Determination of Transport Parameters from Step and
 Pulse Displacement of Cations and Anions

June 1989
Agronomy and Soils
Departmental Series No. 135
Alabama Agricultural Experiment Station
Auburn University
Lowell T. Frobish, Director
Auburn University

DETERMINATION OF TRANSPORT PARAMETERS FROM STEP AND PULSE DISPLACEMENT OF CATIONS AND ANIONS

Feike J. Leij and J.H. Dane
Graduate Student and Professor of Agronomy and Soils

Alabama Agricultural Experiment Station
Auburn University
Auburn University, Alabama
Lowell T. Frobish, Director

CONTENTS

LIST OF FIGURES v
LIST OF TABLES vii
ABSTRACT ix
INTRODUCTION 1
THEORY 5
Formulation of the Transport Equation 5
Methods to Determine Transport Parameters Reported in the Literature 10
Graphical Determination of R for Step and Pulse Input 11
Determination of Transport Parameters with the Moment Method 15
Theoretical Determination of Moments According to Aris 18
MATERIALS AND METHODS 22
RESULTS AND DISCUSSION 25
Pilot Study 25
Transport in Layered Media with Binary Exchange 33
Transport in Homogeneous Media with Binary Exchange 37
Transport in Homogeneous Media with Ternary Exchange 55
SUMMARY AND CONCLUSIONS 65
LITERATURE CITED 69
APPENDIX A. Analytical Solution of the ADE for a Pulse Input with a First- and Third-type Condition in a Two-Layer medium 71
APPENDIX B. Derivation of Moments Based on Analytical Solutions of the ADE in the Laplace Domain 75APPENDIX C. Time Moments m, μ^{\prime}, and μ for BTC's as a Result ofa Pulse Input During Steady Flow in a Medium with One orTwo Layers with a First- or Third-type Inlet Condition77
APPENDIX D. Input Files for the Program CXTFIT Containing the Experimentally Determined C/C-profiles 82
APPENDIX E. Exchange Data 92
FIRST PRINTING, JUNE 1989

LIST OF FIGURES

FIG.1. Schematic representation of solute displacement experiments with step and pulse input 9
FIG.2. Hypothetical concentration distribution as a function of position at various times for a pulse input 12
FIG.3. Determination of the mean breakthrough time based on BTC's with step and pulse type input 14
FIG.4. Schematic of experimental setup 23
FIG.5. BTC \#1: Ca curve for Troup soil 26
FIG.6. BTC \#2: Ca curve for Troup soil 26
FIG.7. BTC \#3: Br and Cl curves for Lucedale soil 27
FIG.8. BTC \#4: Br and Cl curves for Lucedale soil 27
FIG.9. BTC \#5: Br and Cl curves for Wickham soil 28
FIG. 10. BTC \#6: Br and Cl curves for Wickham soil 28
FIG.11. BTC \#11: Ca and K curves for Troup and Savannah soil 35
FIG. 12. BTC \#12: Ca and K curves for Dothan soil 35
FIG. 13. BTC \#13: Ca and K curves for Troup and Lucedale soil 36
FIG. 14. BTC \#21: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Dothan I 38
FIG. 15. BTC \#22: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Dothan II 39
FIG. 16. BTC \#23: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Wickham I 40
FIG. 17. BTC \#24: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Wickham II 41
FIG. 18. BTC \#25: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Troup soil 42
FIG. 19. BTC \#26: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Lucedale I 43
FIG. 20. BTC \#27: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Lucedale II 44
FIG. 21. BTC \#28: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Savannah I 45
FIG. 22. Numerically predicted (solid lines) and experimentally determined curves (symbols) for cation displacement in binary systems 54
FIG. 23. BTC \#31: Ca, K, and Na curves for Dothan I 56
FIG. 24. BTC \#32: Ca, K, and Na curves for Dothan II 56
FIG.25. BTC \#33: Ca, K, and Na curves for Wickham I 57
FIG. 26. BTC \#34: Ca, K, and Na curves for Wickham II 57
FIG.27. K and Na curves predicted with the moment method (solid lines) and curve fitting (dashed lines), and experimental curves (symbols) for displacement with ternary exchange 61

LIST OF TABLES

Table 1. Solutions of the ADE in the Laplace Domain for a One- and a Two-layer System with a First- and Third-type Inlet Condition 19
Table 2. Expressions for μ_{1}^{\prime} and μ_{2} for Transport in a One- and a Two-layer Medium Subject to a First- and a Third-type Condition 20
Table 3. Classification of Soils 22
Table 4. Experimental Conditions for Solute Displacement During Pilot Study 25
Table 5. Determination of Dispersion Coefficients According to Fried and Combarnous (7) 29
Table 6. Determination of Dispersion Coefficients Using inverfc $\left(2 C_{e}\right)=\alpha \ln T+\beta$ 30
Table 7. Determination of Transport Parameters Using CXTFIT (13) 31
Table 8. Experimental Conditions for Solute Displacement in Layered Media 33
Table 9. Determination of Transport Parameters for Step Displacement in Layered Media with CXTFIT and Column Holdup 34
Table 10. Experimental Conditions for Pulse Displacement with Binary Exchange 37
Table 11. Determination of Transport Parameters with Binary Exchange Using CXTFIT 47
Table 12. Determination of Transport Parameters with Binary Exchange Using Time Moments 48
Table 13. Experimental Conditions for Solute Displacement with Ternary Exchange 55
Table 14. Determination of Transport Parameters with Ternary Exchange Using CXTFIT 58
Table 15. Determination of Transport Parameters with Ternary Exchange Using Time Moments 60
Table 16. Theoretical Moments Based on Linear Exchange and Their Contribution to Experimental Time Moments for BTC's with Ternary Exchange 63
APPENDIX E. Exchange Properties for $\mathrm{Ca} / \mathrm{Na}$ Soils 92

Abstract

Although transport problems in the field usually involve a number of solute species, which react in different ways with the soil, most experimental work considers displacement in binary systems where the two solutes are either non-reactive or obey a particular exchange isotherm. This study reports theoretical and experimental findings for displacement involving up to four solutes.

Experimentally determined breakthrough curves (BTC's) are reported for pulse and step inputs, using $\mathrm{Ca}, \mathrm{K}, \mathrm{Na}, \mathrm{Br}$, and Cl as solutes. Although several methods were used to determine the coefficient of longitudinal dispersion, D, and the retardation factor, R, the most attention was given to the use of time moments.

Theoretical moments were derived from analytical solutions of the advection-dispersion equation, ADE, in the Laplace domain to investigate dispersion and retardation for pulse inputs. Solutions of the ADE for a first- and a third-type boundary condition at the inlet were used for a non-layered and a two-layer medium.

Step displacement experiments were conducted in various media with layering transverse to the direction of flow. No increased dispersion was found as a result of layering. Pulse displacement experiments were carried out in homogeneous soils for binary systems, a

NaCl -pulse in a CaBr_{2}-saturated medium, and for ternary systems, a pulse of K and Na in a Ca -saturated medium. The moment method was used to determine values for D and R. The accuracy of the experiments was found to be acceptable, based on various mass balances and the electroneutrality principle. Values for D, obtained from anion displacement experiments and measured cation exchange isotherms, were used to numerically predict BTC's for cations. The role of non-linear exchange was investigated by comparing experimental (non-linear exchange) with theoretical (linear exchange) moments. Non-linear exchange was shown to have a large influence on the value of D, in particular for Na . The average pulse spread, determined by experimental moments, resulting from hydrodynamic dispersion and non-linear exchange, was in a number of instances five times the average pulse spread determined by theoretical moments, based only on hydrodynamic dispersion.

INTRODUCTION

Transport of dissolved chemicals in porous media has been studied quite extensively in order to predict the fate of contaminants and agricultural chemicals in soils. Such transport has traditionally been described with the advection-dispersion equation (ADE) under the assumption that the transport and flow properties are uniform with respect to time and position. It is now widely recognized, however, that under field conditions these properties can vary in time and space (22). Therefore, deterministic approaches to model transport will generally result in poor predictions of the fate of contaminants. Various other methods to predict flow and transport have consequently been employed, emphasizing the stochastic nature of transport and flow (6) or abandoning any mechanistic description of the processes involved (11).

Accepting the validity of the ADE under laboratory conditions, the transport parameters to quantify the advective and dispersive flux need to be known. A number of techniques are currently in use to determine these transport parameters from experimental data. It should be noted that in the older literature considerable attention was given to the determination of D, assuming Fickian dispersion. Although this assumption is incorrect for a number of situations, and even if it were correct, it implies that the average solute displacement is unaltered by dispersion. The value for R quantifies interactions between solute
and solid phase, which can greatly affect average solute displacement. In order to predict the average location of the solute front, the value for R is of more importance than D.

Techniques of determining D and R are based on relatively simple analytical solutions, graphical methods, or fitting experimental data with theoretical (non-equilibrium) models (e.g., 24). In particular, curve fitting techniques are quite popular. As pointed out by Parker and van Genuchten (13), uniqueness problems might arise if too many unknown factors have to be considered to fit experimental concentration profiles with theoretical solutions. In addition, the models used to describe transport can not be properly validated with curve fitting alone (15).

A method commonly used in chemical engineering to analyze experimental BTC's is the method of moments (e.g., 16), although it has also been used in hydrology (9) and to some extent in soil science (19). Values for D and R can be determined in a straightforward way using time moments of the BTC. The method was originally used for advection-dispersion problems by Aris (2). The total amount of solute, the mean breakthrough time, and the degree of spreading and tailing are easily obtained by determining various time moments of the BTC.

Our first main objective concerned the determination of transport parameters. First, some well known methods were evaluated using experimentally determined BTC's. Second, some simple ways to determine an effective retardation factor were investigated. Third, the method of moments was used to characterize spreading and retardation for various BTC's.

Aris (3) showed how analytical solutions of transport equations in the Laplace domain can be used to obtain those moments theoretically. Solutions are more easily obtained in the Laplace domain than in the regular space-time domain. These solutions allow D and R to be determined from results of solute transport experiments. From a theoretical point of view, the technique can be used to obtain explicit expressions for retardation factors and dispersion coefficients for a particular transport model. Valocchi. (21) applied the technique to aggregated media in order to evaluate the validity of the local equilibrium assumption and to predict spreading and tailing of the BTC.

Theoretical moments can also be used to study the effects of layering and the type of inlet condition on the transport of a solute pulse. Our understanding of transport in heterogeneous media, as most field soils are, might be enhanced by resorting to a relatively simple medium such as a collection of uniform soil layers perpendicular to the direction of flow (18). Regarding the effect of the type of inlet boundary condition on the determination of D and R, van Genuchten and Parker (23) showed that for flux- and volume-averaged concentrations a first- and a third-type condition should be used, respectively. If the results for a first- and third-type condition are similar, depending on the values of D and v, one might prefer the use of the simpler first-type condition.

Our second main objective was to derive theoretical moments based on the ADE. First, these moments were used to obtain experimental values for D and R. Second, theoretical moments were determined for
transport in a two-layer medium, with the interface perpendicular to the direction of flow to demonstrate the effect of soil heterogeneity on breakthrough time, spreading, and tailing. Third, theoretical moments were derived based on a first- and a third-type inlet condition. Again, this condition applies to both the inlet of a homogeneous medium and individual layers of a layered medium.

Knowledge of the relationship between the solute concentration in the adsorbed and solution phase is necessary to solve the transport equation. In the case of transport of a non-linearly exchanging solute, advection and dispersion terms depend on the concentration and composition of solutes. Current methods used to determine transport parameters do not account for this dependency because it is assumed that the exchange is linear. This greatly simplifies the mathematical solution of the transport equation. Although the assumption of linearity is a convenient one, it is quite often not a realistic one.

Furthermore, the total amount of adsorbed cations depends on the composition of the adsorbed cations. This affects the value of R. Differences in the apparent cation exchange capacity (CEC) were reported to be particularly large between Ca and Na soils (12). Simultaneous cation and anion displacement experiments are helpful in detecting changes in the total amount of solute. The latter is accomplished using a mass balance for each individual ion as well as total cation and anion balances. In binary systems with a constant total electrolyte level, only one concentration can be chosen independently. In ternary systems with a constant total electrolyte
level, the concentration of a particular cation depends on the two other cation concentrations. This dependency allows us to illustrate the difference in behavior of a favorably and an unfavorably exchanging, incoming cation.

Our third main objective was to investigate the influence of ion exchange on transport and to determine transport parameter values using a pulse displacement. First, BTC's were determined in binary systems by applying a NaCl pulse to a CaBr_{2} medium. Second, BTC's were determined for a Na / K pulse applied to a Ca medium. Third, theoretical moments for experiments with assumed linear exchange were compared with experimental moments resulting from experiments with obvious non-linear exchange.

THEORY

Formulation of the Transport Equation

One-dimensional transport of a reactive solute species during steady flow in a homogeneous porous medium may be described by:

$$
\begin{equation*}
\frac{\rho_{b}}{\theta} \frac{\partial S}{\partial t}+\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}-v \frac{\partial C}{\partial x} \tag{1}
\end{equation*}
$$

where ρ_{b} is the dry bulk density of the medium $\left[M^{-3}\right], \theta$ is the volumetric water content $\left[L^{3} L^{-3}\right], S$ is the mass of solute in the adsorbed phase per mass of solid $\left[M^{-1}\right], t$ is time [T], C is the solute concentration in the liquid phase $\left[M L^{-3}\right]$, D is the effective dispersion coefficient $\left[L^{2} T^{-1}\right]$, x is the distance in the direction of flow [L], and v is the average pore water velocity $\left[L T^{-1}\right]$. It should be noted
that Eq. (1) is commonly rewritten as

$$
\begin{equation*}
R \frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}-v \frac{\partial C}{\partial x} \tag{2}
\end{equation*}
$$

where R is the dimensionless retardation factor given by:

$$
\begin{equation*}
\mathrm{R}=1+\frac{\rho_{\mathrm{b}}}{\theta} \frac{\partial \mathrm{~S}}{\partial \mathrm{C}} \tag{3}
\end{equation*}
$$

Persaud and Wierenga (14) discussed the influence of the slope of the exchange isotherm, $\frac{\partial S}{\partial \mathrm{C}}$, on solute transport. This slope depends, among other things, on the concentrations of solutes present. The experimental determination of exchange isotherms is usually carried out assuming that the sums of the solute concentrations in both the liquid and the adsorbed phases are constant, no hysteresis occurs in the exchange reaction, and the reactions reach instantaneous equilibrium. In the case of linear exchange, the slope of the isotherm is constant and equal to the well known distribution coefficient $K_{d}\left[L^{3} M^{-1}\right]$. The retardation factor is then constant as well, which greatly simplifies the mathematical solution of the ADE. For non-linear exchange, a constant value for R can be used by considering an effective K_{d} value (e.g., 20).

If physical non-equilibrium exists, the liquid phase is often partitioned into a "mobile" and an "immobile" region. Solute transport in the mobile region occurs by advection and dispersion, whereas the amount of solute present in the immobile region is determined by diffusive transport between the mobile and immobile region of the liquid phase. Transport in the medium is now described by (13):

$$
\begin{align*}
& \left(\theta_{m o}+f \rho_{b} K_{d}\right) \frac{\partial C_{m o}}{\partial t}+\left(\theta_{i m}+(1-f) \rho_{b} K_{d}\right) \frac{\partial C_{i m}}{\partial t}=\theta_{m o} D_{m o} \frac{\partial^{2} C_{m o}}{\partial x^{2}}-v \theta \frac{\partial C_{m o}}{\partial x} \tag{4}\\
& \left(\theta_{i m}+(1-f) \rho_{b} K_{d}\right) \frac{\partial C_{i m}}{\partial t}=\alpha\left(C_{m o}-C_{i m}\right) \tag{5}
\end{align*}
$$

where the subscripts mo and im refer to mobile and immobile regions of the liquid phase, respectively; f represents the fraction of exchange sites that equilibrates with the mobile liquid phase; and α is a first order rate constant, which determines the diffusive transfer of solute between mobile and immobile regions $\left[\mathrm{T}^{-1}\right]$. Note that $\theta_{\mathrm{mo}}+\theta_{\mathrm{im}}=\theta$ and $\theta_{\mathrm{im}} \mathrm{C}_{\mathrm{im}}{ }^{+} \theta_{\mathrm{mo}} \mathrm{C}_{\mathrm{mo}}=\theta C$. Furthermore, we assumed that the exchange process for mobile and immobile exchange sites is governed by the same distribution coefficient.

