (4) 

 

The contact radius, a, could be difficult to determine.  There are several models that may be 

employed to make an approximate prediction, or it could simply be measured.  

There are many models that have been devised to account for the plastic deformation in the 

sphere (i.e. flattening).  Most models also assume that the deformation is elastic-perfectly plastic, 

meaning there is no hardening in the material.  However, there is no known analytical solution to 

this problem; therefore, many previous models did not give the correct quantitative predictions, 

such as the groundbreaking model by Chang, Etsion, Bogy (CEB) [12] and the work by Zhao, 

Maletta, and Chang [13], which attempted to improve on the CEB model by using a continuous 
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template to connect the elastic and plastic regimes of deformation.  Later, for the flattening case, 

Kogut and Etsion [14] and Jackson and Green [3] improved upon these models by using the 

finite element method.  Jackson and Green [3] found the following equations for the prediction 

of initial yielding in the sphere according to the von Mises yield criterion, which in theory could 

also be used for indentation: 

          (5a) 

 

        (5b) 

        (6) 
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In Eqs. (5-7), ωc is the indentation depth, Ac is the critical contact area, and Fc is the critical 

contact force, all at the initiation of plastic deformation.  For flattening, Kogut and Etsion [14]  

and Jackson and Green [3]  also found that fully plastic deformation begins at approximately 70-

110 times the critical interference given by Eq. (5).  It is plausible that this is also approximately 

true for indentation.  There are also many other models and studies of spherical elastic-plastic 

indentation, in addition those described above [15-19].  However, none of these appear to 

capture the decreasing average pressure to yield strength ratio trend.  
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Although much information exists in the literature for indentation and hardness tests, little 

information exists on how the average pressure during fully plastic contact may change during 

indentation due to the change in the geometry of the interface, as it does for the flattening case. 

The current work derives a simple equation to account for this effect based on slip-line theory. 

However, the current theoretical slip-line work does not include the effects of pile-up or sink-in 

directly.   A finite element model is also constructed that does include these effects and is 

compared to the slip-line result. 

 

 

 

Methodology 

The current work uses the concept of slip-lines to find the relationship between the average 

pressure and the yield strength as a function of the magnitude of the deformation.  The slip-line 

theory and derivation is not thoroughly described here, but additional details can be found in the 

book by Tabor [4].  For the theory to be applicable, the following assumptions are made: the 

loading is quasi-static; there are no body forces; and the material yields according to the von 

Mises criterion as a rigid-perfectly plastic material.  No elasticity is considered.  Here, the 

contact will be considered to be well lubricated, so no friction is considered, although this effect 

is often important.  The effects of pile-up and sink-in due to elasticity and volume conservation 

are also neglected. 

Slip-lines are defined as curved lines which are tangential along their length to directions of 

maximum shear stress.  Slip-lines in a material are made up of two curvilinear and orthogonal 

lines (α and β) described by the following equations: 
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12 Ckh    along the α line      (8) 

22 Ckh    along the β line      (9) 

where h is the hydrostatic stress and k is the shear yield strength of the material.  According to 

the von Mises yield criterion, h does not cause yielding or plastic deformation of the material.  

Note that only the α line needs to be considered. k is also related to the yield strength, Sy, by  

3

YS
k           (10) 

The case considered in the current work is schematically depicted in Fig. 3.  On the labeled free 

surface, there is no normal or shear traction.  Therefore, the shear stress tangential to the surface 

is zero there.  On the indenter surface, there is an applied pressure, p, but no shear stress 

tangential to the surface, since the surface is frictionless.  By considering these surface boundary 

conditions, the following equation is obtained (although some details are omitted here, this 

equation is identical to that found in Tabor [4]): 

 kkp 22         (11) 

where   is the change in the angle of the slip line from the free surface to the pressurized 

indenter surface.    is equal to the θ shown in the schematic in Fig. 3 and decreases from π/2 

rad at the point of maximum indentation depth at the tip of the sphere to zero rad if the 

hemisphere is pressed into the half-space so that half of it is indented into the surface and the free 

half-space surface is perpendicular to the sphere. 
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Figure 3: Schematic of a spherical rigid indenter penetrating a rigid-perfectly plastic half-space. 