Although our mathematical analysis concerns equilibrium transport of a non-reactive solute $(R=1)$, it is easily extended to linearly exchanging solutes by replacing v and D with $v^{*}(=v / R)$ and $D^{*}(=D / R)$, respectively. The transport problem posed is subject to the following conditions and assumptions: (1) the medium is initially free of the displacing solute, (2) for the inlet boundary, both the concentrationor first-type and the flux- or third-type condition will be used, (3) the medium is semi-infinite in order to formulate the outlet condition, and (4) both step and pulse type displacement will be used. These conditions and assumptions can be mathematically described as:

$$
\begin{array}{lll}
C(x, t)=0 & 0<x<\infty & t=0 \\
C(x, t)=f(t) & \text { (first-type) } & x=0 \\
\left.\left(-D \frac{\partial C}{\partial x}+v C\right)\right|_{x=0}=v f(t) & \text { (third-type) } & t>0 \\
\text { with } f(t)= \begin{cases}C_{0} & 0<t<t \\
0 & \text { otherwise }\end{cases} \\
\left.\frac{\partial C}{\partial x}\right|_{x \rightarrow \infty}=0 & & t>0
\end{array}
$$

For the step type displacement t_{0} approaches infinity, whereas for the pulse type displacement t_{o} is finite. Figure 1 schematically illustrates the two types of experiments for displacement in a soil column with length L, assuming a first-type inlet boundary condition. The inlet concentration, $C_{\text {in }}$ at $x=0$, as well as the outlet concentration, $C_{\text {out }}$ at $x=L$, are shown as a function of time. For $\mathrm{D}=0$, the BTC is the same as the input curve. Also shown is front spreading due to Fickian dispersion. Non-linear exchange will alter the shape of the BTC, depending on the nature of the exchange isotherm.
inlet condition

FIG.1. Schematic representation of solute displacement experiments with step and pulse input.

Methods to Determine Transport Parameters

Reported in the Literature
First, the method described by Fried and Combarnous (7) was used. This method utilizes a simplified solution of Eq. (2) via transformation into a diffusion type of equation, subject to a first-type inlet condition for a step input. For a non-reactive solute the following solution applies:

$$
\begin{equation*}
C(x, t)=\frac{C_{0}}{2} \operatorname{erfc}\left[\frac{x-v t}{\sqrt{4 D t}}\right] \tag{7}
\end{equation*}
$$

The concentration profile obeys a normal distribution function. The coefficient of dispersion can then be obtained from the BTC according to:

$$
\begin{equation*}
D=\frac{1}{8}\left[\left(x-v t_{0.16}\right) / \sqrt{t_{0.16}}-\left(x-v t_{0.84}\right) / \sqrt{t_{0.84}}\right] \tag{8}
\end{equation*}
$$

where $t_{0.16}$ and $t_{0.84}$ denote the time at which C / C_{o} equals 0.16 and 0.84, respectively.

Second, the simplified solution given by Eq. (7) can be used to determine an explicit relationship between D and $C(x, t)$. This technique, first used by Rose and Passioura (17) was generalized by van Genuchten and Wierenga (24), who expressed Eq. (7) in terms of the following dimensionless variables:

$$
\begin{align*}
& \mathrm{T}=\mathrm{vt} / \mathrm{L} \tag{9}\\
& \mathrm{P}=\mathrm{vL} / \mathrm{D} \tag{10}
\end{align*}
$$

where L is the length of the soil column [L], T is the number of pore volumes leached through the column, and P is the column Peclet number.

For a non-reactive solute, the following expression was derived for the column outlet:

$$
\begin{equation*}
\text { inverfc }\left(2 \frac{\mathrm{C}}{\mathrm{C}_{0}}\right)=\frac{\mathrm{P}^{1 / 2}}{2}\left[\frac{1-\mathrm{T}}{\mathrm{~T}^{1 / 2}}\right] \approx-\frac{\mathrm{P}^{1 / 2}}{2} \ln \mathrm{~T} \tag{11}
\end{equation*}
$$

Plotting the dimensionless exit concentration, $C_{e}=C / C_{o}$, on probability paper as a function of $\ln T$ should yield a straight line (see figure 44-9, 24). The slope α, of the curve inverfc($2 C_{e}$) versus $\ln T$, is obtained by determining the value for inverfc $\left(2 C_{e}\right)$ at two points which are sufficiently far apart. The following relationship between P and α was used:

$$
\begin{equation*}
P=4 \alpha^{2}-\Delta \tag{12}
\end{equation*}
$$

where Δ is a correction factor. For further details, including the determination of R, as well as values for Δ, one is referred to the Chapter by van Genuchten and Wierenga (24).

Third, transport parameters in this study were determined with the program CXTFIT, which fits analytical solutions of Eq. (2) or Eq. (4) and (5) to observed concentration distributions obtained by step and pulse displacement. The program, based on a least-squares inversion method, was described by Parker and van Genuchten (13).

Graphical Determination of R for Step and Pulse Input

The determination of an effective retardation factor, assuming zero dispersion and physical equilibrium, is illustrated schematically in figure 2 for a pulse input, with concentration C_{0} and duration t_{0}, into a column of length L. The soil solute concentration, ρ_{S}, expressed as mass of solute in the liquid phase per volume of medium, is plotted as a function of position at various times.

FIG.2. Hypothetical concentration distribution as a function of position at various times for a pulse input.

The velocity of a linearly exchanging solute, v^{*}, is equal to v / R, whereas for a non-reactive solute, the velocity, $v^{*}=v$, is equal to the velocity of the solvent. From the average position of the pulse, $\langle x\rangle$, it can be seen that the mean residence time is equal to L / v^{*} and that its mean breakthrough time, \bar{t}, is equal to $\left(L / v^{*}\right)+\left(t_{o} / 2\right)$: The retardation factor, R, is the ratio of the mean residence time for solute and solvent, respectively. This allows the determination of R from BTC's either graphically (this section) or with the method of moments (next section). An effective value for R can be obtained for non-linearly exchanging solutes provided that the effluent
concentration reaches a maximum concentration C_{o} prior to complete displacement of the pulse.

For most displacement experiments v is known, while for the solute \bar{t} can be obtained from the experimentally determined BTC. In the case of a pulse displacement, R is determined according to:

$$
\begin{equation*}
R=\frac{\bar{t}_{\text {solute }}-\left(t_{o} / 2\right)}{(L / v)} \tag{13}
\end{equation*}
$$

The determination of \bar{t} for the solute is illustrated in figure 3 , which shows an arbitrary BTC for a pulse input. A value for $\overline{\mathrm{t}}$ can be obtained via graphical or mathematical integration, satisfying the condition that areas A and B are equal.

A similar method can be employed for a step type displacement. The average residence time of the front, \bar{t}, is equal to the average breakthrough time and can be obtained graphically as illustrated in figure 3. Using the step displacement, the retardation factor follows from:

$$
\begin{equation*}
R=v \bar{t} / L \tag{14}
\end{equation*}
$$

A very useful concept in BTC-analysis of a step input is that of column holdup (4). The column holdup, H, can be defined as:

$$
\begin{equation*}
H=\frac{v}{L} \int_{0}^{\infty}\left(1-\frac{C}{C_{0}}\right) d t \tag{15}
\end{equation*}
$$

where C is the concentration of the displacing solute in the effluent. According to Eq. (15), H is the total amount of resident solute exiting the column. In case the column is saturated with the displacing solute $(t \rightarrow \infty), H$ is the total amount of solute that was present in the column at $t=0$.

PULSE

FIG. 3. Determination of the mean breakthrough time based on BTC's with step and pulse type input.

The column holdup is obtained rather easily from BTC data. The relationship between H and R can be established from known analytical solutions of the $A D E$. For conditions given by Eq. (6), the following expressions were found (24):

$$
R= \begin{cases}H & (\text { first-type }) \tag{16}\\ H(1+(D / v L))^{-1} & (\text { third-type })\end{cases}
$$

Determination of Transport Parameters with the Moment Method
The last method to be discussed for determining transport parameters is the moment method, which is applicable to BTC's in response to a pulse feed. The p-th time moment, m_{p}, of a concentration distribution $C(x, t)$, at a given location, is given by:

$$
\begin{equation*}
m_{p}(x)=\int_{0}^{\infty} t^{p} C(x, t) d t \quad p=0,1,2, \ldots \tag{17}
\end{equation*}
$$

The first, second, third, and fourth moments of the concentration distribution can be used to characterize the mean, variance, skewness and kurtosis, respectively, of the BTC. Moments can also be used to characterize spatial distributions of the concentration (8). From the time moments one can obtain absolute moments, defined by:

$$
\begin{equation*}
\mu_{p}^{\prime}(x)=\frac{m_{p}(x)}{m_{0}(x)}=\int_{0}^{\infty} t^{p} C(x, t) d t / \int_{0}^{\infty} C(x, t) d t \tag{18}
\end{equation*}
$$

and central moments, defined by:

$$
\begin{equation*}
\mu_{p}(x)=\frac{1}{m_{0}(x)} \int_{0}^{\infty}\left(t-\mu_{1}^{\prime}(x)\right)^{p} C(x, t) d t \tag{19}
\end{equation*}
$$

Since the ADE was used to describe transport, we are particularly interested in the use of the moment method to characterize advective and dispersive transport.

The first absolute moment, $\mu_{1}^{\prime}(x)$, represents the mean breakthrough time for the pulse at column position x. As was already discussed, the ratio of the mean residence times of solute and solvent in the columns can be used to determine an effective value for R. For an arbitrary pulse in a column with length L, one can formally write:

$$
\begin{equation*}
\mathrm{R}=\frac{\left(\mu_{1}^{\prime}(\mathrm{L})-\mu_{1}^{\prime}(0)\right)_{\text {solute }}}{\left(\mu_{1}^{\prime}(\mathrm{L})-\mu_{1}^{\prime}(0)\right)_{\text {solvent }}} \tag{20}
\end{equation*}
$$

which is a more general expression than Eq. (13). According to figure 2, $\mu_{1}^{\prime}(0)=t_{0} / 2$ for both the solvent and the solute for a pulse input. Furthermore, the mean residence time for the solvent is determined by the average pore water velocity; the denominator of Eq. (20) is therefore equal to L / v. At this point the only unknown in Eq. (20) is $\mu_{1}^{\prime}(\mathrm{L})$, which can be obtained with the BTC using Eq. (17) and (18).

It is convenient to obtain the BTC as a function of dimensionless time T (the number of pore volumes leached through the column), in which case the p-th moment is defined as:

$$
\begin{equation*}
M_{p}=\int_{0}^{\infty} T^{p} C(x, T) d T \quad p=0,1,2, \ldots \tag{21}
\end{equation*}
$$

Replacing m_{p} by M_{p}, the following expression for R can be found according to Eqs. (18) and (20):

$$
\begin{equation*}
R=\frac{M_{1}}{M_{0}}-\frac{T_{0}}{2} \tag{22}
\end{equation*}
$$

where the pulse duration is now expressed as T_{0} pore volumes.
The second central moment, $\mu_{2}(x)$, is a measure of the average pulse spread relative to the mean breakthrough time, $\mu_{1}^{\prime}(x)$:

$$
\begin{equation*}
\mu_{2}(x)=\frac{1}{m_{0}} \int_{0}^{\infty}\left(t-\mu_{1}^{\prime}\right)^{2} C(x, t) d t \tag{23}
\end{equation*}
$$

Application of Eq. (17) allows Eq. (23) to be written as

$$
\begin{equation*}
\mu_{2}(x)=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \tag{24}
\end{equation*}
$$

The question then arises how experimentally determined moments of the BTC can be used to quantify the transport parameters D^{*} and v^{*} (and
hence R). The answer lies in the determination of moments based on the theoretical solutions of the transport equation. For instance, for a Dirac type of initial condition in an infinite medium the solution of the ADE, assuming Fickian dispersion, can be found with the help of Eq. (2-6) of Crank (5). Substituting the solution into Eq. (17) and evaluating the appropriate integrals leads to the following theoretical expressions:

$$
\begin{align*}
& \mu_{1}^{\prime}(x)=\frac{x R}{v}+\frac{2 D R}{v^{2}} \tag{25-a}\\
& \mu_{2}(x)=\frac{2 D x R^{2}}{v^{3}}+8\left[\frac{D R}{v^{2}}\right]^{2} \tag{25-b}
\end{align*}
$$

Equating these theoretical expressions for $\mu_{1}^{\prime}(x)$ and $\mu_{2}(x)$ with their experimental values, obtained from the BTC with the use of Eq. (18) and (24), enables the subsequent determination of R and D for a known value of v. The determination is facilitated if the BTC is determined at two positions, x_{1} and x_{2}, in the medium. The retardation and spreading between these points can be characterized by:

$$
\begin{align*}
& \mu_{1}^{\prime}\left(x_{2}\right)-\mu_{1}^{\prime}\left(x_{1}\right)=\left(x_{2}-x_{1}\right) \frac{R}{v} \tag{26-a}\\
& \mu_{2}\left(x_{2}\right)-\mu_{2}\left(x_{1}\right)=\left(x_{2}-x_{1}\right) \frac{2 D R^{2}}{v^{3}} \tag{26-b}
\end{align*}
$$

The value for R is obtained from Eq. (26-a), whereas the value for D follows from Eq. (26-b) using this R value.

However, in many cases the determination of moments by substituting the appropriate solution for $C(x, t)$ into Eq. (17) is not a feasible approach. In the next section, a relatively simple method to determine time moments will therefore be discussed.

Theoretical Determination of Moments According to Aris

Aris (3) showed how time moments can be determined from a solution for the concentration in the Laplace domain, $\overline{\mathrm{C}}(\mathrm{x}, \mathrm{s})$. For a theoretical BTC in the Laplace domain, the p -th moment of the concentration distribution is given by:

$$
\begin{equation*}
m_{p}(x)=(-1)^{p} \lim _{s \rightarrow 0}\left[\frac{d^{p}}{d s} \bar{C}(x, s)\right] \quad p=0,1,2, \ldots \tag{27}
\end{equation*}
$$

The solution $\bar{C}(x, s)$ depends on the mathematical model used to describe transport. This model is not necessarily restricted to the ADE. Because it is generally easier to obtain $\bar{C}(x, s)$ than $C(x, t)$, the use of moments is convenient to determine transport parameters for more complicated transport models (e.g., 21). By equating a sufficient number of experimentally determined moments obtained from a particular BTC using Eq. (17) to theoretical moments obtained according to Eq. (27), the transport parameter values of the chosen mathematical model can be determined.

We will consider the two inlet conditions (6-b) and (6-c) for a homogeneous medium and for a medium consisting of two layers with a well defined interface at $x=L_{1}$. Formulation of the problem and details of the solution procedure are presented in Appendix A, while the analytical solutions are given in table 1. The first layer of the two-layer medium has the same properties as the homogeneous one-layer medium. Although it was assumed that $R=1$, the analysis can be extended to reactive solutes by using $v^{*}(=v / R)$ and $D^{*}(=D / R)$ instead of v and D. With these solutions, time moments were determined according to Eq. (27), as well as absolute moments according to Eq. (18) and central
moments according to Eq. (19).
Table 1. Solutions of the ADE in the Laplace Domain for a One- and a Two-layer System with a First- and Third-type Inlet Condition

Case	Layer	Condition	Solution
A	1	first	$\bar{f} \exp \left(\lambda_{1} x\right)$
B	1	third	$\frac{v_{1} \bar{f}}{v_{1}-D_{1} \lambda_{2}} \exp \left(\lambda_{1} x\right)$
C	2	first	$\bar{f} \exp \left(\lambda_{1} L_{1}+\lambda_{2}\left(x-L_{1}\right)\right)$
D	2	third	$\frac{\theta_{1}}{\theta_{2}} \frac{\bar{v}_{1} f}{v_{2}-D_{2} \mu_{2}} \exp \left(\lambda_{1} L_{1}+\lambda_{2}\left(x-L_{1}\right)\right)$

\bar{f}, λ_{1} and λ_{2} are defined in Appendix A and the subscripts 1 and 2 denote first and second layers, respectively.

The procedure to determine these time moments is briefly outlined in Appendix B, while the resulting expressions for moments up to order three are presented in Appendix C. We will discuss the effects of the inlet condition and layering on R and D in terms of these results.

The time moments most commonly used in BTC analysis are μ_{1}^{\prime} and μ_{2} (10). The expressions for μ_{1}^{\prime} and μ_{2} for the four cases listed in table 1 are given in table 2.

The effect of the inlet condition can be evaluated by comparing case A and B :

$$
\begin{gathered}
\text { Breakthrough time : }\left(\mu_{1}^{\prime}\right)_{B}-\left(\mu_{1}^{\prime}\right)_{A}=\frac{D_{1}}{v_{1}^{2}} \\
\text { Spreading : }\left(\mu_{2}\right)_{B}-\left(\mu_{2}\right)_{A}=3 \frac{D_{1}^{2}}{v_{1}^{4}}
\end{gathered}
$$

Table 2. Expressions for μ_{1}^{\prime} and μ_{2} for Transport in a Oneand a Two-layer ${ }^{1}$ Medium ${ }^{2}$ Subject to a First- and a Third-type Condition

case	μ_{1}^{\prime}	μ_{2}
A	$\frac{t_{o}}{2}+\frac{x}{v_{1}}$	$\frac{t_{o}^{2}}{12}+2 \frac{x D_{1}}{v_{1}^{3}}$
B	$\frac{t_{o}}{2}+\frac{x}{v_{1}}+\frac{D_{1}}{v_{1}^{2}}$	$\frac{t_{0}^{2}}{12}+2 \frac{x D_{1}}{v_{1}^{3}}+3 \frac{D_{1}^{2}}{v_{1}^{4}}$
C	$\frac{t_{0}}{2}+\frac{L_{1}}{v_{1}}+\frac{x-L_{1}}{v_{2}}$	$\frac{\mathrm{t}_{\mathrm{o}}^{2}}{12}+2 \frac{\mathrm{~L}_{1} \mathrm{D}_{1}}{\mathrm{v}_{1}^{3}}+2 \frac{\left(\mathrm{x}-\mathrm{L}_{1}\right) \mathrm{D}_{2}}{\mathrm{v}_{2}^{3}}$
D	$\frac{t_{0}}{2}+\frac{L_{1}}{v_{1}}+\frac{x-L_{1}}{v_{2}}+\frac{D_{2}}{v_{2}^{2}}$	$\frac{t_{0}^{2}}{12}+2 \frac{L_{1} D_{1}}{v_{1}^{3}}+2 \frac{\left(x-L_{1}\right) D_{2}}{v_{2}^{3}}+3 \frac{D_{2}^{2}}{v_{2}^{4}}$

It appears that breakthrough time and spreading increase for a third-type condition compared to a first-type condition. This will be referred to as the "inlet effect."

The effect of layering will be evaluated by comparing case B and D, i.e., for a third-type condition, assuming that $v_{1}=v_{2}$. At the interface we'll let x approach L_{1} from $x>L_{1}$, i.e., $\lim _{\downarrow} L_{1}$ Comparing the first absolute moment and the second central moment for case B and D we get:

$$
\begin{aligned}
& \text { Breakthrough time : }\left(\mu_{1}^{\prime}\right)_{D}-\left(\mu_{1}^{\prime}\right)_{B}=\frac{1}{v^{2}}\left(D_{2}-D_{1}\right)=\lim _{\mathrm{x}_{\downarrow} \mathrm{L}_{1}}^{\lim }\left[\left(\mu_{1}^{\prime}\right)_{\mathrm{D}}-\left(\mu_{1}^{\prime}\right)_{\mathrm{B}}\right] \\
& \text { Spreading : } \quad\left(\mu_{2}\right)_{D}-\left(\mu_{2}\right)_{B}=\frac{2\left(x-L_{1}\right)}{v^{3}}\left(D_{2}-D_{1}\right)+\frac{3}{v^{4}}\left(D_{2}^{2}-D_{1}^{2}\right) \\
& \lim _{x_{\downarrow} L_{1}}\left[\left(\mu_{2}\right)_{D}-\left(\mu_{2}\right)_{B}\right]=\frac{3}{v^{4}}\left(D_{2}^{2}-D_{1}^{2}\right)
\end{aligned}
$$

The difference in μ_{1}^{\prime}, indicative for the effect of layering on the breakthrough time, can be viewed as the inlet effect for layer two, D_{2} / v_{2}^{2}, minus the inlet effect for layer one, D_{1} / v_{1}^{2}. As soon as the pulse enters layer two, the contribution of the inlet effect for layer one will disappear. The breakthrough time in the two-layer medium can therefore be derived from the breakthrough times in two homogeneous media which have the same properties as the two layers. The fact that an interface is present does not influence the breakthrough time. To investigate whether layering introduces additional spreading, a similar approach can be followed. Differences in μ_{2} for the one- and two-layer medium are caused by the "inlet effect", $3 D^{2} / v^{4}$. It appears that there is no particular "interface effect", the inlet effect for the first layer is substituted by an inlet effect for the second layer at the interface.

As mentioned earlier, theoretical moments can be used to determine transport parameters. These moments depend on the physical model chosen to describe solute transport. The expressions in Appendix C were based on the $A D E$, applicable to equilibrium transport with a constant R value, but other models could be used as well. Additional transport parameters, for more complicated transport models, can also be determined using theoretical moments and experimental data. It should finally be noted that expressions for these moments also depend on the mathematical model, i.e., the conditions at the interface, chosen to describe solute transport.

MATERIALS AND METHODS

Four types of studies were conducted to study the problems outlined in the introduction. First, a pilot study was carried out with homogeneous soils to get acquainted with experimental procedures and to evaluate the reliability of various techniques. Second, step-type displacement experiments were carried out in layered soils with binary exchange. The third and fourth study involved pulse-type displacement for a binary system (different cations and anions) and a ternary system (three different cations) in a homogeneous soil.

The experimental setup is illustrated in figure 4. Cylindrical plexiglass columns of 15 or 30 cm length, with an internal diameter of 6 cm , were used for the displacement studies. The plexiglass cylinders were enclosed by plexiglass endcaps. A piece of cheese cloth was placed in each end cap to prevent loss of soil during the experiments. Each column was carefully packed with air dried soil that had first been passed through a $2-\mathrm{mm}$ sieve and subsequently through another sieve to obtain the desired size fraction. Soil types and their taxonomic classification are listed in table 3. All soils are subsoils, which were collected at Alabama Agricultural Experiment Station research units. The dry soil weight and volume for each column were determined

Table 3. Classification of Soils

Soil series	Family description
Dothan	Fine-loamy, siliceous, thermic Plinthic Paleudults
Wickham	Fine-loamy, mixed, thermic Typic Hapleudults
Savannah	Fine-loamy, siliceous, thermic Typic Fragiudults
Lucedale	Fine-loamy, siliceous, thermic Rhodic Paleudults
Troup	Loamy, siliceous, thermic Grossarenic Paleudults

FIG.4. Schematic of experimental setup.
gravimetrically to determine porosity, ε, and dry bulk density, ρ_{b}. The soil was then slowly saturated from the bottom with water containing a specific solute with concentration C_{0}. In the pilot study, a constant head device (Mariotte bottle) was used to apply the solution. However, substantial variations in flow rate occurred. The Mariotte bottle device was, therefore, replaced with a Masterflex constant volume pump (Cole-Parmer, Chicago, Illinois) in all later studies.

After saturating the soil from the bottom and establishing steady outflow, the columns were inverted to obtain vertical downward flow. Solute concentrations of the effluent and, occasionally, of the eluent were monitored to verify whether or not the soil was saturated with the particular solute. Upon saturation with the resident solute, the input line was switched, at time $t=0$, to the reservoir containing the displacing solute(s). It is noted that the volume of solution in the lines was kept at a minimum. Effluent solutions were collected in test tubes by means of a fraction collector (Buchler, Fort Lee, New Jersey). No tubing was used at the column outlet. For the pulse-type displacement, the supply line was switched back to the original solution at time t_{0}. At the end of each experiment, the weights of the (saturated) soil column and air dry soil were determined to obtain effective values for the volumetric water content and the pore volume. The flow rate during the experiment was determined gravimetrically at regular time intervals. Various solutes were used in the experiments, namely Ca, Na, or K as cations and Cl or Br as anions. Ca and K concentrations were determined with the ICAP, whereas Na concentrations were determined with flame emission spectrophotometry. The Cl and Br concentrations were determined with the HPLC.

RESULTS AND DISCUSSION

Pilot Study

BTC's for the pilot study are shown in figures 5 to 10 , with the experimental conditions given in table 4. In the figures, DBD and VWC denote ρ_{b} and θ. Al figures show the dimensionless concentration as a function of dimensionless time (T=vt/L). The first two experiments involved the displacement of a $0.1 \mathrm{M} \mathrm{CaCl}_{2}$ solution from a Troup soil by solute free water. The BTC's are rather steep and symmetrical. Breakthrough of the front for $C / C_{0}=0.5$ occurred after sligthly more than one pore volume, indicating that some of the $C a$ was present as an "adsorbed" phase.

Table 4. Experimental Conditions for Solute Displacement During Pilot Study

Experiment \#	Soil	$\begin{gathered} \text { Size } \\ \text { fraction } \end{gathered}$	Solute		ρ_{b}	θ	v	PV
			Res.	Dis.				
		$\mu \mathrm{m}$			$\mathrm{g} \mathrm{cm}^{-3}$		$\mathrm{cm} \mathrm{d}{ }^{-1}$	cm^{3}
1	Troup	250-500	CaCl_{2}	-	1.91	0.28	1304.6	175
2	Troup	250-500	CaCl_{2}	-	1.92	0.28	1208.2	173
3	Lucedale	<840	CaCl_{2}	CaBr_{2}	1.58	0.40	17.8	251
4	Lucedale	<840	CaCl_{2}	CaBr_{2}	1.59	0.40	67.8	249
5	Wickham	<500	CaCl_{2}	CaBr_{2}	1.43	0.46	8.61	286
6	Wickham	500-1000	CaCl_{2}	CaBr_{2}	1.29	0.52	262.7	321

$\mathrm{L}=30.6 \mathrm{~cm}$.
Res. and Dis. denote resident and displacing solute, respectively, and $P V$ is pore volume.

FIG.5. BTC \#1: Ca curve for Troup soil.

FIG.6. BTC \#2: Ca curve for Troup soil.

FIG.7. BTC \#3: Br and Cl curves for Lucedale soil.

FIG.8. $\mathrm{BTC} \# 4: \mathrm{Br}$ and Cl curves for Lucedale soil.

FIG.9. BTC \#5: Br and Cl curves for Wickham soil.

FIG. 10. BTC \#6: Br and Cl curves for Wickham soil.

Figures 7 to 10 show the results for the displacement of 0.01 M CaCl_{2} by $0.01 \mathrm{M} \mathrm{CaBr}_{2}$. Both Cl and Br concentrations in the effluent were determined. The BTC's were not symmetrical about $C / C_{0}=0.5$ for the Lucedale soil, suggesting that non-equilibrium conditions existed. The Wickham soil exhibits a more symmetric front, particularly at the lower value for v (figure 9). For these experiments, breakthrough generally occurred before one pore volume had passed, indicating the possibility of anion exclusion. However, variations in flow rate were observed, which affected the reliability of the number of pore volumes actually leached through the column. As mentioned earlier, a constant volume pump was used in later studies and the outflow rate was determined at frequent intervals.

The transport parameters for experiments 1 to 6 were first determined with some of the methods obtained from the literature (i.e., based on Eq. (7)). Table 5 contains the results obtained using Eq. (8),

Table 5. Determination of Dispersion Coefficients According to Fried and Combarnous (7)

Experiment $\#$	Solute	$\mathrm{t}_{0.16}$	$\mathrm{t}_{\mathrm{o}} .84$	v	D
		d	d	$\mathrm{cm} \mathrm{d}^{-1}$	$\mathrm{~cm}^{2} \mathrm{~d}^{-1}$
1	Ca	0.025	0.029	1304	104.1
2	Ca	0.026	0.030	1208	70.7
3	Cl	0.928	2.647	17.8	76.7
	Br	0.865	2.690	17.8	90.4
4	Cl	0.230	0.668	67.8	303.4
	Br	0.225	0.693	67.8	338.5
5	Cl	2.772	4.514	8.61	7.87
	Br	2.914	4.371	8.61	5.14
6	Cl	0.089	0.204	262.7	712.9
	Br	0.088	0.176	262.7	483.4

Table 6. Determination of Dispersion Coefficients Using inverfc $\left(2 C_{e}\right)=\alpha \ln T+\beta \dagger$

Experiment $\#$	Solute	α	P	D	$\mathrm{C}_{\mathrm{e}}(\mathrm{P})$	R
					$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	
1	Ca	-9.640	370.7	107.6	0.50	1.12
2	Ca	-9.589	366.8	100.5	0.50	1.12
3	Cl	1.322	5.99	90.9	0.50	0.92
	Br	-1.267	5.43	100.5	0.50	0.83
4	Cl	1.333	6.11	339.7	0.50	0.83
	Br	-1.405	6.90	300.8	0.50	0.83
5	Cl	2.746	29.2	9.03	0.49	1.05
	Br	-3.295	42.4	6.21	0.48	1.00
6	Cl	1.710	10.7	751.5	0.50	1.11
	Br	-2.132	17.2	468.3	0.50	1.04

[^0]whereas table 6 shows the results derived using Eq. (12). The slope α was determined by plotting $C_{e}=C / C_{0}$ as a function of $\ln T$ on probability paper.

To determine transport parameters via curve fitting, the concentrations of resident and displacing anions were expressed as $\left(C_{0}-C\right) / C_{0}$ and C / C_{o}, respectively. The input files, containing the BTC's, for these experiments as well as all later experiments are listed in Appendix D. Table 7 contains parameters obtained with the program CXTFIT assuming equilibrium and physical non-equilibrium conditions. Comparing the results obtained with the methods based on Eq. (7) and the results from CXTFIT, it appears that D determined by the first method (table 5), and D and R determined by the second method (table 6), are of the same magnitude as D and R determined by the curve fitting procedure assuming physical equilibrium (table 7). Insight into

Table 7. Determination of Transport Parameters Using CXTFIT (13)

\#		CDM*	Holdup		Equilibrium		Non-equilibrium				
	olut		H	R	D	R	$\theta_{\text {mo }}$	$\theta_{\text {im }}$	α	D	R
		$\mathrm{cm}^{2} \mathrm{~d}^{-1}$					d^{-1}			$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	
1	Ca	r	1. 158	1.155	105.4	1.127	0.28	0.00	1620	97.5	1.121
				1.158	105.3	1.130	0.28	0.00	2630	97.4	1.124
2	Ca	f		1.210	98.0	1.125	0.28	0.00	1863	89.0	1.118
			1.213	1.213	97.9	1.128	0.27	0.01	4.09	57.4	1.131
3	Cl	r	0.983	0.851	88.9	0.878	0.20	0.20	0.38	2.65	1.030
				0.983	84.5	1.026	0.34	0.06	24.9	87.3	1.046
	Br	r	0.936	0.823	78.6	0.817	0.24	0.16	0.26	8.25	0.943
		f		0.936	75.0	0.938	0.40	0.00	∞	70.4	0.901
4	Cl	r	0.931	0.795	377.0	0.839	0.21	0.29	1.52	73.7	0.955
		f		0.931	354.8	0.996	0.22	0.28	1.49	85.5	0.989
	Br	r	0.935	0.814	328.0	0.820	0.17	0.23	2.26	0.96	0.946
		f		0.935	309.5	0.952	0.17	0.23	2.26	0.99	0.947
5	Cl	r	1.035	1.002	8.71	1.034	0.46	0.00	∞	8.04	1.016
				1.035	8.57	1.068	0.00	0.46	4.43	0.63	1.060
	Br	r	1.033	1.010	6.13	0.998	0.46	0.00	∞	5.76	0.981
		f		1.033	6.06	1.021	0.00	0.46	33.0	5.00	1.019
6	Cl	r	1.220	1.123	719.1	1.108	0.45	0.07	0.49	496.2	1.208
				1.220	694.9	1.209	0.34	0.18	∞	703.9	1.216
	Br	r	1.133	1.067	508.5	1.051	0.52	0.00	∞	470.0	1.026
				1.133	495.6	1.118	0.52	0.00	∞	495.6	1.118

\ddagger Concentration Detection Mode: r=resident, $f=f l u x$-averaged.
\# is experiment number.
the nature of the exchange process can be gained from examining the solute retardation. For the Troup soil (\#1 and 2), R is slightly over 1, indicating that only a minor part of the displaced Ca was adsorbed, as would be expected for the high initial solute concentration (0.1 M) and sandy soil texture. For the Lucedale soil (\#3 and 4) R<1, implying that anion exclusion occurred. In contrast, some retardation of the anion took place for the Wickham soil (\#5 and 6), possibly due to adsorption by Fe-oxides.