 

Eq. (11) can then be integrated over the contacting surface of the indenter to find the required 

normal force, F.  Since the contact pressure on the indenter is always normal to it, we must 

consider that only the vertical portion contributes to F: 

sinppv            (12)

 

The resulting integration to calculate the force is then: 

dxpxF
a

 sin2
0

         (13)

 

Noting that:  

cosRx           (14) 

θ     x 
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then the integral can be rearranged as: 

 





dpRF   cossin2 2
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where θ1 is the angle, θ, at x=a.  Next Eq. 11 is substituted in for p: 
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This integration solves analytically to be: 
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Then, normalizing the force by the contact area, substituting in Eq. 10, and simplifying further 

results in: 
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In addition, noting that cos
R

a
, Eq. 18 can be written as a function of a/R as: 
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which can be moderately simplified to: 
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Finite Element Analysis 

In order to verify the analytical results, an axisymmetric finite element model has been 

developed. The model simulates the indentation of a half space with a sphere. Modeling the 

perfectly plastic behavior of the materials using the finite element method is difficult. Therefore, 

elastic-plastic material properties close to the perfectly plastic case have been used (i.e. a low 

yield strength and high elastic modulus). According to Tabor’s experiments [4], if the yield 

strength of the indenting sphere is 2.5 times larger than the flat, the deformation of the sphere 

can be neglected. Therefore, for the sphere, a yield strength of 1000 MPa is used, and for the flat 

,a yield strength of 100 MPa has been chosen. The modulus of elasticity and the Poisson’s ratio 

for both the flat and the sphere are considered to be 300 GPa and 0.3 respectively. Yield strength 

values smaller than this and elastic moduli larger than this tend to cause convergence problems. 

 

A fine mesh around the contact point has been applied on both the flat surface and the sphere. 

Mesh convergence for both the small and the large deformations has been verified, and a mesh 

with a total of 9784 elements has been chosen (see Fig. 4). To apply the boundary conditions, the 

following constraints have been applied: the bottom edge of the flat has been fixed for 

displacements in both directions and the left edges of the sphere and the flat have been fixed for 
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displacements in the horizontal direction. A uniform displacement downward on the top edge of 

the sphere has been applied to load the sphere against the flat surface. 

 
Figure 4. The finite element model. A finer mesh around the contact point both on the flat and 

the sphere is applied. 

 

 

Different displacements have been applied on the sphere, and the radius of contact and the 

reaction forces have been analyzed. Because of the complexity of the problem, the finite element 

analysis could not converge to a reliable result for larger deformations ( a / R > 0.5). 

 

Results 

Now the predictions of Eq. 20 are shown in Fig. 5, alongside the finite element model 

predictions and those of Eq. (3) [10] and Eq. (4) [11].  Again, note that Eq. (2) from [8] is not 
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compared to the other results in this work because it is dependent on the ratio of the elastic 

modulus to the yield strength.  Since there is no elastic modulus present in Eq. 20, but the same 

decrease in average contact pressure is present, it suggests that Eq. 2 captured a secondary 

correlation that is actually sourced from the change in geometry.  The current formulation 

appears to agree fairly well with the finite element results, even though the slip-line theory does 

not include sink-in or pile-up and is for a perfectly plastic material, while the finite element 

model is for an elastic-plastic material with a relatively low yield strength to ensure that plastic 

deformation dominates.  Note that the predictions of Eq. 4 [11] seem to over-predict the pressure, 

perhaps due to a factor in their paper meant to account for von Mises plasticity.  The predictions 

of Eq. 20 appear to be very reasonable and show how the ratio of the average pressure to the 

yield strength can change dramatically as the geometry of the contact changes.  By solving the 

above equation for θ1=π/2 (i.e. a/R=1), a lower limit of the pressure to yield strength ratio is also 

found to be 1.465, which differs from the limit of unity for the flattening case.  The upper limit is 

also different between the flattening and indentation cases.  From Eq. 20, the maximum average 

pressure to yield strength ratio (
yS

p
) at a/R approaching zero is approximately 2.97, but there is a 

singularity at a/R=0.  This differs from the flattening value of 2.84, but is similar to the value of 

2.96  provided by Ishlinskii [2], although, as Johnson [20] stated, in Ishlinskii’s work, this was 

for a/R=0.376.  In contrast, at a/R=0.376, Eq. 20 predicts that 589.2
yS

p
.    Equation 20 might 

also be adapted to pile-up [19] and sink-in, by adapting a/R and the slope at the edge of contact 
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in the derivation. 

 

Figure 5: A comparison of the current fully plastic analytical model and previous equations. 
 

 

Conclusion 

 

This work presents a new closed-form equation for the relation between the average contact 

pressure and yield strength as a function of a geometrical parameter for a rigid sphere indenting a 

fully plastic surface.  This formulation is derived by using slip-line theory.  The ratio of the 

average contact pressure to yield strength ratio has been shown to decrease with increasing 

deformation before, but no analytically derived relationship had been provided.  As the 

deformation increases, the ratio decreases from 2.97 to 1.465, when the contact radius equals the 

radius of the sphere.  The predictions have also been shown to compare well with finite element 

results, although the FEM results included some elastic deformation.  This equation will be very 

useful in augmenting existing methodologies to account for this effect. 
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