In examining the equilibrium versus non-equilibrium results (table 7), it should be noted that the values for D according to the equilibrium model are generally higher than those based on the non-equilibrium model. This supports the idea that part of the spreading can be explained on the basis of non-equilibrium.

It seems reasonable to assume that transport parameters determined for Cl and Br by the same model should be approximately equal for a given soil column if the anions are non-reactive. However, especially for experiment 4, very different D values were found for Cl and Br using the non-equilibrium model. The values for $\theta_{\text {mo }}$ and $\theta_{i m}$ also show considerable differences. Experiment 6 can serve as an example; if Cl is the tracer, the model predicts the existence of both mobile and immobile regions in the liquid phase, whereas $\theta_{i m}=0$ for Br . These discrepancies may have been caused by poor initial estimates of the transport parameters in the program CXTFIT and the high number of unknowns (i.e., five), which can create uniqueness problems. For the equilibrium model, the values for D are very much the same for Cl and Br . It appears that fitting data with the non-equilibrium model does not necessarily provide reliable parameters. The equilibrium model was, therefore, used in the remaining part of this study, although non-equilibrium conditions might have existed in some cases.

The holdup, according to Eq. (15), was determined from the BTC using the trapezoidal rule. In a number of cases, the BTC was extrapolated to asymptotically approach $C / C_{0}=1$ to "ensure" complete displacement. The results are included in table 7. Subsequently, values for R were determined according to Eq. (16), using "equilibrium"
D values for a third-type condition. The values for R based on H correspond roughly to those found by the other methods. The discrepancies between values for R for experiments 3 and 4 , obtained with H using a first- and a third-type condition, can be attributed to the low values of the column Peclet number (cf. Eq. (16)).

Transport in Layered Media with Binary Exchange
The experimental conditions for the displacement studies in layered media are listed in table 8 . The soil materials possessed a wide variety of chemical and physical properties. Note that $\bar{v}, \bar{\theta}$, and $\overline{P V}$ are averaged over all layers. $\overline{\mathrm{PV}}$ and $\overline{\boldsymbol{\theta}}$ were found from the difference in wet and dry weight of the column. The Darcy flux and \bar{v}, assuming steady flow, were obtained by determining the amount of effluent over time.

Table 8. Experimental Conditions for Solute Displacement in Layered Media

Experiment \#	t Soil	Depth	ρ_{b}	ε	$\bar{\theta}$	$\overline{\mathrm{v}}$	$\overline{\mathrm{PV}}$			
		cm	$\mathrm{g} \mathrm{~cm}^{-3}$			$\mathrm{cm} \mathrm{d}{ }^{-1}$	cm^{3}			
11	Troup	0-12.5	1.64	0.38						
	Savannah I	12.5-17.5	1.37	0.48	0.38	132.63	232.7			
	Troup	17.5-30	1.67	0.36						
12	Dothan I	0-15	1.60	0.39	0.334102 .48		201.0			
	Dothan II	15-30	1.29	0.51						
13 L	Troup	$0-15$	1.65	0.38	0.317	140.2	191.4			
	Lucedale II	$15-30$	1.42	0.47						
$\begin{array}{llr} \text { I } & : & <250 \mu \mathrm{~m} . \\ \text { II } & : & 500-840 \mu \mathrm{~m} . \end{array}$										
$\overline{\mathrm{PV}}$ is mean pore volume of combined layers.										
Resident solution : 0.01 M KBr .										
Displacing solution : 0.005 $\mathrm{M} \mathrm{CaBr}_{2}$.										

The resulting BTC's are shown in figures 11 to 13 . The K concentration decreases after a number of pore volumes has passed, indicating that considerable retardation of Ca occurred. These curves appear to be fairly symmetrical; the data were fitted with CXTFIT using the equilibrium model, to determine D and R. The fitted parameters and r^{2}, quantifying correlation between fitted and experimental curves, are given in table 9. It appears that an excellent fit was obtained, yielding values for the transport parameters which were averaged over the layers. This illustrates that curve fitting can produce seemingly reliable values, when in fact no physical basis exists to determine D and R from matching a theoretical (based on a homogeneous soil) with an experimental BTC for a layered medium. Also included in table 9 are values for R based on H using a first- and third-type condition. It should be noted that H is equal to R for a first-type condition. The correspondence between the retardation factors obtained with curve fitting and column holdup is excellent.

Table 9. Determination of Transport Parameters for Step Displacement in Layered Media with CXTFIT and Column Holdup

\#	Solute	$\begin{gathered} \mathrm{D} \dagger \\ {\left[\mathrm{~cm}^{2} \mathrm{~d}^{-1}\right]} \end{gathered}$	$\mathrm{R}+$	r^{2}	$\mathrm{R} \ddagger$ Condition	
					First	Third
11	Ca	57.858	4. 120	0.996	4.136	4.077
	K	60.513	4.088	0.996	4.208	4.145
12	Ca	55.266	10.884	0.998	10.881	10.688
	K	53.667	10.818	0.996	11.072	10.881
13	Ca	21.017	9.220	0.996	9.325	9.278
	K	24.930	9.237	0.994	9.323	9.268

\# Experiment number.

+ CXTFIT.
* Column holdup.

FIG.11. BTC \#11: Ca and K curves for Troup and Savannah soil.

FIG. 12. BTC \#12: Ca and K curves for Dothan soil.

FIG. 13. BTC \#13: Ca and K curves for Troup and Lucedale soil.

The results suggest that the BTC for a layered medium might also be obtained with an equivalent, uniform medium. The layering does not seem to have a particular effect on the effluent concentration. This was already concluded (i.e., page 20 and 21) based on the results of Appendix C, which contain expressions for regular, absolute, and central moments for the cases listed in table 1. Therefore, no further investigations of transport in layered media, e.g., an increase in the number of layers, numerical predictions of the BTC, pulse studies, were initiated.

Transport in Homogeneous Media with Binary Exchange

Simultaneous cation and anion displacement experiments were carried out to investigate the effect of possible changes in CEC during transport and to investigate the influence of non-linear exchange on transport. These investigations were accomplished by temporarily replacing the $0.005 M \mathrm{CaBr}_{2}$ eluent (resident) solution with a 0.01 M NaCl eluent (pulse) during continuous leaching.

The experimental conditions for the binary exchange study are listed in table 10. Values for θ and v are given as average values because they vary along the column and over time, respectively. T_{o} denotes the number of pore volumes at which the input line was switched back to the original solution. Its value was obtained from the gravimetrically determined effluent volumes. The BTC's are shown in figures 14 through 21, the symbols denote experimentally determined points and the solid lines are fitted by eye. From these curves it appears that more spreading takes place for the cations than for the

Table 10. Experimental Conditions for Pulse Displacement with Binary Exchange

Experiment Soil \#		ρ_{b}	ε	$\bar{\theta}$	$\overline{\mathrm{v}}$	PV	t_{0}	T_{0}	L
		g cm			$\mathrm{cm} \mathrm{d}{ }^{-1}$	cm^{3}	d		cm
21	Dothan I	1.15	0.57	0.55	100.2	167.1	0.208	1.416	14.8
22	Dothan II	1.23	0.54	0.48	100.0	151.3	0.208	1.376	15.5
23	Wickham I	1.21	0.54	0.43	128.1	132.3	0.208	1.760	15.1
24	Wickham II	1.29	0.51	0.41	116.5	128.4	0.208	1.584	15.3
25	Troup	1.67	0.37	0.31	146.0	93.0	0.347	3.414	14.8
26	Lucedale I	1.32	0.54	0.49	74.1	154.0	0.347	1. 165	15.5
27	Lucedale II	1.26	0.52	0.51	91.5	156.2	0.347	2.080	15.1
28	Savannah I	1.42	0.47	0.42	118.8	130.1	0.347	2.595	15.3

Resident solution: $0.005 \mathrm{M} \mathrm{CaBr}_{2}$
Pulse solution : 0.01 M NaCl.
I : <250 $\mu \mathrm{m}$.
II : 500-840 $\mu \mathrm{m}$.

FIG. 14. $\mathrm{BTC} \# 21: \mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Dothan I.

FIG. 15. BTC \#22: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Dothan II.

BTC \#23 Wickham 1

FIG. 16. BTC \#23: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Wickham I.

FIG. 17. BTC \#24: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Wickham II.

FIG. 18. BTC \#25: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Troup soil.

FIG. 19. BTC \#26: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Lucedale I .

FIG. 20. BTC \#27: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Lucedale II.

FIG.21. BTC \#28: $\mathrm{Ca}, \mathrm{Na}, \mathrm{Br}$, and Cl curves for Savannah I.
anions. The peak values of C / C_{o} are higher for the anions than for the cations. Both cations and anions were retarded, except for the displacement in the Troup soil (figure 18). However, the anions were retarded to a lesser extent than the cations. In a number of cases tailing was observed (e.g., figures 14 and 17).

For further analysis, the $\mathrm{C}(\mathrm{T}) / \mathrm{C}_{\mathrm{o}}$ relationship was used for Na and Cl and the $1-\mathrm{C}(\mathrm{T}) / \mathrm{C}_{0}$ relationship for Ca and Br . Values for D and R were obtained with the program CXTFIT for a flux-averaged concentration assuming equilibrium conditions. The results are listed in table 11. Although the values for r^{2} are smaller than for the experiments involving layered media, they still show a good correlation between experimentally determined and fitted curves. The "inverse" Ca pulse generally exhibits somewhat more retardation than the Na pulse, presumably because more Ca than Na is sorbed by the soil. The differences in R values (table 11) for the anions are rather small, with the exception of experiment 21 where non-equilibrium conditions seemed to exist. The larger values of D for the cations than the anions (except experiment 21) confirm the impression that more spreading occurred for the cations.

It should be noted that for binary systems with constant solute concentrations in the liquid and the adsorbed phases, the concentrations of pulse and resident solutions complement each other. Theoretically, the values for D and R obtained from the displacing and resident solute concentration curves (anions or cations) should, therefore, be equal. This is not always the case, because of non-equilibrium conditions and changes in apparent exchange capacity.

Table 11. Determination of Transport Parameters with Binary Exchange Using CXTFIT

$\underset{\#}{\text { Experiment }}$	Solute	D	R	r^{2}	AEC
		$\mathrm{cm}^{2} \mathrm{~d}^{-1}$			$\mathrm{mol}_{\mathrm{c}} / \mathrm{kg}$
21	Ca	781.56	2.596	0.968	
	Na	518.43	1.914	0.898	
	Br	1326.5	2.343	0.943	0.642
	Cl	543.75	1.459	0.927	0.220
22	Ca	64.48	1.708	0.967	
	Na	60.05	1.587	0.964	
	Br	39.72	1.285	0.977	0.111
	Cl	29.68	1.245	0.983	0.096
23	Ca	71.32	3.041	0.967	
	Na	70.48	2.881	0.985	
	Br	21.37	1.590	0.973	0.210
	Cl	32.61	1.585	0.962	0.208
24	Ca	120.08	3.013	0.988	
	Na	102.65	2.884	0.952	
	Br	93.42	1.389	0.981	0.124
	Cl	87.31	1.487	0.982	0.155
25	Ca	23.53	1.055	0.994	
	Na	48.46	0.963	0.952	
	Br	17.60	1.008	0.991	0.001
	Cl	20.26	1.011	0.948	0.002
26	Ca	58.41	2.804	0.964	
	Na	77.51	2.525	0.972	
	Br	36.18	1.406	0.964	0.151
	Cl	32.22	1.364	0.977	0. 135
27	Ca	50.65	3.474	0.918	
	Na	75.91	3.425	0.914	
	Br	6.19	1.173	0.983	0.070
	Cl	13.06	1.196	0.962	0.079
28	Ca	124.69	2.229	0.943	
	Na	128.11	2.227	0.948	
	Br	91.73	1.003	0.953	0.001
	Cl	87.38	0.9942	0.937	-0.002

Second, the moment method was used to analyze the BTC's and determine values for D and R (table 12). Moments up to order three were determined via numerical integration of the BTC according to Eq.(21). The necessary integrations were performed with the trapezoidal rule

Table 12. Determination of Transport Parameters with Binary Exchange Using Time Moments

\# Solute		M_{1}	M_{2}	M_{3}	μ_{1}^{\prime}	μ_{2}	R	D	PE \dagger
					d	d^{2}		$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	\%
21 Ca	1.420	3.956	14.573	65.245	0.411	0.0546	2.078	401.4	0.28
Na	1.416	4.095	15.702	72.694	0.427	0.0595	2.184	398.3	-
Br	1.338	3.451	14.086	83.286	0.381	0.0845	1.871	785.4	5.51
Cl	1.496	3.073	7.807	23.052	0.303	0.0218	1.346	341.3	5.65
RMD \ddagger	2.72	1.64	9.87	21.60				ENE§ =	=0.04\%
22 Ca	1.373	3. 463	10.565	43.084	0.390	0.0319	1.834	271.4	0.22
Na	1.595	3.692	9.634	29.433	0.358	0.0163	1.627	154.7	15.92
Br	1.430	3.190	8.743	32.169	0.345	0.0272	1.543	319.7	3.92
Cl	1.249	2.412	4.895	10.389	0.299	0.00454	1.243	19.51	19.23
RMD[\%]	0.73	4.30	14.24	30.79				ENE=	=5.12\%
23 Ca	1.830	7.436	37.225	256.06	0.479	0.0532	3.183	340.7	3.98
Na	1.983	8.202	38.691	213.07	0.487	0.0334	3.256	195.6	12.67
Br	2.090	6.627	27.514	155.57	0.374	0.0432	2.291	525.1	18.75
Cl	1.604	4.042	10.883	30.884	0.297	0.00603	1.640	62.8	8.86
RMD[\%]	4.44	6.91	13.32	25.58				ENE=	=1.59\%
24 Ca	1.640	6.602	30.983	172.91	0.528	0.0462	3.234	210.4	3.54
Na	1.584	6.587	31.945	179.33	0.545	0.0494	3.366	208.9	-
Br	1.593	3.900	10.886	35.057	0.321	0.0143	1.656	201.5	0.57
Cl	1.735	4.117	10.674	30.090	0.311	0.00896	1.581	110.7	9.53
RMD[\%]	1.31	0.95	0.89	0.35				ENE=	=1.59\%
25 C	3.825	14.531	95.293	763.61	0.385	0.1077	2.093	2344	12.13
	3.319	9.204	29.064	100.27	0.281	0.0110	1.068	89.0	2.70
	3.387	9.372	29.572	103.59	0.280	0.0110	1.062	90.0	0.70
	3.391	9.869	34.218	138.76	0.295	0.0166	1.205	475.4	0.59
RMD[\%]	3.61	10.46	32.73	56.78				ENE=	=5. 26%
26 CaNaBr	1.820	6.651	26.920	121.42	0.745	0.0598	2.822	82.0	9.31
	1.801	5.924	21.180	81.185	0.671	0.0391	2.457	63.2	8.17
	1.534	3.734	9.817	27.707	0.497	0.0197	1.602	49.4	7.88
	1.469	3.278	7.678	18.767	0.455	0.0103	1.399	1.78	11.77
RMD[\%]	1.27	6.04	12.01	19.74				ENE=	=9.33\%
27 Ca	2.201	9.439	43.470	211.90	0.708	0.0370	3.249	64.8	5.82
Na	2.077	8.696	38.775	181.95	0.691	0.0310	3.147	53.7	0.14
Br	2.268	5.704	17.221	63.429	0.567	0.0345	1.475	285.3	9.04
Cl	1.909	4.231	10.009	24.993	0.575	0.0090	1.176	-41.0	8.22
RMD[\%] 5	5.71	7.89	10.88	14.18				ENE=	=1.19\%

Table 12. Determination of Transport Parameters with Binary Exchange Using Time Moments

\# Solute M_{0}	M_{1}	M_{2}	M_{3}	μ_{1}^{\prime}	μ_{2}	R	D	PE
				d	d^{2}		$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	\%
28 Ca 2.611	8.939	36.662	192.45	0.440	0.0384	2.126	343.9	0.62
Na 2.524	8.082	28.449	107.33	0.412	0.0168	1.905	102.2	2.74
Br 2.499	5.888	15.411	43.896	0.303	0.0102	1.059	8.1	3.70
Cl 2.338	5.295	13.178	35.240	0.291	0.0084	0.967	-92.6	9.90
RMD[\%] 2.49	5. 14	11.15	24.75				ENE	. 99%
$+\left[\left\|\mathrm{C}_{0} \mathrm{~T}_{0}-\mathrm{M}_{0}\right\| / \mathrm{C}_{0} \mathrm{~T}_{0}\right] \times 100 \%$.								
$\ddagger(0.5 / \bar{M})\left[\left\|0.5\left(\mathrm{M}_{\mathrm{Ca}}+\mathrm{M}_{\mathrm{Br}}\right)-\bar{M}\right\|+\left\|0.5\left(\mathrm{M}_{\mathrm{Na}}+\mathrm{M}_{\mathrm{Cl}}\right)-\overline{\mathrm{M}}\right\|\right] \times 100 \%$ and								
$\overline{\mathrm{M}}=0.25\left(\mathrm{M}_{\mathrm{Ca}}+\mathrm{M}_{\mathrm{Br}}+\mathrm{M}_{\mathrm{Na}}+\mathrm{M}_{\mathrm{Cl}}\right)$.								
$\S\left(\left\|\left(\overline{\mathrm{M}_{0}}\right)_{\text {cat }}-\overline{\mathrm{M}_{0}}\right\|, \overline{\mathrm{M}_{0}}\right] \times 100 \%$.								

because the increments in T were not constant. The results (table 12) include the values of several measures to evaluate the accuracy of the experimentally determined BTC's. These measures, indicated as PE, RMD and ENE, will be discussed first, after which attention will be focused on the determination of D and R.

For each solute, a measure of the difference between the amount of solute in the applied eluent pulse ($\mathrm{C}_{\mathrm{O}} \mathrm{T}_{\mathrm{O}}$) and in the observed effluent pulse (M_{0}) was calculated. This measure, the pulse error PE, is an indication of the reliability of the experiments due to errors in analytical and experimental techniques and incomplete displacement. Its value was less than 10% on average, which was considered acceptable.

Differences in values of the various moments of the BTC's for an individual solute pulse $\left(\mathrm{CaBr}_{2}\right.$ or NaCl$)$ compared to the average of that
moment for both pulses are given by the relative mean deviation, RMD. The higher order moments exhibit greater differences, presumably because of the inability to accurately determine the tail of the BTC, resulting in larger values for RMD. The contribution of the tail to the higher moments is relatively large. Errors in parameter estimation as a result of experimental errors in the tailing portion of the BTC are a well known disadvantage of the moment method although some modifications can be made to overcome this problem (25).

The electroneutrality principle was evaluated by the relative error, ENE, which was defined based on the difference between the average mass of the cation pulse, $\left(M_{0, C a}{ }^{+M_{0, N a}}\right) / 2$, and the average mass of the total solute pulse $\left(\bar{M}_{0}\right),\left(M_{0, C a}{ }^{+M_{0}}, \mathrm{Na}^{+M_{0}}, \mathrm{Cl}+\mathrm{M}_{\mathrm{O}, \mathrm{Br}}\right) / 4$, for the effluent. This relative error, ENE, is generally smaller than $P E$, because it is averaged over two ionic pulses and does not account for differences between the eluent and effluent pulse.

The sums of cations and anions were determined for the various BTC's to investigate the hypothesis that the effective CEC is higher for a Ca medium than for a Na medium. In such an event, the Na pulse would decrease the cation equivalents in the adsorbed phase and, therefore, temporarily increase the cation equivalents in the liquid phase. Because of the electroneutrality principle, the anion equivalents in the liquid phase should change correspondingly. Although a slight increase in the total amount of cations in the effluent was observed in some instances during the occurrence of the Na peak, the low values for PE and ENE did not warrant the conclusion that the CEC
had changed. Such changes might not have happened anyhow, because the pulse type displacement is of relatively short duration and the soil is not saturated with the cation applied in the pulse. The BTC's, and previously measured exchange curves (12), indicate that the majority of adsorption sites in a $\mathrm{Na} / \mathrm{Ca}$ system are always occupied by Ca during these experiments, whereas changes in CEC presumably take place only when highly favorably adsorbed Ca ions are actually displaced. Further investigations are needed to pursue this issue, preferably by determining solute concentrations in the adsorbed and liquid phase as a function of distance rather than a function of time at the outlet.

Using moments allowed us to evaluate BTC's and calculate values for D and R. First values for R in the binary systems (table 12) were obtained according to Eq. (22). Second, values for μ_{1}^{\prime} (mean breakthrough time) and μ_{2} (average pulse spread) were determined according to Eq. (18) and (24), respectively, where we used T instead of t (Eq. (9)). These variables are useful to characterize the BTC. Third, the value of the dispersion coefficient was determined by relating D and μ_{2}. Upon substitution of v^{*} and D^{*} for v and D in the expression for μ_{2} in Appendix C, the following theoretical expression was obtained:

$$
\begin{equation*}
\mu_{2}(L)=\frac{t_{o}^{2}}{12}+2 \frac{L D R^{2}}{v^{3}} \tag{28}
\end{equation*}
$$

where the "first-type" expression was used because the values of the concentration are flux-averaged. This equation was solved for D, the results of which are also included in table 12 . The values for D vary widely and include even some negative values. They do not seem very reliable based on the BTC's shown in figures 14 to 21. This was
attributed to the small values of the experimentally determined $\mu_{2}(\mathrm{~L})$ as a result of the small amounts of solute spreading that occurred in the soil columns. The part of the expression for μ_{2} which is independent of position, the inlet effect, $\mathrm{t}_{\mathrm{o}}^{2} / 12$, dominates and no accurate prediction for D can therefore be made.

It should be noted that the more common approach is to obtain BTC's at two positions, x_{1} and $x_{2}(10) . \mathrm{D}$ is then determined according to Eq. (26-b), which is the proper way to determine dispersion inside the porous medium, particularly if boundary effects contribute significantly to solute spreading (as in, e.g., short laboratory columns).

Finally, an attempt was made to numerically predict the BTC's for cation displacement using experimentally determined exchange isotherms (12) and values for D determined from the simultaneous anion displacement experiments using CXTFIT (table 11). Because the dependency of the CEC value on the Ca and Na concentration was not known, the CEC was assumed to be constant. Its value was determined from the average R value for $C a$ and $N a$, presented in table 12 , and ρ_{b} and θ, listed in table 10 . Use of an average R value resulted in one effective value for the CEC, i.e., the exchange was assumed to be linear (20) over the observed jump in solute concentration. Eq. (2) and (3) were solved numerically with a Crank-Nicolson scheme for a third-type condition. Values for $\partial \mathrm{S} / \partial \mathrm{C}$ were obtained from Appendix E.

The predicted curves, along with the measured solute concentrations, are shown in figure 22 . The curves match the observed

BTC's with varying degrees of success. The average position of the pulse is generally predicted fairly adequate as is the shape of the pulse; Ca desorption is accompanied by spreading and Ca adsorption accompanied by steepening of the front. In some instances, numerical oscillations were encountered because of large'variations in D^{*} and v^{*}, depending on the solute concentration in the liquid phase. Furthermore, for some of the isotherms, $\partial S / \partial C$ changed sign during passage of the front. A scheme with a variable time step might have improved the results. Also, some of the exchange isotherms were probably not highly accurate, resulting in poor predictions of $\partial S / \partial C$, and hence R according to Eq. (3). However, most of the exchange isotherms seem to characterize the exchange process reasonably well and could succesfully be used to predict the BTC's numerically.

Values for the anion exchange capacity, AEC, were obtained by using an average R value for $C l$ and Br from table 11 and values for ρ_{b} and θ from table 10, i.e., similarly as for the CEC. It appears that anion adsorption can generally not be ignored for these soil types. Since values for the AEC are strongly dependent on pH , it should be noted that the pH values of the effluent were generally close to that of the $0.005 M \mathrm{CaBr}_{2}$ resident solution.

BTC \#25 Troup

FIG.22. Numerically predicted (solid lines) and experimentally determined curves (symbols) for cation displacement in binary systems.

Transport in Homogeneous Media with Ternary Exchange

To further investigate the effect of non-linear cation exchange, BTC's were determined using three different cations. A pulse containing a favorably (K) and an unfavorably. (Na) exchanging solute was applied to soils containing Ca as the resident cation. The experimental conditions for these displacement studies are listed in table 13; the same soil columns as for experiments $21-24$ were used.

Table 13. Experimental Conditions for Solute Displacement with Ternary Exchange

$\underset{\#}{\text { Experiment Soil }}$	ρ_{b}	ε	$\bar{\theta}$	$\overline{\mathrm{v}}$	PV	to	To	L
	$\mathrm{g} \mathrm{cm}^{-3}$			$\mathrm{cm} \mathrm{d}{ }^{-1}$	cm^{3}	d		cm
31 Dothan I	1.15	0.57	0.55	99.24	167.1	0.434	2.838	14.8
32 Dothan II	1.23	0.53	0.48	98.25	151.3	0.434	2.699	15.4
33 Wickham I	1.36	0.49	0.47	98.55	145.8	0.306	1.999	15.1
34 Wickham II	1.29	0.51	0.45	120.0	138.4	0.306	2.392	15.3
Resident solution: 0.005 M CaBr 2.								
Pulse solution : 0.005 M KBr and 0.005 M NaBr .								
I : $<250 \mu \mathrm{~m}$.								
II : 500-840								

The BTC's for these experiments are shown in figures 23 to 26 . For all curves, Na appeared earlier in the effluent than K , because the latter is favorably adsorbed. With the exception of maybe Dothan II (figure 24), considerable tailing seemed to occur for K. Tailing was less pronounced for Na . Based on this, and in light of the anion displacement experiments which showed fairly symmetrical BTC's, we conclude that tailing is primarily due to non-linear exchange and not to physical non-equilibrium. The magnitude and location of the peaks

FIG. 23. BTC \#31: Ca, Na, and K curves for Dothan I.

FIG.24. BTC \#32: Ca, K, and Na curves for Dothan II.

FIG.25. BTC \#33: Ca, K, and Na curves for Wickham I.

FIG. 26. BTC \#34: Ca, K, and K curves for Wickham II.
of the BTC's vary substantially, depending on the exchange process and hydrodynamic dispersion. As for binary exchange, the Ca curve can be viewed as complementary to the BTC for the other cations in the pulse, viz. Na and K . In this ternary system the complementary Ca pulse cannot be used for BTC analysis.

The transport parameters D and R were determined with the program CXTFIT (table 14). The input files are given in Appendix D. In order to use the program, C_{0} was chosen to be equal to the eluent concentration of the solute, thus, C / C_{0} varies between 0 and 1 . The differences in R for the three cations are substantial. The retardation is largest for K and smallest for Na . Ignoring the results for the complementary Ca pulse, it appears that the values for D vary rather widely from soil to soil. The D values for the binary systems showed considerably less variation. This might be attributed to the effects of non-linear

Table 14. Determination of Transport Parameters with Ternary Exchange Using CXTFIT

Experiment $\#$	Solute	D	R	r^{2}
		$\mathrm{~cm}^{2} \mathrm{~d}^{-1}$		
31	Ca	1315.8	3.978	0.973
	K	639.72	5.489	0.902
	Na	840.46	1.642	0.993
32	Ca	481.14	3.602	0.705
	K	24.82	4.323	0.935
33	Na	44.79	1.325	0.982
	Ca	1645.9	4.475	0.980
	K	607.03	4.425	0.811
34	Na	1965.7	1.906	0.958
	Ca	1022.6	5.886	0.577
	K	81.84	11.022	0.836
	Na	42.73	2.286	0.986

exchange, which occurred to a larger extent in the ternary experiments than in the binary experiments (using the same columns).

Next, the moments of the BTC's were determined (table 15), as in the section on binary exchange, to obtain values for D and R and to get an impression of the reliability of the experimental BTC's. The errors PE and RMD appear to be of similar magnitude as for the binary systems (table 12). The relatively large amount of K not recovered in experiments 31 and 33 , indicated by the high values of the relative pulse error, PE, was partly caused by incomplete displacement (tailing). The values for R are roughly the same as those obtained with CXTFIT (table 14). However, less outlying values for D were obtained with the moment method than with CXTFIT (cf. \#32 and 33).

It should be noted that a general advantage of the method of moments is that the moments can be used to (explicitly) characterize experimental concentration distributions in time or space, independent of any model. Next, they can be used to determine parameters for a certain model. With the curve fitting technique, experimental data are directly fitted to the theoretical solution of a particular model. This does not give as much flexibility to determine transport parameters and provides a less objective basis to characterize the concentration distribution. Some disadvantages of the moment method are that the method is not very accurate if the BTC exhibits substantial tailing and that the BTC needs to be determined at more than one position in the direction of flow for best results.

Table 15. Determination of Transport Parameters with Ternary Exchange Using Time Moments

\# Solute M_{0}	M_{1}	M_{2}	M_{3}	μ_{1}^{\prime}	μ_{2}	R	D	PE +
				d	d^{2}		$\mathrm{cm}^{2} \mathrm{~d}^{-1}$	\%
31 Ca 2.669	11.449	67.786	506. 14	0.640	0.1556	2.871	560.4	5.95
K 1.236	7.116	50.458	423.35	0.859	0.1707	4.338	272.0	12.90
Na 1.432	4.240	16.416	78.77	0.442	0.0600	1.542	615.2	0.91
RMD \ddagger - 0.02	0. 41	0. 68	-					
32 Ca 2.615	10.554	49.563	257.13	0.633	0.0655	2.686	212.6	3.11
K 1.360	7.845	48.101	316.95	0.904	0.0514	4.419	56.3	0.78
Na 1.394	4.631	22.113	150.41	0.521	0.1186	1.973	814.0	3.30
RMD[\%] 2. 59	8.35	17.24	29. 01					
33 Ca 1.577	5.043	21.236	110.04	0.490	0.0761	2. 198	448.0	21.11
K 0.689	2.900	15.564	104.14	0.645	0.1144	3.209	328.1	31.07
Na 0.940	2.300	9.071	54.54	0.375	0.0860	1.447	1184	5.98
RMD[\%] 1. 62	1.53	7.41	18.10					
34 Ca 2.202	15.217	143.16	1597.87	0.881	0.2806	5.715	471.7	7.94
K 0.840	9.404	109.12	1306.00	1.427	0.0743	9.999	37.6	9.77
Na 1.296	4.669	18.304	78.46	0. 459	0.0186	2. 407	105.2	8.36
RMD[\%] 1.52	3.91	5.82	7.16					

$+\left[\left|\mathrm{C}_{\mathrm{O}} \mathrm{T}_{0}-\mathrm{M}_{0}\right| / \mathrm{C}_{\mathrm{O}} \mathrm{T}_{\mathrm{o}}\right] \times 100 \%$.
$\#(0.5 / \overline{\mathrm{M}})\left(\left|\mathrm{M}_{\mathrm{Ca}}-\overline{\mathrm{M}}\right|+\mid \mathrm{M}_{\mathrm{Na}}+\mathrm{M}_{\mathrm{K}}-\overline{\mathrm{M}}\right) \times 100 \%$ and $\overline{\mathrm{M}}=0.5\left(\mathrm{M}_{\mathrm{Ca}}+\mathrm{M}_{\mathrm{K}}+\mathrm{M}_{\mathrm{Na}}\right)$.

The utility of D and R values obtained with the moment method was investigated by numerically solving the transport equation and using the values listed in table 15. The resulting BTC's are shown in figure 27, along with curves by using fitted D and R values obtained with CXTFIT. Since we used a constant value for R, the prediction assumes linear exchange. Furthermore, the assumption was made that equilibrium conditions existed and that the solute level in liquid and adsorbed phases was constant. Obviously, this precludes a close fit with experimental data. However, the position of the peak is predicted

FIG.27. K and Na curves predicted with the moment method (solid lines) and curve fitting (dashed lines), and experimental curves (symbols) for displacement with ternary exchange.
fairly accurately, along with the time interval for which solute appears in the effluent. Although the curve fitting program is designed to yield D and R values, which produce the "best" fit to the experimental data, a slightly better fit was occasionally obtained with moment generated D and R values (experiments 31 and 33). As stated earlier, the main advantage of the moment method is the quantification of the BTC independent of a particular transport model and its use in theoretical analysis of solute transport. The moment method also seemed more suitable for our ternary system (\#31-34), for which the BTC's exhibited considerably more spreading, due to exchange, and the inlet effect was less important, than for the binary system (\#21-28). The importance of solute spreading relative to column inlet effects should grow with increasingly longer columns for linearly exchanging and non-reactive solutes, making the moment method more suitable to estimate transport parameters for longer columns.

The effect of non-linear exchange on spreading and tailing during transport with ternary exchange was also investigated using theoretical moments. Values of these moments were calculated in such a way that the effects of non-linear exchange were eliminated as much as possible. Therefore, we used D values obtained from anion displacement experiments in the same soil columns (table 11), adjusted for differences in v between the binary and ternary exchange experiments, and values for R from table 15. The R values and the adjusted D values are listed in table 16 , along with the expressions for and the numerical values of the theoretical moments M_{1}, M_{2} and M_{3}. It was

Table 16. Theoretical Moments Based on Linear Exchange and Their Contribution to Experimental Time Moments for BTC's with Ternary Exchange ${ }^{*}$

\#	Solut	e D	R	M_{0}	M_{1}	M_{2}	M_{3}	μ_{1}^{\prime}	NLRT ${ }^{+}$	μ_{2}	NLSP§
		$\mathrm{cm}^{2} \mathrm{~d}^{-1}$						d	\%	d^{2}	\%
31	Ca	544.0	2.871	2.910	15.684	118.33	957.42	0.804	-20.4	0.258	-39.7
	K	544.0	4.338	1.455	10.767	112.25	1629. 1	1.104	-22.2	0.497	-65.7
	Na	544.0	1.542	1.455	5.192	35.209	133.98	0.532	-17.0	0.255	-76.5
32	Ca	34.09	2.686	2.769	11.438	49.961	576.49	0.647	2.2	0.025	165.2
	K	34.09	4.419	1.384	8.172	50.401	1479.49	0.926	2.4	0.037	38.2
	Na	34.09	1.973	1.384	4.710	17. 162	219.28	0.533	-2.3	0.021	475.7
33	Ca	20.8	2.198	1.997	6.445	22.202	310.00	0.494	-0.8	0.017	347.7
	K	20.8	3.209	0.999	4.246	19.175	86.35	0.651	-0.9	0.027	326.9
	Na	20.8	1.447	0.999	2.462	6.563	18.18	0.378	-0.8	0.011	661.1
34	Ca	87.7	5.715	2.400	17.251	133.18	1102.6	0.916	-3.9	0.063	345.2
	K	87.7	9.999	1.200	14.012	176.48	2396.0	1.489	-4.2	0.174	-57.3
	Na	87.7	2.407	1.200	4.467	17.911	76.75	0.475	-3.4	0.017	6.2

+ Theoretical moments according to Appendix C (third-type condition, layer 1):

$$
\begin{aligned}
M_{1}= & \frac{v^{2}}{L^{2}} C_{o}\left[\frac{t_{o}^{2}}{2}+R t_{o}\left[\frac{D}{v^{2}}+\frac{x}{v}\right)\right] \\
M_{2}= & \frac{v^{3}}{L^{3}} C_{o}\left[\frac{t_{o}^{3}}{3}+R t_{o}^{2}\left[\frac{D}{v^{2}}+\frac{x}{v}\right]+R^{2} t_{o}\left[4 \frac{D^{2}}{v^{4}}+4 \frac{x D}{v^{3}}+\frac{x^{2}}{v^{2}}\right)\right] \\
M_{3}= & \frac{v^{4}}{L^{4}} C_{o}\left[\frac{t_{0}^{4}}{4}+R t_{o}^{3}\left[\frac{D}{v^{2}}+\frac{x}{v}\right]+R^{2} \frac{t_{o}^{2}}{2}\left[12 \frac{D^{2}}{v^{4}}+12 \frac{x D}{v^{3}}+3 \frac{x^{2}}{v^{2}}\right]+\right. \\
& \left.\quad+R^{3} t_{o}\left[30 \frac{D^{3}}{v^{6}}+30 \frac{x D^{2}}{v^{2}}+9 \frac{x^{2} D}{v^{2}}+\frac{x^{3}}{v^{3}}\right]\right]
\end{aligned}
$$

$\#$ NLRT $=\left[\frac{\left(\mu_{1}^{\prime}\right)_{\text {experimental }}-\left(\mu_{1}^{\prime}\right)_{\text {theoretical }}}{\left(\mu_{1}^{\prime}\right)_{\text {theoretical }}} \times 100 \%\right]$
\S NLSP $=\left[\frac{\left(\mu_{2}\right)_{\text {experimental }}-\left(\mu_{2}\right)_{\text {theoretical }}}{\left(\mu_{2}\right)_{\text {theoretical }}} \times 100 \%\right]$
assumed that anion exchange obeyed a linear isotherm, although deviations from linear exchange would have a minimal effect on the value of D because the $A E C$ is relatively small.

Table 16 also contains values for the first absolute moment, μ_{1}^{\prime}, and the second central moment, μ_{2}. To assess the influence of non-linear exchange on breakthrough time and spreading, the relative differences between theoretical (table 16) and experimental (table 15) values for μ_{1}^{\prime} and μ_{2} are included as NLRT and NLSP, respectively. One can view this as the error made by obtaining D and R under the assumption of linear exchange. Positive values of NLRT and NLSP indicate that the experimentally obtained parameter value overestimates the "correct" theoretical value.

The results for experiment 31 are not very reliable because of the high values for D, which were attributed to non-equilibrium conditions, possibly because of poor packing (cf. figure 14). For the other experiments, no large deviations between experimental and theoretical values were found for μ_{1}^{\prime}, as indicated by the low values for NLRT. Apparently, the difference in mean residence time for linear and non-linear exchange is small. However, substantial differences in values for μ_{2} occurred, as pointed out by the high values for NLSP. The theoretical values for μ_{2} do not account for non-linear exchange, whereas the experimental μ_{2} values (implicitly) include all mechanisms contributing to spreading. Because the soil in each column was fairly uniform, this difference was attributed to non-linear exchange. The non-linearity increased solute spreading for all cations with the
exception of K during experiment 34 . The μ_{2} values for $N a$ were most affected, with the exception of experiment 34 . A similar comparison can be made for D. The adjusted (theoretical) values for D during ternary exchange represent only hydrodynamic dispersion (table 16), whereas the experimental values for D account for both hydrodynamic dispersion and non-linear exchange (table 15).

The influence of non-linear exchange on R was already demonstrated in tables 14 and 15. Because K is adsorbed more favorably than Na , it is retarded two to four times more than Na . It seems that this is the most important effect non-linear exchange has on solute transport. This effect becomes more pronounced when the equivalents of solute applied as a pulse are small relative to the total equivalents in the adsorbed and liquid phases.

SUMMARY AND CONCLUSIONS

Breakthrough curves were determined in four types of experiments, namely (1) a pilot study involving step displacement in homogeneous soil columns of 30 cm length, (2) step displacement in layered soils, (3) pulse displacement in soil columns of 15 cm length with binary exchange, and (4) pulse displacement in soil columns of 15 cm length for ternary exchange. Results of the pilot study indicated that approximative methods based on Eq.(7) yield fairly reliable values for D and R and that curve fitting may produce erroneous results if too many unknowns need to be fitted (e.g., non-equilibrium model). The step displacement experiments in layered media yielded symmetrical and steep BTC's.

Changes in total solute concentration in the effluent during simultaneous anion and cation displacement were insufficient to conclude that the CEC varied during the application of a Na pulse to a Ca soil. Transport parameters determined from anion displacement were used to study the effect of non-linear exchange on cation displacement. Ternary displacement experiments demonstrated differences in retardation and dispersion due to non-linear exchange. The Na pulse moved two to four times faster through the soil than the K pulse.

The determination of R was illustrated graphically for pulse and step input. Calculated results were presented using column holdup and the ratio of residence time of solute and solvent. Statistical moments with respect to time were used to analyze the BTC's for pulse displacement. Theoretical moments, derived from the ADE for four cases, seem to be very useful to determine parameters for arbitrary transport models. The theoretical moments showed that more retardation and dispersion occurred for a third-type condition than for a first-type condition. Layering only affects spreading and dispersion by changes in magnitude of the transport parameters. No interface effects occur, however, and the layered medium is actually a series of homogeneous media.

The theoretical moments were also used to interpret experimental data. The determination of R yielded reliable results, whereas the determination of D was inaccurate for binary systems. The reliability can be improved by using longer columns or by determining BTC's at more than one position. The values of the (theoretical) moments were
determined based on transport parameters obtained from anion displacement. Comparison of theoretical and experimental moments for cation displacement helped quantify the effect of non-linear exchange on dispersion and retardation. In particular, the value for R, which determines the residence time, was affected by non-linear exchange. If solute movement needs to be simulated, it is worthwhile to first obtain reliable values for R under similar circumstances. However, values for D are affected as well by non-linear exchange: D values obtained from experiments involving ternary (non-linear) exchange were up to ten times larger than their corresponding values when hydrodynamic dispersion was singled out as the sole process determining D.

The following guideline is offered for quick prediction of solute movement during equilibrium conditions, beginning with the most important steps. First, determine the R values for the various solutes. If BTC's are available, this determinatioin is conveniently done with the methods outlined in the section on the graphical determination of R. Otherwise, values for the CEC, determined under conditions similar to those for which transport needs to be predicted, can be used. Second, the value for D must be determined to quantify hydrodynamic dispersion. This determination can be done relatively fast with non-reactive solutes, using approximative methods or with curve fitting. If more time is available, experiments involving both non-reactive and reactive solutes are to be preferred to determine D with the BTC for the non-reactive solute, and an effective value for R with the reactive solute. If the BTC is determined at two positions or
exhibits sufficient spreading, as for our ternary systems, the data are conveniently analyzed with the method of moments. Third, for reactive solutes, the exchange isotherm should be determined if a good prediction of R is needed and sufficient time is available. This last step is not needed for trace amounts of solute or for incomplete exchange.

LITERATURE CITED

(1) AGNEESSENS, J. -P., P. DREZE, and L. SINE. 1978. Modélisation de la Migration d'Eléments dans les Sols. II. Détermination du Coefficient de Dispersion et de la Porosité et de la Porosité Effiace. Pedologie 27:373-388.
(2) ARIS, R. 1956. On the Dispersion of a Solute in a Fluid Flowing through a Tube. Proc. Roy. Soc. A. 235:67-77.
(3) -. 1958. On the Dispersion of Linear Kinematic Waves. Proc. Roy. Soc. A. 235:268-277.
(4) BARRY, D.A. and G. SPOSITO. 1988. Application of the ConvectionDispersion Model to Solute Transport in Finite Soil Columns. Soil Sci. Soc. Amer. J. 52:3-9.
(5) CRANK, J. 1975. The Mathematics of Diffusion. Clarendon Press. Oxford.
(6) DAGAN, G. and E. BRESLER. 1983. Unsaturated Flow in Spatially Variable Fields. 1. Derivation of Models of Infiltration and Redistribution. Water Resour. Res. 19: 413-420.
(7) FRIED, J. J. and M. A. COMBARNOUS. 1971. Dispersion in Porous Media. In Adv. Hydrosci. 9: 169-282. Academic Press, New York.
(8) GOLTZ, M. N. and P.V. ROBERTS. 1987. Using the Method of Moments to Analyze Three-dimensional Diffusion-limited Solute Transport from Temporal and Spatial Perspectives. Water Resour. Res. 23: 1575-1585.
(9) GÜVEN, O., F.J. MOLZ, and J.G. MELVILLE. 1984. An Analysis of Dispersion in a Stratified Aquifer. Water Resour. Res. 20: 1337-1354.
(10) HAN, N. -W., J. BHAKTA, and R.G. CARBONELL. 1985. Longitudinal and Lateral Dispersion in Packed Beds: Effects of Column Length and Particle Size Distribution. AIChE J. 31:277-288.
(11) JURY, W.A., G. SPOSITO, and R.E. WHITE. 1986. A Transfer Function Model of Solute Transport through Soil. 1. Fundamental Concepts. Water Resour. Res. 22:243-247.
(12) LEIJ, F.J. and J.H. DANE. 1989. Evaluation of Methods to Determine CEC and Exchange Isotherms. Ala. Agr. Exp. Sta. Dept. of Agronomy and Soils Series 134.
(13) PARKER, J.C. and M.TH. VAN GENUCHTEN. 1984. Determining Transport Parameters from Laboratory and Field Tracer Experiments. Va. Agr. Exp. Stat. Bull. 84-3.
(14) PERSAUD, N. and P.J. WIERENGA. 1982. A Differential Model for Onedimensional Cation Transport in Discrete Homo-ionic Ion-exchange media. Soil Sci. Soc. Amer. J. 46: 482-490.
(15) RAO, P.S.C., J.M. DAVIDSON, R.E. JESSUP, and H.M. SELIM. 1979. Evaluation of Conceptual Models for Describing Non-equilibrium Adsorption-desorption of Pesticides During Steady-flow in Soils. Soil Sci. Soc. Amer. J. 43:22-28.
(16) RAZAVI, M. -S., B.J. MCCOY, and R.G: CARBONELL. 1978. Moment Theory of Breakthrough Curves for Fixed-bed Adsorbers and Reactors. Chem. Eng. J. 16:211-222.
(17) ROSE, D. A. and J. B. PASSIOURA. 1971. The Analysis of Experiments on Hydrodynamic Dispersion. Soil Sci. 111:252-257.
(18) SHAMIR, U.Y. and D.R.F. HARLEMAN. 1967. Dispersion in Layered Porous Media. J. Hydraul. Div., Proc. ASCE 93(HY5):237-260.
(19) SKOPP, J. 1985. Analysis of Solute Movement in Structured Soils. p. 220-228. In J. Bouma and P.A.C. Raats (Eds.). Proc. ISSS Symp. Water and Solute Movement in Heavy Clay Soils. ILRI. Wageningen, the Netherlands.
(20) VALOCCHI, A.J. 1984. Describing the Transport of Ion-exchanging Contaminants Using an Effective K_{d} Approach. Water Resour. Res. 20: 499-503.
(21) . 1985. Validity of the Local Equilibrium Assumption for Modeling Sorbing Solute Transport through Homogeneous Soils. Water Resour. 21:808-820.
(22) VAN GENUCHTEN, M. TH. and W. A. JURY. 1987. Processes in Unsaturated Flow and Transport Modeling. Rev. of Geophys. 25: 135-140.
(23) and J.C. PARKER. 1984. Boundary Conditions for Displacement Experiments through Short Laboratory Soil Columns. Soil Sci. Soc Amer. J. 48:703-708.
(24) _- and P.J. WIERENGA. 1986. Solute Dispersion Coefficients and Retardation Factors. In Methods of Soil Analysis I. Physical and Mineralogical Methods. Soil Sci. Amer. Madison, Wis.
(25) WAKAO, N and S. KAGUEI. 1982. Heat and Mass Transfer in Packed Beds. Gordon and Breach. New York.

APPENDIX A

Analytical Solution of the ADE for a Pulse Input with a First- and Third-type Condition in a Two-layer Medium

1. First layer

It is assumed that the first layer is in effect semi-infinite and homogeneous with respect to the flow and transport properties. The transport problem for which we seek a solution can be stated as follows:

$$
\begin{align*}
& \frac{\partial C}{\partial t}=D_{1} \frac{\partial^{2} C}{\partial x^{2}}-v_{1} \frac{\partial C}{\partial x} \tag{A-1}\\
& t>0 \quad 0<x<L_{1} \\
& C(x, 0)=0 \\
& C(0, t)=f(t) \\
& \text { (first-type) } \\
& t>0 \\
& 0<x<L_{1} \\
& {\left[-D_{1} \frac{\partial C}{\partial x}+v_{1} C\right]_{x=0}=v_{1} f(t)(\text { third-type) } \quad t>0} \\
& f(t)=\left\{\begin{array}{lr}
C_{0} & 0<t \leq t_{0} \\
0 & t>t_{0}
\end{array}\right. \\
& \left.\frac{\partial C}{\partial x}\right|_{x \rightarrow \infty}=0 \\
& t>0 \\
& \text { (} \mathrm{A}-2-\mathrm{e} \text {) }
\end{align*}
$$

Solution of Eq. (A-1), subject to Eq. (A-2), can be achieved with the help of Laplace transforms. The transformed equation and boundary conditions are:

$$
\begin{equation*}
\frac{d^{2} \overline{\mathrm{C}}}{d x^{2}}-\frac{v_{1}}{D_{1}} \frac{d \bar{C}}{d x}-\frac{s}{D_{1}} \overline{\mathrm{C}}=0 \quad 0<x<L_{1} \tag{A-3}
\end{equation*}
$$

$\bar{C}(0, s)=\bar{f}(s)$
$\left[-D_{1} \frac{d \bar{C}}{d x}+v_{1} \bar{C}\right]_{x=0}=v_{1} \bar{f}(s)$
$\left.\frac{d \bar{C}}{d x}\right|_{x \rightarrow \infty}=0$
($\mathrm{A}-4-\mathrm{C}$)
where s is the transformation variable and \bar{C} and \bar{f} are given by:

$$
\begin{align*}
& \bar{C}(x, s)=\int_{0}^{\infty} e^{-s t} C(x, t) d t \tag{A-5}\\
& \bar{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t=\frac{C_{0}}{s}\left(1-\exp \left(-s t_{0}\right)\right) \tag{A-6}
\end{align*}
$$

The general solution of the ordinary differential equation, Eq. (A-3), can be written as:

$$
\begin{equation*}
\overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\alpha \exp \left(\lambda_{1}^{+} \mathrm{x}\right)+\beta \exp \left(\lambda_{1}^{-} \mathrm{x}\right) \tag{A-7}
\end{equation*}
$$

where $\lambda_{1}^{ \pm}=\frac{v_{1}}{2 D_{1}} \pm \sqrt{\left[\frac{v_{1}}{2 D_{1}}\right]^{2}+\frac{S}{D_{1}}}$, and α and β are coefficients depending on the boundary conditions. According to Eq. (A-4-c) α is equal to 0 and we denote λ_{1}^{-}as λ_{1}. The use of Eq. (A-4-a) or (A-4-b) allows the evaluation of β :

$$
\begin{array}{ll}
\beta=\bar{f}(s) & \text { (first-type) } \\
\beta=\frac{v_{1} \bar{f}(s)}{\left(v_{1}-D_{1} \lambda_{1}\right)} \quad \text { (third-type) } \tag{A-8-b}
\end{array}
$$

Substitution of these expressions for β into Eq. (A-7) results in the following solutions:

$$
\begin{align*}
& \overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\frac{\mathrm{C}_{0}}{\mathrm{~s}}\left(1-\exp \left(-s t_{0}\right)\right) \exp \left(\lambda_{1} \mathrm{x}\right) \quad \text { (first-type) } \\
& \overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\frac{\mathrm{v}_{1} C_{0}}{\mathrm{~s}} \frac{\left(1-\exp \left(-s t_{0}\right)\right)}{v_{1}-D_{1} \lambda_{1}} \exp \left(\lambda_{1} \mathrm{x}\right) \quad \text { (third-type) } \tag{A-9-b}
\end{align*}
$$

2. Second layer

The solution of the concentration in a (uniform) second layer ($\mathrm{L}<\mathrm{x}<\infty$) is very similar to the solution for a non-layered uniform soil. We assume that the concentration in the first layer ($0<x<L_{1}$) is accurately described with Eq. (A-9-a) and (A-9-b) for a first- and third-type inlet condition, respectively. We wish to solve:

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D_{2} \frac{\partial^{2} C}{\partial x^{2}}-v_{2} \frac{\partial C}{\partial x} \tag{A-10}
\end{equation*}
$$

$t>0 \quad L_{1}<x<\infty$
subject to:

$$
\begin{aligned}
& C(x, 0)=0 \\
& L_{1}<x<\infty \quad(A-11-a) \\
& \left.C\right|_{x_{\downarrow} L_{1}}=\left.C\right|_{x^{\uparrow} L_{1}} \quad \text { (first-type) } \quad t>0 \quad \text { (A-11-b) } \\
& {\left[-\theta_{2} D_{2} \frac{\partial C}{\partial x}+\theta_{2} v_{2} C\right)_{x_{\downarrow} L_{1}}=\left[-\theta_{1} D_{1} \frac{\partial C}{\partial x}+\theta_{1} v_{1} C\right]_{x \uparrow_{1}}} \\
& \text { (third-type) t>0 } \\
& \left.\frac{\partial C}{\partial x}\right|_{x \rightarrow \infty}=0 \quad t>0 \\
& \text { (} \mathrm{A}-11-\mathrm{c} \text {) }
\end{aligned}
$$

The Laplace transform is used in a similar manner as for the non-layered soil to obtain the solution of Eq. (A-10) subject to Eq. (A-11). The transformed equations are:

$$
\begin{array}{ll}
\frac{d^{2} \bar{C}}{d x^{2}}-\frac{v_{2}}{D_{2}} \frac{d \bar{C}}{d x}-\frac{s}{D_{2}} \bar{C}=0 \\
\left.\bar{C}\right|_{x_{\downarrow} L_{1}}=\left.\bar{C}\right|_{x \uparrow_{L}} \quad L_{1}<x<\infty \\
\left(-\theta_{2} D_{2} \frac{d \bar{C}}{d x}+\theta_{2} v_{2} \bar{C}\right]_{x_{\downarrow} L_{1}}=\left[-\theta_{1} D_{1} \frac{d \bar{C}}{d x}+\theta_{1} v_{1} \bar{C}\right]_{x^{\uparrow} L_{1}}
\end{array}
$$

$$
\begin{equation*}
\left.\frac{d \bar{C}}{d x}\right|_{x \rightarrow \infty}=0 \tag{A-13-C}
\end{equation*}
$$

where the concentration at the end of the first layer ($x{ }^{\uparrow} L_{1}$) is given by:

$$
\begin{array}{ll}
\overline{\mathrm{C}}\left(\mathrm{~L}_{1}, s\right)=\bar{f} \exp \left(\lambda_{1} L_{1}\right) & \text { (first-type) } \\
\overline{\mathrm{C}}\left(\mathrm{~L}_{1}, s\right)=\frac{v_{1} \bar{f}}{v_{1}-\mathrm{D}_{1} \lambda_{1}} \exp \left(\lambda_{1} L_{1}\right) & \text { (third-type) } \tag{A-14-b}
\end{array}
$$

The general solution of Eq. (A-12) is:

$$
\begin{equation*}
\overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\alpha \exp \left(\lambda_{2}^{+} \mathrm{x}\right)+\beta \exp \left(\lambda_{2}^{-} \mathrm{x}\right) \tag{A-15}
\end{equation*}
$$

where $\lambda_{2}^{ \pm}=\frac{\mathrm{v}_{2}}{2 \mathrm{D}_{2}} \pm \sqrt{\left[\frac{\mathrm{v}_{2}}{2 \mathrm{D}_{2}}\right]^{2}+\frac{\mathrm{s}}{\mathrm{D}_{2}}}$, and α and β are again coefficients determined by the boundary conditions. From Eq. (A-13-c) we conclude that $\alpha=0$. Eq. (A-13-a) and (A-13-b) are used to evaluate β for a first and third-type condition, respectively:

$$
\begin{array}{ll}
\beta=\bar{f} \exp \left(\left(\lambda_{1}-\lambda_{2}\right) L_{1}\right) & \text { (first-type) } \\
\beta=\frac{\theta_{1}}{\theta_{2}} \frac{v_{1} \bar{f}}{v_{2}-D_{2} \lambda_{2}} \exp \left(\left(\lambda_{1}-\lambda_{2}\right) L_{1}\right) & \text { (third-type) }
\end{array}
$$

where $\lambda_{2}=\lambda_{2}^{-}$. This leads to the following respective solutions:

$$
\begin{array}{ll}
\overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\bar{f} \exp \left(\lambda_{1} L_{1}+\lambda_{2} \xi\right) & \text { (first-type) } \\
\overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\frac{\theta_{1}}{\theta_{2}} \frac{\mathrm{v}_{1} \bar{f}}{\mathrm{v}_{2}-\mathrm{D}_{2} \lambda_{2}} \exp \left(\lambda_{1} \mathrm{~L}_{1}+\lambda_{2} \xi\right) & \text { (third-type) }
\end{array}
$$

$$
(A-17-a)
$$

where $\xi=\mathrm{x}-\mathrm{L}_{1}$.

APPENDIX B

Derivation of Moments Based on Analytical Solutions
of the ADE in the Laplace Domain

The p-th moment of a time dependent concentration distribution, for a fixed position, is defined by:

$$
\begin{equation*}
m_{p}=\int_{0}^{\infty} t^{p} C(x, t) d t \quad p=0,1,2, \ldots \tag{B-1}
\end{equation*}
$$

The concentration distribution, $C(x, t)$, can be determined theoretically or experimentally. However, explicit analytical solutions for $C(x, t)$ are sometimes not readily available. Aris (3) showed how m_{p} can be obtained if a solution, $\bar{C}(x, s)$, in the Laplace domain is known. This solution is obtained rather easily in comparison with the regular solution. According to Aris (3), the p-th moment in the Laplace domain is given by:

$$
\begin{equation*}
m_{p}=(-1)^{p} \lim _{s \rightarrow 0} \frac{d^{p}}{d s}[\bar{C}(x, s)] \tag{B-2}
\end{equation*}
$$

The procedure of differentiation and limitation is rather straightforward, but becomes tedious for the higher moments as noted by Valocchi (21). To illustrate the use of Eq. (B-2), we will determine m_{0} for a non-layered soil using a third-type inlet condition. The solution in the Laplace domain is given by Eq. (A-9-b). From Eq. (B-2) we get $\left(s=0: \lambda_{1}=0\right):$

$$
\begin{equation*}
m_{0}=\lim _{s \rightarrow 0}\left[\frac{v_{1} C_{0}}{s} \frac{\left(1-\exp \left(-s t_{0}\right)\right)}{v_{1}-D_{1} \lambda_{1}} \exp \left(\lambda_{1} x\right)\right]=C_{0} \lim _{s \rightarrow 0}\left[\frac{1-\exp \left(-s t_{0}\right)}{s}\right] \tag{B-3}
\end{equation*}
$$

The indeterminate form is evaluated with l'Hopital's rule. Both numerator and denominator tend to go to 0 if $s \rightarrow 0$. Because the ratio of their derivatives is t_{0} for $s \rightarrow 0$, we have:

$$
\begin{equation*}
m_{0}=C_{0} t_{0} \tag{B-4}
\end{equation*}
$$

The zeroth moment is proportional to the total amount of mass applied during a pulse. The evaluation of moments of higher order is done in a similar manner.

Time Moments m, μ^{\prime}, and μ for BTC's as a Result of a Pulse Input During Steady Flow in a Medium with One or Two Layeres with a First- or Third-type Inlet Conditiont

$$
\begin{aligned}
& m_{0} \quad A \quad C_{0} t_{0} \\
& \text { B } \mathrm{C}_{\mathrm{o}}{ }^{\mathrm{t}} \mathrm{o} \\
& \text { C } \mathrm{C}_{\mathrm{o}} \mathrm{t}_{\mathrm{o}} \\
& \text { D } \mathrm{C}_{\mathrm{o}} \mathrm{t}_{\mathrm{o}} \\
& m_{1} \quad A \quad C_{0}\left[\frac{t_{0}^{2}}{2}+\frac{x}{v_{1}} t_{o}\right] \\
& \text { B } \quad C_{o}\left[\frac{t_{o}^{2}}{2}+t_{o}\left[\frac{D_{1}}{v_{1}^{2}}+\frac{x}{v_{1}}\right)\right] \\
& \text { C } C_{o}\left[\frac{t_{0}^{2}}{2}+t_{o}\left[\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right)\right] \\
& \text { D } \quad C_{o}\left[\frac{\mathrm{t}_{\mathrm{o}}^{2}}{2}+\mathrm{t}_{\mathrm{o}}\left[\frac{\mathrm{D}_{2}}{\mathrm{v}_{2}^{2}}+\frac{\mathrm{L}_{1}}{\mathrm{v}_{1}}+\frac{\xi}{\mathrm{v}_{2}}\right]\right] \\
& \mathrm{m}_{2} \mathrm{~A} \\
& C_{o}\left[\frac{t_{o}^{3}}{3}+t_{o}^{2} \frac{x}{v_{1}}+t_{o}\left[2 \frac{x D_{1}}{v_{1}^{3}}+\frac{x^{2}}{v_{1}^{2}}\right)\right] \\
& \text { B } \\
& \text { C } \\
& \text { D } \\
& C_{o}\left[\frac{t_{o}^{3}}{3}+t_{o}^{2}\left[\frac{D_{2}}{v_{2}^{2}}+\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right]+t_{o}\left\{4 \frac{D_{2}^{2}}{v_{2}^{4}}+2 \frac{D_{2}}{v_{2}^{2}}\left[\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right]+\right.\right. \\
& \left.\left.2 \frac{L_{1} D_{1}}{v_{1}^{3}}+2 \frac{\xi D_{2}}{v_{2}^{3}}+2 \frac{L_{1} \xi}{v_{1} v_{2}}+\frac{L_{1}^{2}}{v_{1}^{2}}+\frac{\xi^{2}}{v_{2}^{2}}\right\}\right]
\end{aligned}
$$

+Cases are listed in table 1.

APPENDIX C. Continued.
$m_{3} \quad A \quad C_{0}\left[\frac{t_{0}^{4}}{4}+t_{0}^{3} \frac{x}{v_{1}}+\frac{t_{o}^{2}}{2}\left[6 \frac{x D_{1}}{v_{1}^{3}}+3 \frac{x^{2}}{v_{1}^{2}}\right]+t_{o}\left(12 \frac{x D_{1}^{2}}{v_{1}^{5}}+6 \frac{x^{2} D_{1}}{v_{1}^{4}}+\frac{x^{3}}{v_{1}^{3}}\right]\right]$

$$
\begin{aligned}
& C_{o}\left[\frac{t_{o}^{4}}{4}+t_{o}^{3}\left[\frac{D_{1}}{v_{1}^{2}}+\frac{x}{v_{1}}\right]+\frac{t_{o}^{2}}{2}\left[12 \frac{D_{1}^{2}}{v_{1}^{4}}+12 \frac{x D_{1}}{v_{1}^{3}}+3 \frac{x^{2}}{v_{1}^{2}}\right]+\right. \\
& \left.+t_{0}\left[30 \frac{D_{1}^{3}}{v_{1}^{6}}+30 \frac{D_{1}^{2}}{v_{1}^{5}}+9 \frac{x^{2} D_{1}}{v_{1}^{4}}+\frac{x^{3}}{v_{1}^{3}}\right)\right]
\end{aligned}
$$

$C \quad C_{o}\left[\frac{t^{4}}{4}+t_{0}^{3}\left(\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right]+\frac{t_{o}^{2}}{2}\left[6 \frac{L_{1} D_{1}}{v_{1}^{3}}+3 \frac{L_{1}^{2}}{v_{2}^{2}}+6 \frac{L_{1} \xi}{v_{1} v_{2}}+3 \frac{\xi^{2}}{v_{2}^{2}}+6 \frac{\xi D_{2}}{v_{2}^{3}}\right]+\right.$
$+t_{0}\left(12 \frac{L_{1} D_{1}^{2}}{v_{1}^{5}}+6 \frac{L_{1}^{2} D_{1}}{v_{1}^{4}}+\frac{L_{1}^{3}}{v_{1}^{3}}+6 \frac{L_{1} \xi D_{1}}{v_{1}^{3} v_{2}}+3 \frac{L_{1}^{2} \xi}{v_{1}^{2} v_{2}}+12 \frac{\xi D_{2}^{2}}{v_{2}^{5}}+6 \frac{\xi^{2} D_{2}}{v_{2}^{4}}+\right.$
$\left.\left.+\frac{\xi^{3}}{v_{2}^{3}}+6 \frac{L_{1} \xi D_{2}}{v_{1} v_{2}^{3}}+3 \frac{L_{1} \xi^{2}}{v_{1} v_{2}^{2}}\right]\right]$
D $\quad C_{0}\left[\frac{t_{0}^{4}}{4}+t_{0}^{3}\left[\frac{D_{2}}{v_{2}^{2}}+\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right]+\frac{t_{o}^{2}}{2}\left[12 \frac{D_{2}^{2}}{v_{2}^{4}}+6 \frac{L_{1} D_{2}}{v_{1} v_{2}^{2}}+12 \frac{\xi D_{2}}{v_{2}^{3}}+\right.\right.$
$\left.6 \frac{L_{1} D_{1}}{v_{1}^{3}}+6 \frac{L_{1} \xi}{v_{1} v_{2}}+3 \frac{L_{1}^{2}}{v_{1}}+3 \frac{\xi^{2}}{v_{2}^{2}}\right\}+t_{0}\left\{30 \frac{D_{2}^{2}}{v_{2}^{6}}+30 \frac{\xi D_{2}^{2}}{v_{2}^{5}}+12 \frac{L_{1} D_{2}^{2}}{v_{1} v_{2}^{4}}+\right.$
$+9 \frac{\xi^{2} D_{2}}{v_{2}^{4}}+12 \frac{L_{1} \xi_{2}}{v_{1} v_{2}^{3}}+\frac{\xi^{3}}{v_{2}^{3}}+6 \frac{L_{1} D_{1} D_{2}}{v_{1}^{3} v_{2}^{2}}+3 \frac{L_{1}^{2} D_{2}}{v_{1}^{2} v_{2}^{2}}+3 \frac{L_{1} \xi^{2}}{v_{1} v_{2}^{2}}+6 \frac{L_{1} \xi D_{1}}{v_{1}^{3} v_{2}}+$
$\left.\left.+3 \frac{L_{1}^{2} \xi}{v_{1}^{2} v_{2}}+\frac{L_{1}^{3}}{v_{1}^{3}}+6 \frac{L_{1}^{2} D_{1}}{v_{1}^{4}}+12 \frac{L_{1} D_{1}^{2}}{v_{1}^{5}}\right\}\right]$

APPENDIX C. Continued.

APPENDIX C. Continued.
C $\quad \frac{t_{o}^{3}}{4}+t_{o}^{2}\left(\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right)+\frac{t_{o}}{2}\left[6 \frac{L_{1} D_{1}}{v_{1}^{3}}+3 \frac{L_{1}^{2}}{v_{1}^{2}}+6 \frac{L_{1} \xi}{v_{1} v_{2}}+3 \frac{\xi^{2}}{v_{2}}+6 \frac{\xi D_{2}}{v_{2}}\right]+$
$+12 \frac{L_{1} D_{1}^{2}}{v_{1}^{5}}+6 \frac{L_{1}^{2} D_{1}}{v_{1}^{4}}+\frac{L_{1}^{3}}{v_{1}^{3}}+6 \frac{L_{1} \xi D_{1}}{v_{1}^{3} v_{2}}+3 \frac{L_{1}^{2} \xi}{v_{1}^{2} v_{2}}+12 \frac{\xi D_{2}^{2}}{v_{2}^{5}}+$
$+6 \frac{\xi^{2} D_{2}}{v_{2}^{4}}+\frac{\xi^{3}}{v_{2}^{3}}+6 \frac{L_{1} \xi D_{2}}{v_{1} v_{2}^{3}}+3 \frac{L_{1} \xi^{2}}{v_{1} v_{2}^{2}}$
D $\quad \frac{t_{o}^{3}}{4}+t_{o}^{2}\left(\frac{D_{2}^{2}}{v_{2}^{2}}+\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right)+\frac{t_{o}}{2}\left(12 \frac{D_{2}^{2}}{v_{2}^{4}}+6 \frac{L_{1} D_{2}}{v_{1} v_{2}^{2}}+12 \frac{\xi D_{2}^{2}}{v_{2}^{3}}+6 \frac{L_{1} D_{1}}{v_{1}^{3}}+\right.$
$\left.+6 \frac{L_{1} \xi}{v_{1} v_{2}}+3 \frac{L_{1}^{2}}{v_{1}^{2}}+3 \frac{\xi^{2}}{v_{2}^{2}}\right)+30 \frac{D_{2}^{3}}{v_{2}^{6}}+30 \frac{\xi D_{2}^{2}}{v_{2}^{5}}+12 \frac{L_{1} D_{2}^{2}}{v_{1} v_{2}^{4}}+9 \frac{\xi^{2} D_{2}}{v_{2}^{4}}+$
$+12 \frac{L_{1} \xi D_{2}}{v_{1} v_{2}^{3}}+\frac{\xi^{3}}{v_{2}^{3}}+6 \frac{L_{1} D_{1} D_{2}}{v_{1}^{3} v_{2}^{2}}+3 \frac{L_{1}^{2} D_{2}}{v_{1}^{2} v_{2}^{2}}+3 \frac{L_{1} \xi^{2}}{v_{1} v_{2}^{2}}+6 \frac{L_{1} \xi D_{1}}{v_{1}^{3} v_{2}}+3 \frac{L_{1}^{2} \xi}{v_{1}^{2} v_{2}}+$
$+\frac{L_{1}^{3}}{v_{1}^{3}}+6 \frac{L_{1}^{2} D_{1}}{v_{1}^{4}}+12 \frac{L_{1} D_{1}^{2}}{v_{1}^{5}}$

APPENDIX C. Continued.

$$
\begin{aligned}
& \begin{array}{lll}
\hline \mu_{1} & \mathrm{~A} & 0
\end{array} \\
& \text { B } 0 \\
& \text { C } 0 \\
& \text { D } 0 \\
& \mu_{2} \quad A \quad \frac{t_{0}^{2}}{12}+2 \frac{x D_{1}}{v_{1}^{3}} \\
& \text { B } \quad \frac{t_{o}^{2}}{12}+3 \frac{D_{1}^{2}}{v_{1}^{4}}+2 \frac{x D_{1}}{v_{1}^{3}} \\
& \text { C } \quad \frac{t_{0}^{2}}{12}+2 \frac{L_{1} D_{1}}{v_{1}^{3}}+2 \frac{\xi D_{2}}{v_{2}^{3}} \\
& \text { D } \frac{t_{o}^{2}}{12}+3 \frac{D_{2}^{2}}{v_{2}^{4}}+2 \frac{L_{1} D_{1}}{v_{1}^{3}}+2 \frac{\xi D_{2}}{v_{2}^{3}} \\
& \mu_{3} A \quad \frac{t_{0}^{3}}{24}+\frac{t_{0}^{2}}{12} \frac{x}{v_{1}}+t_{o}\left[2 \frac{x D_{1}}{v_{1}^{3}}+\frac{x^{2}}{v_{1}^{2}}\right]+12 \frac{\mathrm{xD}_{1}^{2}}{v_{1}^{5}}+2 \frac{x_{1}^{2} D_{1}}{v_{1}^{4}} \\
& \text { B } \quad \frac{t_{o}^{3}}{24}+\frac{t_{o}^{2}}{12}\left(\frac{D_{1}}{v_{1}^{2}}+\frac{x}{v_{1}}\right)+\frac{t_{o}}{2}\left[3 \frac{D_{1}^{2}}{v_{1}^{4}}+2 \frac{x D_{1}}{v_{1}^{3}}\right]+23 \frac{D_{1}^{3}}{v_{1}^{6}}+17 \frac{x D_{1}^{2}}{v_{1}^{5}}+2 \frac{x^{2} D_{1}}{v_{1}^{4}} \\
& \text { C } \quad \frac{t_{o}^{3}}{24}+\frac{t_{o}^{2}}{12}\left(\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right)+t_{o}\left(\frac{L_{1} D_{1}}{v_{1}^{3}}+\frac{\xi D_{2}}{v_{2}^{3}}\right)+12 \frac{L_{1} D_{1}^{2}}{v_{1}^{5}}+2 \frac{L_{1}^{2} D_{1}}{v_{1}^{4}}+ \\
& +2 \frac{\xi L_{1} D_{1}}{v_{2} v_{1}^{3}}+12 \frac{\xi D_{2}^{2}}{v_{2}^{5}}+2 \frac{\xi^{2} D_{2}}{v_{2}^{4}}+2 \frac{L_{1} \xi D_{2}}{v_{1} v_{2}^{3}} \\
& \text { D } \quad \frac{t_{0}^{3}}{24}+\frac{t_{0}^{2}}{12}\left[\frac{D_{2}}{v_{2}^{2}}+\frac{L_{1}}{v_{1}}+\frac{\xi}{v_{2}}\right]+\frac{t_{0}}{2}\left(3 \frac{D_{2}^{2}}{v_{2}^{4}}+2 \frac{\xi D_{2}}{v_{2}^{3}}+2 \frac{L_{1} D_{1}}{v_{1}^{3}}\right]+23 \frac{D_{2}^{2}}{v_{2}^{6}}+ \\
& +17 \frac{\xi D_{2}^{2}}{v_{2}^{5}}+3 \frac{L_{1} D_{2}^{2}}{v_{1} v_{2}^{4}}+3 \frac{\xi^{2} D_{2}}{v_{2}^{4}}+2 \frac{L_{1} \xi D_{2}}{v_{1} v_{2}^{3}}+2 \frac{L_{1} D_{1} D_{2}}{v_{1}^{3} v_{2}^{2}}+\frac{L_{1}^{2} D_{2}}{v_{1}^{2} v_{2}^{2}}+2 \frac{L_{1} \xi D_{1}}{v_{1}^{3} v_{2}}+ \\
& +2 \frac{L_{1}^{2} D_{1}}{v_{1}^{4}}+12 \frac{L_{1} D_{1}^{2}}{v_{1}^{5}}
\end{aligned}
$$

Input Files for the Program CXTFIT Containing the
Experimentally Determined C/C

The first column of each file contains values for C / C_{0}, the second column lists the value of the distance (column length, L) and the third column contains the number of pore volumes, T. Length is expressed in cm and time in days, with the exception of experiments $1-6$ where the time is given in minutes. Further details are provided by Parker and van Genuchten (13).

Experiment 3: Bromide and Chloride

Experiment 4: Bromide and Chloride

Experiment 6: Bromide and Chloride

PBU: DISPLACEMENT of $0.01 \mathrm{M} \mathrm{CAC}^{2}$ $P V=320.59 \mathrm{cn} 3, D B D=1.285 \mathrm{~g} / \mathrm{ca} 3$,		
0.18264	0.1	1.0
0	1	1
0.0	1.0	
0.0	30.6	0.120
0.024	30.6	0.360
0.053	30.6	0.598
0.131	30.6	0.715
0.221	30.6	0.832
0.337	30.6	0.949
0.461	30.6	1.067
0.564	30.6	1.184
0.671	30.6	1.301
0.739	30.6	1.419
0.798	30.6	1.536
0.850	30.6	1.771
0.899	30.6	2.007
0.934	30.6	2.244

Experiment 11: Calcium and Potassium

Experiment 12: Calcium and Potassium

Experiment 13: Calcium and Potassium

	$\frac{1}{2}$	12	$30 \quad 18$	0	THETA 1		$\frac{1}{2}$	1
KBR	REPLACED	BY CABR2 SOIL: 2	LAYER PREII-SAND;FR	500-840;	THETA: 317	KBR	REPLACED	D BY CABR2; 5
P.V.: 1	191.4; CA	AgAIMST	P.V.			P.V.:	191.4; 1-k	-k AG
 D. R.....	TO...: rxl...	rx2...			D..... R.
	40.20	$5.0 \quad 5$	13.837 0	0			40.20	5.0
	0	1 1	00	0			. 2	5.0
	0.0	1.0					0.0	. 0
0.010	29.7	. 193				0.001	29.7	0.193
0.009	29.7	1.159				0.005	29.7	1.159
0.009	29.7	2.119				0.028	29.7	2.119
0.008	29.7	3.083				0.027	29.7	3.083
0.000	29.7	4.059				0.019	29.7	4.059
0.008	29.7	5.036				0.027	29.7	5.036
0.007	29.7	6.020				0.032	29.7	6.020
0.007	29.7	7.013				0.030	29.7	7.013
0.044	29.7	8.021				0.062	29.7	8.021
0.208	29.7	8.513				0.215	29.7	8.513
0.465	29.7	9.015				0.467	29.7	9.015
0.671	29.7	9.516				0.673	29.7	9.516
0.810	29.7	10.018				0.787	29.7	10.018
0.872	29.7	10.591				0.858	29.7	10.591
0.936	29.7	11.016				0.916	29.7	11.016
0.958	29.7	12.004				0.945	29.7	12.004
0.958	29.7	13.011				0.961	29.7	13.011
0.983	29.7	14.042				0.968	29.7	14.042

Experiment 21: Calcium, Sodium, Bromide, and Chloride

Experiment 22: Calcium, Sodium, Rromide, and Chloride

Experiment 23: Calcium, Sodium, Bromide, and Chloride

Experiment 24: Calcium, Sodium, Bromide, and Chloride

Experiment 26: Calcium, Sodium, Bromide, and Chloride

Experiment 27: Calcium, Sodium, Bromide, and Chloride

Experiment 28: Calcium, Sodium, Bromide, and Chloride

Experiment 31: Calcium, Potassium, and Sodium

Experiment 32: Calcium, Potassium, and Sodium

Experiment 33: Calcium, Potassium, and Sodium

Experiment 34: Calcium, Potassium, and Sodium

APPENDIX E

Exchange Data

Exchange isotherms in a binary system, A/B, were formulated in a previous study (12) as:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{A}}=\alpha+\beta \mathrm{X}_{\mathrm{A}}+\gamma \mathrm{X}_{\mathrm{A}}^{2}+\delta \mathrm{X}_{\mathrm{A}}^{3} \tag{E-1}
\end{equation*}
$$

where X and Y are the dimensionless concentrations in the liquid and adsorbed phases, respectively. The isotherm for the competing cation B follows from:

$$
\begin{equation*}
Y_{B}=1-\alpha-\beta-\gamma-\delta+(\beta+2 \gamma+3 \delta) X_{B}-(\gamma+3 \delta) X_{B}^{2}+\delta X_{B}^{3} \tag{E-2}
\end{equation*}
$$

Parameter values for the exchange isotherms and CEC values for the soil systems used in this study are listed below:

Exchange Properties for $\mathrm{Ca} / \mathrm{Na}$ Soils

Soil	CEC	Cation	α	β	γ	δ
$\mathrm{cmol}_{\mathrm{c}} / \mathrm{kg}$						
Dothan I	0.600	Ca	0	2.32	-2. 24	0.94
		Na	-0.02	0.66	-0.58	0.94
Dothan II	0.253	Ca	0.02	3.90	-7. 05	4.21
		Na	-0.08	2.43	-5.58	4.21
Wickham I	0.697	Ca	0.28	4.01	-7.66	4.43
		Na	-0.06	1.98	-5.63	4.43
Wickham II	0.619	Ca	0.31	4.06	-8.12	4.82
		Na	-0.07	0.18	-6. 34	4.82
Troup	0.002	Ca	0.10	0.64	-0.52	0.86
		Na	-0.08	2.18	-2.06	0.86
Lucedale I	0.618	Ca	0.02	6.14	-11.48	6.37
		Na	-0.05	2.29	-7.63	6.37
Lucedale II	0.991	Ca	0.01	3.31	-4.63	2.35
		Na	-0.04	1.10	-2. 42	2.35
Savannah I	0.363	Ca	0.16	4.67	-8.79	5.02
		Na	-0.06	2.15	-6. 27	5.02

[^0]: † Semi-infinite medium, third-type condition, $0.1<\mathrm{C}<0.9$ (24).

